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The prospects of searches for anomalous production of hadronically decaying weak boson pairs at
proposed high-energy muon colliders are reported. Muon-muon collision events are simulated at

ffiffiffi
s

p ¼ 6,
10, and 30 TeV, corresponding to an integrated luminosity of 4, 10, and 10 ab−1, respectively. Simulated
μμ → WWþ νν=μμ events are used to set expected constraints on the structure of quartic vector boson
interactions in the framework of a dimension-8 effective field theory. Similarly, μμ → WW=ZZþ νν events
are used to report constraints on the product of the cross section and branching fraction for vector boson
fusion production of a heavy neutral Higgs boson decaying to weak boson pairs. These results are
interpreted in the context of the Georgi-Machacek model.
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I. INTRODUCTION

Vector boson scattering (VBS) processes probe the
structure of the triple and quartic electroweak (EW) gauge
boson self-interactions [1,2]. Deviations of measurements
with respect to the Standard Model (SM) predictions could
indicate the presence of anomalous quartic gauge couplings
(aQGCs) [3,4]. Measurements of VBS processes provide a
unique insight into the EW symmetry breaking mechanism
as the unitarity of the tree-level amplitude of the longitu-
dinally polarized VBS at high energies is restored by a
Higgs boson [1,2]. New physics models predict enhance-
ments in VBS processes through extended Higgs sectors or
modifications of the Higgs boson couplings to W and Z
bosons [5,6].
A multi-TeV muon collider (μþμ−) [7] is a “high-

luminosity weak boson collider” [8] and provides a great
opportunity to study VBS processes. A comprehensive
physics case for a future high-energy muon collider, with
center of mass energies from 1 to 100 TeV, is reported in
Ref. [9]. A muon collider has considerable advantages
compared to proposed linear and circular electron-positron
(eþe−) [10–13] with larger collision energy and luminosity

reach. In addition, a muon collider has a relatively clean
environment compared to circular proton-proton (pp)
machines [14,15] and the total energy of the muon is
available in a collision in contrast to the dissociation of the
composite proton. However, compared to eþe− colliders,
the effects of backgrounds induced by the muon beam
decays, referred to as “beam-induced background,” are
important and need to be studied in detail [16].
This paper focuses on the prospects of aQGC searches

using events with hadronically decaying W�W∓ boson
pairs. The studies are performed in the μμ → WWþ
νν=μμ channels, where the W boson pair is produced in
association with two neutrinos or two muons, respectively.
Figure 1 shows representative Feynman diagrams involving
quartic vertices for the WWνν (left) and WWμμ (right)
channels. Ten independent charge conjugate and parity
conserving dimension-8 effective operators are considered
[3]. The S0 and S1 operators are constructed from the
covariant derivative of the Higgs doublet. The T0, T1, T2,
T6, andT7 operators are constructed from the SULð2Þ gauge
fields. The mixed operators M0, M1, and M7 involve the
SULð2Þ gauge fields and the Higgs doublet. The definitions
of all the operators are provided in Appendix A in Ref. [3].
The WWνν and WWμμ channels are analyzed separately.
Prospects of searches for a heavy neutral Higgs boson

produced in association with two neutrinos and decaying to
WW or ZZ boson pairs are also reported in this paper. In
particular, the Georgi-Machacek (GM) model [17–19] with
both real and complex triplets is considered. In the GM
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model the tree-level ratio of the W and Z boson masses is
protected against large radiative corrections and the physi-
cal scalar states transform as multiplets under a global
custodial symmetry. The model contains a fermiophobic
fiveplet, a fermiophilic triplet, and two singlets, one of
which is identified as the 125 GeV SM-like Higgs boson.
The fiveplet physical states, collectively referred to as

H5, consist of a neutral Higgs boson in addition to singly
and doubly charged Higgs bosons, which are degenerate in
mass (denoted as mH5

). Only the neutral fiveplet state is
consideredhere.TheH5planebenchmark,where the triplet
states are heavier than the fiveplet states, is used [20]. In this
benchmark, the H5 states are produced primarily via vector
boson fusion (VBF) and the production cross section is
proportional to the parameter sH, characterizing the contri-
bution of the isotriplet scalar fields to themasses of theWand
Z bosons. The μμ → H5νν production mode is considered
where the H5 boson is assumed to decay to VV, where V is a
W or Z boson [20,21], yielding a VVνν final state.
Measurements ofVBSprocesses at theCERNLHCby the

ATLAS and CMS Collaborations have reported constraints
on aQGCs in the framework of dimension-8 effective field
theory (EFT) operators [22–38]. Prospects for aQGC
searches using the scattering of W and Z bosons at the
High-Luminosity LHC (HL-LHC) and High-Energy LHC
(HE-LHC) are reported in Ref. [39], while the sensitivity for
a future eþe− collider is presented in Ref. [40]. Constraints
on the GM model have been reported by the ATLAS and
CMS Collaborations by searching for charged Higgs bosons
produced via VBF [24,27,34,41–44].
In this paper, μþμ− collider benchmarks [9] with three

different center of mass energies,
ffiffiffi
s

p ¼ f6; 10; 30g TeV,
and integrated luminosities of f4; 10; 10g ab−1, respec-
tively, are considered. Events are selected with hadronically
decaying W or Z bosons to target the final states with the
highest branching ratios. Expected limits on aQGC param-
eters and constraints on the GM model are reported.

II. EVENT SIMULATION

The Madgraph5_aMC@NLO 3.1.1 [45,46] and WHIZARD 3
[47,48] Monte Carlo (MC) event generators are used to

simulate the signal and background contributions. The
aQGC processes are simulated using Madgraph5_aMC@NLO

at leading order (LO). The contributions of the amplitude of
the interference between the EFT operators and the SM
(referred to as the interference term) are simulated sepa-
rately from the contributions involving only EFT operators
(referred to as the quadratic term). More details can be
found in Ref. [49]. The H5 signal processes are simulated
using Madgraph5_aMC@NLO at LO for the mass range from
0.5 TeV to 3 TeV using the H5plane benchmark. The sH
values are set to 0.5 for masses up to 0.8 TeV and 0.25 for
higher masses to be compatible with present constraints
[20]. The SMWWνν andWWμμ background processes are
simulated with Madgraph5_aMC@NLO. These SM processes
are also simulated with WHIZARD at LO and good agree-
ment is seen with Madgraph5_aMC@NLO predictions.
Other background processes contributing to the WWνν

channel are simulated following Ref. [40]. The WZμν,
ZZμμ, WWμμ, and WWZð→ννÞ processes are simulated
using WHIZARD. The initial state radiation of beam particles
as implemented in WHIZARD is included in the simulation.
The parton showering and hadronization are simulated

using PYTHIA 8.306 [50]. Detector effects are simulated
using DELPHES 3.5 [51] with a generic muon collider
detector description. The effects of beam-induced back-
ground are not considered in this description. Muons and
electrons are reconstructed with an absolute pseudorapidity
up to 2.5. Jets are clustered from the reconstructed stable
particles (except electrons and muons) using FastJet [52]
with the VALENCIA algorithm [53]. Inclusive clustering with
a distance parameter of R ¼ 1 is performed.

III. EVENT SELECTION

Events are selected targeting hadronically decaying WW
and ZZ boson pairs with a large invariant mass. The jets are
required to have transverse momenta (pT) greater than
100 GeV and be relatively central, with j cos θj < 0.8,
where θ is the angle of the jet with respect to the beam axis.
The jet with the highest pT is called the “leading jet” and
the jet with the second-highest pT the “subleading jet.” The
leading and subleading jets are each required to have a mass
greater than 40 GeV.
The WWνν and ZZνν channels are targeted by vetoing

events with a reconstructed electron or muon with momen-
tum greater than 3 GeV. This requirement significantly
reduces the WWμμ and ZZμμ background contributions in
these channels, which could be reduced even further with a
detector with better forward muon coverage. As these
channels contain two neutrinos in the final state, the events
are also required to have a missing mass (mmiss) greater than
200 GeV. The mmiss is defined as

mmiss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

s
p

− EVVÞ2 − jp⃗VVj2
q

; ð1Þ

FIG. 1. Representative Feynman diagrams of the WWνν (left)
and WWμμ (right) processes. New physics (represented by a
hatched circle) in the EW sector can modify the quartic gauge
couplings.
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where EVV and p⃗VV are the energy and momentum of the
V boson pair. This requirement removes events where
neutrinos are produced from Z boson decays and reduces
the contributions of the s-channelWWand two-jet processes.
The WWμμ channel is targeted by requiring two oppo-

sitely chargedmuonswithmomentagreater than0.5GeVand

j cos θj < 0.99. The largely dominant background contribu-
tion is the SM production of WWμμ where the final state
muons tend to be very forward. The mass of the dimuon pair
is required to be greater than 106 GeV to reduce the
contribution of events where the muons are produced from
Z boson decays.

FIG. 2. Distributions of mWW after the event selection in the WWνν (left) and WWμμ (right) channels for a μþμ− collider withffiffiffi
s

p ¼ 6 TeV (upper), 10 TeV (middle), and 30 TeV (lower). The filled histograms show the background expectation, while the solid
lines show the separate contributions from the interference (red) and quadratic (green) terms for a value of the T1 parameter at the limit
of the expected sensitivity.

ANOMALOUS PRODUCTION OF MASSIVE GAUGE BOSON PAIRS … PHYS. REV. D 108, 093009 (2023)

093009-3



IV. RESULTS

The selected events are used to constrain aQGC param-
eters in an EFT framework. Statistical analysis of the event
yields is performed separately in the WWνν and WWμμ
channels with a fit to the invariant mass distribution of the
two leading jets, which typically correspond to the pair of
W bosons, denoted mWW. The distributions of mWW after
the event selection at each of the different center-of-mass
energies are shown in Fig. 2. The expected 95% confidence
level (CL) lower and upper limits on the aQGC parameters
f=Λ4, where f is the Wilson coefficient of the given
operator and Λ is the energy scale of new physics, are
derived from Wilk’s theorem [54] assuming that the profile
likelihood test statistic is χ2 distributed [55]. No nuisance
parameters corresponding to systematic uncertainties are
included in the fits.
Table I shows the individual lower and upper limits

obtained by setting all other aQGC parameters to zero in the
WWνν channel for the S0, S1, M0, M1, M7, T0, T1, and T2
operators, at each of the different center-of-mass energies.
The WWμμ contribution in the WWνν channel is treated as

a background process and assumed to be purely SM in the
statistical analysis. Table II shows the individual lower and
upper limits obtained by setting all other aQGC parameters
to zero in the WWμμ channel for the T0, T1, T2, T6, and
T7 operators for the different center-of-mass energies. The
operators T6 and T7 are especially interesting for the
WWμμ channel as the presence of these operators does not
modify the SM quartic WWWW vertex.
The EFT framework is not a complete model and the

presence of nonzero aQGCs will violate tree-level unitarity
at sufficiently high energy [4]. The physicality of the
obtained limits can be deduced by investigating the
perturbative partial-wave unitarity. While detailed studies
on the EFT framework validity are beyond the scope of this
paper, the unitarity bounds were evaluated for each aQGC
parameter limit by calculating the VV center-of-mass
energy at which the tree-level unitarity would be violated
without a form factor using VBFNLO 1.4.0 [56–58]. These
unitarity bounds are shown in Tables I and II. Various
VV → VV channel contributions to the zeroth partial wave
are considered and the smallest unitarity bound is chosen.

TABLE I. Expected lower and upper 95% C.L. limits on the parameters of the quartic operators S0, S1, S2, M0, M1, M7, T0, T1, and
T2 in the WWνν channel for a μþμ− collider with

ffiffiffi
s

p ¼ 6 TeV, 10 TeV, and 30 TeV. The energy at which tree-level unitarity would be
violated for these parameter values is also shown.

ffiffiffi
s

p ¼ 6 TeV
ffiffiffi
s

p ¼ 10 TeV
ffiffiffi
s

p ¼ 30 TeV

WWνν Limit (TeV−4)
Unitarity Bound

(TeV) Limit (TeV−4)
Unitarity Bound

(TeV) Limit (TeV−4)
Unitarity Bound

(TeV)

fM;0=Λ4 ½−0.025; 0.027� [5.9, 5.8] ½−0.0048; 0.0049� [8.9, 8.8] ½−0.00046; 0.00046� [15.8, 15.8]
fM;1=Λ4 ½−0.063; 0.052� [6.6, 6.9] ½−0.0096; 0.0084� [10.5, 10.8] ½−0.0012; 0.0011� [17.6, 17.8]
fM;7=Λ4 ½−0.094; 0.12� [7.1, 6.7] ½−0.016; 0.019� [10.9, 10.6] ½−0.0021; 0.0022� [18.1, 17.9]
fS;0=Λ4 ½−0.19; 0.18� [3.8, 4.4] ½−0.034; 0.033� [5.8, 6.8] ½−0.0046; 0.0045� [9.5, 10.9]
fS;1=Λ4 ½−0.11; 0.11� [4.5, 4.3] ½−0.019; 0.019� [6.8, 6.6] ½−0.0025; 0.0025� [11.3, 10.9]
fS;2=Λ4 ½−0.11; 0.11� [4.4, 4.3] ½−0.019; 0.019� [6.8, 6.6] ½−0.0025; 0.0025� [11.3, 10.9]
fT;0=Λ4 ½−0.0049; 0.0025� [6.2, 6.3] ½−0.00070; 0.00051� [10.0, 9.3] ½−0.000072; 0.000062� [17.7, 15.7]
fT;1=Λ4 ½−0.0017; 0.0014� [7.7, 8.1] ½−0.00089; 0.00053� [9.0, 10.3] ½−0.000095; 0.000082� [15.5, 16.3]
fT;2=Λ4 ½−0.011; 0.0046� [6.6, 7.0] ½−0.0015; 0.00082� [10.8, 10.7] ½−0.00017; 0.00013� [18.4, 16.7]

TABLE II. Expected lower and upper 95% C.L. limits on the parameters of the quartic operators T0, T1, T2, T6, T7 in the WWμμ
channel for a μþμ− collider with

ffiffiffi
s

p ¼ 6 TeV, 10 TeV, and 30 TeV. The energy at which tree-level unitarity would be violated for these
parameter values is also shown.

ffiffiffi
s

p ¼ 6 TeV
ffiffiffi
s

p ¼ 10 TeV
ffiffiffi
s

p ¼ 30 TeV

WWμμ Limit (TeV−4)
Unitarity Bound

(TeV) Limit (TeV−4)
Unitarity Bound

(TeV) Limit (TeV−4)
Unitarity Bound

(TeV)

fT;0=Λ4 ½−0.0065; 0.0026� [8.7, 10.9] ½−0.0012; 0.00057� [13.2, 15.8] ½−0.000031; 0.000018� [32.2, 36.8]
fT;1=Λ4 ½−0.036; 0.024� [4.2, 5.2] ½−0.0020; 0.00089� [8.6, 11.9] ½−0.000050; 0.000031� [21.1, 27.0]
fT;2=Λ4 ½−0.052; 0.030� [5.2, 6.7] ½−0.0068; 0.0012� [8.6, 15.1] ½−0.000091; 0.000042� [24.8, 35.1]
fT;6=Λ4 ½−0.0052; 0.0041� [10.0, 11.1] ½−0.00090; 0.00074� [15.5, 16.9] ½−0.000027; 0.000024� [37.1, 40.1]
fT;7=Λ4 ½−0.0068; 0.0042� [12.8, 15.0] ½−0.0011; 0.00086� [19.9, 22.3] ½−0.000034; 0.000028� [47.8, 52.7]
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Generally, for 6 and 10 TeV collider options, unitarity
violation occurs around or above the collider center-of-
mass energy. On the other hand, the expected limits atffiffiffi
s

p ¼ 30 TeV are somewhat optimistic as the correspond-
ing unitarity bounds are significantly smaller than 30 TeV
for many of the operators.
These results give stringent constraints on the aQGC

parameters for the S0, S1, M0, M1, M6, M7, T0, T1, T2,

T5, and T6 operators. Depending on the operator, the
expected limits are better by more than one or two orders of
magnitude compared to the expected limits at the HL-LHC
and HE-LHC, as reported in Ref. [39], and summarized in
Table III. The expected limits in the WZ channel are based
on a measurement of fully leptonic WZ scattering by the
ATLAS Collaboration using pp collisions at

ffiffiffi
s

p ¼ 13 TeV
[59] with additional cuts to enhance the sensitivity to new

TABLE III. Summary of expected limits (in TeV−4) on the parameters of quartic operators at the HL-LHC and
HE-LHC [39].

HL-LHC HE-LHC

WZ W�W� WZ W�W�

fS0=Λ4 [−8, 8] [−6, 6] [−1.5, 1.5] [−1.5, 1.5]
fS1=Λ4 [−18, 18] [−16, 16] [−3, 3] [−2.5, 2.5]
fT0=Λ4 [−0.76, 0.76] [−0.6, 0.6] [−0.04, 0.04] [−0.027, 0.027]
fT1=Λ4 [−0.50, 0.50] [−0.4, 0.4] [−0.03, 0.03] [−0.016, 0.016]
fM0=Λ4 [−3.8, 3.8] [−4.0, 4.0] [−0.5, 0.5] [−0.28, 0.28]
fM1=Λ4 [−5.0, 5.0] [−12, 12] [−0.8, 0.8] [−0.90, 0.90]

FIG. 3. Distributions of mVV after the event selection for a μþμ− collider with
ffiffiffi
s

p ¼ 6 TeV (upper left), 10 TeV (upper right), and
30 TeV (lower). The filled histograms show the background expectation, while the solid lines show the GM neutral Higgs signal
predictions for values of sH ¼ 0.5 and mH5

¼ 500 GeV (red), as well as for values sH ¼ 0.25 and mH5
¼ 1000 GeV (green). Overflow

is included in the last bin.
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physics, while those in the W�W� channel are based on
simulated pp collisions with same-sign leptons at

ffiffiffi
s

p ¼
14 TeV [60] with an upgraded ATLAS detector [61].
Results for the HE-LHC are obtained based on simulations
at

ffiffiffi
s

p ¼ 27 TeV, assuming the same signal-to-background
ratio as at the LHC. A few of these LHC results address the
unitarity issues in some form, but not all of them. Expected
sensitivity to aQGCs at a

ffiffiffi
s

p ¼ 30 TeV μþμ− collider in
the WWνν channel using events with leptonically decaying
W bosons is reported in Ref. [62]. Sensitivity to aQGCs at
high-energy eþe− colliders are reported in Refs. [39,40].
The selected events are also used to derive constraints on

resonant neutral Higgs boson production in the GM model.
Statistical analysis of the event yields is again performed
with a fit to the invariant mass distribution of the leading
dijets, which typically correspond to the pair of V bosons,
denoted mVV. The distributions of mVV after the event

selection are shown in Fig. 3. Exclusion intervals are
derived using the CLs method [63,64] in the asymptotic
method for the test statistic [65]. The exclusion limits on the
product of the cross section of neutral Higgs boson
production in association with neutrinos and branching
fraction to VV, σðH5ννÞBðH5 → VVÞ, at 95% C.L. as a
function ofmH5

are shown in Fig. 4 (left). The excluded sH5

values at 95% C.L. in the GM model as a function of mH5

are shown in Fig. 4 (right). The feature seen in the limit
plots at mH5

¼ 0.9 TeV is the transition point between the
sH values in the H5plane benchmark [20] and is a
consequence of the non-negligible effect of the H5 width
in the statistical analysis. The reported expected sH exclu-
sion values are significantly more stringent compared to the
exclusion limits of the current LHC results with more than
order an of magnitude better sensitivity for mH5

values
greater than 1 TeV [24,27,34,41–44].

FIG. 4. Expected exclusion limits at 95% C.L. for σðH5ννÞBðH5 → VVÞ (left) and for sH as a function ofmH5
(right) in the GMmodel

for a μþμ− collider with
ffiffiffi
s

p ¼ 6 TeV (upper), 10 TeV (middle), and 30 TeV (lower).
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V. SUMMARY

Prospects of searches for anomalous production of heavy
gauge boson pairs at future high-energy muon colliders are
reported. Muon-muon collision events are simulated atffiffiffi
s

p ¼ 6, 10, and 30 TeV corresponding to an integrated
luminosity of 4, 10, and 10 ab−1, respectively. The simu-
lated events are used to study the WWνν and WWμμ
channels with the W bosons decaying hadronically.
Constraints on the quartic vector boson interactions in
the framework of dimension-8 effective field theory oper-
ators are obtained with stringent expected limits set on the
EFT operators S0, S1, M0, M1, M7, T0, T1, T2, T6, and
T7. Depending on the operator, the limits are better by
more than one or two orders of magnitude compared to the
expected limits at the HL-LHC and HE-LHC. The WWνν
and ZZνν channels are also used to report expected
constraints on the product of the cross section and branch-
ing fraction for vector boson fusion production of a heavy

neutral Higgs boson as a function of mass from 0.5 to
3 TeV. These results are interpreted in the context of the
Georgi-Machacek model and show significantly more
stringent constraints compared to the LHC results with
more than an order of magnitude better sensitivity for mH5

values greater than 1 TeV.
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