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We present an updated Standard Model (SM) estimate of the inclusive b → sll rate at a high dilepton
invariant mass (q2 ≥ 15 GeV2). We show that this estimate is in good agreement with the result obtained
summing the SM predictions for the leading one-body modes (K and K�) and the subleading nonresonant
Kπ channel (for which we also present an updated estimate). On the contrary, the semi-inclusive sum based
on data exhibits a deficit compared to the inclusive SM prediction in the muon modes. The statistical
significance of this deficit does not exceed 2σ but is free from uncertainties on hadronic form factors and
fully compatible with the deficit observed at low-q2 on the exclusive modes. The implications of these
results in conjunction with other SM tests on b → sμ̄μ modes are briefly discussed.
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I. INTRODUCTION

The ultimate goal of studying b → sll decays is to
probe the short-distance structure of the corresponding
flavor-changing neutral-current (FCNC) amplitudes. By
doing so, we perform precise tests of the Standard Model
(SM) probing, at the same time, motivated beyond-the-SM
(BSM) theories. The presence of narrow charmonium
resonances poses challenges in extracting short-distance
information for both exclusive and inclusive b → sll
decays if the invariant mass of the dilepton pair, q2 ¼
ðpl þ plÞ2, is close to the resonance masses. This is why
precise SM tests are confined to q2 ≲ 6–8 GeV2 (low-q2

region) and q2 ≳ 14–15 GeV2 (high-q2 region). It is
important to study both these regions as they are sensitive
to different short-distance physics and, most importantly,
they experience a different interplay between short- and
long-distance dynamics. For a similar reason, it is impor-
tant to study b → sll transitions both at the exclusive and
inclusive levels.
In the last few years, measurements of rates and angular

distributions of the exclusive B → Kð�Þμ̄μ decays by
LHCb [1–3] have shown significant tensions with the
corresponding SM predictions, especially in the low-q2

region (see, e.g., Refs. [4–9] for recent analyses). All the
attempts to compute the decay amplitudes from QCD agree
on the observed tension. However, using a more agnostic
data-driven approach, some doubts about the reliability of

the theory errors have been raised in Refs. [10,11]. The
goal of this paper is to attempt to shed light on this issue
by looking at the inclusive B-meson decay rate, ΓðB →
XsllÞ, in the high-q2 region. This observable provides
complementary information on b → sll amplitudes, being
affected by qualitatively different uncertainties with respect
to those appearing in the exclusive modes in the low-q2

region.
The heavy-quark expansion in the high-q2 region is an

expansion inOðΛQCD=ðmb −
ffiffiffiffiffi
q2

p
ÞÞ [12], which converges

less rapidly with respect to the OðΛQCD=mbÞ expansion at
work in the low-q2 region (see Refs. [13–15]). However, as
pointed out by Ligeti and Tackmann [16], nonperturbative
uncertainties in the high-q2 region can be greatly reduced
by computing the ratio of the FCNC transition and the
b → u charged-current decay,

RðlÞ
inclðq20Þ ¼

R
m2

B

q2
0

dq2 dΓðB→XsllÞ
dq2R

m2
B

q2
0

dq2 dΓðB→XulνÞ
dq2

; ð1Þ

where q20 is the lower cut on q2. The hadronic structure of
the two transitions is very similar (b → qlight left-handed
current), leading to a significant cancellation of nonpertur-
bative uncertainties when taking the ratio on an approx-
imately equal phase space. Thanks to the recent experimental
measurement of the B → Xulν inclusive rate as function
of q2 by Belle [17], the procedure proposed in [16] of
computing the ratio (1) to predict ΓðB → XsllÞ can finally
be put in place.
On the experimental side, the ΓðB → XsllÞ rate at high-

q2 is not fully available. However, in this kinematic region,
only a few decay modes are relevant, and we can replace the
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inclusive sum with the sum over a limited set of exclusive
modes. To this end, we update the prediction for the
nonresonant B → Kπ mode at high q2 presented in
Ref. [12]. By doing so, we show that for q20 ¼ 15 GeV2,
the inclusive rate is largely dominated by the two leading
one-body modes (B → K and B → K�), with B → Kπ
representing an Oð10%Þ correction and additional multi-
body modes being further suppressed. We also show that
the semi-inclusive rate obtained by summing the SM
predictions for the leading one-body modes and the
B → Kπ channel is in good agreement with the fully

inclusive SM prediction obtained by means of RðlÞ
inclðq20Þ

in Eq. (1). In other words, on the one hand, we cross-check
the SM inclusive prediction; on the other, we validate the
procedure to extract the (semi-)inclusive rate from data
(while waiting for a fully inclusive measurement). As we
shall show, the analysis of present data confirms the tension
between data and SM prediction in the muon modes.
The paper is organized as follows: in Sec. II, we review

the b → sll effective Lagrangian, pointing out the use-
fulness of a change of basis for the FCNC operators
compared to the standard choice. In Sec. III, we present
an updated estimate of

Γ
�
B → Xsll

�
½15� ≡ Γ

�
B → Xsll; q2 ≥ 15 GeV2

�
; ð2Þ

by means of (1), following the analysis of Ref. [16]. In
Sec. IV, we present the updated estimate of the B → Kπll
rate for q2 ≥ 15 GeV2. In Sec. V, we compare inclusive vs
semi-inclusive predictions within the SM, and the inclusive
SM rate vs data (semi-inclusive, muon modes only). Finally,
in Sec. VI, we discuss the implications for the Wilson
coefficients, encoding short-distance physics, inferred by the
comparison with data. The results are summarized in the
Conclusions.

II. THE b → sll EFFECTIVE LAGRANGIAN

The effective Lagrangian valid below the electroweak
scale relevant to b → sll transitions is conventionally
written as

Lb→sll
eff ¼ 4GFffiffiffi

2
p αe

4π

�
V�
tsVtb

X
i

CiOi þ H:c:

�
þ L

Nf¼5

QCD×QED;

ð3Þ

where we have used CKM unitarity, and neglected the tiny
OðV�

usVubÞ terms, to normalize all the flavor-changing
operators in terms of a single CKM coefficient.
The only Oi with b → sll matrix elements, which are

nonvanishing at tree level, are the electric-dipole operator,

O7 ¼
mb

e
ðs̄LσμνbRÞFμν; ð4Þ

and the two FCNC semileptonic operators,

O9 ¼ ðs̄LγμbLÞðlγμlÞ; O10 ¼ ðs̄LγμbLÞðlγμγ5lÞ: ð5Þ

For reasons that will be clear in the following, we find it
convenient to perform a change of basis fO9;O10g →
fOV;OLg, where

OV ¼ ðs̄LγμbLÞðlγμlÞ; OL ¼ ðs̄LγμbLÞðlLγ
μlLÞ; ð6Þ

such that

CV ¼ C9 þ C10; CL ¼ −2C10: ð7Þ

The new basis allows us to separate effective interactions,
which originate by different underlying dynamics and
behave differently in the evolution from high scales
(μ0 ∼mt) down to low scales (μb ∼mb). To better under-
stand the different structures of these two operators, it is
worth looking at the corresponding Wilson coefficients at
the lowest nontrivial order.

A. The OL operator

The purely left-handed operator is completely dominated
by short-distance dynamics: it is generated at high scales by
the top-quark Yukawa and SUð2ÞL interactions and, to a
large extent, it does not evolve in the effective theory or mix
with any other effective operator.
In the case ofOL, the presence of αe in the normalization

of Lb→sll
eff is rather misleading: this is evident if we look

at the overall coefficient of OL (modulo the CKM factor),
namely [18],

CL ¼ 4GFffiffiffi
2

p αe
4π

CL: ð8Þ

The corresponding one-loop expression is

Cð0ÞL ¼ 2G2
Fm

2
W

π2
Y0ðxtÞ ¼

y2t
16π2v2

�
1þOðg2=y2t Þ

�
; ð9Þ

where Y0ðxt ¼ m2
t =m2

WÞ ≈ 0.98 is the (finite) one-loop
function [19], defined as in [20]. As can be seen, the

expression of Cð0ÞL depends only on the top-quark Yukawa
coupling (yt) and the SUð2ÞL coupling (g), once we
normalize the effective interaction via the Higgs vacuum
expectation value v ¼ ð2 ffiffiffi

2
p

GFÞ1=2 ≈ 246 GeV. Moreover,
this coefficient is nonzero in the so-called gaugeless limit of
the SM (i.e., in the limit g → 0 and yt ≠ 0, see, e.g., [21]).
The separation of OL from all the other operators in

Lb→sll
eff is guaranteed by the fact that, in the limit where we

neglect light Yukawa couplings, the RG evolution arises
only from QCD and QED, which are vectorlike theories.
Note also that the bilinear quark current in OL is a
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conserved current; hence, there is no mixing and no
contribution in the Renormalization Group (RG) evolution
of CL at any order in QCD. A small anomalous dimension
and a tiny mixing with other operators arise only from
higher-order QED corrections.
The stability of CL under quantum corrections is

reflected by the small numerical difference between the

leading (one-loop) result, Cð0ÞL ≈ 1.7 × 10−7 GeV−2, and the
precise value estimated in [18,22], taking into account
NNLO QCD and EW corrections (which play an important
role in reducing the scale uncertainty in the high-scale
matching). From the analysis of Ref. [22], taking into
account the updated input for mt (see Table I), we deduce

CLðmbÞ ¼ ð1.662� 0.008Þ × 10−7 GeV−2; ð10Þ

CLðmbÞ ¼ 8.38� 0.04; ð11Þ

where in (11) we have used the normalization (3) and,
correspondingly, the value of αeðmbÞ in Table I.

B. The OV operator

This effective operator receives contributions from all
scales, vanishes in the limit αe → 0 (i.e., in the limit
sW → 0 at fixed g), and it mixes with the four-quark
operators already at the one-loop level.
The one-loop expression, obtained without resumming

large logarithms, is

Cð0Þ
V ðμÞ ¼ −4Z0ðxtÞ þ

4

9
−
4

9
ln

�
μ2

M2
W

�

≈ 0.22 − 0.89 × ln

�
μ2

m2
b

�
; ð12Þ

with Z0ðxtÞ ≈ 0.67 defined as in [20]. The numerical result
in (12) is only qualitative (given we have not resummed the
large logarithms), but it illustrates well the main features
of CV . There are two competing contributions that tend
to cancel each other: (i) the finite and largely scale-
independent short-distance contribution, encoded in Z0ðxtÞ,
and (ii) the charm-loop contribution generating large
logarithms in the RG evolution from high scales to low
scales. The cancellation becomes even more effective when

the sizable QCD corrections are resummed via a proper
treatment of the RG evolution. At NNLO accuracy [24],
using the numerical results in [25], we find

CVðμbÞ ¼ −0.01� 0.14; μb ∈ ½2; 5� GeV; ð13Þ

with a significant residual (low) scale dependence, which is
a remnant of the μ dependence in Eq. (12).

C. Four-quark operators

Beside OL and OV , an important role in b → sll
amplitudes is played by the four-quark operators, whose
matrix elements are nonvanishing beyond tree level. To high
accuracy (i.e., to first order in αe and arbitrary order in αs),
the contribution of four-quark operators can be expressed via
a (process-dependent, nonlocal) modification of CV ,

Ceff
V;Xs

ðq2Þ

¼
P

Hs ∈Xs

�
CVhHslljOV jBi þ

P
iCihHslljOijBi

�
P

Hs ∈Xs
hHslljOV jBi

:

ð14Þ

The sum overHs denotes the sum over all the hadronic states
belonging to the final state jXsi. Due to quark-hadron
duality, we expect that for a sufficiently inclusive jXsi,
the hadronic sum can be replaced by a partonic sum.
Evaluating the matrix elements of the Oi in Eq. (14) in

perturbation theory at lowest order in αs, leads to a process-

independent expression that we denote Ceff
V ðq2Þjð0Þpert. More

precisely, the coefficient thus obtained does not depend on
jXsi, provided this state has the valence-quark content of

OV jBi. The expression of Ceff
V ðq2Þjð0Þpert is the same for the

fully inclusive mode or for an exclusive decay, such as
B → Kll. Considering only the leading four-quark charm-
quark operators1 Oc

1;2, which have Oð1Þ Wilson coeffi-
cients, one finds

Ceff
V ðq2Þjð0Þpert ≈ CV þ

�
Cc
2 þ

4

3
Cc
1

�
× hðm2

c; q2Þ; ð15Þ

where hðm2
c; q2Þ is given in [26] and hð0; q2Þ ¼

ð4=9Þ × log ðμ2b=m2
bÞ. Using the numerical expressions

for the Wilson coefficients in [25], we find

Re
�
Ceff
V ðq2 ¼ 15 GeV2Þjð0Þpert

� ¼ 0.43� 0.26; ð16Þ

Re
�
Ceff
V ðq2 ¼ 1 GeV2Þjð0Þpert

� ¼ 0.13� 0.13: ð17Þ

TABLE I. Input parameters used for the computation of the
inclusive rate.

Parameter Value Reference

mt 172.7(5) GeV [23]
αðmbÞ−1 132.306(9) [13,23]
jVubj 3.82ð20Þ × 10−3 [23]
jVtsj 4.15ð9Þ × 10−2 [23]
jVtbj 0.990903(64) [23]

1We define Wilson coefficients of four-quark operators as
in [25] (the definition of the operators differs by an overall factor
due to the different normalizations of Lb→sll

eff ).
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The error, due to the scale dependence, is closely connected
to the scale variation of CVðμbÞ in (13).
Going beyond this approximation, we can decompose

Ceff
V;Xs

for the inclusive case as

Ceff
V;Xs

ðq2Þ ¼ Ceff
V;Xs

ðq2Þjpert þ Ceff
V;Xs

ðq2Þjn:p: ð18Þ

The two terms on the rhs of Eq. (18) denote the result
obtained in perturbation theory, considering partonic states,
and possible additional nonperturbative contributions,
respectively. The NLO corrections to the perturbative term,
evaluated for the first time in [27] in the high-q2 region, are
within the error band of the leading contribution in Eq. (16).
On general grounds, nonperturbative contributions are

expected to be smaller than perturbative ones. The latter
start to lowest-order in αs and are not power suppressed in
the heavy-quark limit. The only notable exception is the
q2 region of the narrow charmonium resonances, where
large local violations of quark-hadron duality do occur. We
defer a more detailed discussion of possible nonperturba-
tive contributions to Sec. VI. In the following, we limit
ourselves to consider perturbative contributions only.

III. INCLUSIVE RATE AT HIGH q2

The comparison between the numerical value of CV
in (13) and CL in (11) indicates that, within the SM, the
local part of the b → sll interaction has an approximate
left-handed structure, as in the b → ulν̄ case. In both
processes, we deal with a b → qlight transition; hence,
nonperturbative effects in sufficiently inclusive distribu-
tions are expected to be very similar. In b → sll tran-
sitions, corrections to a pure local left-handed interaction
are generated by the matrix elements ofO7 and those of the
four-quark operators (discussed in Sec. II C). However,
both these effects are quite small in the high-q2 region. This
is why the ratio (1) provides a very interesting observable to
perform precise SM tests, as pointed out first in Ref. [16].
In order to compare this ratio with experiments, it is

important to define the treatment of electromagnetic cor-
rections below mb. As pointed out first in [13], these give
rise to logðmlÞ-enhanced terms in the q2 spectrum, which
implies a sizeable suppression of the rate in the high-q2

region and a corresponding enhancement at low q2. The
origin of this effect is the migration of events to low q2 due
to real photon emissions by the dilepton system. As shown
in [28], this effect is absent (and the electromagnetic
corrections related to scales below mb become tiny) if
the cut employed to define the relevant kinematical region
is q20 ¼ ðpB − pXÞ2. The experiments whose data we use
for comparison effectively utilize this definition when
analyzing exclusive modes [29]. We therefore do not
include electromagnetic corrections (real or virtual) at
scales below mb in our prediction of BðB → XsllÞSM½15�.

Neglecting such corrections, the ratio (1) becomes ml
independent (within the SM), and we can therefore drop the
corresponding lepton label.
To provide an updated numerical prediction of Rinclðq20Þ

within the SM we reexpress the result of Ref. [16] in the
CL;V basis, rather than in C9;10 one. This way, we can write

Rinclðq20Þ ¼
jVtbV�

tsj2
jVubj2

�
RL þ ΔR½q2

0
�
�
; ð19Þ

where

RL ¼ α2eC2
L

16π2
¼ C2L

8G2
F
; ð20Þ

and, for q2 ¼ 15 GeV2,

ΔR½15� ¼
α2e
8π2

�
C2
V þCVCL þ 0.485CL þ 0.97CV þ 0.93

þΔn:p: þC7ð1.91þ 2.05CL þ 4.27C7þ 4.1CVÞ
�
:

ð21Þ

TheRL term is the result obtained in the limit of purely left-
handed interactions and identical hadronic distributions,
while ΔR½q2

0
� describes all the deviations from this ideal

limit. The numerical coefficients in ΔR½15� take into
account the (perturbative) matrix elements of the four-
quark operators, integrated over q2, while CV is the (q2

independent) Wilson coefficient. We denote by Δn:p:, the
nonperturbative effects estimated in [16]. The latter do not
include SUð3Þ-breaking corrections due to light-quark
masses. A naive estimate of these effects, from the phase
space differences on the leading hadronic modes, indicates
corrections up to 8% for q20 ¼ 15 GeV2. This is very
similar in size to the error associated with Δn:p: that, as
we shall see, does not represent the dominant source of
uncertainty in the final estimate of BðB → XsllÞSM½15�.
Similarly, possible nonfactorizable contributions related
to the broad charmonium resonances have not been
explicitly included (we will revisit this point in Sec. VI).
The numerical expressions in the SM are

RSM
L ¼ ð2.538� 0.024Þ × 10−5;

ΔRSM
½15� ¼

�
−0.03� 0.14Ci

� 0.17n:p:
�
× 10−5: ð22Þ

As it can be seen, ΔRSM
½15� is fully compatible with zero, but

largely dominates the theoretical uncertainty in (1). The
first error is due to the values of CV and C7,

2 while the
second one is due to nonperturbative effects.

2Since the scale variation in Eq. (16) is larger with respect to
the one in Eq. (13), we assume the former as a conservative
estimate of the scale uncertainty on CV .
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Using the numerical results in (22), together with the
experimental measurement of the B → Xulν inclusive rate
for q2 ≥ 15 GeV2 [17],3

B
�
B → Xulν

�exp
½15� ¼ ð1.50� 0.24Þ × 10−4; ð23Þ

and the CKM inputs in Table I, we finally obtain

B
�
B → Xsll

�
SM
½15� ¼ ð4.5� 1.0Þ × 10−7 ð24Þ

¼ 4.5 × 10−7½1� 0.16exp � 0.11CKM � 0.09ΔR�: ð25Þ

Note that the leading uncertainties are due to the exper-
imental result in (23) and the CKM inputs. We could
therefore expect a significant reduction of the total uncer-
tainty in (24) in the near future.
Our estimate of R½15� in (22), and the corresponding SM

prediction in (25), are about 20% higher with respect to the
results obtained in Ref. [15] for the l ¼ e case. A large
fraction of this difference can be attributed to the different
treatment of the real electromagnetic radiation. The dis-
crepancy indeed reduces to about 5% when comparing with
the results of Ref. [15] in the absence of long-distance
electromagnetic corrections.4

IV. THE B → Kπ RATE AT HIGH q2

As anticipated, our goal is twofold. First, we cross-check
the SM prediction in (24) with the corresponding semi-
inclusive result, namely the sum of the SM predictions of
the leading exclusive modes. Second, we compare (24)
with the experimental results in the high-q2 region. A
necessary ingredient to achieve both goals is the SM
prediction of the B → Kπ rate, which we present in this
section.
The B → Kπ process must be treated with some care

since it receives resonant contributions from BðB →
ðK� → KπÞllÞ, which are at least partially accounted
for in the B → K�ll branching fraction. To avoid double
counting these terms, we assume K� dominance for the
p-wave B → Kπll decay amplitude. In other words, we
describe this part of the amplitude via the exchange of the
K� resonance (also in the off shell region, assuming a
q2-independent K� width). The K� resonance cannot
contribute to the s-wave part of the amplitude, and the
interference between s and p waves cancels when inte-
grated over the phase space at fixed q2. We therefore
compute separately the s-wave component of the total
branching fraction, BðB → ðKπÞsllÞ, that we treat as an
independent decay channel.

At high q2, the light mesons have very low recoil
energies, Ehad ≪ ΛQCD, and heavy hadron chiral perturba-
tion theory (HHChPT) is valid in this region. We calculate
the leading s-wave contribution to the total B → Kπ rate by
computing the B → Kπ matrix element in HHChPT, and
subtracting the corresponding B → K� → Kπ contribution,
evaluated at the Kπ threshold. The HHChPT calculation
was performed in Ref. [12], and we independently verified
the result. In order to simplify the comparison to the B →
K� → Kπ matrix element obtained using the lattice results
of Ref. [30], we parametrize the matrix elements as

hKðpKÞπðpπÞjs̄γμð1 − γ5ÞbjBðpÞi
¼ −i

�
wþPμ þ w−Qμ þ cqμ þ ihϵμνρσqνPρQσ

�
;

iqν
q2

hKðpKÞπðpπÞjs̄σνμð1þ γ5ÞbjBðpÞi

¼ −i
�
w0þPμ þ w0

−Qμ þ c0qμ þ ih0ϵμνρσqνPρQσ

�
; ð26Þ

where Pμ ¼ pμ
K þ pμ

π and Qμ ¼ pμ
K − pμ

π . The relevant
form factors are related to those in Ref. [12], by

wð0Þ
þ ¼ að0Þ þ bð0Þ

2
þ cð0Þ; wð0Þ

− ¼ bð0Þ − að0Þ

2
: ð27Þ

Defining

w1 ¼ mB

�
wþ þ d

t
w−

�
; w2 ¼ mBw−; ð28Þ

the leading term of the differential decay width in the
expansion around the Kπ threshold is given by

dΓ
dsl

¼ G2
FM

5
B

192π3
jV�

tsVtbj2
α2

4π2
1

32π2
π

4

ffiffiffiffiffiffiffiffiffiffiffiffi
t2x1x2

p
ð1 − tÞ3=2

×

	�
1

2
jCLj2 þ jCV j2 þ ReðC�

VCLÞ
�
F9

þ 4m2
bjC7j2F7 þ 4mbRe



C7

�
1

2
C�
L þ C�

V

�
F97

��

×
�
sKπl − sl

�
3 þO

�ðsKπ
l − slÞ7=2

�
; ð29Þ

where the nondimensional parameters are x1 ¼ mK=mB,
x2 ¼ mπ=mB, t ¼ x1 þ x2, d ¼ x1 − x2, sl ¼ q2=m2

B, and
sKπl ≈ 0.775 is the value of sl at the Kπ threshold. The
expression (29) does not take into account the matrix
elements of the four quark operators. The latter can easily
be incorporated by the replacement CV → Ceff

V;Kπðslm2
BÞ.

Approximating Ceff
V;Kπ with Ceff

V jð0Þpert in (15), this replace-
ment has a negligible numerical impact given the additional
sources of uncertainty.

3The result for q2 ≥ 15 GeV2 is obtained by means of the q2
differential data in https://doi.org/10.17182/hepdata.131599.

4See Table 5 in the Appendix of Ref. [15] (note that the ratioR
defined in Ref. [15] includes also the CKM factors).
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The Fi factors are given by

F7 ¼ jw0
1j2 þ

4x1x2
t2

ð1 − tÞjw0
2j2;

F9 ¼ jw1j2 þ
4x1x2
t2

ð1 − tÞjw2j2;

F97 ¼ w0
1w

�
1 þ

4x1x2
t2

ð1 − tÞw0
2w

�
2: ð30Þ

The rate is largely dominated by the terms proportional to

wð0Þ
þ (i.e., the form factors associated with the total hadron

momentum in the matrix elements), which are the only ones
relevant to the s-wave transition. At the Kπ threshold,
where we can still trust the HHChPT result, we find

wþ ¼ 79.46; w0þ ¼ 16.49; ð31Þ

in units of GeV−1. Conversely, evaluating the B → K� →
Kπ contribution at the Kπ threshold, we find

wþjres ¼ 10.23þ 1.05i;

w0þjres ¼ 2.47þ 0.25i: ð32Þ

Comparing these two results, we determine

wsþ ¼ 69.23ð62Þ − 1.05ð6Þi;
w0sþ ¼ 14.02ð11Þ − 0.25ð1Þi; ð33Þ

again in units of GeV−1. The uncertainties arise from both
parametric inputs as well as lattice form factors.
Using the s-wave form factors in Eq. (29), and integrat-

ing for q2 ≥ 15 GeV2, we find5

BðB → ðKπÞsllÞSM½15� ¼ ð5.8� 2.5Þ × 10−8; ð34Þ

where the errors are estimated from the fact that the NLO
behavior in the expansion around the Kπ threshold scales
like ðsKπl − slÞ7=2. This error hugely dominates the para-
metric error, so the latter is not included in Eq. (34). Input
parameters are given in Tables I and II. Additionally, we use
gπ ∼ 0.5 for the HHChPT coupling constant and, along
with CV and CL given in Sec. II, the remaining Ci
(i ¼ 1;…; 8) are taken from Ref. [25].

V. INCLUSIVE HIGH-q2 RATE AS SUM
OF EXCLUSIVE MODES

The exclusive B → Kll and B → K�ll branching
fractions can be computed using the form factors calculated
in Refs. [30,33]. Again, integrating for q2 ≥ 15 GeV,
we find

B
�
B → Kll

�
SM
½15� ¼

�
1.31� 0.08lat � 0.09par

�
× 10−7

B
�
B → K�ll

�
SM
½15� ¼

�
3.19� 0.21lat � 0.22par

�
× 10−7;

ð35Þ

where “lat” refers to the uncertainty induced by the lattice
form factors and “par” to the one from parametric inputs.
In the above, we have used the narrow-width approxi-

mation to estimate the K� contribution. We can estimate the
error due to a nonvanishing decay width by using the
following double differential branching ratio, which is valid
in the limit of constant width (or Breit-Wigner resonance):

d2BðB → ðK� → KπÞllÞ
dq2dp2

Kπ

¼ dBðB → K�llÞ
dq2

1

π

mK�ΓK�BðK� → KπÞ
ðp2

Kπ −m2
K� Þ2 þmK�ΓK�

: ð36Þ

Expanding in powers of ΓK�=mK� and using BðK� →
KπÞ ≈ 1 [23], gives

BðB → K�llÞ ≈
�
1 −

1

π

ΓK�

mK�

�
½BðB → K�llÞ�Γ¼0: ð37Þ

This implies an additional Oð1%Þ correction that we can
safely neglect due to the size of the form factor and
parametric errors in Eq. (35).
The results in (34) and (35) can be combined to define a

“correction factor” from the two-body final state relative to
the one-body modes,

Δ½15�
Kπ ¼ BðB → ðKπÞsllÞ½15�

BðB → KllÞ½15� þ BðB → K�llÞ½15�
¼ 0.13� 0.06: ð38Þ

This correction factor is largely independent of the values
of the Wilson coefficients, which cancel in the ratio; hence,

TABLE II. Input parameters used for the computation of the
exclusive branching fractions.

Parameter Value Reference

fB 0.1900(13) GeV [31]
fπ 0.13041(20) GeV [32]
mπ 0.137(3) GeV [23]
mK 0.495(3) GeV [23]
mB� 5.27925(26) GeV [23]
mK�� 0.89547(77) GeV [23]
ΓK�� 0.0462(13) GeV [23]
mB�� −mB� 0.04537(21) GeV [23]
mBs

−mB 0.08742(24) GeV [23]

5This value is obtained by summing the two isospin-related
final states and is equivalent to 3=2 times the branching fraction
featuring a charged pion in the final state.
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it can be applied both in the SM and in a wide class of
SM extensions.6 In principle, multibody modes such as
B → Kππll can also contribute to the total inclusive rate.
However, these modes are suppressed even further by
phase space factors and are expected to give a correction
well within the current uncertainties of one- and two-
body modes.

Using Δ½15�
Kπ , the semi-inclusive branching fraction

obtained summing over one- and two-body modes can
be written as

X
i

B
�
B → Xi

sll
�
½15� ¼

�
1þ Δ½15�

Kπ

��
B
�
B → Kll

�
½15�

þ B
�
B → K�ll

�
½15�

�
; ð39Þ

both within and beyond the SM. Combining (39) and (35),
we arrive at the following SM estimate of the semi-
inclusive branching fraction (q2 ≥ 15 GeV):

X
i

B
�
B → Xi

sll
�
SM
½15� ¼ ð5.07� 0.42Þ × 10−7: ð40Þ

As can be seen, this result is well-compatible with the truly
inclusive estimate presented in Eq. (24). The compatibility
of these two results can be viewed both as a consistency
check of the form factor calculations [30,33] or, alterna-
tively, as a consistency check of the inclusive result
in Eq. (24).

A. Comparison with data

The experimental determinations of the two leading
modes in the high-q2 region, and in the l ¼ μ case, can
be extracted from the results of the LHCb Collaboration,
Ref. [2],

B
�
B → Kμ̄μ

�exp
½15� ¼ ð8.47� 0.50Þ × 10−8;

B
�
B → K�μ̄μ

�exp
½15� ¼ ð1.58� 0.35Þ × 10−7: ð41Þ

Applying the correction factor in Eq. (38), we determine
the following result for the measured semi-inclusive
branching fraction:

X
i

B
�
B → Xi

sμ̄μ
�exp
½15� ¼ ð2.74� 0.41Þ × 10−7: ð42Þ

As summarized in Fig. 1, this result is significantly below
the (consistent) SM predictions in Eqs. (24) and (40).

VI. DISCUSSION

The difference between the experimental result in (42)
and the SM predictions in Eqs. (24) and (40) confirms the
finding of several groups of a sizable suppression of the
observed b → sμ̄μ rates compared to SM expectations (see,
e.g., [4,6,8] for recent analyses). The novel aspect of our
analysis is that we support this conclusion, despite with a
lower significance, by means of the inclusive rate at high q2

in (24), which is insensitive to hadronic form factors. We
thus provide an important independent verification of this
phenomenon.
The inclusive rate in the high-q2 region also has a

different sensitivity to nonperturbative effects associated
with charm rescattering, compared to exclusive observables
(rates and angular distributions) in the low-q2 region. We
stress this point given that nonperturbative effects induced
by charm rescattering have been invoked as a possible SM
explanation for the (lepton-universal) anomalies observed
in the low-q2 region [11].
The fact that the observed discrepancy is hardly

explained by charm rescattering, especially for the inclu-
sive rate, can be better appreciated by looking at the size
of the effect in the operator basis defined in Sec. II. In
Fig. 2, we plot the region in the CV–CL plane favored by
present data, i.e., treating CV and CL in Eq. (19) as free
parameters and fitting the experimental result in (42).
As already discussed in Sec. II C, both perturbative and
nonperturbative contributions due to charm rescattering
can be accounted for via an effective (q2-dependent)
modification of CV . AssumingCL ¼ CSM

L , the modification
of CV necessary to describe the data is very large: it
is larger, and opposite in sign, with respect to the pertur-
bative estimate of charm rescattering contributions leading
to Eq. (16).

FIG. 1. SM predictions vs experimental data for the inclusive
branching ratio, BðB → XsllÞ, in the region q2 ≥ 15 GeV2.

6We refer here to the motivated class of SM extensions where
nonstandard contributions do not introduce sizable new local
operators different from those present in (3).
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The central value of the discrepancy is beyond any
realistic estimate of nonperturbative charm rescattering far
from the narrow-charmonium region. The latter are not
enhanced by RG logarithms, and in the high-q2 region
are expected to be of OðΛ2

QCD=q
2Þ. Explicit estimates of

these effects for the inclusive rate [14] and the leading
exclusive modes [34] lead to modifications of CV of
Oð1%Þ. Even assuming an order of magnitude enhance-
ment (which would be hard to justify [14,34]), these
contributions are within the error band shown in Fig. 2
(SM point), that we deduce from the scale variation of the
perturbative contribution [as already stated, we assume

the scale variation of Ceff
V ðq2Þjð0Þpert in (16) as uncertainty for

the SM estimate of CV].
In exclusive modes, and specific values of q2, large

violations of quark-hadron duality are certainly possible.
For instance, the large violations of naive factorization
observed in [35], also in the high-q2 region, are a
manifestation of this statement. However, we stress that
we are considering an inclusive quantity, where such effects
are expected to be much smaller [36]. In conclusion,
although we are unable to provide a rigorous upper bound

on charm rescattering contributions, we believe that the size

of Ceff
V ðq2Þjð0Þpert and the explicit estimates of nonperturbative

effects presented in [34,36], indicate that such effects
cannot account for the bulk of the difference between
SM and experimental points in Fig. 1.
In Fig. 2, we also show the impact of a possible change in

CL, which can occur only beyond the SM. More precisely,
we consider the motivated case (see, e.g., [7,37]) of a lepton
nonuniversal modification ofCL, affecting the muon modes
only, versus a lepton-universal shift in CV .

7 The value of
ΔCμ

L is strongly constrained by BðBs → μ̄μÞ and the lepton
flavor universality (LFU) ratios (RK and RK�). Updating the
analysis of Ref. [37] taking into account the superseded
values of the LFU ratios in [38,39], together with the RKS

and RK�þ results in [40], and adding to the BðBs → μ̄μÞ data
the CMS result in [41], we find ΔCμ

L ¼ −0.026� 0.019.
This result, taken alone, does not indicate a significant
deviation from the SM; however, combining it with the
constraint from BðB → Xsμ̄μÞ½15� leads to a preferred region
in the CV–ΔC

μ
L plane, which does not include the SM point

at the 90% C.L.
On general grounds, beyond-the-SM contributions to the

Wilson coefficients are expected to be small corrections
over the SM ones (evaluated at the electroweak scale).
Figure 2 shows that this condition cannot be satisfied if we
assume nonstandard contributions to CV only. On the other
hand, this condition can be satisfied for both CV and ΔCμ

L,
but only if jΔCμ

Lj ≠ 0, hence in the presence of a small but
non-negligible LFU-violating amplitude.

VII. CONCLUSIONS

The inclusive B → Xsll rate at high dilepton invariant
mass provides a clean and sensitive probe of b → sll
amplitudes. In this paper, we have presented an updated
estimate of this rate within the SM, by means of the ratio (1)
and Belle’s data on ΓðB → XulνÞ [17]. The result, shown
in Fig. 1, is in good agreement with the semi-inclusive
estimate obtained summing the leading one-body modes (K
and K�) and the subleading nonresonant Kπ channel in the
relevant kinematical region. The uncertainty on the fully
inclusive prediction is sizable, but it is dominated by the
experimental error on ΓðB → XulνÞ; hence, it could be
significantly improved in the near future.
The good compatibility between inclusive and semi-

inclusive SM predictions confirms the expectation that the
inclusive rate, in the kinematical region q2 ≥ 15 GeV2, is
dominated by few exclusive modes. This opens up the
possibility of a precise comparison with data for the rare

FIG. 2. Regions for the Wilson coefficients favored by exper-
imental data. Here, ΔCμ

L ¼ Cμ
L − CSM

L is the correction to the
SM value of CL for the muon modes. The blue area is the 1σ
compatibility region between the inclusive computation of
BðB → XsllÞ and the experimental sum of exclusive modes
(the dashed line indicates the best fit). The vertical gray band
shows the 1σ value of Cμ

L determined by BðBs → μ̄μÞ and the
LFU ratios (assuming a lepton-universal CV). The dark and light
red regions give the combined compatibility at 68% and 90% con-
fidence level, respectively. To ease the comparison with previous
studies, we also show on both axes the notation in the standard
operator basis.

7The lepton universal nature of CV is a natural consequence of
its vectorlike structure: this effective operator can appear natu-
rally (i.e., without a tuning between left-handed and right-handed
components) via an effective short-distance interaction of the
type ðs̄LγμbLÞDνFμν, which is necessarily lepton universal.
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decays with muon modes collected by LHCb. This com-
parison, also shown in Fig. 1, confirms the finding of
several groups of a sizable suppression of the observed
b → sμ̄μ rates compared to SM expectation. The evidence
of this effect from the inclusive high-q2 rate does not
exceed 2σ, but it is not based on hadronic form factors,
hence providing an important independent verification of
this phenomenon.
As a by-product of our analysis, we have shown that it is

more convenient to describe short-distance contributions to
b → sll amplitudes, both within and beyond the SM, via
the effective operators OV–OL in Eq. (6), rather than in the
standard O9–O10 basis. In this basis, BSM contributions
to OV are naturally lepton universal, whereas those to OL
can be lepton-flavor dependent. The best-fit values in the
CV–C

μ
L plane, following from the present analysis, com-

bined with recent data on LFU ratios and BðBs → μ̄μÞ, are
shown in Fig. 2. This analysis indicates that explaining the
bulk of the present discrepancy via a modification to CV

only would require an unnaturally large correction to CV ,
which we cannot justify via underestimated nonperturba-
tive effects (and is also unlikely to appear in realistic BSM
theories). By contrast, relatively small BSM effects to both
CV and Cμ

L can describe the data well.
As already stressed, uncertainties at present are still

large, but the theory errors play a subleading role. We thus
expect that the method outlined in this paper can have a
significant impact in the near future in shedding light on the
interesting puzzle of b → sll transitions.
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