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We study the dynamics of an electron wave packet in a strong constant crossed electromagnetic field
accounting for radiative corrections due to interaction of the electron with the vacuum fluctuations. We
evaluate a wave packet composed of the solutions to the Dyson-Schwinger equation, which describes
electron propagation without emission of real photons. Spacetime dependence of the wave packet is
obtained analytically for a short time interval, the more restricted from above the wider is the packet in
momentum space. The radiative corrections alter the electron wave function, resulting in particular in a
damping of the wave packet. The expectation value of the Dirac spin operator also gets modified.
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I. INTRODUCTION

Advances in laser and accelerator technologies made it
possible to study various phenomena in a strong electro-
magnetic (EM) field under laboratory conditions. In this
context, special attention attracts the fundamental processes
of strong field quantum electrodynamics (SF QED) [1-3].
Nonlinear Compton scattering and positron production via
multiphoton light-by-light scattering have been observed in
the milestone SLAC E-144 experiment where a multi-GeV
electron beam was collided with terawatt laser pulses [4,5].
More recent experiments [6,7] have explored the quantum
nature of the radiation reaction for the electrons in intense
laser field. SF QED effects have been also tested for
ultrarelativistic electron beams passing through the crystal-
line fields [8—10]. In order to reach a regime of stronger
fields, several projects (ELI, LUXE, FACET, XCELS,
SEL), aiming in particular at studying the SF QED effects
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in beam-beam and laser-beam interactions, have been
launched [11-15].

At the moment QED is considered as the most precise
physical theory because its coupling (the fine structure
constant) @ = e*/hc ~ 1/137 is rather small, where e < 0
is the electron electric charge, 7 is the Planck constant and
c is the speed of light. Due to that, the perturbation
methods became an efficient tool to calculate the desired
quantities with high precision [16]. This, however, might
be not always the case once an extremely strong EM field
is involved. There might be a large sector of SF QED
where the processes cannot be described by the existing
theoretical framework [17-19]. Such sector corresponds to
a fully nonperturbative regime of SF QED for which the
radiative corrections become significant and have to be
resummed rather than considered as perturbations.
This feature is specific for the strong-field limit [20,21].
While some progress was made for configurations with a
constant magnetic field [22-24] and a constant crossed
field [25,26], the full resummation is yet to be accom-
plished. Moreover, calculations of the transition ampli-
tudes for most of high-order processes even when the
perturbation methods remain applicable are far from
completion [2,3].

In general, a wave function (or a density matrix if the
mixed states are of interest) provides a complete description
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of a quantum system. The number of known field con-
figurations allowing explicit solutions is limited and
include the Coulomb field [16], constant homogeneous
electric and magnetic fields [27], plane wave and related
configurations [28,29]. A special case of the latter is a
constant crossed homogeneous EM field. It naturally
arises in a locally constant crossed field approximation
(LCFA) [2] as describing interactions of ultrarelativistic
particles in a general extremely strong EM field. In this
work, we focus on such a field implying the context of
the LCFA.

The evolution of a one-electron (or one-positron) wave
function y in the field of a plane wave is given by the Dirac
equation [16]

17— eA(g) — mly =0, (1)

where x* = (t,r) = (t.x,y,z), pt=i0* is the
4-momentum operator, A*(¢) is the 4-potential of the
external EM field, ¢ = k- x = wt — kr is the phase of
the particle in the field, k* = (w, k) is the wave 4-vector
such that k2 =k-A =0, and m is the electron mass,
“slash” indicates the contraction, e.g., A = y*A,,, with the
Dirac gamma matrices y*. Hereinafter, we use the natural
units A =c = 1.

The exact solutions to Eq. (1) are known as the Volkov
functions [30]. They can be represented as follows

+ ek + L2 (£
wit) = <1 j:Zk'p) uss) exp (i@, (2)
9 (eA-p _ e*A?
o) ::Fp.x_/_ <k‘p :FZk'p)dqo, 3)

where the upper and lower signs correspond to the
solutions with positive and negative energy, respectfully.
The 4-spinors uﬁ,ﬁ) are the same as for the field-free Dirac
equation. They are characterized by the generalized

4-momentum p* = (e,p), where on the mass shell
e = /p> + m?. The spin index ¢ = £1 corresponds to
the states with the spin projections +1/2 onto the
direction along a certain unit vector n, in a particle rest
frame. The corresponding unit 4-pseudovector n# =
(0,ng) (n*> = —1) in the laboratory reference frame takes
the form n* = (pny/m,ny+ p(ngp)/m(e + m)), such
that n- p = 0.

The field-free spinor u{,? can be generated from a
4-spinor w by applying the (non-normalized) projection
operators Df)i> =m= y and L,(n) [31]

usy) o« DS L, (n)w, (4)

Ly(n) =1+or, (5)

0,1,2,3

where p>it with y°> = iy%!y?y® is the spin projection

operator, such that ySﬂuﬁf = (mg) [28]. w is an arbitrary

4-spinor satisfying condition Déi)ﬁa(n)w # 0. We normal-

ize ug,? so that ﬁg)uéﬁ) = 41 and L'tg)y”ul(,jf,) = p*/m,

where overline stands for the Dirac adjoint of a Dirac
spinor it = u'y°.

The Volkov functions are widely used to describe
the strong-field phenomena: field ionization [32], high
harmonic generation [33,34], and strong-field QED proc-
esses [1]. However, in real cases the wave function is
localized and has a form of a wave packet. The calculation
of its evolution by numerical integration of the Dirac
equation is challenging [35-37]. However, the wave
packet in a plane-wave field can be represented as a
superposition of the Volkov states [28]

w0 = [ [eprvd (.0 + el 0] @

Their analytical representation (2) strongly simplifies the
computation of the packet dynamics [38]. The amplitudes
c%) in this superposition set the wave packet distribution in
the momentum space. Two approaches have been exploited
in the recent works. In the first one the amplitudes were
obtained by projecting the initial wave function ¥(r, 7))

onto the Volkov functions at t = #; [38—40]

o) _ / drySE) (e 10)B(r 1o). (7)

In the second approach the amplitudes cl(,ﬁ) are specified

ad hoc [41].

In the limit of extremely strong EM field the radiative
corrections describing self-interaction have to be taken into
account [1,17,19]. The wave function with radiative correc-
tions obeys the Dyson-Schwinger equation, which differs
from the Dirac equation by an additional term containing the
electron mass operator [16,19,28]. A generalization of the
Volkov states to account for radiative corrections have been
studied for the constant crossed field [19] and plane-wave
configuration [42—44]. The analysis reveals radiative damp-
ing (or “decay”) of the electron states [19,44-46]. Actually,
the Dyson-Schwinger equation applies only to the radiative-
less part of the one-electron state (i.e., when the electron
does not emit real photons), but a part of the initial wave
function eventually turns into a multiparticle sector combin-
ing the electron and the emitted photons. This results in
damping of the probability for the electron to stay in a
radiativeless state.

The wave packet dynamics with account for radiative
corrections has not been discussed yet. Here we explore this
fundamental problem for a constant crossed EM field
configuration. In principle, evolution of a wave packet
could be evaluated numerically [36,47-49]. However,
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numerical integration of the time-dependent multidimen-
sional Dirac equation still remains challenging [1,50,51].
Inclusion of radiative corrections makes it even harder. An
analytical approach complements the numerical calculations
and is useful to verify them. For a crossed field configu-
ration it is possible to derive an approximate closed-form
analytical expression for the wave function and to discuss
the impact of radiative corrections on the wave packet
dynamics. We confine ourselves to a Gaussian wave packet,
for which the evolution is further simplified. This still
requires multidimensional integration of rapidly oscillating
functions, hence some additional approximations.

The paper is organized as follows. In Sec. II we discuss
following Ref. [19] the generalized Volkov states with
account for radiative corrections for a crossed field con-
figuration. In Sec. III we construct a Gaussian wave packet
using its decomposition into the generalized Volkov func-
tions. The expectation value of the Dirac spin operator is
calculated in Sec. IV. The results are discussed in Sec. V.
The proof of commutativity of the spin and positive
energies projectors is relegated to Appendix.

II. ELECTRON STATES WITH ACCOUNT
FOR RADIATIVE CORRECTIONS

Let us start with a discussion of the generalized
Volkov states in a constant crossed field with account
for radiative corrections following Ref. [19]. With account
for radiative corrections the one-particle wave function
obeys the Dyson-Schwinger (sometimes also called Dirac-
Schwinger) equation [19,52-54]

(7 — eAo) /Mxx X)d*x,  (8)

where M (x,x’) is the renormalized mass-operator in an
external EM field. In a lack of its exact explicit expression
at certain point we have to confine ourselves to a one-loop
approximation studied in Ref. [19]. The 4-potential of the
external constant crossed field E = e,{E ., and B = e, ¢E,
can be chosen as follows

<§Ecr<0

A, =222(0,1,0,0), (9)

"w
where the wave vector is set as k* = m(1,0,0,1), so
that ¢/m = t — z. Here, & denotes the field amplitude in
units of the QED critical field E, = m?/|e|~1.16 x

10'® V/cm [1,16,28].

The Volkov states (2) can be abbreviated as l//;(m) =
E.,(x )M;(m)- Explicitly, the E,-matrix for the states with
positive energy reads:

2%
1-A—0" -7y

E,= 1=y exp(idy).  (10)

2 23
<I>V:pr—p0t+A€px¢ A2 Y
2mp_ 6mp_

, (11)
where A = ém/e, and p_ = k- p/m = p’ — p.. Note that
E_,=E,= P E.

The spin projection operator for the Volkov states has the
same form as in Eq. (5) if the polarization 4-pseudovector
n, is replaced by nj, defined as follows [19,28]

k'l’l) e(A'n) eZAZ(k-I’l>
= = epr B g - 12
% k-p k-p 2(k-p)? (12)
so that ysyiVEpuﬁ) = UEpul(i)‘

The following identities for the E,-matrices (valid also
for an off-shell 4-momentum)

(ﬁ_ eA)Ep(x) = Ep(x)ﬂ’ (13)
[ B 0By = eotatp-p). (19
/d4pEp(x)Ep(x’) = (2m)*5(x = x'), (15)

justify a generalized Fourier expansion

v = [ SEE Wwir) (16)

4
M) = [ SRE @M PE W, (17)

where

F (o) = kA ()

is the external EM field tensor, thereby introducing a
E,-representation [19,28]. By substituting Eqs. (16)
and (17) into the Dyson-Schwinger equation Eq. (8), the
latter reduces to a system of algebraic equations:

— kA (p) (18)

[~/ +m+M(p,F)ly(p) =D(p,Fy(p) =0. (19)

Like an arbitrary composition of gamma matrices,
D(p, F) can be decomposed as follows [16]

D(p.F)=S+V+0"T,, + Ay’ + P, (20)

where ¢ = i(y*y¥ — y*y*)/2. For the crossed field con-
figuration, we have P =0 due to the charge parity
conservation. Other coefficients in Eq. (20) can be adjusted
to the form [19]

S =ms(p*y) (21)
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2

Fu,F"p,,  (22)

V/d = vl(pz’)()pﬂ + UZ(pZJ() 4 7%

T =1(p*2) m’{”, (23)
eF,,p*
A, = a(p*.x) nﬂﬂ , (24)

el (25)

where y is the Lorentz-invariant quantum dynamical
parameter characterizing the interaction of a charged par-
ticle with the EM field, F};, = (1/2)€,,,3F* is the tensor
dual to F**, and €,,,4 is the Levi-Civita symbol.

The solutions to Eq. (19) exist if det(D) = 0, which
reduces to [19]:

d+ b, =0, (26)
where
d=8+V + A (27)
= m?s? — p?v} + m*2(a® — 2v,v,), (28)
b, = 2(SA, - 2T;,"),
nhb, = =2m*y(sa — 2zv,). (29)
and
S
wy=—————=(-2,n), 30
P alpt mr \p- (30)
py}
n=1<01— 31
{or.2: 31)

is the unit polarization 4-pseudovector such that n2, = —1,
np -V = 0. Note that it is no more arbitrary and that in the
electron proper frame vector n is directed along the
magnetic field (see Appendix and Ref. [19]).

Equation (26) can be recast as the mass shell condition:

p? :m%izmz(l +ury), (32)
m%¢ 52+ 3 (a® = 2vyv,) £ 2¢(sa — 27v))
—r = o , (33)
1

where the indices 1, | correspond to the eigenvalues
6 = %1 of the projection operator y°jt, i.e., to the two
possible spin orientations along and against np. Thus the
radiative corrections result in an electron mass shift which
is a complex-valued function of the parameter y. Since

Imfu, ] <0, they make the generalized Volkov states
decaying [19,43,44]. The origin of their decay is radiation
of the electron in the field. In the limit @« — O the bare mass
shell condition p?> = m? is recovered.

The positive energy solution to Eq. (19) can be written
as [19]

w(p) = w(p)s(p® - &), (34)

w(p)

where the delta function sets onto the dressed mass shell

E=,/p*+ m% W is an arbitrary four-spinor, and

D(p, F)

=DL,w, (35)

=S-V-0"T,, +Ap. (36)

The projection operator L, is given by Eq. (5), but with
n = np (see Appendix and Ref. [19]).

Let us now compose an electron wave packet out of the
positive energy generalized Volkov solutions (34). To this
end, for simplicity we choose the bispinor w(p) = C(p) x
{0,1,0,0}, where C(p) describes the momentum distribu-
tion of the packet. The corresponding wave function in the
E,, representation reads

w(p) = DLw(p) = C(p)U,(p). (37)
where
Q, + iocK,
P,—K,+ov, %
Ua(p) =m —iop, ’ (38)
Q(; - Pxy N Pz
_PO_ + Ul pzt:lgpA
Py
P, = —af—' — 0y + 20t -0
E-p.’
0, = 2ité + iov,y + ov; Py &,
E—p, m
E
K, =—-s4+v,——oay,
m
Pxy = Px— lpv

Up to this point, the expression for y(p) is formally
exact. However, the scalar functions s, v{, v,, 7, and a are
known only in a one-loop approximation [19]. On the mass
shell (with the same accuracy p> = m?) they depend solely
on y and read:

s—147 / i 2fl) (39)
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TR ALRL (40)

1]1:—1——

2 0 (l—l—u)

a o du
Uy = _2”)(24 (1 T u)3f2(uvl)’ (41)

a o du

a0 @
_ © (24 u)du 12
g e TN
falud) = (2) — (2 + 20 +2) L
2/3
/1:)%,

in terms of the functions f(4) and f,(4) defined by [19]

) =i A " de exp (—mg - 15—3) (44)

ﬂu%=/m¢{ﬂ>—j
/ —exp (—ill) [exp <—lC3> —1]. (45)

In the limit « > 0 we have s = —v; =1, a=7=1v, =
pr, = 0,and p* = m?, sothat D = D D= D(()_) and the
Dyson-Schwinger equation reduces to the Dirac equation.

In a strong field limit y > 1, the integrals in
Egs. (39)-(43) are formed at small argument of f(1),
f(4), and f1(4). For 2 < 1, these functions are approxi-
mated as (1) =c,+O(), f'(A)=c, +O0(4), and f,(z) =
In(4) 4+ ¢3 + O(4), respectively, where

U5 (1 i),

cp =

3232
23r(2
Q:i7y2@4@>
2 1 T
C3 —§y+§ln3+l§,

and y is the Euler constant. After integrating over u, for
x> 1 the scalar parameters acquire the form

2
s=s—1=2 <_§1n;(+C3> +0(7),  (46)

~3van tow): (47)
= ot o) 9

1
m5m+1:;(gm+%)+OWW% (49)
ac, 14
vy = 4/239\/_+0(;(21n)() (50)

where ¢ = 1/3 — ¢3/2. Accordingly, the mass shift given
by Eq. (33) takes the form [28,55]:

Hyy = Ho £ py, (51)

o = 2(s + vy + vp?) + O()

_14r(2/3)(1 —iV/3)
273

ps = 2(a=217) + 0(a?)

_T(1/3)1 +iV3)
273

The spin-related correction to the electron mass is given by
Rey,. Notably it is negative for the spin up state ¢ = +1 and
positive for the spin down state ¢ = —1. Rey, is also
proportional to the anomalous magnetic moment of the
electron ' interacting with the magnetic field B,
Reu, o< y'B. In accordance with Eq. (30), the electron
polarization vector has a component along the magnetic
field (see also [19]), thereby providing a reduction of the
electron energy o« —u'B.

a(37)* + O(alny.a?),

a(3)' + O(alny. a).

III. WAVE PACKET DYNAMICS
IN COORDINATE SPACE

Transition to the coordinate space is accomplished by
means of Eq. (16). In virtue of Egs. (16), (34), and (37), the
wave function reads

wmz/é;

We assume that the wave packet has a Gaussian shape
and is narrow in the momentum space:

E,(x)y(p)

p'=¢

E,(x)C(p)U,s(p)- (52)

(p.+e?® p1

53
202 T 2A% (53)

C(p) = Nexp {—

= p?+ p? and N is the
normalizing coefficient. This corresponds to an ultrarelativ-
istic electron initially moving to the negative direction of the
axis z with the energy ~¢ much greater than the momentum
spread of the packet. The integrand in Eq. (52) can be
represented in an exponential form:
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E,(x)C(p)U,(p) = G(p)e®®, (54)

(p.+e? Pl
O(p) ="yt o2 — iy (55)
202 aar Y

It is convenient to introduce a deviation p, = p, + € of
the z-component of the momentum from the central value.
It follows from Eq. (53) that the main contribution to the
integral in Eq. (52) comes from the momentum volume
< A . Thus, introducing HN =pl+ pf,—i—

4l
mN, we can use the expans10ns.

pP=E= \/Pz +HN

HZ szZ
=e—p.+ 21}4— 282” oo (56)
n:, p.IB
)(_)(0<1 St 4€3N+...>, (57)
2e 4p2 - Hﬁ 4p; — 3H%¢I_’z
Z— 1+ <4 1 + 10 +..., (58)

where y, = 2&¢/m. Substituting Eqgs.
Eq. (55), we obtain:

(56)—(58) into

pi | p?
®(p) = W+ 252 —i(p,—e)(t+z)—i(pyry)
m A 2 A2 3
1 ®*p. AN )
l‘—
i, . T, TP
m2 A2¢3
—i%7+R, (59)
where
11 A
=4 i 60
D? A§+l6m8 (60)
1 t N
I L 61
D7 AT e e (61)

and R stands for the remainder terms stemming from the
last shown and the omitted higher-order terms in the series
(56)—(58). Since @ stands in the argument of the expo-
nential, the remainder terms can be neglected if R < 1. In
virtue of Eqgs. (11) and (56)—(58) this condition is
expanded as follows:

AZALA(p2
dme

(4A2 + 3A2)A. A28 AA2¢
24me? T2

< 1. (62)

tl

Equation (62) points to an upper bound on duration ¢ for
which the developed approximation remains valid.

By the same token, we expand the preexponential factor
in Eq. (54) to first order in powers of a, p./e and p, /e:

G(p) = Ne[Go(p) + ApG(p)]
o (2)-(3)- (%)) @
& & &
where
20, —io(Py - )
P -Z+46(2i0 -2
Gop)=| ( ) ) . (64)
Loy io(Py = 1)
Py =L gl
Q2+15<Q1 p”)
1| —0i+icQ, + 32
G =—5| T (e)
0. +io(01-22)
Q lUQz PX\
P, :%— vy — 20,8, (66)
Py = —v; + 208, (67)
Ql - _ia§7 (68)
m
0, = 20 U (69)

After integrating in Eq. (52) over the momentum, we
obtain the wave function in the coordinate space:

w(x) = NeD_D3 (27)*[Go(x) + AgpG (x)]e=*W)
2 /AN2 /A \2
ol() ()G
e € €
where
DZZZ DZ 2 X2
CD(x): 4 + L(y + )
2
m2 2.3
U NTQTE
—=T t , 71
+12€ +112m—|—ls(—|—z) (71)
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20, —a(iPl +ﬂ)

P =i v io(20,-22)

Go(x) = . (72)
lD (X- ly)—l—o’(lP —|— )
Pz—lD—ZZ—I—O'ﬂ

Or,+o lQ1+ L(X )]
(X iy)
1 —Q1+16Q2+l bLX=b)
GA()C):—E q ’ (73)
0,+0c|iQ; + *(;i )
D? (X—i
0, —i0Qy - i* 5
and
A2 3
zzt+z—12(fn, (74)
A 2
—x+ﬁ (75)
A2¢3
T=t- Vi (76)

One can see from Eq. (71) that the wave function is localized
in the time-space domain Z? < 1/A2, X2 +y? <1/A%.
Next we turn to the probability density

p(x) =y ()w(x). (77)
In virtue of Egs. (70)—(77) we obtain
p(x) = C,|DP[DL[*(po + apg)e™ W7, (78)

®,(x) = Re[D?]Z? + Re[D}(y* + X?), (79)

1 1

A2 2
+<1+ 4(p)[€+m

+o(ReD3 X + Iley)]} (80)
4 + A2¢2
pa(x) = ——=——Reg; + Aplmg,, (81)
7y yma
= by e 82
91 p +o e o (82)

yma ytm? vy

_ _ma 83
92 2ea 028 a (83)
where C, = N?(2x)*4¢* is an overall constant, and
m
W, = —Im{ ”] (84)
€

is the total probability of photon emission [28,55]. The term
—W.,T in the exponential describes damping of the prob-
ability density due to the leakage of a part of the wave
function to a many-particle sector combining electron with
the emitted photons [19,43,44]. Here we focus only on the
remaining part of the wave function with no emitted
photons, which gets damped.

Note that for y > 1 (implying also the field subcritical
£ < 1 but € > m, which corresponds to A = ¢ém/e < 1),
using Egs. (46)—(50) we can estimate W, and the coef-
ficients g;, g, as follows:

141°(2/3) 2/3 m?
W,:Ta)(/ ?, (85)
ln)(
Regl (86)
6’
2/3¢1/3
Img, = 0(%) < Reg,. (87)
€

Assuming the probability density is normalized at
t =0 by

/ p(t=0,r)dr =1, (88)

one can recover the overall normalization constant N.
Assuming for simplicity that A < 1, we have z~ —t
and ¢ =~ 2mt. In this approximation we obtain

N? !
32792 A, A% (m + €)?

<1 + % - 2aRegl> . (89)

Finally, the probability density takes form

ZAAZ -®,-W,T (m—Z A_Z 2)

X) = + ap,
,0( ) (pO p) 3/2(8 +Ail‘2)

(90)
Ale(y* +X2)
<I>p(x) :A%(Z—FI)Z—FW, (91)
eX — Aty
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4m eX — A%ty
=—(—+206A2 =——L - |Reg,.
Pa ( e + 2047 2+ Aj_ﬂ) €1 (93)

It follows that the center of the wave packet propagates
along the trajectory X =y = Z = 0 as might be expected.
Its longitudinal width (along z-axis) is ~1/A.. As for
its transverse width (along x- and y-axes), it expands
as \/1/A% + A% 12/

IV. EXPECTATION VALUE OF THE DIRAC
SPIN OPERATOR

An expectation value of the Dirac spin operator for the
wave packet is given by

8) =5 [ drv' Zv (), (94)

where £ = y%y? is the three dimensional spin operator [16].
Let us pass to the E,-representation,

dp dp
Y27 21)

3w (0)E, (X)ZE, (x)y(p), (95)

where E, ,(x) are taken on the mass shell p” =& [see
Eqgs. (52) and (54)]. After consequent integration over r
and p’|, Eq. (95) acquires the form

() = ﬁ / " dzapa' ' ()26 p)
x &(pL —p'L) exp [-@s(p, p')] (96)

N2¢2 +oo
= / dzdp.dpldp (B, + zB; + ?B,)

2(27)* )

x exp liz(p. — pt)], (97)
where
By = ¢=®sBJ(p')ZBg(p). (98)

B, = —e"®A(G}(p')ZBs(p)+B;(p)ZGA(D)).  (99)

B, = ¢=%sG} (p')ZG, (p). (100)
Bg(p) = Go(p) + AtGA(p). (101)
@4(p,p’) = @(p) + @*(p'), (102)

and it is implied that p/, = p, . By integrating over z, we
next obtain

N2€2 +00
) =35 | dp.dplaps
&

. d
X [Bo+lBld—p/— Bzm} 5(p.—ph)
z Zz

N?e? [+ 0B, 0’B
:3/ dp(Bo—i——7———
2(2ﬂ> —o0 apz apz

Further calculation proceeds the same way as was used
to derive Egs. (90)—(93). We thus obtain that to the first
order in a, A, /e and m/e, the only nonvanishing
component is

(103)

Pi",:pz

(S,) ~ azﬁ eV (1 + aRegs). (104)
E
where
a m v
G =ox———r = —g. (105)
a E a

Note that for y > 1 (also implying the field subcritical
& < 1 but e > m), using Eqgs. (46)—-(50) we have

23 Iny

Regyno—B X
B =0T (2/3)3113 " 6

(106)

Let us stress that for the considered packet all the
components of spin are not vanishing precisely but in
the adopted approximations the dominant one is those
parallel to the magnetic field while the others show up in
higher orders.

V. DISCUSSION

According to classical electrodynamics an electron
trajectory in the crossed fields can be written in a para-
metric form (see, for example, Ref. [56])

2
x=— (107)
2émp_
PxDy
=— , 108
Em?p_ (108)
2 2 3
Px m” + py Px
- 1 - Y - , 109
. Zéjm2 < p% > 6§m2p3 ( )
m? + p2 p p3
t=— Y1 P (110
< pZ * )2gm2 6Em? p2 (110)

where p_ =¢e—p,, ¢ is the electron energy and initial
conditions r(r = 0) = 0, p,(t = 0) = 0 are assumed. In the
ultrarelativistic limit e > p, > m (p_ ~ 2¢) and for short-
term dynamics of the electron dynamics # < v/3y/(mé*) =
t.; the electron trajectory can be rewritten in the explicit
form as follows
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x = —Amt?, (111)

y=0, (112)
2A2t2 2

z_—z<1—Tm>, (113)

pe m ( A2t2m2>
T, = — =—t(1- ,
Emp_ € 3

where 7, is the proper time of the electron. It is seen from
Egs. (111)—(114) that the classical trajectory is in agreement
with the trajectory of the electron packet center given by
Eqgs. (74)—(76) where ¢ ~ 2mt for A < 1. Moreover, T is
proportional to the classical proper time of the electron.

Let us assume for simplicity that A, =A, = A.
Combining Eq. (62) and Ag@ <« 1 the validity condition
can be reformulated as follows

¥ . 4\1/3 2ym* A
<K 5— 1, | = , ,— . 115
ngmm{ (7) A o (119

(114)

Assuming that y > 1, A > m and £ < 1, the second and
the fourth terms in the right-hand side (rhs) of Eq. (115) are
greater than the others and therefore can be omitted. If we
are interested in maximizing of W1, then for the parameters
of interest (y > 1, £ < 1, A > m) the third term can also be
neglected. Therefore the time interval within which our
approximations are valid can be presented as follows

1<ty EaEQLA« ter- (116)

As an example, let us consider the electron wave
packet with energy 400 GeV propagating perpendicular
to the magnetic and electric field E = B =7 x 107°E,,
so that y = 1096. We set the longitudinal and transversal
energy spreads of the packet to A, = A, = A =1 GeV.
Our approach is accurate for the time 7 <t,, ~4.6%
10%%/(mc?). For t = t,, the suppression of the probability
density for nonemitting electron states is significant:
exp(=W,t,,) ~0.2. It follows from Eq. (116) that ¢,
increases with decreasing the electron packet momentum
spread. For example, exp(—W,t,)~10"1% for A =
5 MeV that is the nonemitting state of the electron is
completely damped at ¢ ~ t,,. Therefore, despite the fact that
we use short-term approximation, the derived solutions are
still valid for a rather long time interval within which the
nonemitting electron states can be completely damped. The
contribution of the radiative corrections to the probability
density is very small ap, ~a(m*/e?A%)y? Iny/(6£) ~
2.5x 1077. However the contribution of the radiative
corrections to the averaged spin is much higher |1 - (S,)/

(Sy(@=0))] ~0.03ay'/*~2x1073. Thus the spin

variables are more beneficial to detect the effect of the
radiative corrections than the probability density.

It is interesting to note that the expected damping factor
exp(=W,t) in Eq. (78) for the wave packet density
evolution is enhanced by the term that can be associated
to the one  A? in the phase ®y, of the Volkov function [see
Egs. (3) and (11)]:

§2m4
W,T:Wr<t— =), (117)

A2§03
~ Wt 1-—
24m> ' ( 3¢

It follows from Egs. (117) and (114) that the damping
factor is proportional to the proper time of the electron. The
term proportional to £ is much smaller than the main term
for t < t,,: Em’t, /e < 1. If it is neglected then damping
rate is equal to W,.

To conclude, the evolution of an electron wave packetin a
strong constant crossed electromagnetic field is studied with
taking into account the radiative corrections caused by the
interaction of the electron with the vacuum fluctuations. The
dynamics of the wave packet obeys the Dyson-Schwinger
equation, which can be formally solved exactly in the E,-
representation. We derive the approximate solution in the
configuration space at one-loop level. For this, we define the
initial packet in the p-space and assign it a Gaussian shape.
We assume that the packet width in the momentum space is
small compared to the particle energy. The obtained result
corresponds to evolution of a wave packet without real
photon emission. The time of the solution validity is
restricted from above. The radiative corrections modify
the structure of the electron wave function, in particular,
result in wave packet damping. The expectation value of the
Dirac spin operator is also calculated. The radiative cor-
rections make greater contribution to the averaged spin of
the electron than to its probability density. A particular setup
for measuring the effect on spin dynamics, for example,
in a laser field, might need accounting for other effects
too [57,58]. Such a problem requires careful treatment and
is out of the scope of this work and will be presented
elsewhere. Moreover, further investigations are needed to
solve Dyson-Schwinger equation for a longer time beyond
of the approximations made.
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APPENDIX: SPIN OPERATOR
FOR THE DYSON-SCHWINGER EQUATION

Let us come back to the construction Eq. (34) of a spinor
w,(p) with positive energy and definite spin projection
along the direction of n with account for radiative correc-
tions. Such a spinor should obey

Py (p) = ow,(p), (A1)
which is equivalent to
L_oy,(p) =0. (A2)

According to Eq. (5) we have £_, L, = 0 for any n such
that n?> = 1. However, in order to satisfy Eq. (A2) in
addition the operators £_,(n) and D should commute.
Without accounting for radiative corrections this trivially
holds for any n such that p - n = 0. This just means that n
can be directed arbitrarily in a proper frame.

When radiative corrections are accounted for, this con-
dition is more restrictive. Let us check that in a constant
crossed field £_,(n) and D [see Eq. (36) with the
coefficients defined as in Egs. (22)—(24)] commute for
n = np, where np is given by Eq. (30). The nontrivial part
of the commutator consists of the following terms:

L_,D-DL_, :aysn'zv—aﬂA;Aﬂ—l-ays ﬂﬂ';ﬂ'ﬂ’

(A3)

where 7 = ¢"*T,, = y*y*T,,. For n =np = A/(amy)
we immediately have fA — Ajf = 0.

In virtue of Eq. (22) the first term in (A3) for n = np
looks as follows:

v1€e 1}263 2
nD-V:—3 F;l,pyp”'f' 7F;(7F”DFZMP pO' (A4)
xm xm

Here the first term in the rhs vanishes due to antisymmetry
of the tensor F7,, while the second term vanishes due to the
identity

FroF* = €005k AP () (K*AY () — K" A ()) =0, (A5)

which holds for any plane wave in virtue of Eq. (18) and the
antisymmetry of the Levi-Civita symbol.

Finally, applying the properties of the y-matrices the last
term in Eq. (A3) simplifies to

finT = Tihp & Fjp*Fog(r'vy” —vy’y")
=2p (Y F*"F,5 = y"F*F,,).,  (A6)
hence also vanishes in virtue of Eq. (AS).

Therefore, £_,(np) and D indeed commute and hence
Egs. (A2) and (A1) are fulfilled. As mentioned in the main
text, np is singled out by the fact that in a rest frame its
spatial component n is directed along the magnetic field.
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