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Investigations of dense neutrino cloud evolution through quantum kinetic equations led to the possibility
of “fast flavor” (FF) processes. It is shown here that the usual quantum kinetic equations, while signaling
the instabilities that make some instances of FF possible, are being erroneously interpreted. Approaching
the subject directly from the quantum field theory that defines the standard model shows the computational
structures in most of the recent FF literature to be completely invalid. Our revisions also underlie what
promise to be new early Universe applications and a general result for relic supernova neutrinos that could
be tested as a feature of the diffuse neutrino spectrum.
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I. INTRODUCTION

Fast neutrino-flavor evolution is defined by changes that
take place on a timescale T ∼ ½GFnν�−1, where GF is the
Fermi constant and nν is the neutrino number density (units
ℏ ¼ c ¼ 1). It has become a major topic in discussions of
neutrino clouds, and in turn of great interest in supernova
calculations, and in early Universe physics. It develops
from an effective, nearly local coupling among four
neutrino fields induced by exchange of a virtual Z meson
in the standard model. We omit all neutrino closed loop
corrections (which produce factors GF with no accompa-
nying nν).
Two features of the neutrino-neutrino interaction in our

systems that together make fast coherent behavior possible
and calculable directly from very elementary quantum field
theory (QFT) are
(1) That fast behavior leads to transformations over a

distance of a fraction of a millimeter for ν’s in an
energy range of 1–20 MeV, when the number
densities are in the range 1 − 1000 ðMeVÞ3.

(2) That “invariant T-matrix” amplitudes for νþ ν →
νþ ν, ν̄þ ν → ν̄þ ν, etc., in the absence of neu-
trino mass, are independent of the energies of the
various neutrinos. The ν’s have flavor indices as
well, suppressed above.

In this environment, consider the period of a fast process:
it is shorter than the ν scattering free path in our application

by a factor of 109 or more. When we concern ourselves
with the nature of the process during that short time period,
only a tiny fraction of the momenta of the individual
neutrinos in the cloud can change at all. Momentum
conservation is replaced by momentum preservation, a
principle that must be held firmly in mind. We shall always
embed our system in a periodic box big enough to follow
our systems through a cycle of fast behavior. The initial
angular distributions in the box are taken as absolutely
constant in space. We consider systems of neutrinos that
begin in the pure flavor states in which they were produced
by elementary processes. Then the signals for the instability
leading to FF change are the time-growing modes of an
equation,

i
∂

∂t
ξj ¼

X
k

Mj;kξk; ð1Þ

where Mj;k is a non-Hermitian matrix that depends on the
initial arrangement of flavors, and the indices enumerate
directions of flow.
Those parts of the standard Sigl-Raffelt [1] equations

(S-R), or of related “quantum kinetic equations” (QKE) that
deal with the neutrino-neutrino interaction, cannot be an
element in our conclusions, because at best they are
applicable in systems that are dominated by neutrino
scattering, whether from other ν’s or other species. Here
we are discussing another limiting case, where the sum
in (1) counts every one of the (1028) neutrinos that are in the
periodic box at the time of turn-on. And we index each one
by its complete momentum, p⃗i, not just its angle. The
kernel of (1) is of the order of the Fermi constant GF.
Taking the medium as translationally invariant over the
short distances over which we follow the action, we do find
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fast transformations over an inverse timescale of GFnν.
These arise from (1), but the path is to use QFT directly to
obtain and understand these equations, which do not fit into
the QKE picture. The steps to this conclusion involve a
careful set of definitions for collective coordinates. Then
we can not only address the absurdities of the QKE
approach to this case but find some surprising results on
final energy distributions.
The original S-R article does make the following remark:

“We assume that the duration of one collision (the inverse
of a typical energy transfer) is small relative to the inverse
collision frequency.” But then the “duration” is infinite for
the processes that produce “fast,” in which momenta are
preserved. The literature that we are questioning ignores
that fact. By contrast, we do not consider any collision
whatsoever; we just transfer flavors between absolutely
fixed momenta, as stated above, and also implicitly in (1).
There are also two reasons for invoking elementary

quantum field theory: (a) to obtain operator equations
rather than equations for expectation values, enabling us
to go 1 order of ℏ higher than the S-R formalism, which is
needed in the consideration of seeding, and (b) to under-
stand the role of an entirely new sector (discussed in
Sec. III) coming from the “u-channel” (in Mandelstam’s old
terminology [2]). In our momentum-preservation descrip-
tion it adds “ν − ν̄ mixing.” This does not mean that we
violate lepton number conservation, only that two single
momentum rays can gradually exchange lepton number
coherently.
One very simple example should suffice to show a

drastic difference between the prevailing wisdom and
our results. Take equal numbers of two flavors, in isotropic
distributions, and suppose that the construction (1) shows
the growing instability. Then ask QKE practitioners what
physics ensues. They answer “none, because for each flavor
(þ1) there is an opposite (−1) in the initial state so that the
total is zero already and nothing can happen.” One should
just think about that hypothetical conclusion while putting
it together with two features discussed above: (a) The exact
preservation of the neutrino momenta over our 1 mm=c
instant of time and (b) the fact that the invariant amplitudes
are dependent only on flavor and angle, not on energies.
The momentum vectors are trading flavors, in the sense

that, each one has a small flavor matrix attached. These are
what change during the evolution, over the tiny box
crossing time, not the momenta. But now we must address
the belief that the energy spectra began as strongly
correlated to flavor, given the ν production processes in
the supernova. When the momentum vectors assume new
flavor values on a wholesale level, the previous flavor
values always get attached to different momenta which
will, on the average, be higher for the lower set of initial
energies, and lower for the higher set. The reader can see
the tendency toward energy equalization. Total macro-
scopic equalization will be discussed later.

Use of the S-R equations did indeed provide the first
evidence for the fast modes in well-described physical
situations [3–5], but most recent uses of them are incorrect
to the core. We cite here some examples, largely taken
from [6], limiting to papers published in Phys. Rev., and
Phys. Rev. Lett., mostly in the years 2021–2022 [6–39].
There are many more in the pipeline. In any case, there
exists also another sector of instabilities that is not
addressed at all in present QKEs. It is discussed in
Sec. III, and is probably destined to change all outcomes,
whether or not one puts into effect the reforms called for
in Sec. II.

II. MECHANICS

To make our points we need to begin with a rather
elaborate hierarchy of variables. We consider N1 individual
ν’s with momenta pj where j runs through all 1028

neutrinos in a “beam” that is slightly diffuse in angle. In
the two-flavor (νe, νx) model underlying the simulations of
the present paper we introduce a Pauli matrix σ⃗ algebra (or,
better, σ�; σ3), for this beam, letting aj, bj be the respective
annihilators for νe and νx with momentum p⃗j; then defining

σjþ ¼ b†jaj for j ¼ 1 to N1, and σj3 ¼ a†jaj − b†jbj.
Intrabeam interactions being very strongly discouraged

by the ubiquitous ð1 − cos θÞ factor, we next discuss
pairwise interactions between two beams where the second
has the same number of ν’s and uses τ⃗j, for its description.
The standard model (Z exchange) neutrino-neutrino

interaction local Hamiltonian, for our system, leaving out
inconsequential termswith no flavor dependence is the basis
for our work We shall not here go into the complications
ensuing in the three-flavor case with its eight operators
replacing the three, except to say that our most important
single result will be durable in this generalization.
Next we envision a set of different directions in space,

with the ultimate aim to simulate the evolution of a 3D
ensemble of beams with some fairly small number of
beams, say 60. We use a different Greek letter for each; in
our work with four beams, we use σ⃗; τ⃗; ξ⃗; η⃗. The two-beam
effective Hamiltonian written in terms of variables that are
bilinears in ν creation and annihilation operators and that
gives the S-R equations as its Heisenberg equations of
motion is

Heff ¼
GF

Vol:

XN1

j;k

�
σjþτk− þ σj−τ

kþ þ 1

2
σj3τ

k
3 þ σ̄jþτ̄k− þ σ̄j−τ̄

kþ

þ 1

2
σ̄j3τ̄

k
3 − σ̄jþτk− − σ̄j−τ

kþ − σjþτ̄k− − σj−τ̄
kþ

− ðσ̄j3τk3 − σj3τ̄
k
3Þ=2

�
ð1 − cos θσ;τÞ; ð2Þ

with the obvious extensions to the cases in which we have
more beams (additional greek letters and similar pairwise
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interactions involving all beams). The individual beams are
to be of some small angular width, limited in principle by
the precision sought in conjunction with the angular factor
ð1 − cos θσ;τÞ. The number of beams in our list beginning
with σ⃗; τ⃗…, as the first two, will need to be fairly large for
good 3D simulations, as noted, but we can learn much
by studying one- and two-dimensional simulations. Our
computational methods come directly from using the
Heisenberg equations for these variables, derived from
their commutators with Heff , and bearing in mind that the
underlying momenta do not change in the course of a fast
transition.
Next we deal with the intrabeam indices j, k in the

sum (2), where these denote the individual ν rays that make
up a beam, now in such a narrow cone of angles that they do
not generate a significant ð1 − cos θÞ factor. We define
collective σ; τ… operators,

XN1

j

σ⃗j →
ffiffiffiffi
N

p
1σ⃗;

XN1

j

τ⃗j →
ffiffiffiffi
N

p
1τ⃗: ð3Þ

The redefined operators and their antiparticle mates for
σ̄; τ̄… etc. obey the commutation rules of Pauli matrices.
The factors of

ffiffiffiffi
N

p
1 that emerge combine with the Vol:−1

factor in Heff to replace the coupling constant in the
Hamiltonian, GF½Vol�−1 by GFn, where n is the particle
density in a single beam. In the following, we choose time
units such that this factor is unity.

A. Two-beam example

We begin our serious dispute with the establishment by
giving the complete details with respect to the two-beam
instabilities. We take σ as the right-moving amplitude and τ
as the left-moving amplitude. The Heisenberg equations of
motion coming from commutators with (2), now without
the indices and with GF=Vol. replaced by unity, are

ið∂=∂tÞσþ ¼ σ3τþ − σþτ3 − σ3τ̄þ þ σþτ̄3
ið∂=∂tÞτþ ¼ τ3σþ − τþσ3 − τ3σ̄þ þ τþσ̄3
ið∂=∂tÞσ̄þ ¼ σ̄3τ̄þ − σ̄þτ̄3 − σ̄3τþ þ σ̄þτ3
ið∂=∂tÞτ̄þ ¼ τ̄3σ̄þ − τ̄þσ̄3 − τ̄3σþ þ τ̄þσ3: ð4Þ

We consider initial states of pure flavor, (σ3; τ3; σ̄3; τ̄3),
each of which may be �1, or zero if there is no
corresponding beam at all. We choose (1; 0; 0;−1) to
obtain the model with initial configuration νRe þ ν̄Le , chosen
in Refs. [3,4], where at the half period time the state
changes to νLx þ ν̄Rx . Below we show how the instability
enables this, giving the complete transformation curve of
the form shown later in Fig. 1 in Sec. IV. Substituting into
(4) linearizes the equations. We then find an eigenvalue of
the matrix,

m1 ¼

0
BBB@

1 1 0 −1
0 −1 0 0

0 0 −1 0

1 0 −1 1

1
CCCA;

with an imaginary part that signifies a growing mode exp½t�.
Why are we doing this when it is completely worked out in
Refs. [3,4]? It is because we now want to ask all the authors
who have bought into this work and its scores of sequels a
simple question: Suppose that we supply, in the initial state,
counterbeams in which the initial directions in the above
setup are swapped. An analytic approach now requires that
we look at 8 × 8 matrices rather than 4 × 4’s. They are of
the block form m2 ¼ ð m1−m1

−m1

m1
Þ, where the block m1 is the

4 × 4 matrix defined above. Looking at the eigenvalues, it
is trivial to calculate the growth rate of the instability in this
8 × 8 case. It is double that of the 4 × 4 case.
What is now happening in the medium, during our short

period of time, is that in an “equilibrium universe case” the
flavor of each of our more than 1028 rays in our tiny box is
transforming itself through mixing with different flavor
states, until at the half-period times the flavor values are the
negatives of the beginning ones.
Now we look at the QKE results in the model described

above with the response matrix m1, which has one beam in
the R direction and one in the L direction, and wewould see
those growing modes confirmed [1,3]. But when we added
the counterbeams in each direction giving the response
matrix m2, the QKE has no room for this, except to say
“just add the flavors in all the right-moving beams, and
separately in the left-moving beams, now giving (0,0,0,0)
in both cases. Nothing happens.”
The first time that we considered this we thought, “Let it

pass; these guys don’t care about all of those fast tradings of
identity when the expectation of each flavor operator
remains zero.” We did care, as is made clear in papers
directed at applications in cosmology [40,41]. But the
supernova people should care as well, we now realize,
because it is clear that fast trading of identities can equalize
the energy distributions of νe; νx; ν̄e; ν̄x, while leaving those
flavor expectations fixed at zero, a topic to be discussed in
more length in Sec. II C.
To reiteratewithmore specificity: there is a fatal flaw in the

prevailingQKEapproach to calculation.Whenwe said, “take
a initial flow with flavor parameters ðσ3; τ3; σ̄3; τ̄3Þ given by
ð1; 0; 0;�1Þ and then add a flow of equal intensity in the
samedirectionswith opposite parameters ð−1;0;0;∓ 1Þ,”we
cannot assume that now those two flows are dormant because
we obtained (0,0,0,0). Indeed we showed that, following all
of the rules that produced the results of Refs. [3,4] we
obtained twice the original rate rather than the nullification
expected in the QKE industry. Of course, the “nullification”
could never have been the actual physical disappearance of
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the beams; it would have been with respect to their effects on
the rest of the flow.
A caveat deriving from this example is the following:

When we begin with an assembly of pure flavor states we
must start with separate beams for each flavor.

B. The same caveat, from a general argument

A σ⃗ operator is built to be applied to composite states
built of a very narrow-coned swarm of N1 neutrinos of
flavor A, say, as

jΨAi ¼ ei
P

j
ϕj
YN
j¼1

jflavAj i; ð5Þ

where we explicitly put in the unknowable phase factor that
comes with every ν.
We expect this phase factor, which does not change

during a period of coherent evolution, not to affect final
results. When we deal with the collectivization of the wave
functions within our very narrow cone in the way that
matches the corresponding collectivization, (2), in Heff , we
implement the step

YN
j¼1

jflavAj i → jflavAi; ð6Þ

and the phase factor in (5) then tags along multiplying the
whole expression. Now suppose, e.g. that the states A and
B are respective flavor choices for a right-moving νe beam
where each ν carries σj3 ¼ 1, and a right-moving νx with
σj3 ¼ −1, as in the ideal early-Universe case,

jΨBi ¼ ei
P

j
ϕ0
j
YN
j¼1

jflavBj i: ð7Þ

Someone comes along and says, “But now we don’t need
so many beams; we can just add the two flavor variables
together and use that as the initial flavor configuration for
that part of the wave function,” giving

jΨAi þ jΨBi ¼ ei
P

j
ϕj jflavAi þ ei

P
j
ϕ0
j jflavBi; ð8Þ

where we should have done

jΨAijΨBi ¼ ei
P

j
ϕj jflavAiei

P
j
ϕ0
j jflavBi: ð9Þ

In view of its dependence on phase factors that are random,
(8) cannot play a role in a correct calculation. Our initial
amplitude in the present problem must be in the form of a
product over all 16 of the ½flavor� × ½lepton number� states,
with no superpositions allowed [41].
Our concern is with publications that are intended to

make difficult systems like the supernova flow more
computable by using some different basis than plane waves,

for example, angular moments. But it would appear that
abandoning a basis of plane waves in favor of one of
moments always means additive superpositions of plane
wave states. In normal problems one can say, “If we use a
complete set of angular functions that are best adapted to
the geometry of the flow we can always get the plane-wave
behavior back.” In the present situation, though, we would
have created something analogous to (8) as an admissible
state, and it would have the same fatal flaw as that state.
Plane waves are the required basis for “fast” ν work
precisely because neutrinos move in exact straight lines
during fast processes, no matter what the angular distri-
bution might be.

C. Energy spectrum equalizations

We consider possible equalization of energy spectra over
all six participating flavor-lepton species. The argument is
simple: At that point at which we reach the halfway point in
a complete oscillation, a single ray, j, that began with a
particular value Λj ¼ ðσj3; τj3; σ̄j3; τ̄j3Þ has a totally different
set of flavor values acquired by trades along the way, but
exactly its original jp⃗j. It is just as true when P

j Λj ¼ 0.
This leads to complete scrambling of energies, exactly
because energies do not enter the dynamics, not because
they do.
We stopped at the half cycle in formulating the above, for

reasons we address more fully in Sec. IV. In brief, our study
of seeding, based on the next order terms in ℏ, raises serious
questions about whether the fast process with periodic
behavior at mean-field level actually extends beyond the
first half cycle.

III. THE U CHANNEL, A FATAL OMISSION
IN THE LITERATURE

This omission is ubiquitous, and not specific to the “fast”
sector. First, there are s, t, u channels in the basic Feynman
graph that drive these effects (named after the s, t, u
variables of Mandelstam). In “s” a neutrino with four-

momentum pð1Þ
μ and flavor j,“emits” a virtual Z, and

becomes a neutrino with with four-momentum qð1Þμ and

flavor k. The second incoming ν with four-momentum pð2Þ
μ

and flavor m “absorbs” the virtual Z, and becomes a

neutrino with four-momentum qð2Þμ and flavor n. The
s-channel flavor matrix is then δj;kδm;n for the amplitude,
where the indices take just two values 1, 2 for the flavors in
the SU2 simplification. Of course we get nothing interest-
ing happening in the flavor space because of that δj;kδm;n

dependence.
To get the t channel we exchange the flavors attached to

the two four vectors qð1Þμ , qð2Þμ , and make the change in the
above: δj;kδm;n → δj;nδm;k. Now, imagining that we have
backtracked a little to put in antiparticles correctly, and with
a little work, we get exactly the Sigl-Raffelt equations from
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the last century [1] for the ν − ν interaction. But what about
the “u channel?” We get that from the s-channel amplitude
for the case of incoming ν and ν̄ beams by exchanging the

flavor and lepton number indices of pð1Þ
μ and qð2Þμ , at the

same time. Since that “crosses” an incoming and outgoing
Fermion line, lepton number mixing must be looked at
carefully. But here is the fairly simple answer: The
amplitude is a singlet, an invariant, in flavor SU2 (or
SU3) space. And we are fairly sure people have noted that
fact and said to themselves, “So then nothing happens.” But
then one should realize that there is a fast u channel ν − ν̄
mixing interaction, though even to state the meaning of
what is happening one must remember that the “beams” are
all defined by a set of momenta that remain exactly the
same during the beam interactions, according to the logic of
the last section. It is the lepton numbers of the two beams
that are traded.
This has been shown explicitly in excruciating detail

in [42] for the case of two exactly parallel, cos θ ¼ 1 flows,
one of ν’s and one of ν̄’s. But it is easy to show generally
that the complete angular dependence is ð1þ cos θÞ for all
u-channel effects, just as it is ð1 − cos θÞ for the t-channel
effects.
We define operators σ⃗ for the transformation of a right-

moving ν of any flavor into a right-moving ν̄ of the same
flavor, where σþ ¼ āa†, etc. Then we add an initial left-
moving ν̄ and follow the evolution. This u-channel inter-
action is now by far the simplest of all “fast” models, with
the two-beam case given by

Hu
eff ¼ 2GFn½σþτ− þ σ−τþ�ð1þ cos θÞ; ð10Þ

the angle dependence now preferring beams in the same
direction. For the case of two beams in the same direction,
taking time units such that 2GFn ¼ 1, the equations of
motion (e.o.m) are just,

iσ̇þ ¼ σ3τþ;

iτ̇þ ¼ τ3σþ;

iσ̇3 ¼ −σþτ− þ σ−τþ: ð11Þ

A four-beam result is given in Ref. [42], with the two other
beams ξ, ζ being at the common angle π=2. Even leaving
out these factors, e.g. at θ ¼ π=2, u-channel effects have
important properties:
(1) The fast transitions by themselves will be 4 times as

fast as those coming from the more complex set
of Sigl-Raffelt equations in the treatment of the
t-channel effects.

(2) They work independently on the two (or three)
ordinary flavors.

(3) They establish that it is not true that fast transitions
must involve νe lepton number crossing (in the two-
flavor framework).

With the angular factors, the u-channel effects become
much more the key process in the neutrino-sphere (or
“bulb”) region of the SN, where the ordinary t-channel
effects die off radically because of the narrowing of the
angular distributions, but where the u-channel effects like
nothing better. Furthermore the fact that ν̄e and νe spectral
shapes get equalized (just the shapes—not the numbers)
should be of great interest to designers of observations of
the diffuse neutrino background, and could affect the
design and priorities of experiments. However the process
does require seeding.

IV. SEEDING

The “u-channel” model of Sec. III, by virtue of its
simplicity, provides an opportunity to explore “seeding” in
a more definitive way than previously. More details are
given in [42], but we outline some essential points here.
The u-channel instability of the last section that can drive
neutrino-antineutrino mixing is not activated in any variants
of the neutrino mass-matrix and therefore must find
initialization elsewhere if it is to prosper.
In simple two and four-beam models [42] we have

shown how going beyond the mean-field approximation by
1 power of ℏ provides an initiation mechanism. We define
“mean-field approximation” as simply that supplied by the
S − R equations, and where every quantity on the rhs is
taken as an expectation in the medium. But our e.o.m as
derived are completely operator equations; in these equa-
tions we choose to change the variables σ, τ of the last
section to another set,

X¼ σþτ̄−; Y ¼ σ−σþþ τ̄þτ̄−;

Z¼ðσ3− τ̄3Þ=2: ð12Þ

We easily commute these products with Hu
eff of (10) to get

new e.o.m.’s:

iẊ¼ ZYþZ2=N; iẎ ¼ 2ZðX†−XÞ; ð13Þ

iŻ ¼ 2ðX − X†Þ: ð14Þ

The Z2 term in (13) comes from a second commutation
to get operators into a correct order for expressing every-
thing in terms of the new variables; implicitly it carries an
additional power of ℏ and provides the seed for something
to happen. Then we wave the magic wand and declare that
everything from now on will be taken as an expectation
value. The above reasoning and outcome are closely
related to those of an influential paper in condensed matter
theory [43], but in very different language.
We need no explicit seeding to solve the new equations

of development with pure lepton number initial values.
Taking them as σþ ¼ τþ ¼ 0, σ3 ¼ −τ3 ¼ 1, leads to the
results plotted as the solid curve for σ3 in Fig. 1. We refer to
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this as the “quantum seeding case.” It is interesting that if
instead we had used the lepton number changing seed
σ1ðt ¼ 0Þ ¼ N−1=2

1 in the original mean-field equations we
would have obtained an essentially perfect fit to this curve,
as shown in Fig. 1 (taken directly from [42]). However note
that the fit is shown only out to the end of the second
plateau. Here is the puzzle: the seeded mean-field case
would go on periodically for a longer time, if allowed to,
while the “quantum seeded” result appears to develop a
singularity that stops the computation exactly when we are
expecting a second break that carries us back to the initial
state. We believe that the probable answer is that the
periodic behaviors are mean-field manifestations only, and
that FF events provide only a one-shot switch.
After all, the reason that things in mean field are periodic

in the case of position independent flows has something to
do with the fact that all of those classical gyroscopic
pendulum solutions are producing specimens of Jacobian
elliptic functions (JEFs), already famous for their perio-
dicities. But our form of seeding requires the next order in ℏ
beyond mean field, and the JEFs are no longer the operative
functions, nor can one recover that next order from one’s
semiclassical equations.
In the Appendix A, we show how additional evidence

on this subject can come from simulations with small
numbers (300þ) of ν0s and an unphysically large coupling.
Our computations are marginal, but appear to support the
above conclusion. We have been able to carry out the
analog of the argument based on (13) and (14) for a special
example of the four-beam case as well, but it is much more
complex. We show support from a different direction for
this last conclusion. We also, Appendix B, provide
material to describe some of the new early-Universe
applications that are expected in our new framework; in
Appendix C, we speculate on the topic of how FF events
might coexist with QKE solutions over much longer time
periods.

We are indebted to Doug Singleton for an important
discussion.

APPENDIX A: ADDITIONAL EVIDENCE
AGAINST PERIODICITY

As to the fate of our [plateau → sudden change of
sign → plateau scenario], in Sec. IV we addressed the
issues using our quantum-seeding formalism to conclude
that coherence falls apart somewhere in that second plateau.
And we concluded that the quantum flips are not part of a
long term periodic oscillation. We here offer more evidence
from another direction. In 2003 Bell and Rawlinson, along
with the present author, examined models as defined
by (10), but now truncated with a very small number, N,
of ν’s, and just solved the Schrodinger equation for the
development of the system in time [44]. That is to say, in
effect we turned up the coupling constant to an unphysical
value so that the nonlinear effects could be seen in small N
systems. With our primitive laptops of the era, looking at
exact solutions for particle numbers N in the 10s we found
some evidence of fast mixing. Later Friedland and
Lunardini pointed out that our interaction Hamiltonian
lacked the essential σ3τ3 term, which, when included,
turned out to erase our result [45]. But now, by total ironic
coincidence, the exact model, with no such added term, is
reborn in a different space, where the operators mix lepton
with antilepton and leave flavors alone.
Therefore we now look again at the N1 dependence of a

σ3 plot beginning at unity, where σ3 now measures
(leptons-antileptons). For N ∼ 10 s, we saw evidence for
“fast”; now in the early N ∼ 100 s we see the initial plateau
forming, along with a later fairly fast downturn; at 300
things sharpen, and we see flattening as we approach what
we anticipate is another plateau, this time near σ3 ¼ −1. It
is just the half cycle. We do not believe that it is tending
toward a revival into the full cycle. Thus the study of
seeding in the main text, and independently looking at
analogs of old work with Bell and Rawlinson, extended to
larger N, and hinted at by Roggero [46] tell you that we get
only to the first half period, after which the system
dissolves back into something very like its everything-
flipped state, except for the under-the-table redistribution
of energies!

APPENDIX B: THE NATURE OF THE
NEUTRINO CONTENT OF THE EARLY
UNIVERSE IN THE TEMPERATURE

RANGE, 1 < T < 10 MeV

In this system, do we have flavor near equilibrium that
changes only slowly, since the thermal electrons and
positrons barely have begun getting rid of themselves in
favor of photons? Or is there rapid flavor mixing that can
lead to important physical consequence? Our answer, as
given in [40], is the latter. For simplicity we argue this

5 10 15 20 25 30
t

–1.0

–0.5

0.5

1.0

FIG. 1. Dashed curve: plot of the variable σ3 ¼ nν − nν̄ against
time, as determined by the solution of the set (13) and (14). The
n’s are occupation averages in the beam that began as pure ν.
Dotted curve: the same for the beam that began as pure ν̄. Solid
curve: plot for the initially pure ν mode, but where we use the
mean-field equations analogous to (11), using a seeded initial
value as described in text.
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while putting aside for the moment the lepton-number
oscillations described in Sec. III, above. Just to summarize
the basics we start in the most elementary configuration as
an initial state: two beams clashing head-on, each an
incoherent equal mixture of νe; ν̄e; νx; ν̄x states. To follow
the flavor, we define the bilinear operators σþ, σ̄þ for the
up-moving stream, and τþ, τ̄þ for the down-moving stream,
where these are the operators that change flavor from −1 to
1. The operators that measure flavor are σ3, σ̄3 for the up-
moving stream, and τ3, τ̄3 for the down-moving stream. The
Hermitian conjugates, σ− etc. follow along in a totally
dependent way, and do not require their own equations.
Now suppose that after deriving the eight nonlinear

equations from commutators with the effective
Hamiltonian obtained by a heavy Z exchange, we take
initial values of zero for the flavor measuring operators,
ðσ3; σ̄3; τ3; τ̄3Þ based on the perceived cancellation between
the νe and νx parts. The short term development of the
system as given by the four equations for ðσþ; σ̄þ; τþ; τ̄þÞ is
trivially that nothing happens to order t.
But this is not the end of the story. Taking σ3 ¼ 0

because we have equal initial numbers of up-moving νe and
νx is making exactly the mistake denounced in Secs. I and
II, namely, adding initial flavors within a beam. We repeat
our litany about momentum preservation as opposed to
“quantum kinetic equation” yet again for this specific
question. In the QKE conception a beam begins in a state
that is a narrow angular bundle of 1022 ν’s, but it cannot do
the bookkeeping to know who started in one or another
flavor state; in our approach we simply accept the necessity
of having separate beams for each flavor value in the S-R
equations.
At a minimum, then, we need two separate right-going

beams for our two initial flavors, and separately the same
for the left-going beams and all the corresponding anti-
particle beams. We now have 4 times as many equations as
before, making 32 in all. Again only one half of these enter
into the linearized instability matrix. The complete 16-
dimensional response matrix is available to interested
parties from the author. The reference for the underlying
equations themselves is [40].
The instability provides exactly our answer to the

rhetorical question asked and answered at the beginning
of this section. If we look at the early Universe at the level
of the single neutrino, as defined by its momentum state,
over a time period much, much shorter than the scattering
time, then we see a turmoil of 100% flavor oscillations
ensuing when it begins in a pure flavor state. There are
cosmological consequences of this, first in the fact that it
can provide a free source of energy in the KeV region that
allows the simplest Dodelson-Widrow models [47] with the
ability to use bilinear ν; νsterile couplings that are many
orders of magnitude less than previously thought, and
second in what could be a substantial reworking of the
calculations, e.g. by Dolgov et al. in the region in which the

positrons disappear [48], and one struggles to find the final
photon and neutrino distributions.

APPENDIX C: COMBINING FF PROCESSES
AND “QUANTUM KINETIC EQUATIONS”

Nowhere in the above have I stated or implied that QKEs
are unimportant in supernova calculations, only that they
are the wrong container for FF effects that take place in a
region that is of order ðnGFÞ−1 in size.
How can we find a consistent way of using each in its

domain of validity? Some implications of our seeding
discussion in the previous section may be useful here. A
single FF cell is very localized in space and limited in time
duration. In the FF equations the space derivatives do not
enter at all. Nor do neutrino energies. In each of our
countless little boxes, everyone in the domain interacts with
everyone else, and kinetic energies are heedlessly traded
among different flavors and different directions.
This should lead to nearly exact equalization of energy

spectra across the full six species (flavors × lepton − ness).
As stressed earlier, this is not because energies enter the
governing equations for fast phenomena; it is because they
do not. All of the explicit energy trading is out of sight of
the FF equations, since the energies do not even appear
in Heff .
Influential precursors to the explosion of work on fast

processes are found in the big literature in the “pendulum in
flavor space,” which began as a fascinating exercise in
which, e.g., segments of the νe and νμ energy spectra could
be swapped in ways that were surprisingly fast and that
depended strongly on the ν mass matrix [49,50]. That is to
say that in our present terms it relied on a particular way of
seeding, one that appeared inevitable for that era.
But our results argue strongly against that swap, and in

favor of rapid spectral equalization. Furthermore, by now,
as noted in Sec. IV, it has been shown in two ways how, in
the absence of neutrino mass, effective seeds will be
provided in the simplest models; both are higher order
in ℏ however. Indeed, because the mainstream vein of
literature is all rooted in semiclassical approximations from
the outset, it cannot supply the order ℏ corrections for
seeding (beyond, or instead of the order ℏ neutrino mass
matrix).
A recent “pendulum” paper [39] is worthy of note in

other respects. By considering only the integral of the
amplitude over all energies, so that the dependence is
completely on angles, and then assuming azimuthal sym-
metry, so that the distribution is over polar angle only, it is
hoped that the equations may now be simple enough for
answers on criteria for instability. Solutions are shown that
are based on particular assumptions for the mass matrix.
But we see that the azimuthal superposition at the founda-
tion of this work violates the prohibitions established in
Secs. I and II. And the model itself is intrinsically unable to
track the energy spectra. Even if it could be rescued in
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multibeam form, it could not confirm or deny our most
important prediction: namely the equalization of these
spectra.
Of course, when on their trip outward in the supernova,

ν’s enter a domain in which FF fades and scattering takes
over; this by itself will reintroduce some energy spectrum
differences. But they are far from the ones that would have
emerged from the inner core were it not for the energy
trades in the FF events. It appears therefore that the spectral
homogeneity of all six neutrino species can be checked in
measurements of the diffuse neutrino spectrum that are said
to be in the works.
In our results the flavor turnover plot has a universal

shape, for large values of N, and with no appreciable
seeding from neutrino masses. First there is a plateau of
time extent proportional to ½logN�GFn at an initial value

that has been scaled to unity, then a sudden drop to very
nearly (−1), almost exactly reversing the initial flavor
value, then another plateau–until the calculation stalls?
Now the interesting part surfaces: in the pendulum calcu-
lations, and in any seeded mean-field calculations, it is
periodic. But when we replace ordinary seeding by a
quantum-correction seeding it appears that it is not able
to continue on its periodic course.
Therefore it seems possible that the early-Universe

neutrino content remains almost the thermal equilibrium
mix, but with this enormous rate of little localized blips
that can do some physics on the side, as suggested in
Refs. [40,41]. In our immediate pre-electron-annihilation
era we estimate that logN is about 40, meaning that there
should be big flavor mixing (during the blip) about 2% of
the time.
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