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Ultralight bosonic particles are fascinating candidates of dark matter (DM). It behaves as classical waves
in our Galaxy due to its large number density. There have been various methods proposed to search for the
wavelike DM, such as methods utilizing interferometric gravitational-wave detectors. Understanding the
characteristics of DM signals is crucial to extract the properties of DM from data. While the DM signal is
nearly monochromatic with the angular frequency of its mass, the amplitude and phase are gradually
changing due to the velocity dispersion of DMs in our Galaxy halo. The stochastic amplitude and phase
should be properly taken into account to accurately constrain the coupling constant of DM from data.
Previous works formulated a method to obtain the upper bound on the coupling constant incorporating the
stochastic effects. One of these works compared the upper bound with and without the stochastic effect in a
measurement time that is much shorter than the variation timescale of the amplitude and phase. In this
paper, we extend their formulation to arbitrary measurement time and evaluate the stochastic effects.
Moreover, we investigate the velocity-dependent signal for dark photon DM including an uncertainly of the
velocity. We demonstrate that our method accurately estimates the upper bound on the coupling constant
with numerical simulations. We also estimate the expected upper bound of the coupling constant of axion
DM and dark photon DM from future experiments in a semianalytic way. The stochasticity especially
affects constraints on a small mass region. Our formulation offers a generic treatment of the ultralight
bosonic DM signal with the stochastic effect.

DOI: 10.1103/PhysRevD.108.092010

I. INTRODUCTION

These days, various experiments are planned and per-
formed to investigate the broad candidates of dark
matter (DM) including ultralight bosonic DMs [1–8]
such as axionlike particles and dark photons. Axionlike
particles [9,10] have a unique coupling to the photon,
which rotates the polarization direction of the photons. The
polarization rotation provides a new detection scheme by
measuring the polarization state of laser beam in inter-
ferometers. Hereafter, axionlike particles are called axion
for short. The dark photon is a massive vector field
characterized by its UDð1Þ-charge. The baryon charge
(D ¼ B) or baryon minus lepton charge (D ¼ B − L)
induces the dark electric force on the experimental equip-
ment like mirrors in interferometers, which can be detected
by the gravitational wave interferometers without any

additional modification [11–15]. Such DM experiments
by interferometers are highly sensitive to the axion and dark
photon signals. These experiments can improve the current
constraints obtained by other types of experiments, e.g.,
CAST [16,17] and the astrophysical observations
(SN1987A [18], M87 [19], and NGC 1275 [20]) for the
axion, and Eöt-Wash experiment [21,22] and the
MICROSCOPE experiment [23–25] for the dark photon
(see also Refs. [11,13,26]).
Understanding the characteristics of the DM signal is

crucial to distinguish the signal from various noises and
extract the properties of DM from data [15,27–29]. The
DM signal is nearly monochromatic with the angular
frequency of the DM mass, which enables us to extract
the DM signal at the oscillation frequency. However, the
amplitude and phase of the DM field are gradually
changing due to the velocity dispersion of DMs in our
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Galaxy halo. This timescale is called a “coherence time τ”
of ultralight DM. The amplitude and phase appear to evolve
in a stochastic manner over the coherence time. It is known
that this stochastic nature of ultralight DM suppresses the
sensitivity of the observation in the following two points:
(i) When the measurement time T is longer than the
coherence time τ, the modulation of the phase broadens
the DM signal in frequency space, which slows down the
improvement of sensitivity with time [4,15]. (ii) When T is
shorter than τ, we sample only one realization of the
amplitude of DM, which could be a smaller value than the
average one by chance. Since the realized field value is
random, the observed amplitude has uncertainty, which
loosens the upper bound on the DM coupling constant
about factor Oð1Þ [29]. These previous works focused on
either of two effects, and the intermediate region T ∼ τ,
where both effects are relevant, has been less investigated.
Although Ref. [27] considered both effects in their analysis,
they did not compare the upper bound with and without the
point (ii). As interferometer experiments improve the
sensitivity on a low-frequency range, the intermediate
region becomes more important to search for the ultralight
DM. Moreover, the dark photon signal can have another
uncertainty from its velocity dependence, while its sto-
chastic effect was not well studied. Since these stochastic
effects inevitably affect any experiments to detect the
ultralight DM in the intermediate region, it is necessary
to understand the characteristics of DM signals.
In this paper, we investigate the stochastic effect of

ultralight bosonic DM. The bosonic DM field consists
of a superposition of DM particles that have slightly
different velocities. We evaluate the superposed waves in
the frequency space to derive a probability distribution of
the field value. We also derive the probability distribution
of the spatial derivative of a vector field for the first time,
which characterizes a velocity-dependent signal of a dark
photon DM. Next, we formulate a frequentist’s method to
put an upper bound of a DM coupling constant. Note that in
contrast to Refs. [11,12], we assume an experimental
output from a single DM detector. We compare the upper
bound with and without the stochastic effect of the
amplitude. We find that the stochastic effect becomes
negligible as the measurement time sufficiently exceeds
the coherence time. We also confirm that our results are
consistent with Ref. [29] for T < τ. Our method can be
applied for generic experiments to estimate the upper
bound on the ultralight bosonic DM. As an application,
we estimate the future upper bound by the Advanced LIGO
(aLIGO)-like experiment based on our method.
This paper is described in the following way. In Sec. II,

we revisit the stochastic nature of ultralight bosonic DM.
We derive the probability distribution of the field value and
its spatial derivative. We formulate the DM signals of axion
and dark photon in Sec. III. In Sec. IV, we formulate a
method to estimate the upper bound of the coupling

constant taking into account the stochastic effects. We
derive the likelihood functions of the DM signals with
experimental noise. The probability distribution of DM
signals is confirmed by numerical simulations. We apply
our formulation to estimate the constraints given by the
future gravitational interferometer experiment for axion and
dark photon DMs in Sec. V. We compare the upper bound
with and without the stochastic effect of the DM amplitude
to evaluate its contribution. Section VI is devoted to
the conclusion of this paper. Throughout this paper, we
employ natural units in which ℏ ¼ c ¼ 1, unless otherwise
specified.

II. STOCHASTIC NATURE OF ULTRALIGHT
BOSONIC DM

Ultralight DM behaves like a classical wave, which is
contributed by multiple waves with different frequencies
and phases. Firstly, we review the formulation of ultralight
DM and its stochastic time evolution. Next, we perform the
Fourier transform of the field value to derive its power
spectrum, which is the main feature in ultralight DM
searches.

A. Review on the properties of ultralight DM

Cold DM consists about 25% of our Universe, which has
the local density ρDM ∼ 0.4 GeV=cm3 and a virial velocity
vvir ≃ 220 km= sec≃7 × 10−4c around the solar system in
our Galaxy [30,31]. When the mass of DM is ultralight,
m ≪ 1 eV, its number density is extremely large as

nϕL3
ϕ ¼ ρDM

m4v3vir

¼ 8 × 1051
ρDM

0.4 GeV=cm3

×

�
10−12 eV

m

�
4
�
220 km= sec

vvir

�
3

; ð1Þ

where nϕ ≡ ρDM=m is the number density, and Lϕ ∼
1=ðvvirmÞ is the de Broglie wavelength. Thus, the ultralight
DM should be a boson, not a fermion. In this paper, we
focus on a ultralight bosonic DM, m ≪ 1 eV, such as
axionlike particle ϕ ¼ a and dark photon ϕ ¼ Ax; Ay; Az.
Note that the temporal component of a dark photon, A0, is
negligibly small compared to spatial components, and
therefore, we ignore A0 in our calculation [14]. We can
treat ultralight bosonic DM as a classical wave since it has a
large number density.
The DM velocity at the surface of the Earth has some

components, e.g., the virial velocity of a DM halo of our
Galaxy, the velocity of the Sun to the halo rest frame, the
orbital motion of the Earth, and the rotation of the Earth.
We consider two dominant components, a virial velocity v⃗h
and the velocity of the Sun jv⃗⊙j ≃ 232 km= sec. We define
the velocity of DM as v⃗ ¼ v⃗h − v⃗⊙, where v⃗⊙ is a constant,
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and v⃗h is a random variable following the probability
distribution of the standard halo model [31]:

fSHMðv⃗hÞd3v⃗h ¼
1

ðπv2virÞ3=2
exp

�
−
ðv⃗hÞ2
v2vir

�
d3v⃗h: ð2Þ

The distribution of DM speed is given by

f̄SHMðvÞdv≡dvv2
Z

d2ΩefSHMðve⃗þ v⃗⊙Þ

¼ vffiffiffi
π

p
vvirv⊙

exp

�
−
ðvþv⊙Þ2

v2vir

��
e4vv⊙=v

2
vir −1

�
dv;

ð3Þ

where
R
d2Ωe represents the integration over a direction

of a unit vector e⃗. The typical velocity of DM is
given by

v̄2 ≡
Z

dvf̄SHMðvÞv2

¼
Z

d3v⃗hfSHMðv⃗hÞðv⃗h − v⃗⊙Þ2 ¼ v2⊙ þ 3

2
v2vir: ð4Þ

The DM field is contributed by many partial waves with
different velocities following the distribution f̄SHMðvÞ. The
total field value Φðt; x⃗Þ is given by the sum of Nϕ partial
waves as

Φðt; x⃗Þ ¼ σϕN
−1=2
ϕ

XNϕ

i¼1

cos
	
mð1þ v2i =2Þtþmv⃗i · x⃗þ θi



;

ð5Þ

where θi is a random phase of the ith wave, v⃗i is its velocity,
vi ≡ jv⃗ij, and σϕN

−1=2
ϕ is a normalization constant. Note

that although the number of the superposed partial waves is
huge in reality [see Eq. (1)], Φðt; x⃗Þ well approximates the
realistic field for a sufficiently large Nϕð≫ 1Þ. The nor-
malization is determined by the energy density,
ρDM=g� ≃ V−1

R
V dx

3 1
2
ðΦ̇2 þm2Φ2Þ, where V is a volume

we are considering, and g� is the number of degrees of
freedom, g� ¼ 1 for scalar field and g� ¼ 3 for vector field.
The typical field value, σϕ, is written as

σϕ ≡
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM
g�m2

s
; ð6Þ

where σa ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρDM=m2

p
for axion DM and σA ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ρDM=ð3m2Þ
p

for dark photon DM.
Each wave has a similar angular frequency mð1þ

v2i =2Þ ∼m because typical velocity is small v̄ ∼ 10−3.

Consequently, the total amplitude and the oscillating phase
of Φ are almost constant until the frequency difference
between plane waves becomes significant, τmv̄2=2 ¼ π.
This timescale τ is called a coherence time,

τ≡ 2π

mv̄2
≃ 4 × 106m−1: ð7Þ

For a longer timescale than the coherence time τ, the phase
and amplitude ofΦ slowly vary. In Fig. 1, the time evolution
of the total field value ΦðtÞ is shown. We numerically
evaluate Eq. (5) by setting x⃗ ¼ 0 without loss of generality.
In the left panel, we show the time evolution of the field over
several oscillatory periods at the gray vertical line in the
right panel. In the right panel, the field dynamics is shown
for 10τ. The amplitude and phase noticeably change over the
coherence timescale. Here, we fit the field dynamics by
ΦðtÞ ¼ ϕ0 cosðmð1þ v̄2=2Þtþ θ0Þ over several oscillatory
periods around each time point to obtain the instant
amplitude ϕ0 and the phase θ0 that are shown as red and
blue lines.

B. Formulation of stochastic field values

Nowwe derive the power spectrum of the DM field value
Φ, which is often analyzed by an experiment searching for
an ultralight scalar field to extract the periodic signal.
The power spectrum has two features [27]. First, its
spectral shape has some width corresponding to the
velocity dispersion. Second, its amplitude is a stochastic
variable similar to the field value in a time coordinate.
Reference [27,29] estimated the probability distribution of
the power spectrum of the field value. In this paper, we

107 107 20 107 40
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1
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3

0 2 4 6 8 10

FIG. 1. The time dependence of the amplitude and the phase of
bosonic field. We numerically calculate a realization of a super-
posed wave in Eq. (5) following the method in Ref. [27], where
we divide the angular frequency ω ¼ mð1þ v2=2Þ by 104 bins
over ω=m∈ ½1; 1þ 5v2vir�. The left panel presents the field
oscillation for a shorter timescale, which corresponds to the
vertical light gray band at t ∼ 2τ in the right panel. The time is
normalized by the coherence time (7). The red line represents
the normalized amplitude, and the blue line represents the
phase.
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extend their method to the spatial derivative of the field
value, which is relevant to the dark photon DM search as
discussed in Sec. III.
Here, we derive the spectral shape and the probability

distribution of the Fourier-transformed field value, time
derivative, and spatial derivative. We choose x⃗ ¼ 0 with-
out loss of generality since a shift of the coordinate just
results in a constant phase of each partial wave. Provided
that we have the time-series data of the field value over the
observation time T spanning t ¼ ½−T=2; T=2�, the fre-
quency space is discretized as fn for the nth bin with a
resolution Δf ¼ 1=T, that it, fn − fn−1 ¼ 1=T.
At first, the Fourier-transformation of the field value (5)

is given by [27] (see Appendix A for derivation)

Φ̃ðfnÞ≡
Z

T=2

−T=2
dte−2πifntΦðt; x⃗Þjx⃗¼0

≃
T
2
σϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔsðfnÞ

p �
rnffiffiffi
2

p expðiθnÞ
�
; ð8Þ

ΔsðfnÞ ¼
Z

fnþΔf=2

fn−Δf=2
f̄SHMðvÞ

dv
df

df

¼ 1

2

�
erf

�
v − v⊙
vvir

�
þ erf

�
vþ v⊙
vvir

�

þ vvirffiffiffi
π

p
v⊙

ðe−
ðvþv⊙Þ2

v2
vir − e

−ðv−v⊙Þ2
v2
vir Þ

�
vðfnþΔf=2Þ

vðfn−Δf=2Þ
; ð9Þ

where erfðxÞ represents the error function, the phase θn is a
stochastic variable following a uniform distribution over
½0; 2π�, and the amplitude rn is following the standard
Rayleigh distribution,

PRðrÞdr ¼ r exp

�
−
r2

2

�
dr: ð10Þ

Φ̃ðfnÞ consists of three parts. First, the coefficient ðT=2Þσϕ
represents the typical amplitude of the field value in Fourier
space. Second, rn and θn in ½…� represent the stochastic
fluctuations, which follow the standard Rayleigh distribu-
tion and the uniform distribution, respectively. Third,
ΔsðfnÞ characterizes the deterministic part of the spectral
shape, which represents the fraction of DM waves that
belong to the nth frequency bin. Consequently, ΔsðfnÞ is
normalized so that

Δs;tot ≡
X
n

ΔsðfnÞ ¼
Z

∞

fDM

f̄SHMðvÞ
dv
df

df ¼ 1; ð11Þ

where fDM ≡m=ð2πÞ is a frequency of the field oscillation,
below which ΔsðfnÞ ¼ 0.

Next, we consider the time derivative of the DM field
value since some experiments search for the time modu-
lation of the field value. The Fourier transformation of field
value, Φ̇ðtÞ≡ ðdΦðtÞ=dtÞ, is given by

Z
dte−2πifntΦ̇ðtÞ ¼ 2πfni

T
2
σϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔsðfnÞ

p rnffiffiffi
2

p expðiθnÞ

≃ imΦ̃ðfnÞ: ð12Þ

In the last equality, we use the fact that the DM signal
appears only around the frequency of DM mass,
fn ∼m=ð2πÞ. Thus, the time derivative of the field value
has a similar spectral distribution with Φ̃ðfnÞ.
The spatial derivative of field value is more

complicated. In a coordinate system whose z axis is
aligned with v⃗⊙, the spatial derivative of field value on a
direction jð¼ x; y; zÞ is given by (see Appendix A for
derivation)

∇jΦ̃ðfn; x⃗Þ
����
x⃗¼0

¼ T
2
σϕmv̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔjðfnÞ

q �
rn;jffiffiffi
2

p exp ðiθn;jÞ
�
;

ð13Þ

ΔjðfnÞ ¼
Z

fnþΔf=2

fn−Δf=2
v2

dv
df

df
Z

d2Ωe

× fSHMðv⃗ðf; e⃗Þ þ v⃗⊙Þ
½vjðfn; e⃗lÞ�2

v̄2
; ð14Þ

with v⃗ðf; e⃗Þ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πf=m − 1Þp

e⃗. ΔjðfnÞ is the velocity-
weighted number fraction of DM waves normalized
as
P

j¼x;y;z

P
n ΔjðfnÞ ¼ 1 since the left-handed side

reproduces the definition of v̄2 (4). The spectral shape
of the spatial derivative of field value is determined
by ΔjðfnÞ. After performing the angular integral, we
obtain

ΔxðfnÞ ¼ ΔyðfnÞ ¼ Δ⊥ðfnÞ; ΔzðfnÞ ¼ ΔkðfnÞ; ð15Þ

where

Δ⊥ðfnÞ ¼
v2vir

4ðv2⊙ þ 3v2vir=2Þ

"
erf

�
v − v⊙
vvir

�
þ erf

�
vþ v⊙
vvir

�

−
vvire

−ðvþv⊙Þ2
v2
vir

2
ffiffiffi
π

p
v3⊙

�
2vv⊙

�
e
4vv⊙
v2
vir þ 1

�

þ ð2v2⊙ − v2virÞ
�
e
4vv⊙
v2
vir − 1

��#vðfnþΔf=2Þ

vðfn−Δf=2Þ
; ð16Þ
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ΔkðfnÞ ¼
ðv2⊙ þ v2vir=2Þ
2ðv2⊙ þ 3v2vir=2Þ

�
erf

�
v − v⊙
vvir

�
þ erf

�
vþ v⊙
vvir

�
−

2vvire
−
v2þv2⊙
v2
virffiffiffi

π
p

v3⊙ð2v2⊙ þ v2virÞ
�
2vv⊙ðv2⊙ − v2virÞ cosh

�
2vv⊙
v2vir

�

− ð2v2v2⊙ þ 2v4⊙ þ v4virÞ sinh
�
2vv⊙
v2vir

���
vðfnþΔf=2Þ

vðfn−Δf=2Þ
: ð17Þ

Throughout this paper, we employ a coordinate system
whose z axis is aligned with v⃗⊙ unless specified otherwise.
Δ⊥ and Δk are normalized so that

Δ⊥;tot ≡
X
n

Δ⊥ðfnÞ ≃ 0.19;

Δk;tot ≡
X
n

ΔkðfnÞ ≃ 0.62; ð18Þ

and 2Δ⊥;tot þ Δk;tot ¼ 1 holds. Δ⊥ and Δk have broader
spectral shapes than Δs due to the velocity dependence. We
compare Δ⊥ and Δk with Δs in the large measurement time
limit,

R
Δf df → 1=T, which is shown in Fig. 2. All spectra

have frequency ranges with Oð1=τÞ. Δk has a larger
amplitude and the broader spectral shape than Δ⊥, since
the solar velocity v⊙ is added to the DM velocity that
contribute to the spatial derivative. In Sec. IV, we estimate
the upper limit of the coupling constant by using Δ⊥ and
Δk. Note that the above estimation holds for T < 1 day
since the direction of velocity changes with the rotation of
Earth, which is discussed in Sec. V E.
The above discussion is also applicable to a dark photon.

The massive dark photon has three independent bosonic
degrees of freedom, and they have their own amplitudes
and phases. The Fourier transformation of the gauge field
value is given by

Ãkðfn; 0⃗Þ ¼
T
2
σA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔsðfnÞ

p rk;nffiffiffi
2

p expðiθk;nÞ; ð19Þ

where the subscription “k” describes a quantity related to Ak.
In the sameway, the derivative of dark photonDM is given by

∇jÃkðfn; x⃗Þ
����
x⃗¼0

¼ T
2
σAmv̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔjðfnÞ

q rk;n;jffiffiffi
2

p exp ðiθk;n;jÞ:

ð20Þ

III. PROBABILITY DISTRIBUTION OF
EXPERIMENTAL SIGNALS

Before we estimate the stochastic effect on the DM
searches, we revisit two examples of bosonic DM searches,
(i) axionlike particles observed by the polarization rotation
of laser light and (ii) dark photons observed via the
displacement of massive equipment by a force sensor.
Here, we mainly consider the measurements through the
gravitational-wave interferometer experiments, while sim-
ilar discussions are also applicable to other ultralight
bosonic DM searches. At first, we introduce an interaction
of bosonic DM without specifying the detection technique.
Then, we evaluate the probability distribution of the DM
signals that could be observed by the interferometer search.
The axionlike particle, a, couples to the electromagnetic

field through the Chern-Simons term,

La ¼ −
1

2
∂μa∂μa −

1

2
m2a2 þ ga

4
aðtÞFEM;μνF̃

μν
EM; ð21Þ

where ga is the axion-photon coupling constant, FEM;μν is
electromagnetic field strength, and F̃μν

EM ≡ ϵμνρσFEM;ρσ=2 is
its Hodge dual with the Levi-Civita antisymmetric tensor
ϵμνρσ. Under an axion field background, a dispersion
relation of photon is modified [32,33], which is given
for the left and right circular polarization photon as
ω2
L=R ¼ k2ð1 ∓ gaȧ=kÞ with angular frequency ωL=R and

momentum k. Thus, the background axion field changes
the phase velocity of polarized photons, where the differ-
ence between left and right polarized photons is given by

δcðtÞ≡ gaȧðtÞ
2k

: ð22Þ

Next, dark photon is a U(1) massive gauge boson
coupled to the Uð1ÞD current JμD. The massive dark photon
with mass m is described as

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FIG. 2. The deterministic part of normalized power spectrum in
large T limit. The vertical axis represents the spectral shape
normalized by T=τ. The black, red, and blue lines represent the
spectral shape for the field value (9), the spatial derivative of the
field value with perpendicular (16) and parallel (17) to the solar
velocity, respectively. The actual amplitudes randomly fluctuate
around them with the Rayleigh distribution.
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LA ¼ −
1

4
FμνFμν þ 1

2
m2AμAμ − eϵDJ

μ
DAμ; ð23Þ

where Fμν is the field strength of dark photon, and ϵD is a
dark photon coupling constant normalized to an electro-
magnetic one, e. The background dark photon exerts the
dark “Lorentz force” on experimental equipment. The dark
electric force dominates the magnetic force since the
momentum of DM is much smaller than its mass.
Then, the dark electric force acts on an object with charge

Q as Fðt; x⃗Þ ¼ −eϵDQ
˙A⃗ðt; x⃗Þ. When there is no other force

exerting the object, the displacement of the object is
given by

δx⃗ðt; x⃗; qÞ ¼
Z

dt2
F⃗ðtÞ
M

¼ eϵD

�
Q
M

� ˙A⃗ðt; x⃗Þ
m2

; ð24Þ

where M is mass of the object. In the last equality, we
approximate that the field value oscillates with a frequency
about f ∼m=ð2πÞ. Note that the ratio of a charge to a mass,
(Q=M), depends on an ingredient.
In both cases of axion and dark photon, above inter-

actions induce a periodic signal with the frequency
f ∼m=ð2πÞ. The gravitational-wave interferometer experi-
ments like aLIGO are sensitive to the signal with
10 Hz≲ fDM ≲ 103 Hz, which corresponds to the DM
mass

m ¼ 4.1 × 10−13 eV

�
fDM

102 Hz

�
: ð25Þ

The corresponding coherence time and coherent length are
given by

τ¼0.3 day
10−13 eV

m
; Lϕ¼

2π

m
ffiffiffiffiffi
v̄2

p ∼1010m
10−13 eV

m
:

ð26Þ

A. Axion DM

In the interferometer experiments, the signal of axionlike
particles would be measured as the polarization rotation of
laser beam in the interferometer arms, caused by the
difference of phase velocity δc between two circular
polarizations. We can extract this polarization rotation by
installing polarization optics at the detection port of laser
interferometers [26]. While the parity-flipping effect at the
reflection of mirror degrades the accumulation of polari-
zation rotation caused by axion DM, the arm cavity
transmission ports can avoid this issue because the light
at the transmission ports experience an odd number of
mirror reflections and enables us to probe the axion DM in
a low-mass regime m≲ 10−10 eV [34].

In data analysis, we look for the DM signal in the
frequency space. By using Eqs. (8) and (12), the Fourier
mode of the signal is given by

saðfnÞ≡
Z

T=2

−T=2
dte−2πifntδcðtÞ

≃ gaT
mσa
4k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔsðfnÞ

p �
rnffiffiffi
2

p eiθn
�
; ð27Þ

where we redefine the phase θn to include an unneces-
sary phase.

B. Dark photon DM

Uð1ÞD dark photon induces the dark electric force on a
movable mirror. In the interferometer search, we can detect
it through the difference of light traveling time between two
interferometer arms, which is given by [13]

hðtÞ ¼ φðt; e⃗Þ − φðt; d⃗Þ
4πνL

; ð28Þ

where ν is the frequency of the laser, L is the length of
interferometer arms. e⃗ and d⃗ are unit vectors directed to two
interferometer arms, where e⃗ · d⃗ ¼ 0 for LIGO, Virgo, and
KAGRA, and e⃗ · d⃗ ¼ 1=2 for ET, DECIGO, and LISA. We
describe the typical direction of the interferometer arms for
LIGO-like experiment in Fig. 3. The phase φðt; e⃗Þ is gained
through the reflection from the e⃗ arm, which is contributed
by (i) a finite-time traveling effect, (ii) a spatial difference
of the dark photon field value, and (iii) a difference of the
ingredient of two mirrors. The first effect is pointed out for
the dark photon search in Ref. [13].

laser

round-trip time

FIG. 3. Configuration of laser interferometer arms. Two arms

are parallel to d⃗ or e⃗. The laser makes a round trip between an
input mirror at xin and an end-test-mass mirror at xe, respectively.
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The signals in the frequency space are written as

sAðfnÞ≡
Z

T=2

−T=2
dte−2πifnthðtÞ ≃ stime þ sspace þ scharge;

ð29Þ
where each subscript corresponds to displacement of
mirrors induced by the three effects. Using stochastic
representations of the dark photon (19) and (20), the
signals are written by (see Appendix B for a derivation)

stimeðfnÞ ¼
�
eϵDT

�
Q
M

�
in

σA
mL

sin2
�
mL
2

� ffiffiffi
2

p �

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔsðfnÞ

p �
rnffiffiffi
2

p expðiθnÞ
�
; ð30Þ

sspaceðfnÞ ¼
�
eϵDT

�
Q
M

�
in

σAv̄
2

�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

½ðdjÞ2 þ ðejÞ2�Δj

s �
rnffiffiffi
2

p exp ðiθnÞ
�
;

ð31Þ

schargeðfnÞ ¼
�
eϵDT

����
�
Q
M

�
e
−
�
Q
M

�
in

���� σA
2Lm

ffiffiffi
2

p �

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔsðfnÞ

p �
rnffiffiffi
2

p expðiθnÞ
�
; ð32Þ

where we assume the interferometer with two ortho-
gonal arms like LIGO, Virgo, and KAGRA. ðQ=MÞin
and ðQ=MÞe are ratios of charge to mass of the
input and end-test-mass mirrors. θn follows a uniform
distribution over ½0; 2π�, and rn follows a standard
Rayleigh distribution. The spectral shape of stime and scharge
follows Δs, which is the same to the axion signal (27). On
the other hand, the spectral shape of sspace is determined by

Δspace ≡
X
j

h
ðdjÞ2 þ ðejÞ2

i
Δj; ð33Þ

which depends on the orientation of the interferometer arms
relative to the direction of the solar velocity v⃗⊙. Here,
we consider two typical interferometer orientations: (i) a
conservative orientation with d⃗ ¼ ð1; 0; 0Þ; e⃗ ¼ ð0; 1; 0Þ,
and (ii) an optimal orientation with d⃗ ¼ ð1; 0; 0Þ;
e⃗ ¼ ð0; 0; 1Þ. In other words, the Sun moves in a direction
perpendicular to the interferometer arms in the conservative
case and parallel to one of the interferometer arms in the
optimal case. Compared to Δs, Δspace has broader distri-
bution on the frequency space. We discuss constraints in the
conservative and optimal cases in Sec. V B.
Wepresent the normalized signals in Fig. 4 to compare the

strength of three signals. We take the typical parameters,

v̄ ≃ 1.2 × 10−3, mnðQ=MÞin ¼ 0.501, and mnjðQ=MÞe −
ðQ=MÞinj ¼ 0.51 − 0.501 with the neutron mass mn. The
stochastic effect and spectral shape are fixed in this figure by
setting 2−1=2rn expðiθnÞ → 1, Δs → 1, and Δspace → 1.
First, the signal from the finite-time-traveling effect, stime,
is prominent formL≳ 1, while it is suppressed formL ≪ 1
due to a short traveling time. Second, the signal from a
charge difference ofmirrors, scharge, depends on the coupling
of dark photon and ingredients of mirrors. For the KAGRA-
like interferometer, the mirrors are made of fused silica and
sapphire. The B − L charge of fused silica and sapphire are
ðQ=MÞ ¼ 0.501=mn and 0.51=mn. While scharge is sup-
pressed by mnjðQ=MÞe − ðQ=MÞinj ≃ 10−2, scharge is more
sensitive for dark photon with a small mass than the other

two signals. It is because scharge is induced by
˙A⃗ while other

two signals are induced by the derivative of ˙A⃗. Third, the
signal from a spatial difference of field value, sspace, is
effective for mL ≫ 1. This signal is highly suppressed by a
small DM velocity by a factor v̄ ∼ 10−3. Note that the
expression is valid only for Lmv̄ ≪ 1, because of the linear
approximation made in Eq. (B8). Considering Fig. 2, all the
signals are important when we search for DM with various
masses. In the following section, we estimate the sensitivity
to these signals.

IV. ESTIMATION OF AN UPPER BOUND ON A
COUPLING CONSTANT

In this section, we derive the likelihood function to
constrain the DM coupling constant for a given experi-
mental data, taking into account the stochastic nature of

10–4 0.001 0.010 0.100 1 10 100
10–5

10–4

0.001

0.010

0.100

1

10

FIG. 4. Normalized signals of a dark photon, sX=ðeϵDσAT=mnÞ,
forX ¼ time (red), charge (blue dotted), and space (green dashed).
These sX are given in Eqs. (30), (31), and (32). We adopt typical
parameters, mnðQ=MÞin ¼ 0.501, mnjðQ=MÞe − ðQ=MÞinj ¼
0.51 − 0.501, je⃗ − d⃗j ¼ ffiffiffi

2
p

, and v̄ ≃ 1.2 × 10−3. We ignore the
stochastic effect by setting ðrn=

ffiffiffi
2

p Þ expðiθnÞ ¼ 1 and fix the
spectral amplitudes with Δs ¼ 1 and Δspace ¼ 1 in this figure.
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DM signal derived in Sec. II. Assuming that the experi-
mental data consists of the instrumental noises and the DM
signal, we can discuss the statistics of normalized data (or
signal-to-noise ratio) of a single detector. The stochasticity
of the DM signal affects the resultant likelihood function.
We confirm the derived likelihood function by using
numerical simulation.

A. Likelihood function of data

Interferometer experiments measure a time-series data
on laser power. Here, we assume a measurement time T and
investigate the Fourier-transformed data to extract the
periodic signal of the bosonic DM. The measured data is
written as N ðfnÞ þ sðfnÞ, where N ðfnÞ is instrumental
noise, sðfnÞ is a signal in the frequency space, and fn is the
nth frequency bin with a finite frequency resolution
Δf ¼ 1=T. We assume that the instrumental noise follows
the Gaussian distribution characterized by its power spec-
tral density, SnoiseðfÞ.
We define normalized data at a frequency fn around the

oscillation frequency fDM ¼ m=ð2πÞ as

ρn ≡ 4jN ðfnÞ þ sðfnÞj2
TSnoiseðfnÞ

¼ jN̂ n þ λnrneiθn j2; ð34Þ

N̂ n ≡ 2N ðfnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TSnoiseðfnÞ

p ; ð35Þ

where rn follows a standard Rayleigh distribution, and θn
follows the uniform distribution. The normalized noise,

N̂ n, is a complex stochastic variable following the
Gaussian distribution,

PnoiseðN̂ nÞd2N̂ n ≡ 1

2π
expð−jN̂ nj2=2ÞdRe½N̂ n�dIm½N̂ n�:

ð36Þ

λn is the amplitude of the DM signal normalized by the
noise power spectrum, which is decomposed by the
frequency independent and dependent parts,

λn ≡ λ̄X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔXðfnÞ

p
; ð37Þ

where X is the label of signal type. According to the
discussion in Sec. III, the explicit formula for an axion
signal (27) and dark photon signals (30)–(31) for a
interferometer with two orthogonal arms like LIGO are
written by

λ̄axion¼
Tffiffiffiffiffiffiffiffiffiffiffiffiffi

TSnoise
p ga

ffiffiffiffiffiffiffiffiffi
ρDM
m2

r
m
2k

;

λ̄time¼ ϵDe
2Tffiffiffiffiffiffiffiffiffiffiffiffiffi
TSnoise

p
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM
3m2

r
ðQ=MÞin

mL
sin2
�
mL
2

�
;

λ̄space¼ ϵDe
2Tffiffiffiffiffiffiffiffiffiffiffiffiffi
TSnoise

p
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM
3m2

r
ðQ=MÞinv̄

2
ffiffiffi
2

p ;

λ̄charge¼ ϵDe
2Tffiffiffiffiffiffiffiffiffiffiffiffiffi
TSnoise

p
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM
3m2

r
jðQ=MÞe−ðQ=MÞinj

2Lm
: ð38Þ

See Appendix B for a signals in a general interferometer
configuration. ΔXðfnÞ denotes the deterministic part of the
spectral shape of the signals and is given by

ΔXðfnÞ ¼
�ΔsðfnÞ
ΔspaceðfnÞ

; ð39Þ

where the above case is for the velocity-independent signals
(X ¼ axion, time, charge), the below case is for the
velocity-dependent signal (X ¼ space), and Δs and Δj

are given in Eqs. (9) and (14), respectively. The signals
with X ¼ time and space could be comparable in a
gravitational wave observatory. Then, the combined signal
is given by a root of squared sum of both signals since a
phase between stime and sspace is different by a factor i.
The likelihood for data ρn with a given DM signal λnrn is

expressed as

LðρnjλnrnÞ≡
Z

d2N̂ nPnoiseðN̂ nÞδ
�
ρn −

���N̂ nþ λnrneiθn
���2�

¼ 1

2
exp

�
−
ρnþðλnrnÞ2

2

�
I0ð

ffiffiffiffiffi
ρn

p
λnrnÞ; ð40Þ

where I0ðxÞ is the modified Bessel function of the first
kind. Note that the signal phase eiθn can be absorbed
by the noise phase, and its dependence vanishes after the
integration of the noise. The signal fluctuates due to the
stochastic nature of the field value, and the random
variable rn represents the stochastic effect, which
follows the Rayleigh distribution. Its squared average isR
drnPRðrnÞr2n ¼ 2. We call Lðρnjλn

ffiffiffi
2

p Þ a likelihood in a
deterministic case [29], in which we neglect the Rayleigh
distribution of the field value and replace rn by its RMS
value

ffiffiffi
2

p
. We marginalize the likelihood over rn as

L̄ðρnjλnÞ≡
Z

drnPRðrnÞLðρnjλnrnÞ

¼ 1

2ð1þ λ2nÞ
exp

�
−ρn

2ð1þ λ2nÞ
�
: ð41Þ

We call L̄ðρnjλnÞ the likelihood in a stochastic case in

contrast with a deterministic case, Lðρnjλn
ffiffiffi
2

p Þ. The
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marginalization over rn broadens the distribution of
L̄ðρnjλnÞ due to the field fluctuation unlike Lðρnjλn

ffiffiffi
2

p Þ,
which will weaken the constraint on the DM coupling
constant [29].
Since the DM signal is extended in the frequency space

around fDM ¼ m=ð2πÞ, we take the summation of the
power spectrum over the frequency range,

ρ≡ X
fDM<fn<fDMð1þκv̄2Þ

ρn; ð42Þ

where we introduced a new parameter κ representing the
frequency range to include the tail of DM distribution. In
this paper, we will use κ ≃ 1.69 for the velocity-indepen-
dent signals and κ ∼ 2 for the velocity-dependent signals so
that the ranges cover 99% of DM signals. We discuss the
choice of κ in Appendix D. Considering the finite fre-
quency resolution Δf ¼ 1=T, the number of bins in this
range is estimated as

Nbin ¼ ⌈ κv̄2fDM
Δf

⌉ ¼ ⌈κ
T
τ
⌉; ð43Þ

where ⌈x⌉ represents the minimum integer larger than x.
The likelihoods of ρ in a deterministic and a stochastic

case are estimated in Appendix C, and results are

LðρjfλngÞ≡
Z �YNbin

n

dρnLðρnj
ffiffiffi
2

p
λnÞ
�
δ

�
ρ −

XNbin

n

ρn

�

¼ e−ðρþΛÞ=2

2

�
ρ

Λ

�Nbin−1
2

INbin−1ð
ffiffiffiffiffiffi
Λρ

p
Þ; ð44Þ

L̄ðρjfλngÞ≡
Z �YNbin

l

dρnL̄ðρnjλnÞ
�
δ

�
ρ −

XNbin

n

ρn

�

¼
XNbin

n

wn

2ð1þ λ2nÞ
exp

�
−

ρ

2ð1þ λ2nÞ
�
; ð45Þ

Λ≡ 2
XNbin

n

ðλnÞ2; wn ≡
YNbin

n0ð≠nÞ

1þ λ2n
λ2n − λ2n0

; ð46Þ

where we assume λn ≠ λ0n for all n ≠ n0 in a stochastic case,
and a formula with λn ¼ λ0n is shown in Appendix C. In−1 is
the modified Bessel function of the first kind. Note that
LðρjfλngÞ follows the noncentral chi-square distribution
when the number of degrees of freedom is 2Nbin and the
noncentrality parameter Λ. The numerical estimate of L̄
requires a large computational cost for a large Nbin due to
huge wn’s. In this case, one can use an approximate formula
in Eq. (D6) to reduce the computational cost.

We see the difference between the stochastic and
deterministic cases in the following sections. In Ref. [29],
the authors found that field fluctuations loosen the upper
bound of the coupling constant by a factor of about 3 in the
case of Nbin ¼ 1, where they compared the deterministic
likelihood (40) and the stochastic one (41). In Sec. V, we
revisit this point and extend their analysis to Nbin > 1 by
using the likelihood of ρ in Eqs. (44) and (45).
By using the above likelihood, we discuss an upper

bound on the coupling constant by frequentist’s method.
When we conduct an experiment, obtain a observed data
ρobs, and do not find any signal of DM, we can set the upper
bound on the DM coupling constant based on the like-
lihood function. We regard the power spectrum of back-
ground noise SnoiseðfÞ as constant in a frequency range
f∈ ½fDM; fDMð1þ κv̄2Þ� since the typical timescale of
noise fluctuations is much larger than the coherence time.
For a given observed data ρobs, the upper bound on the DM
coupling constant is determined in the following way. We
first seek to put an upper bound on λ̄X, which was defined
in Eq. (38). Then this bound is easily translated into the
bound on the coupling constant. We determine the upper
bound on λ̄X so that the false exclusion of the true signal
occurs by a probability smaller than 1 − β. In this paper, we
take 1 − β ¼ 0.05 as an example. The upper bound, λ̄up, is
determined by the following integration:

1 − β ¼
Z

ρobs

0

dρL̄
�
ρj
n
λn ¼ λ̄up

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔXðfnÞ

p o�
: ð47Þ

The right-handed side of Eq. (47) decreases as λ̄up
increases. Thus, the smaller 1 − β leads to the looser upper
bound on the coupling constant.

B. Simulation of dark matter signals

We performed numerical simulations to validate our
algorithm of calculating the upper bound on a coupling
constant. We generated hundreds of simulated data con-
taining dark matter signal and applied our algorithm to the
simulated data. If the algorithm works properly, the upper
bound with a confidence level of p should be larger than the
true value for a fraction p of simulations. For example, the
90% upper bounds should be larger than the true value for
90% of simulations.
We consider Uð1ÞB dark photon and simulated dark-

photon signal observed by an interferometric gravitational-
wave detector. For each simulation, a dark photon field was
calculated as the sum of 104 partial waves, whose velocities
were drawn from the velocity distribution of the standard
halo model, constant phases were drawn uniformly
between 0 and 2π, and polarization vectors were randomly
chosen among 3 unit vectors pointing in the x, y, and z
directions. The signal was calculated from the generated
dark photon field and injected into Gaussian noise colored

STOCHASTIC EFFECTS ON OBSERVATION OF ULTRALIGHT … PHYS. REV. D 108, 092010 (2023)

092010-9



by the design sensitivity of advanced LIGO [35]. We
assume that the two arms of the detector point in the x
and y directions. For each simulated data, the detection
statistic ρ was calculated, and the upper bound of ϵB was
obtained. For the choice of frequency bins to sum over,
κ ¼ 2 was applied.
We consider two fiducial values of the signal frequency

fDM: 20 Hz and 100 Hz. sspace and stime are comparable in
the former case as λ̄space=λ̄time ≃ 1, while stime is dominant
in the latter case as λ̄space=λ̄time ≃ 0.2. For each frequency,
we generated two sets of data of different duration,
T ¼ τ=10 and T ¼ 5τ. The stochastic effect of signals is
expected to be significant in the former case, while it is
suppressed in the latter case.
We simulate the case where the signal and the noise are

comparable since this paper aims to put the upper bound of
the coupling constant. For this purpose, we tuned the true
value of ϵB so that the expected signal to noise ratio is
moderate for each measurement time. For T ¼ τ=10, only a
single frequency bin contributes to ρ. Given n denotes the
index of that frequency bin, ϵB was determined so that
hλ2nr2ni ¼ 2λ2n ¼ 5, which leads to hρi ¼ 7, where the
bracket represents the expectation value for the stochastic
realizations. The sensitivity to signal is improved for longer
integration time, and the detectable value of ϵ scales with

1=min ½T1
2; ðτTÞ14� [4]. Thus, the detectable value of ϵB for

T ¼ 5τ is 4.7 times smaller than that for T ¼ τ=10, and the
true value of ϵB for the longer duration was set to be 4.7
times smaller than that for T ¼ τ=10. More concretely, we
considered the following four pairs of frequency, duration,
and coupling constant,

ðfDM; T; ϵBÞ ¼ ð20 Hz; 3.6 × 103 s; 1.1 × 10−22Þ;
× ð20 Hz; 1.8 × 105 s; 2.3 × 10−23Þ;
× ð100 Hz; 7.1 × 102 s; 5.1 × 10−23Þ;
× ð100 Hz; 3.6 × 104 s; 1.1 × 10−23Þ:

For each pair, we generated 400 realizations of data.
Figure 5 shows the histograms of ρ obtained from

simulated data. For comparison, each panel shows the
model probability distribution in the deterministic and
stochastic cases, which are given in Eqs. (44) and (45),
respectively. In either value of frequency, the deterministic
model fails to fit the observed distribution for T ¼ τ=10,
while the stochastic model fits it well. The p values of the
Kolmogorov-Smirnov tests for fDM ¼ 20 Hz (100 Hz) are
2.6 × 10−6ð1.6 × 10−6Þ and 0.32(0.75) for the deterministic
and stochastic models, respectively. On the other hand, the
stochastic model asymptotes to the deterministic model for

FIG. 5. The probability distribution of ρ obtained from 400 simulated data in comparison with the deterministic (blue) and stochastic
(orange) models. The upper left panel is for ðfDM; T; ϵBÞ ¼ ð20 Hz; 3.6 × 103 s; 1.1 × 10−22Þ, the upper right for ð20 Hz; 1.8 × 105 s;
2.3 × 10−23Þ, the lower left for ð100 Hz; 7.1 × 102 s; 5.1 × 10−23Þ, and the lower right for ð100 Hz; 3.6 × 104 s; 1.1 × 10−23Þ.
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T ¼ 5τ, and either model fits the observed distribution
well. The p values of the Kolmogorov-Smirnov tests for
fDM ¼ 20 Hz (100 Hz) are 0.56(0.13) and 0.58(0.47) for
the deterministic and stochastic models, respectively. Thus,
the stochastic effect is negligible in a long measurement
time. It is because we choose the small coupling constant
in the simulation for T ¼ 5τ, and the stochastic effect
becomes subdominant compared to the experimental noise.
This setup of simulation corresponds to realistic experi-
ments since experiments with a long measurement time
inevitably search for such a small coupling constant to put
an upper bound. Moreover, both distributions converge to
the Gaussian distribution in a large measurement time. In
Sec. V, we will show that the stochastic nature of DM
becomes negligible to estimate the upper bound of the
coupling constant in a long measurement time.
To assess the impact of each of sspace and stime for

fDM ¼ 20 Hz, we also compute p values in comparison
with the stochastic model in which each contribution is
turned off. The p values are reduced to 3.5 × 10−6 and
6.7 × 10−8 for T ¼ τ=10 and T ¼ 5τ, respectively, if sspace
is turned off, and 7.2 × 10−34 and 4.9 × 10−49 if stime is
turned off. The results show that both contributions need to
be taken into account to fit the observed distribution, and
our model accurately incorporates both of them.
The upper bounds on ϵB were calculated for confidence

levels of 0.1; 0.2;…; 0.9 in the deterministic and stochastic
models. Figure 6 shows the fraction of simulations where
the true value of ϵB is lower than the obtained upper bounds
for each confidence level and each pair of ðfDM; T; ϵBÞ. The
gray regions represent the 1–σ, 2–σ, and 3–σ confidence
intervals of statistical errors due to the finite number of
simulations. For T ¼ 5τ, both models are within the
confidence intervals. For T ¼ τ=10, the deterministic
model shows statistically significant deviations from the
diagonal line, while the stochastic model is well within the
confidence intervals. Thus, we need to include the stochas-
tic effect to evaluate the upper limit of the coupling
constant.

V. APPLICATION FOR FUTURE UPPER BOUND

In this section, we apply our method to derive expected
constraints by a future experiment. Here, we use an
alternative to the observational data ρobs in order to give
a rough estimate of the upper bound put by future experi-
ments. We numerically evaluate the future upper bound
on velocity-dependent and independent signals. Then, we
consider an aLIGO-like experiment in the following
analysis to investigate the stochastic effect on axion and
dark photon DM signals. Assuming the measurement
time T, we use discretized frequencies fn ¼ fDM þ
T−1ðn − 1=2Þ in the following calculation.

A. Future upper bound by frequentist’s method

We assume that no detectable DM signal is included in
an experimental data, and the data is mostly contaminated
with noise. Although the typical size of the experimental
noise is estimated by Snoise, the observed data can
accidentally become much larger than it. Considering
this point, we introduce the false alarm rate α and the
detection threshold ρdt assuming the background only case,
λ̄X ¼ 0, as

α ¼
Z

∞

ρdt

dρL̄ðρjf0gÞ ¼ ΓðNbin; ρdt=2Þ
ΓðNbinÞ

; ð48Þ

where Γ’s are (incomplete) gamma function. α is the
probability that the noise-only data exceeds the threshold
value ρdt. By inversely solving Eq. (48), ρdt for a given α
can be determined. For a smaller false alarm rate α, one
obtains a higher threshold ρdt. In this paper, we adopt ρdt
with α ¼ 0.05 as an alternative to ρobs. Note that the
concrete value of α is rather arbitrary and 0.05 is just an
example. The black line in Fig. 7 presents the noise-only
likelihood function with Nbin ¼ 1. The integration in
Eq. (48) corresponds to the gray shaded region, and the
gray vertical line indicates ρdt ≃ 6.0 for α ¼ 0.05 there.

FIG. 6. The fraction of simulations for which the upper bounds on ϵB calculated by the deterministic (blue) and stochastic (orange)
models are above its true value for each confidence level among 0.1; 0.2;…; 0.9. The first panel is for ðfDM; T; ϵBÞ ¼
ð20 Hz; 3.6 × 103 s; 1.1 × 10−22Þ, the second for ð20 Hz; 1.8 × 105 s; 2.3 × 10−23Þ, the third for ð100 Hz; 7.1 × 102 s; 5.1 × 10−23Þ,
and the fourth for ð100 Hz; 3.6 × 104 s; 1.1 × 10−23Þ.
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Now we can compute the upper bound λ̄up in Eq. (47) by
replacing ρobs by ρdt obtained above. For Nbin ¼ 1 and
Δ ¼ Δs, we obtain λ̄up ≃ 7.6 in a stochastic case. We also
compute the upper bound in the deterministic case, where
the DM stochasticity is not marginalized but fixed as
r ¼ ffiffiffi

2
p

, and we find a tighter constraint, λ̄up ≃ 2.8. As
shown in Fig. 7, this difference comes from the distribution
of the likelihood functions. The stochasticity of the DM
amplitude broadens the likelihood function when it is taken
into account by marginalization. Then, for the same
integrated value over the tail of its distribution, the
marginalized one (red solid) is more shifted than the
reference one (blue dashed), which implies a looser bound
on the signal size λ̄X.
The translation from λ̄up into the upper bound on the DM

coupling constant is straightforward byEq. (38).Using these
formulas, we can determine the upper bound of the coupling
constant including the noise and the stochastic effect, which
is numerically discussed in Secs. V B and V C.
Before we perform the numerical calculation, we show

the analytic formula for λ̄upðTÞ derived in Appendix D:

λ̄upðTÞ¼
(
ðΔX;totÞ−1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðαÞ
lnðβÞ−1

q
; for T < τ=κ;

ðΔX;totÞ−1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MαþM1−β

p ðκT=τÞ1=4 for T≫ τ;

ð49Þ

where ΔX;tot represents the sum of all ΔðfnÞ over the
whole frequency range n as defined in Eqs. (11) and (18),
and their values are given by Δs;tot ¼ 1, Δ⊥;tot ≃ 0.19, and
Δk;tot ≃ 0.62. Mχ represents the relation between the
peak width and the area of the Gaussian distribution
defined by

χ ¼
Z

∞

Mχ

dz
1ffiffiffiffiffiffi
2π

p expð−z2=2Þ: ð50Þ

The analytic formulae correctly reflect the dependence
on the measurement time as λ̄up ∝ T0 for T < τ=κ and
λ̄up ∝ T1=4 for T ≫ τ. We need the numerical calculation
for the marginal region (T ∼ τ), which is discussed in the
following section.
Note that the derived upper bound is more conservative

than one simply estimated by the signal-to-noise ratio
(SNR) equal to one. Indeed, SNR ¼ 1 corresponds to
the λ̄up ¼ 1 for Nbin ¼ 1, while λ̄upðTÞ is usually larger
than one for small α and 1 − β in our estimate. The
difference comes from the stochastic effect and the
conservative choice of ρobs, which leads to the looser
upper bound. When we conduct the measurement and
compute the upper bound in Eq. (47) without the replace-
ment by ρdt, the actual upper bound can be tighter.

B. Velocity-independent signal

Here, we numerically estimate the upper bound (47) for a
velocity-independent signal, which is denoted by λ̄ðsÞup ðTÞ
and a superscript “s” represents the velocity-independent
signal. The deterministic part of the spectral shape of
velocity-independent signals is represented by ΔðfnÞ ¼
ΔsðfnÞ in Eq. (9), which reflects the velocity distribution
of DM.
By using the likelihood function, we perform the

frequentist’s method developed in Sec. IVA to compute

λ̄ðsÞup ðTÞ. We show the upper bound of the coupling constant

in Fig. 8, where the vertical axis describes λ̄ðsÞup ðTÞ
ffiffiffiffiffiffiffiffi
τ=T

p
whose T dependence is the same as gupðTÞ. λ̄ðsÞup ðTÞ is
calculated with 1 − β ¼ 0.05, ρdt for α ¼ 0.05 and
κ ¼ 1.69. The approximate formulas in Eq. (49) are plotted
as dot-dashed and dashed lines, where we use Δs;tot ≃ 1.
The upper bound improves by time, where gupðTÞ ∝ T−1=2

for T ≪ τ and gupðTÞ ∝ T−1=4 for T ≫ τ. The numerical
result (red line) smoothly connects two limiting cases.
Since we treat the number of the frequency bins Nbin as an

integer, λ̄ðsÞup has small jumps when Nbin changes. Note that
Nbin ¼ 1 (43) is different from T=τ ¼ 1 due to the choice of
κ ≃ 1.69 in a velocity-dependent signal.
To compare the effect of the stochastic field value, we

also show the upper bound calculated for the deterministic
case (blue line), where the fluctuation of the field amplitude
is neglected, and the likelihood is estimated by Eq. (44).

0.1 0.5 1 5 10 50 100
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FIG. 7. Likelihood functions for single measurement Nbin ¼ 1
withΔX ¼ Δs multiplied by ρ for illustration purpose. We present
the noise-only likelihood (black solid), the one marginalized over
the DM stochasticity r (red solid), and the reference case with a
fixed r ¼ ffiffiffi

2
p

without maginalization (blue dashed), based on
Eqs. (40) and (41). The gray vertical line denotes ρdt ≃ 6.0 above
which the integral of the noise-only likelihood becomes α ¼ 0.05
(gray shaded region). The upper bounds on λ̄X for the other two
likelihoods are obtained such that their integrals for ρ < ρdt (red
and blue shaded regions) are equal to 1 − β ¼ 0.05 according to
Eq. (47) with the replacement of ρobs by ρdt. Since the margin-
alized likelihood has a more extended distribution for a higher ρ,
we obtain a more conservative upper bound than the reference
case.
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The stochastic and deterministic cases have the largest
deviation for Nbin ¼ 1, where the ratio of them is about 2.7,
which is consistent with the previous result in Ref. [29]. As
the measurement time or the number of bins becomes
larger, the difference between the stochastic and determin-
istic results shrinks. It is because fluctuations of the field
value become negligible compared to the instrumental

noise when the coupling constant is severely constrained
by a long measurement time.
For the later convenience, we find the fitting formula of

the numerically computed λ̄ðsÞup ðTÞ. We require that λ̄ðsÞup ðTÞ
smoothly connects the asymptotic formulas in Eq. (49). We
approximate the transient behavior by adding the power of
T in the following way:

λ̄ðsÞup ðTÞ ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðαÞ
lnðβÞ − 1

q
for T < τ=κ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mα þM1−β

p �
κ T

τ

�
1=4 þðκT=τÞq

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðαÞ
lnðβÞ − 1

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mα þM1−β

p �
for T > τ=κ;

ð51Þ

where the index q is determined by the least squares
method. The fitting value is q ≃ −0.61, and it fits well the
numerical result (red line) as shown by a black dotted line
in Fig. 8.

C. Velocity-dependent signal

Next, we numerically estimate the upper bound (47) for
the velocity-dependent signal, λ̄ðvÞup ðTÞ. The main difference
from the velocity-independent signal is the spectral shape.
The deterministic part of the spectral shape of velocity-
dependent signals is represented by ΔspaceðfnÞ, which

depends on the relative direction of the interferometer
arms to the solar velocity. Here, we consider the two typical
directions introduced below Eq. (31):

ΔX ¼
�
2Δ⊥ for conservative direction;

Δk þ Δ⊥ for optimal direction:
ð52Þ

Their integrated signals are given by

ΔX;tot¼
�
2Δ⊥;tot≃0.38 for conservative direction;

Δ⊥;totþΔk;tot≃0.81 for optimal direction:

ð53Þ

Again, we perform the frequentist’s method in Sec. IVA
to estimate λ̄ðvÞup ðTÞ with α ¼ 1 − β ¼ 0.05 and κ ¼ 2. The
results are shown in Fig. 9. The two upper limits (red and
blue lines) are estimated based on these two directions. The
optimal direction leads to about

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.81=0.38

p
≃ 1.5 times

more stringent upper bound than that of the conservative
direction. However, the interferometer arms can take the
optimal direction only in limited instances, if any, due to the
rotation of the Earth. To be conservative, we focus on the
upper bound for the conservative direction in the following
calculation.
In the same way to the velocity-independent signal, we

compare the stochastic case to the deterministic case
(magenta and cyan lines) estimated by Eq. (44). Since
the probability distribution is the Rayleigh distribution both
for the velocity-independent and velocity-dependent sig-
nals, the stochastic effect for the velocity-dependent signal
is similar to that for the velocity-independent signals
in Fig. 8.
For later convenience, we estimate the fitting formula of

λ̄ðvÞup ðTÞ in the same way as the case of the velocity-
independent signal. The fitting formula for the velocity-
dependent signal with the conservative direction is
given by

0.1 0.5 1 5 10 50 100
0.5

1

5

10

FIG. 8. Upper bound on the coupling constant for velocity-
independent signals. We perform the frequentist’s method to

estimate λ̄ðsÞup ðTÞ (red line) for the likelihood Eq. (45) with
ΔXðfnÞ ¼ ΔsðfnÞ, α ¼ 1 − β ¼ 0.05 and κ ¼ 1.69. The vertical
axis describes the normalized upper bound of coupling constant.
The blue line represents the upper bound for the deterministic
case, where the fluctuation of the field amplitude is neglected and
the likelihood is estimated by Eq. (44). The dot-dashed and
dashed lines represent the approximation formulas for short-time

and long-time measurement Eq. (49), respectively. λ̄ðsÞup ðTÞ is
fitted by Eq. (51), which is shown as the dotted line.
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λ̄ðvÞup ðTÞ ≃
8<
:

ðΔX;totÞ−1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðαÞ
lnðβÞ − 1

q
for T < τ=κ;

ðΔX;totÞ−1=2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mα þM1−β
p �

κ T
τ

�
1=4 þ

�
κ T

τ

�
q
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðαÞ
lnðβÞ − 1

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mα þM1−β

p ��
for T > τ=κ;

ð54Þ

with κ ¼ 2, ΔX;tot ≃ 0.38, and q ≃ −0.61. The fitting
formula is shown as a black dotted line in Fig. 9.

D. Constraint on axion DM

In the aLIGO-like experiment, the axion signal appears
in two detection ports, a transmission and reflection port,
where the former is more sensitive to the low-mass
range since the photons travel cavity for an odd-number
of times [34]. Using Eqs. (38) and (51), we translate

λ̄axion < λ̄ðsÞup into the upper bound of coupling constant as

ga < ga;upðTÞ≡ 8
ffiffiffi
2

p
π

mσað2π=kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TSnoiseðfDMÞ

p
2T

λ̄ðsÞup ðTÞ

∼ 5 × 10−11 GeV−1λ̄ðsÞup ðTÞ 1064 nm
ð2π=kÞ

×

�
0.4 GeV=cm3

ρDM

SnoiseðfDMÞ
10−40 Hz−1

1 day
T

�
1=2

:

ð55Þ

We show the future constraint on ga for an aLIGO-like
experiments with a laser wavelength 2π=k ¼ 1064 nm and
T ¼ 1 hour in Fig. 10, where the noise spectrum is
calculated in Ref. [34]. The orange and cyan lines represent
the sensitivity by the transmission and reflection ports,
respectively. The solid and dotted lines represent the upper
bound by the stochastic and deterministic cases. The upper
bound becomes looser for the smaller axion mass than
10−15 eV due to the stochastic effect.
Compared to the previous results [34], our results put the

looser constraint for the following two reasons. At first, we
estimate the future exclusion limit by frequentist’s method,
while the Ref. [34] estimates the future sensitivity with
SNR ¼ 1, which leads a difference of about factor of 2.
Second, as we mentioned, the stochastic fluctuation of field
value loosen the upper bound by about factor of 3, which is
shown by the difference between the solid and dotted lines.
Due to these reasons, we estimate the conservative upper
bound for the aLIGO-like experiment.

E. Constraint on dark photon DM

The interferometer experiment on dark photon DM has
three different signals, stime, sspace, and scharge. The upper
bound of the coupling constant is placed by the strongest
one among them:
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10–13

10–11

10–9

10–7

FIG. 10. Upper bound of coupling constant ga for axion DM
with 95% confidential level (CL) (α ¼ 1 − β ¼ 0.05). We assume
the aLIGO-like detector with a measurement time T ¼ 1 hour,
where the response function is calculated in Ref. [34]. The solid
and dotted lines represent the future exclusion limit with and
without the stochastic effect of the field value, respectively. The
orange and cyan lines represent the sensitivity by the transmission
and reflection ports. The gray vertical line represents a mass at
T ¼ τ.
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FIG. 9. The same plot as Fig. 8 for the velocity-dependent
signal. We perform the frequentist’s method to estimate λðvÞup ðTÞ
(red and blue lines) for the likelihood Eq. (45) with
α ¼ 1 − β ¼ 0.05, κ ¼ 2, and ΔðfnÞ defined in Eqs. (52). The
red and blue solid lines represent the upper bound when the Sun
moves relative to the interferometer arms in a conservative and an
optimal directions, respectively. The magenta and cyan lines
represent the upper bounds for the deterministic case, where the
fluctuation of the field amplitude is neglected and the likelihood
is estimated by Eq. (44). The dot-dashed and dashed black lines
represent the approximation formulas for short and long meas-

urement time in Eq. (49), respectively. λðvÞup ðTÞ is fitted by
Eq. (54), which is shown by the dotted black line.
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ϵD < min
�
ϵðtimeÞ
D;up ; ϵðspaceÞD;up ; ϵðchargeÞD;up

�
: ð56Þ

As we derived in Sec. III B, stime and scharge are the
velocity-independent signals and have similar power
spectrum to the axion except for the constant coefficient.
On the other hand, sspace is a velocity-dependent signal, and
its spectral distribution is different from that of the axion.
Then, the upper bounds of coupling constant are given by

ϵðtimeÞ
D;up ¼

 
e
ðQ=MÞin

mL

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM
3m2

r
sin2
�
mL
2

�!−1

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TSnoiseðfDMÞ

p
2T

λ̄ðsÞup ðTÞ; ð57Þ

ϵðchargeÞD;up ¼
 
e
jðQ=MÞe − ðQ=MÞinj

2Lm

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM
3m2

r !−1

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TSnoiseðfDMÞ

p
2T

λ̄ðsÞup ðTÞ; ð58Þ

ϵðspaceÞD;up ¼
 
e
ðQ=MÞinv̄

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM
3m2

r !−1

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TSnoiseðfDMÞ

p
2T

λ̄ðvÞup ðTÞ; ð59Þ

where λ̄ðvÞup ðTÞ is evaluated by Eq. (54).
For the aLIGO-like experiment, the arm length is

L ¼ 4 × 103 m, and mirrors made of the same ingredients,
qin ¼ qe ≃ 0.5=mn for D ¼ B − L charge. In this case, the

upper bound is put by both ϵðtimeÞ
B-L;up and ϵðspaceÞB-L;up . We estimate

the upper bound by adopting the same noise spectrum as

Ref. [13] and λ̄ðvÞup for the conservative direction.We show the
future constraints on ϵB-L with T ¼ 1 hour in Fig. 11, where

the orange and cyan lines represent ϵðtimeÞ
B-L;up and ϵðspaceÞB-L;up ,

respectively. Since we use the fitting formula for λ̄ðvÞup , the

small jumps of λ̄ðvÞup in Fig. 4 disappear in Fig. 11.Aswe show

in Fig. 4, ϵðspaceÞB-L;up dominates the upper bound for small-mass
region. The dotted line describes the upper bounds without
the stochastic effect; it converges to the solid line for large
mass since the number of bins increases as Nbin ∝ m.
Although Fig. 11 describes a slight difference between
solid and dotted lines for m ≫ 10−12 eV, the difference

comes from a errors on the fitting function of λ̄ðvÞup .
Compared to the previous work [13], our estimate

predicts looser constraints due to some different calcula-
tions. First, Ref. [13] estimates the sensitivity by SNR ¼ 1,
while we calculate the future exclusion limit by frequent-
ist’s method. Second, the stochastic effect loosens our
constraints.

Reference [36] investigated the constraints on dark
photon DM with almost one of year data of LIGO and
Virgo between 10–2000 Hz. Let us revisit their results
considering our discussion. First, the coherence time of
these DMs is much shorter than the observation time; e.g.,
the coherence time is shorter than one day for DM
with a mass corresponding to 10 Hz oscillation. Thus,
the stochastic effect of amplitude hardly affects their
results. Second, Ref. [36] assumed the isotropic velocity
distribution of the dark photon dark matter, and they
estimated the dark photon signal from the spatial
gradient [Eq. (31)] by integrating over all the propagating
direction and polarization directions. Actually, the pecu-
liar velocity of the Sun might affect the signal as we
discussed in Sec. V C. The direction dependence, how-
ever, is averaged by the rotation of the Earth. A detailed
analysis including a rotation of the Earth is left in a
future work.
We comment on the daily modulation of signals.

Although we assume that v⃗⊙ are constant in the above
discussion, v⃗⊙ and A⃗ actually change due to the rotation
and revolution of the Earth. When the measurement time is
much smaller than one day, we can safely neglect its
rotation. If not, the daily modulation could modify the
sensitivity and upper bound of an interferometer experi-
ment. We leave the detailed treatment of the daily modu-
lation to a future work.
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FIG. 11. The upper bound of coupling constant ϵB-L for dark
photon DM with 95% CL (α ¼ 1 − β ¼ 0.05). We assume the
aLIGO like detector with a measurement time T ¼ 1 hour, where
the noise spectrum is calculated in Ref. [13,35]. The solid and
dotted lines represent the future exclusion limit with and without
the stochastic effect of the field value, respectively. The orange
and the cyan lines represent the upper bound from the temporal
and spatial modulation of mirrors induced by dark photon
DM. The gray vertical line represents a mass at T ¼ τ. The
cyan line describes the conservative direction of the solar
velocity, while the optimal direction put a severe constraint
(cyan shaded region).
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VI. CONCLUSION

The ultralight bosonic field is a fascinating candidate of
DM and intensively searched by various experiments.
Understanding the characteristics of DM signals is crucial
for these experiments to properly put the upper limit on the
coupling constant. In this paper, we investigated the
stochastic nature of bosonic DM fields including the dark
photon DM and evaluated the upper bound of a DM
coupling constant.
The ultralight bosonic field is described by the super-

position of classical waves, which results in the stochastic
amplitude and phase. In Sec. II, we estimated the proba-
bility distribution of the field value in frequency space. We
extended Ref. [27] to include the spatial derivative of the
field value, which is closely related to the dark photon DM
signal in interferometer searches. We found that a power
spectrum of the spatial derivative has a different spectral
shape compared to that of the field value. Using these
probability distributions, we derived likelihood functions of
axion and dark photon DM signals in interferometer
searches. We numerically simulated the dark photon DM
signals to confirm our semianalytic calculations.
Based on the frequentist’s method, we can easily translate

a power spectrum of interferometer searches to the upper
bound of the coupling constant through Eqs. (45) and (47)
including the stochastic nature of DM signals. Next, we
apply our formalism to estimate the upper bound by the
future interferometer experiments. We estimated the typical
experimental data without DM signals from the projected
experimental noise. Then, we perform the frequentist’s
method to put on the projected upper bound. The normalized
upper bounds are shown in Figs. 8 and 9. For the velocity-
dependent and velocity-independent cases, the stochasticity
on the amplitude loosens the upper limit up to about a factor
of 3, which is consistent with the previous work [29].
AlthoughRef. [29] focused on the shortermeasurement time
than the coherence time, we extend their analysis to the
longer measurement time. We found that as the measure-
ment time exceeds the coherence time, the stochastic effect
becomes inefficient. We explicitly derived the time depend-
ence of the upper limit, ∝ T−1=2 for a measurement time
smaller than the coherence time and ∝ T−1=4 for a meas-
urement time larger than the coherence time.
The expected constraints from aLIGO like experiments

are shown in Fig. 10 for axion DM and Fig. 11 for dark
photon DM. Our analysis works for both axion and dark
photon DM in a similar way. The stochastic nature of the
DM especially affects constraints on a small mass region
due to long coherence time. Our formulation can be applied
to other experiments searching the ultralight bosonic DM
including axion and dark photon DMs. As future experi-
ments will search low frequency (small mass) regions, the
stochastic effect becomes more important.
In this work, to derive the sensitivity curve of aLIGO

with the stochasticity of the velocity-dependent signal of

dark photon DM, we have assumed T ¼ 1 hour and
separated its component into two directions parallel and
perpendicular to that of the Sun’s velocity. However, this is
not an effective method once the measurement time
becomes longer than one day due to the detector’s rotation
on Earth [27,37,38]. We leave the treatment of the effect of
Earth’s rotation and considerations analyzing the signal in
the frequency domain with the longer measurement time to
a future work.
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APPENDIX A: FOURIER TRANSFORMATION OF
FIELD VALUE AND ITS DERIVATIVE

In this section, we derive the Fourier transformed field
value (8) and its derivative (13). We formally perform the
summation in Eq. (5). At first, we reorganize the summa-
tion over the label i in Eq. (5) by introducing three labels
ðn; l; pÞ as

Φðt; x⃗Þ ¼ σϕN
−1=2
ϕ

X
n

X
l

XΔNn;l

p

× cos ðmð1þ v2n=2Þtþmvne⃗l · x⃗þ θðn;lÞp Þ; ðA1Þ

wheren is the label ofDMspeed jv⃗j ¼ vn, l is the label of the
direction of DM velocity v⃗ ¼ vne⃗l, and p labels the
oscillation phase of the contributions with the same n and
l. Each label ðn; lÞ represents partial waves within a finite-
size bin of the velocity ΔvnΔΩl, where Δvn and ΔΩl
represent ranges of the speed and direction of partial waves.
Note that the Δvn is related to the frequency resolution
of an actual experiment as Δvn ¼ v−1Δfn=f with 2πfn ¼
mð1þ v2n=2Þ in a nonrelativistic limit, vn ≪ 1. ΔNn;l

represents the number of waves that belongs to the ðn; lÞ-
th bin. Using the velocity distribution in Eq. (2), ΔNn;l is
given by
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ΔNn;l¼Nϕ

Z
Δvn

dvv2
Z
ΔΩl

d2ΩefSHMðv⃗ðf;e⃗Þþ v⃗⊙Þ: ðA2Þ

The summation over the index p in Eq. (A1) is computed as

XΔNn;l

p

cos
�
mð1þ v2n=2Þtþmvne⃗l · x⃗þ θðn;lÞp

�

¼ Re

�
expðimð1þ v2n=2Þtþ imvne⃗l · x⃗Þ

XΔNn;l

p

exp
�
iθðn;lÞp

��
:

ðA3Þ
The summation of random phases can be understood
as the random walk in two-dimensional space, which is
described byGaussianvariables in the limit of largeΔNn;l asPΔNn;l

j expðiθjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔNn;l=2

p ðRn;l þ iIn;lÞ, where Rn;l and
In;l follow the standardGaussian distribution.We can further
rewrite them in the polar coordinate as rn;leiθn;l≡
Rn;l þ iIn;l, where the phase θn;l follows a uniform distri-
bution over ½0; 2π�, and the radius rn;l follows the standard
Rayleigh distribution (10). Using these stochastic variables,
the total field value is written as [27,29]

Φðt; x⃗Þ ¼
X
n

Φnðt; x⃗Þ;

Φnðt; x⃗Þ ¼ σϕ
X
l

ffiffiffiffiffiffiffiffiffiffiffiffi
ΔNn;l

Nϕ

s

×
rn;lffiffiffi
2

p cos
	
mð1þ v2n=2Þtþmvne⃗l · x⃗þ θn;l



:

ðA4Þ
An experiment searching for an ultralight scalar field often
analyzes the Fourier-transformed data to extract the periodic
signal. Provided that we have the time-series data of
the field value over the observation time T spanning
t ¼ ½−T=2; T=2�, we find the Fourier-transformed field
value at the nth frequency bin Φ̃n as

Φ̃nðf; x⃗Þ≡
Z

T=2

−T=2
dte−2πiftΦnðt; x⃗Þ

≃

8>>><
>>>:

Tσϕ
2

P
l

ffiffiffiffiffiffiffiffi
ΔNn;l

Nϕ

q
rn;lffiffi
2

p exp ðimv⃗ðf; e⃗lÞ · x⃗þ iθn;lÞ

ðjf − fnj≲ 1=TÞ
0 ðjf − fnj≫ 1=TÞ;

:

ðA5Þ

with v⃗ðf; e⃗Þ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πf=m − 1Þp

e⃗. Here, we approximated
the time integral by the leading contribution at f ¼ fn, while
Φ̃nðf; x⃗Þ is extended in the Fourier space over the frequency
resolutionΔf ¼ 1=T. Note that since each Φ̃n contributes to
the total field value Φ̃≡Pn Φ̃n at different frequency fn,

Φ̃ðfnÞ is equal to Φ̃nðfnÞ. Therefore, we obtain a master
formula for the stochastic bosonic field as

Φ̃ðfn; x⃗Þ ≃
T
2
σϕ
X
l

ffiffiffiffiffiffiffiffiffiffiffiffi
ΔNn;l

Nϕ

s

×

�
rn;lffiffiffi
2

p exp ðimv⃗ðfn; e⃗lÞ · x⃗þ iθn;lÞ
�
; ðA6Þ

where the number of waves with the same velocity vector
vne⃗l can be computed as

ΔNn;l ¼ Nϕ

Z
fnþΔf=2

fn−Δf=2
v2

dv
df

df

×
Z
ΔΩl

d2ΩefSHMðv⃗ðf; e⃗Þ þ v⃗⊙Þ: ðA7Þ

This result is an extension of the formula in Ref. [27],
because it also describes the velocity direction, which is
important for the signal induced from the spatial derivative
of a field value.
Using Eq. (A6), we estimate the power spectrum of an

observed field value, which reproduces the known results on
the axion field value [27]. We can choose at x⃗ ¼ 0 without
loss of generality since a shift of the coordinate just results in
a constant phase of each partial wave. Since Φ̃ becomes
independent of a direction of velocity in this case, we sum
the index l to marginalize the direction dependence. After
the summation over l, the field value at x⃗ ¼ 0 is written as

Φ̃ðfnÞ ¼
T
2
σϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔsðfnÞ

p �
rnffiffiffi
2

p expðiθnÞ
�
; ðA8Þ

ΔsðfnÞ≡
P

lΔNn;l

Nϕ
¼
Z

fnþΔf=2

fn−Δf=2
f̄SHMðvÞ

dv
df

df ðA9Þ

¼ 1

2

"
erf

�
v− v⊙
vvir

�
þ erf

�
vþ v⊙
vvir

�

þ vvirffiffiffi
π

p
v⊙

�
e
−ðvþv⊙Þ2

v2
vir − e

−ðv−v⊙Þ2
v2
vir

�#vðfnþΔf=2Þ

vðfn−Δf=2Þ
;

ðA10Þ

where we omit x⃗ ¼ 0⃗ in the argument, and erf(x) represents
the error function. Note that ΔsðfnÞ appears inside the
square root in Eq. (A8) since we estimate the variance of the
sum over l in a similar way to derivation in Eqs. (A1)–(A4).
We show ðT=τÞΔsðfnÞ in Fig. 12, where blue, green, and

red lines represent the measurement time T ¼ 0.5τ; τ, and
10τ, respectively. For T > τ, ðT=τÞΔsðfnÞ converges to the
distribution of standard halo model (black line) whose 99%
of power is contained within f∈ ½m=2π; m=2π þ 1.69τ−1�
(gray vertical line). We can approximate ΔsðfnÞ
in two cases: When the observation time is shorter
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than the coherence time T ≪ τ, the frequency bin is so wide
that one bin contains almost all DM waves,R
Δf f̄SHMðvÞ dvdf df → 1 at f ∼m=ð2πÞ. On the other hand,
when T ≫ τ, the integration range is so narrow that the
integration is approximated by

R
Δf f̄SHMðvÞ dvdf df ≃

f̄SHMðvÞ dvdfΔf. Thus, the typical value of power spectrum
is given by

ΔsðfnÞ →
8<
:

δn;nc ; ðT ≪ τÞ
1
T f̄SHMðvnÞ dvdf ; ðT ≫ τÞ ; ðA11Þ

where nc is an index of a bin including fDM ≡m=ð2πÞ, and
vn is the velocity of DM at the nth frequency bin.
The spatial derivative of field value is more complicated.

Using the sum of partial waves in Eq. (A6), the spatial
derivative of field value is given by

∇jΦ̃ðfn; x⃗Þ
���
x⃗¼0

¼ T
2
σϕ
X
l

imvjðfn; e⃗lÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
ΔNn;l

2Nϕ

s
rn;leiθn;l :

ðA12Þ

We employ a coordinate system whose z axis is aligned
with v⃗⊙ and perform the summation over l in the same way
as Eq. (8), and we derive

∇jΦ̃ðfn; x⃗Þ
���
x⃗¼0

¼ T
2
σϕmv̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔjðfnÞ

q �
rn;jffiffiffi
2

p exp ðiθn;jÞ
�
;

ðA13Þ

ΔjðfnÞ≡
X
l

½vjðfn; e⃗lÞ�2
v̄2

ΔNn;l

Nϕ

¼
Z

fnþΔf=2

fn−Δf=2
v2

dv
df

df
Z

d2Ωe

× fSHMðv⃗ðf; e⃗Þ þ v⃗⊙Þ
½vjðfn; e⃗lÞ�2

v̄2
; ðA14Þ

where rn;j and θn;j for each n and j follow statistically
independent Rayleigh distribution and uniform distribution
between 0 and 2π, respectively. The analytic representa-
tions of Δj for j ¼ x, y and j ¼ z are shown in Eqs. (16)
and (17), respectively. In an arbitrary coordinate system,
∇jΦ̃ and ∇kΦ̃ðk ≠ jÞ are correlated due to the constant
velocity v⃗⊙.

APPENDIX B: SIGNALS OF DARK PHOTON IN
INTERFEROMETER

Here, we derive the signals of dark photon for the
interferometer search in detail. At first, we relate the light
traveling time of the laser (28) to the displacement of
mirrors (24). Interferometer experiments observe the differ-
ence of light traveling times between two interferometer
arms defined in Eq. (28) [13]

hðtÞ ¼ φðt; e⃗Þ − φðt; d⃗Þ
4πνL

: ðB1Þ

The laser phase φðt; e⃗Þ depends on the round-trip time Tr,
in which the injected light return back to the injected point.
Using the positions of an input and end-test-mass mirrors,
xinðtÞ and xeðtÞ, Tr is written as

TrðtÞ ¼ −xinðtÞ þ 2xeðt − LÞ − xinðt − 2LÞ; ðB2Þ
and the laser phase is given by

φðt; e⃗Þ ¼ 2πνðt − TrÞ þ φ0; ðB3Þ

where φ0 is a constant phase. The dark electric force
fluctuates the position of mirrors. Without fluctuations, the
input mirror is located at x⃗ ¼ 0, and the end-test-mass
mirror is at x⃗ ¼ Le⃗. With fluctuations, their positions
projected on the arm direction e⃗ are given by

xinðtÞ ¼ e⃗ · δx⃗ðt; x⃗ ¼ 0; ðQ=MÞinÞ; ðB4Þ
xeðtÞ ¼ Lþ e⃗ · δx⃗ðt; Le⃗; ðQ=MÞeÞ; ðB5Þ

where ðQ=MÞin and ðQ=MÞe are the charge mass ratios of
the input and end-test-mass mirrors, respectively. When
ingredients are different between two mirrors, the charge-
mass ratio is different, ðQ=MÞin ≠ ðQ=MÞe.
Next, we decompose the phase into the three different

terms in the following way:

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FIG. 12. Deterministic part of the power spectrum of bosonic
field amplitude Δs in Eq. (A9). A vertical axis represents the
spectral shape normalized by T=τ such that the spectral shape
converges to ðv̄2=vÞf̄SHM (black line) in large T limit. The three
colored lines present cases with different measurement times,
T ¼ 0.5τ (green), 1τ (blue), and 10τ (red). The frequency space is
discrete as Δf ¼ 1=T for each case.
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φðt; e⃗Þ ¼ φ0 þ 2πνðt − 2LÞ − 2πνðδLtime þ δLspace þ δLchargeÞ: ðB6Þ

The first term represents the phase shift by a finite-time traveling effect, which is defined by

δLtime ≡ e⃗ · ½−δx⃗ðt; 0; ðQ=MÞinÞ þ 2δx⃗ðt − L; 0; ðQ=MÞinÞ − δx⃗ðt − 2L; 0; ðQ=MÞinÞ�

¼ eϵDðQ=MÞin
m2

∂

∂t

X
k

ek
h
−Akðt; 0⃗Þ þ 2Akðt − L; 0⃗Þ − Akðt − 2L; 0⃗Þ

i

≃
4eϵDðQ=MÞin

m2
sin2
�
mL
2

�
∂

∂t

X
k

ekAkðt − L; 0⃗Þ: ðB7Þ

The second term is induced by the spatial difference of the
DM field value,

δLspace ≡ 2e⃗ · ½δx⃗ðt − L; Le⃗; ðQ=MÞinÞ
− δx⃗ðt − L; 0; ðQ=MÞinÞ�

≃
2eϵDðQ=MÞin

m2
L
∂

∂t

X
k;j

ekej∇jAkðt − L; 0⃗Þ; ðB8Þ

where we assume that Ljk⃗j ∼ Lmv̄ ≪ 1, which is valid in
the case of ground based interferometers. The third term
only appears when the ingredient of two mirrors are
different,

δLcharge ¼ 2e⃗ · ½δx⃗ðt − L;Le⃗; ðQ=MÞeÞ
− δx⃗ðt − L;Le⃗; ðQ=MÞinÞ� ðB9Þ

≃
2eϵDððQ=MÞe − ðQ=MÞinÞ

m2

×
∂

∂t

X
k

ekAkðt − L;Le⃗Þ: ðB10Þ

Since each term differently depends on parameters of a
detector, we consider them separately.
After the Fourier-transformation, the field values of the

vector field are represented by Eqs. (19) and (20). Then,
stime is given by

stimeðfnÞ ¼
Z

T=2

−T=2
dte−2πifnt

δLtimeðe⃗Þ − δLtimeðd⃗Þ
−2L

ðB11Þ

¼ eϵDT
ðQ=MÞinσA

mL
sin2
�
mL
2

�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔsðfnÞ

p �X
k

ðek − dkÞ
rk;nffiffiffi
2

p expðiθk;nÞ
�
;

ðB12Þ
where we redefine θk;n to include constant phases. Since the
factor in ½…� is a sum of three complex Gaussian variables,
we replace it by one complex Gaussian variable with a

variance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

kðek − dkÞ2
p

¼ je⃗ − d⃗j. Considering the
above, stime is written by using new stochastic variables,
rn and θn, as

stimeðfnÞ ¼
�
eϵDT

ðQ=MÞinσA
mL

sin2
�
mL
2

�
je⃗ − d⃗j

�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔsðfnÞ

p �
rnffiffiffi
2

p expðiθnÞ
�
; ðB13Þ

where θn follows a uniform distribution over ½0; 2π�, and rn
follows a standard Rayleigh distribution.
In the similar way, scharge is evaluated as

schargeðfnÞ ¼
�
eϵDT

ððQ=MÞe − ðQ=MÞinÞσA
2Lm

je⃗ − d⃗j
�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔsðfnÞ

p �
rnffiffiffi
2

p expðiθnÞ
�
: ðB14Þ

Both stime and scharge are similar to the axion signal except
for the proportional constants.
On the other hand, sspace depends on a frequency

differently,

sspaceðfnÞ ¼ eϵDT
ðQ=MÞinσAv̄

2

×
X
k;j

ðekej − dkdjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔjðfnÞ

q

×

�
rk;n;jffiffiffi

2
p exp ðiθk;n;jÞ

�
: ðB15Þ

For an interferometer with two arms pointed to unit vectors,
e⃗ and d⃗, sspaceðfnÞ is written by

sspaceðfnÞ ¼
�
eϵDT

ðQ=MÞinσAv̄
2

�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

½ðdjÞ2 þ ðejÞ2 − 2ðd⃗ · e⃗Þdjej�Δj

s

×

�
rnffiffiffi
2

p exp ðiθnÞ
�
: ðB16Þ
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APPENDIX C: LIKELIHOOD IN A DETERMINISTIC AND A STOCHASTIC CASE

We showed the likelihood of the total power spectrum ρ (42) in Sec. IVA. Here, we derive the likelihood for a
deterministic case (44) and a stochastic case (45).
First, we consider the deterministic likelihood of ρ neglecting the Rayleigh distribution of the field value:

LðρjfλngÞ≡
Z �YNbin

n

dρnLðρnj
ffiffiffi
2

p
λnÞ
�
δ

�
ρ −

XNbin

n

ρn

�

¼
Z �YNbin

n

d2N̂ n

2π
e−jN̂ nj2=2

�Z
∞

−∞

dk
2π

exp

�
ik

�
ρ −

XNbin

n

jN̂ n þ
ffiffiffi
2

p
λneiθn j2

��

¼ e−Λ=2
Z

dk
2π

eikρ
X
m

1

m!

1

ð1þ 2ikÞNbinþm

�
Λ
2

�
m

¼ e−ðρþΛÞ=2

2

X
m

1

m!ðmþ Nbin − 1Þ!
�
Λ
2

�
m
�
ρ

2

�
Nbinþm−1

¼ e−ðρþΛÞ=2

2

�
ρ

Λ

�Nbin−1
2

INbin−1

� ffiffiffiffiffiffi
Λρ

p �
; ðC1Þ

where we define the sum of signals

Λ≡ 2
XNbin

n

ðλnÞ2; ðC2Þ

and we use the modified Bessel function of the first kind
In−1, which satisfies

X∞
m¼0

1

m!ðmþ n − 1Þ! x
m ¼ x

1−n
2 In−1ð2

ffiffiffi
x

p Þ: ðC3Þ

This is the noncentral chi-square distribution when the
number of degrees of freedom is 2Nbin, and the non-
centrality parameter Λ.
Next, we estimate the stochastic likelihood marginalising

the amplitude of the field value:

L̄ðρjfλngÞ ¼
Z �YNbin

l

dρnL̄ðρnjλnÞ
�
δ

�
ρ −

XNbin

n

ρn

�

¼
XNbin

n

wn

2ð1þ λ2nÞ
exp

�
−

ρ

2ð1þ λ2nÞ
�
; ðC4Þ

wn ≡
YNbin

n0ð≠nÞ

1þ λ2n
λ2n − λ2n0

; ðC5Þ

where we assume λn ≠ λ0n for all n ≠ n0. To evaluate the
integration, we transform the delta function as
δðxÞ ¼ R dk=ð2πÞeikx, perform the integration on ρn, and
then evaluate the integration on k by the saddle point

method. Assuming each λn has a different value, Nbin
distinct saddle points appear. On the other hand, when all λn
have the same value λn ¼ λ, these saddle points degenerate,
and the likelihood is computed by the Nbin-th residue as,

L̄ðρjfλn ¼ λgÞ

∼
1

ðNbin − 1Þ!
ρNbin−1

2Nbinð1þ λ2ÞNbin
exp

�
−

ρ

2ð1þ λ2Þ
�
:

ðC6Þ

APPENDIX D: APPROXIMATE FORMULA FOR
SHORT- AND LONG-TIME MEASUREMENTS

We derive the analytic formula for the upper bound
λ̄up (47) in two limiting cases, Nbin ¼ 1 and Nbin ≫ 1. We
use the detection threshold ρdt (48) instead of the observed
data ρobs, where one can easily perform the similar analysis
on ρobs. Here, we choose the analyzed frequency range κ in
Eq. (42) large enough to cover almost all DM distributions
for simplicity. We discuss the optimal choice of κ later.
When the measurement time is much smaller than the

coherence time T ≪ τ, the DM signal only appears at a
single frequency bin; that is, Nbin ¼ 1. Then, the spectral
shape of the DM signal is given by

ΔXðfnÞ → ΔX;totδn;nc for T < τ=κ; ðD1Þ

where nc is the index of the bin that includes fDM, and
T < τ=κ is the condition for Nbin ¼ 1 found in Eq. (43).
ΔX;tot is the sum of all ΔXðfnÞ over the whole frequency
range n as defined in Eqs. (11) and (18), and their values are
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given by Δs;tot ¼ 1, Δ⊥;tot ≃ 0.19;Δk;tot ≃ 0.62. Note that
ΔðfnÞ becomes proportional to Kronecker delta δn;nc , since
the frequency resolution is so rough that the single
frequency bin covers almost all DM particles. In thisNbin ¼
1 case, the likelihood function is given by Eq. (41). The
detection threshold defined in Eq. (48) is calculated as [29]

ρdt ¼ 2 lnðα−1Þ: ðD2Þ

The upper bound on λ̄ is given by Eq. (47) as

1 − β ¼ 1 − exp

�
−

ρdt
2þ 2ðλ̄upÞ2ΔX;tot

�
; ðD3Þ

λ̄up¼
1ffiffiffiffiffiffiffiffiffiffiffi
ΔX;tot

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρdt

−2 lnβ
−1

r
≃

1ffiffiffiffiffiffiffiffiffiffiffi
ΔX;tot

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðαÞ
lnðβÞ−1

s
: ðD4Þ

Using Eq. (38), we relate λ̄up to the upper bound on the
coupling constant as

ϵD;up; ga;upðTÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðαÞ
lnðβÞ − 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TSnoiseðfDMÞ

p
2
ffiffiffiffiffiffiffiffiffiffiffi
ΔX;tot

p
T

∝ T−1=2 for T < τ=κ: ðD5Þ

This formula explicitly shows the improvement of the
upper bound by time for a short measurement time.
On the other hand, when the measurement time is much

larger than the coherence time T ≫ τ, the DM signal
spreads over Nbinð≫ 1Þ frequency bins. In this case, we
can approximate the probability distribution of ρ by a
Gaussian distribution in the following way. The likelihood
in each frequency bin is given by Eq. (41). Let us consider a
group of bins whose frequencies lie within a certain range,
f < fn < f þ δf. We choose a sufficiently small δf so that
the differences in the likelihood function between the bins
in the group are negligible. In the large Nbin limit, the
frequency interval Δf ¼ 1=T becomes infinitesimally
small, and the number of bins in the group blows up.
Then, by virtue of the central limit theorem, the sum
of ρn in the bin group follows Gaussian distribution. Based
on the likelihood (41), the mean value and variance
of the summed ρn are given by E½ρn� ¼ 2ð1þ λ2nÞ and
Var½ρn� ¼ 4ð1þ λ2nÞ2, respectively. The total sum,
ρ ¼PNbin

n ρn, also follows the Gaussian distribution with
a mean value μρ ≡ E½ρ� ¼PNbin

n E½ρn� and a variance

σ2ρ ≡ Var½ρ� ¼PNbin
n Var½ρn�. The likelihood of ρ is

approximated by

L̄ðρjfλngÞ →
1ffiffiffiffiffiffiffiffiffiffi
2πσ2ρ

q exp

�
−
ðρ − μρÞ2

2σ2ρ

�
for T ≫ τ;

ðD6Þ

μρðλ̄XÞ ¼ 2
X
n

ð1þ λ2nÞ ¼ 2ðNbin þ λ̄2XΔX;totÞ; ðD7Þ

σ2ρðλ̄XÞ ¼ 4
X
n

ð1þ λ2nÞ2

≃ 4

�
Nbin þ 2λ̄2XΔX;tot þ

X
n

λ4n

�
; ðD8Þ

wherewe use λn ≡ λ̄X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔXðfnÞ

p
and

PNbin
n ΔXðfnÞ ¼ ΔX;tot.

Now we can compute the upper bound by plugging the
approximated likelihood function (D6) into Eq. (47).
For later convenience, it is useful to define a functionMχ

which denotes the relation between the peak width and the
area of the Gaussian distribution as

χ ¼
Z

∞

Mχ

dz
1ffiffiffiffiffiffi
2π

p expð−z2=2Þ; ðD9Þ

where χ is a probability where a standard Gaussian variable
exceeds Mχð> 0Þ. Note that Mχ is the inverse function
of the complementary error function. For example,
M0.32 ≃ 0.468, M0.05 ≃ 1.64, and M0.01 ≃ 2.33. Given that
the likelihood in Eq. (48) is well approximated by a
Gaussian function (D6), the threshold ρdt reads

ρdt¼μρðλ̄X¼0ÞþMασρðλ̄X¼0Þ¼2
	
NbinþMα

ffiffiffiffiffiffiffiffiffi
Nbin

p 

:

ðD10Þ

In the same way, Eq. (47) is evaluated as

ρdt ¼ μρðλ̄upÞ −M1−βσρðλ̄upÞ ðD11Þ

≃ 2ðNbin þ λ̄2upΔX;totÞ
− 4M1−βðNbin þ 2λ̄2upΔX;totÞ: ðD12Þ

In the last line, we neglect
P

n λ
4
n term since it is

subdominant in a large Nbin limit as we will confirm later.
Combining both relations, λ̄up is estimated as

λ̄2up ≃
1

ΔX;tot
ðMα þM1−βÞ

ffiffiffiffiffiffiffiffiffi
Nbin

p
: ðD13Þ

Here, we revisit the validity of approximation in Eq. (D12).
In a large Nbin limit,

P
n λ̄

4
n is subdominant because

of λ̄up ∝ N1=4
bin , ΔXðfnÞ ∝ 1=T ∝ N−1

bin, and
P

n λ̄
4
n ¼P

n λ̄
4
up½ΔXðfnÞ�2 ∝ N0. Finally, the upper bound of the

coupling constant is given by

ϵD;up; ga;upðTÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMα þM1−βÞ

ffiffiffiffiffiffiffiffiffi
Nbin

p
ΔX;tot

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TSnoiseðfDMÞ

p
2Tγ

∝ ðκT=τÞ1=4T−1=2 ∝ T−1=4 for T ≫ τ:

ðD14Þ
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Here, we explicitly showed that the slow down of improve-
ment by time holds even in the case with DM fluctuations.
In summary, we derived two analytical formulas of λ̄upðTÞ
for τ < T (D5) and T ≫ τ (D14) as

λ̄upðTÞ¼
8<
:ðΔX;totÞ−1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðαÞ
lnðβÞ−1

q
forT<τ=κ

ðΔX;totÞ−1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MαþM1−β

p ðκT=τÞ1=4 forT≫τ:
:

ðD15Þ

In the above discussions, we limit the frequency range of
data as fDM < fn < fDMð1þ κv̄2Þ. Here, we investigate
the optimized choice of κ and its effect on the sensitivity by
using the analytic formula (49). We consider the long
measurement case T ≫ τ, in which the number of bins is
given by Nbin ≃ κT=τ. The upper limit of the coupling
constant depends on κ through λ̄up ∝ ðΔX;totÞ−1=2κ1=4 as
shown in Eq. (D15). When we use a small κ, ΔX;tot depends
on κ through the integration range of a frequency in the
following way:

Δs;totðκÞ ¼
Z

fDMþκ=τ

fDM

f̄SHMðvÞ
dv
df

df; ðD16Þ

for the velocity-independent signal. When κ is
much smaller than unity, the measurement covers an only
small fraction of the DM signal, which leads to
smaller ΔX;tot. Since gup ∝ λ̄up ∝ ðΔX;totÞ−1=2κ1=4, we
present ðΔX;totÞ−1=2κ1=4 in Fig. 13 for a velocity-
independent signal (blue line) and a velocity-dependent
signal (orange line). Although the upper bound becomes

the smallest for κ ≃ 1, the choice of κ does not dramatically
change the upper bound and is less important compared to
the amplitude fluctuation on T ≳ τ. In this paper, in order to
gather up most of the signal, we adopt a value of κ which
covers 99% of the dark matter signal: κ ≃ 1.69 for the
velocity-independent signals and κ ≃ 2 for the velocity-
dependent signals.
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