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Ultralight bosonic particles are fascinating candidates of dark matter (DM). It behaves as classical waves
in our Galaxy due to its large number density. There have been various methods proposed to search for the
wavelike DM, such as methods utilizing interferometric gravitational-wave detectors. Understanding the
characteristics of DM signals is crucial to extract the properties of DM from data. While the DM signal is
nearly monochromatic with the angular frequency of its mass, the amplitude and phase are gradually
changing due to the velocity dispersion of DMs in our Galaxy halo. The stochastic amplitude and phase
should be properly taken into account to accurately constrain the coupling constant of DM from data.
Previous works formulated a method to obtain the upper bound on the coupling constant incorporating the
stochastic effects. One of these works compared the upper bound with and without the stochastic effect in a
measurement time that is much shorter than the variation timescale of the amplitude and phase. In this
paper, we extend their formulation to arbitrary measurement time and evaluate the stochastic effects.
Moreover, we investigate the velocity-dependent signal for dark photon DM including an uncertainly of the
velocity. We demonstrate that our method accurately estimates the upper bound on the coupling constant
with numerical simulations. We also estimate the expected upper bound of the coupling constant of axion
DM and dark photon DM from future experiments in a semianalytic way. The stochasticity especially
affects constraints on a small mass region. Our formulation offers a generic treatment of the ultralight

5,6

bosonic DM signal with the stochastic effect.
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I. INTRODUCTION

These days, various experiments are planned and per-
formed to investigate the broad candidates of dark
matter (DM) including ultralight bosonic DMs [1-8]
such as axionlike particles and dark photons. Axionlike
particles [9,10] have a unique coupling to the photon,
which rotates the polarization direction of the photons. The
polarization rotation provides a new detection scheme by
measuring the polarization state of laser beam in inter-
ferometers. Hereafter, axionlike particles are called axion
for short. The dark photon is a massive vector field
characterized by its Up(1)-charge. The baryon charge
(D = B) or baryon minus lepton charge (D =B —1L)
induces the dark electric force on the experimental equip-
ment like mirrors in interferometers, which can be detected
by the gravitational wave interferometers without any
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additional modification [11-15]. Such DM experiments
by interferometers are highly sensitive to the axion and dark
photon signals. These experiments can improve the current
constraints obtained by other types of experiments, e.g.,
CAST [16,17] and the astrophysical observations
(SN1987A [18], M87 [19], and NGC 1275 [20]) for the
axion, and Eot-Wash experiment [21,22] and the
MICROSCOPE experiment [23-25] for the dark photon
(see also Refs. [11,13,26]).

Understanding the characteristics of the DM signal is
crucial to distinguish the signal from various noises and
extract the properties of DM from data [15,27-29]. The
DM signal is nearly monochromatic with the angular
frequency of the DM mass, which enables us to extract
the DM signal at the oscillation frequency. However, the
amplitude and phase of the DM field are gradually
changing due to the velocity dispersion of DMs in our
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Galaxy halo. This timescale is called a “coherence time 7"
of ultralight DM. The amplitude and phase appear to evolve
in a stochastic manner over the coherence time. It is known
that this stochastic nature of ultralight DM suppresses the
sensitivity of the observation in the following two points:
(i) When the measurement time 7 is longer than the
coherence time z, the modulation of the phase broadens
the DM signal in frequency space, which slows down the
improvement of sensitivity with time [4,15]. (ii) When T is
shorter than z, we sample only one realization of the
amplitude of DM, which could be a smaller value than the
average one by chance. Since the realized field value is
random, the observed amplitude has uncertainty, which
loosens the upper bound on the DM coupling constant
about factor O(1) [29]. These previous works focused on
either of two effects, and the intermediate region T ~ 7,
where both effects are relevant, has been less investigated.
Although Ref. [27] considered both effects in their analysis,
they did not compare the upper bound with and without the
point (ii). As interferometer experiments improve the
sensitivity on a low-frequency range, the intermediate
region becomes more important to search for the ultralight
DM. Moreover, the dark photon signal can have another
uncertainty from its velocity dependence, while its sto-
chastic effect was not well studied. Since these stochastic
effects inevitably affect any experiments to detect the
ultralight DM in the intermediate region, it is necessary
to understand the characteristics of DM signals.

In this paper, we investigate the stochastic effect of
ultralight bosonic DM. The bosonic DM field consists
of a superposition of DM particles that have slightly
different velocities. We evaluate the superposed waves in
the frequency space to derive a probability distribution of
the field value. We also derive the probability distribution
of the spatial derivative of a vector field for the first time,
which characterizes a velocity-dependent signal of a dark
photon DM. Next, we formulate a frequentist’s method to
put an upper bound of a DM coupling constant. Note that in
contrast to Refs. [11,12], we assume an experimental
output from a single DM detector. We compare the upper
bound with and without the stochastic effect of the
amplitude. We find that the stochastic effect becomes
negligible as the measurement time sufficiently exceeds
the coherence time. We also confirm that our results are
consistent with Ref. [29] for T < 7. Our method can be
applied for generic experiments to estimate the upper
bound on the ultralight bosonic DM. As an application,
we estimate the future upper bound by the Advanced LIGO
(aLIGO)-like experiment based on our method.

This paper is described in the following way. In Sec. 11,
we revisit the stochastic nature of ultralight bosonic DM.
We derive the probability distribution of the field value and
its spatial derivative. We formulate the DM signals of axion
and dark photon in Sec. III. In Sec. IV, we formulate a
method to estimate the upper bound of the coupling

constant taking into account the stochastic effects. We
derive the likelihood functions of the DM signals with
experimental noise. The probability distribution of DM
signals is confirmed by numerical simulations. We apply
our formulation to estimate the constraints given by the
future gravitational interferometer experiment for axion and
dark photon DMs in Sec. V. We compare the upper bound
with and without the stochastic effect of the DM amplitude
to evaluate its contribution. Section VI is devoted to
the conclusion of this paper. Throughout this paper, we
employ natural units in which 2 = ¢ = 1, unless otherwise
specified.

II. STOCHASTIC NATURE OF ULTRALIGHT
BOSONIC DM

Ultralight DM behaves like a classical wave, which is
contributed by multiple waves with different frequencies
and phases. Firstly, we review the formulation of ultralight
DM and its stochastic time evolution. Next, we perform the
Fourier transform of the field value to derive its power
spectrum, which is the main feature in ultralight DM
searches.

A. Review on the properties of ultralight DM

Cold DM consists about 25% of our Universe, which has
the local density ppy ~ 0.4 GeV/cm? and a virial velocity
Dyir = 220 km/ sec ~7 x 10~*¢ around the solar system in
our Galaxy [30,31]. When the mass of DM is ultralight,
m < 1 eV, its number density is extremely large as

PDM
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where nj; = ppy/m is the number density, and L, ~
1/(wy;,m) is the de Broglie wavelength. Thus, the ultralight
DM should be a boson, not a fermion. In this paper, we
focus on a ultralight bosonic DM, m < 1 eV, such as
axionlike particle ¢ = a and dark photon ¢p = A,, A, A_.
Note that the temporal component of a dark photon, A, is
negligibly small compared to spatial components, and
therefore, we ignore A, in our calculation [14]. We can
treat ultralight bosonic DM as a classical wave since it has a
large number density.

The DM velocity at the surface of the Earth has some
components, e.g., the virial velocity of a DM halo of our
Galaxy, the velocity of the Sun to the halo rest frame, the
orbital motion of the Earth, and the rotation of the Earth.
We consider two dominant components, a virial velocity 7,
and the velocity of the Sun |Ug| ~ 232 km/ sec. We define
the velocity of DM as v = 9, — U, where 7, is a constant,
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and 7, is a random variable following the probability
distribution of the standard halo model [31]:

I, 1 v,)?
Fsum(7,)d* 0, = ke [— (UZ>

vir vir

}d3 v, (2)
The distribution of DM speed is given by

]_CSHM(U)d”Edwz/d29efSHM(Ue7+ o)

_ v exp _(U+Uo)2 (e4”"®/”3ir—
\/7_[vvirv® :

vir

where [ d’>Q, represents the integration over a direction
of a unit vector ¢. The typical velocity of DM is
given by

’I_JZE/d’U}‘SHM(U)’Uz
3= N U T N Mt
= [ & fsum(Vn) (V) = Vo)" = v +§Uvir~ (4)

The DM field is contributed by many partial waves with
different velocities following the distribution fgyy (). The
total field value ®(z,X) is given by the sum of N, partial
waves as

Ny
D(1,X) = a(pN;l/z Zcos (m(1+v?/2)t + m¥; - X+ 6,),

(5)

where 0; is a random phase of the ith wave, 7, is its velocity,

2. ..
/ is a normalization constant. Note

v; = |7;], and ad,N;l
that although the number of the superposed partial waves is
huge in reality [see Eq. (1)], ®(7, X) well approximates the
realistic field for a sufficiently large N, (> 1). The nor-
malization is determined by the energy density,
pom/g. = V7L [, dx® (D2 + m?>®?), where V is a volume
we are considering, and g, is the number of degrees of
freedom, g, = 1 for scalar field and g, = 3 for vector field.
The typical field value, o, is written as

2ppm
= , 6
¢ \/ g.m* (6)

where 6, = \/2ppy/m> for axion DM and o, =

\/2ppm/ (3m?) for dark photon DM.

Each wave has a similar angular frequency m(1 +
v?/2) ~m because typical velocity is small 7 ~ 1073

3
2

;wuﬂvﬁvﬁvﬂvﬂvﬂv(\v/
. N
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FIG. 1. The time dependence of the amplitude and the phase of

bosonic field. We numerically calculate a realization of a super-
posed wave in Eq. (5) following the method in Ref. [27], where
we divide the angular frequency @ = m(1 + v>/2) by 10* bins
over w/me|[l,1+ 502 ]. The left panel presents the field
oscillation for a shorter timescale, which corresponds to the
vertical light gray band at 7 ~ 27 in the right panel. The time is
normalized by the coherence time (7). The red line represents
the normalized amplitude, and the blue line represents the
phase.

Consequently, the total amplitude and the oscillating phase
of @ are almost constant until the frequency difference
between plane waves becomes significant, tmv?/2 = 7.
This timescale 7 is called a coherence time,

2z

T=—>5~4x10m7". (7)
mo

For a longer timescale than the coherence time 7, the phase
and amplitude of ® slowly vary. In Fig. 1, the time evolution
of the total field value ®(z) is shown. We numerically
evaluate Eq. (5) by setting X = 0 without loss of generality.
In the left panel, we show the time evolution of the field over
several oscillatory periods at the gray vertical line in the
right panel. In the right panel, the field dynamics is shown
for 10z. The amplitude and phase noticeably change over the
coherence timescale. Here, we fit the field dynamics by
®(t) = ¢y cos(m(1 + ©%/2)t + 6,) over several oscillatory
periods around each time point to obtain the instant
amplitude ¢, and the phase 6, that are shown as red and

blue lines.

B. Formulation of stochastic field values

Now we derive the power spectrum of the DM field value
@, which is often analyzed by an experiment searching for
an ultralight scalar field to extract the periodic signal.
The power spectrum has two features [27]. First, its
spectral shape has some width corresponding to the
velocity dispersion. Second, its amplitude is a stochastic
variable similar to the field value in a time coordinate.
Reference [27,29] estimated the probability distribution of
the power spectrum of the field value. In this paper, we
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extend their method to the spatial derivative of the field
value, which is relevant to the dark photon DM search as
discussed in Sec. III.

Here, we derive the spectral shape and the probability
distribution of the Fourier-transformed field value, time
derivative, and spatial derivative. We choose X = 0 with-
out loss of generality since a shift of the coordinate just
results in a constant phase of each partial wave. Provided
that we have the time-series data of the field value over the
observation time 7 spanning 7= [-T/2,T/2], the fre-
quency space is discretized as f, for the nth bin with a
resolution Af = 1/T, that it, f, — f,_; = 1/T.

At first, the Fourier-transformation of the field value (5)
is given by [27] (see Appendix A for derivation)

- T/2 »
(f,) = / dre=210p(1, 7)1

-T2

= Son/ATE | sentioy) | ®

n /2 _
A(f)) —/ff 2 () g

FamAF/2 df
1 _
== [erf(v UQ) + erf(v * vO)
2 Vyir Vyir
Voir (e_<v+%~i>2 . <o_ ] o(fatAf/2)
Vave o(fu=Af/2)

where erf (x) represents the error function, the phase 6, is a
stochastic variable following a uniform distribution over
[0,27], and the amplitude r, is following the standard
Rayleigh distribution,

Pr(r)dr = rexp (- ;) dr. (10)

®(f,) consists of three parts. First, the coefficient (T / 2)o,
represents the typical amplitude of the field value in Fourier
space. Second, r, and 6, in [...] represent the stochastic
fluctuations, which follow the standard Rayleigh distribu-
tion and the uniform distribution, respectively. Third,
A(f,) characterizes the deterministic part of the spectral
shape, which represents the fraction of DM waves that
belong to the nth frequency bin. Consequently, A (f,) is
normalized so that

Agot = ZAs<fn) =

where fpy = m/(2x) is a frequency of the field oscillation,
below which A (f,) = 0.

f;fsm )—fdffl (11)

Next, we consider the time derivative of the DM field
value since some experiments search for the time modu-
lation of the field value. The Fourier transformation of field
value, ®(¢) = (d®(¢)/dt), is given by

/dte‘z’”'f"fd)( =2xf,i a¢\/ S(f) exp(z@
~im®(f,). (12)

In the last equality, we use the fact that the DM signal
appears only around the frequency of DM mass,
fu~m/(2x). Thus, the time derivative of the field value
has a similar spectral distribution with ®(f,).

The spatial derivative of field value is more
complicated. In a coordinate system whose z axis is
aligned with 7, the spatial derivative of field value on a
direction j(= x,y,z) is given by (see Appendix A for
derivation)

V,b(f,. %) fzozgad,m@ A (f) {TGXp(IH )]

(13
futAf/2 do 2
. pr— _d d
s = [0 e [ e,
32
< Fana@(£.9) + 70) O 1)

with ¥(f, €) = \/2(2zf/m — 1)e. A;(f,) is the velocity-
weighted number fraction of DM waves normalized
as Y i .2 . A;(f,) =1 since the left-handed side

reproduces the definition of 7% (4). The spectral shape
of the spatial derivative of field value is determined
by A;(f,). After performing the angular integral, we
obtain

Ac(fn) = Ay(fa) =

where

V2 vV—v v+
A — vir f [©] f O
l(fn) (UO + 3vv1r/2) l ( Uyir > e < Vyir )

Ai(fn)’ Az(fn):AH(fn)’ (15)

(+20) -
UV;\;_WG (21}1}0 (e T 4 1)
dvvg o(fut+Af/2)
+ (203 — v%) (e i — 1>) . (16)
o(fa=Af/2)
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2(vg +3v3,/2) Vyir

yir

Throughout this paper, we employ a coordinate system
whose 7 axis is aligned with 7 unless specified otherwise.
A, and A are normalized so that

Ao = ZAJ_(fn) ~0.19,
Ajor = ZAH (fa) =0.62, (18)

and 2A | o + Aj o = 1 holds. A, and A have broader
spectral shapes than A due to the velocity dependence. We
compare A and A with A in the large measurement time
limit, [, df — 1/T, which is shown in Fig. 2. All spectra
have frequency ranges with O(1/7). A has a larger
amplitude and the broader spectral shape than A |, since
the solar velocity vy is added to the DM velocity that
contribute to the spatial derivative. In Sec. IV, we estimate
the upper limit of the coupling constant by using A | and
A|. Note that the above estimation holds for 7' < 1 day
since the direction of velocity changes with the rotation of
Earth, which is discussed in Sec. V E.

The above discussion is also applicable to a dark photon.
The massive dark photon has three independent bosonic
degrees of freedom, and they have their own amplitudes
and phases. The Fourier transformation of the gauge field
value is given by

A (T — o0)

SERS

2m 2r T 2T T

FIG. 2. The deterministic part of normalized power spectrum in
large T limit. The vertical axis represents the spectral shape
normalized by 7/z. The black, red, and blue lines represent the
spectral shape for the field value (9), the spatial derivative of the
field value with perpendicular (16) and parallel (17) to the solar
velocity, respectively. The actual amplitudes randomly fluctuate
around them with the Rayleigh distribution.

Uyir ) \/EUSO (2U(23 + U%ir)

2 v(futAS/2)
— (2070} + 208 + vi,) sinh( U;O))}

2
(21)1)@(1)2@ —v2) cosh( 112126>

Dyir

(17)

Au(f,0) = aA\/As(fn)%exp(iekﬂ), (19)

N

where the subscription “k” describes a quantity related to A;.
In the same way, the derivative of dark photon DM is given by

T — rk.nj .
=—osmv\/A(f,) —=exp(ib;, ).
0 ) A /(f) \/i p( k, ,])
(20)

vjAk(fn’ ';é)

III. PROBABILITY DISTRIBUTION OF
EXPERIMENTAL SIGNALS

Before we estimate the stochastic effect on the DM
searches, we revisit two examples of bosonic DM searches,
(1) axionlike particles observed by the polarization rotation
of laser light and (ii) dark photons observed via the
displacement of massive equipment by a force sensor.
Here, we mainly consider the measurements through the
gravitational-wave interferometer experiments, while sim-
ilar discussions are also applicable to other ultralight
bosonic DM searches. At first, we introduce an interaction
of bosonic DM without specifying the detection technique.
Then, we evaluate the probability distribution of the DM
signals that could be observed by the interferometer search.

The axionlike particle, a, couples to the electromagnetic
field through the Chern-Simons term,

L,= —%aﬂaaﬂa - %mza2 + %a(t)FEMJ,UF’é'f\,[, (21)
where g, is the axion-photon coupling constant, Fgy ,, 18
electromagnetic field strength, and Figy, = €"/°Fiyy ,,/2 is
its Hodge dual with the Levi-Civita antisymmetric tensor
e"?°. Under an axion field background, a dispersion
relation of photon is modified [32,33], which is given
for the left and right circular polarization photon as
o] ;g = k(1 F g,a/k) with angular frequency wy / and
momentum k. Thus, the background axion field changes
the phase velocity of polarized photons, where the differ-
ence between left and right polarized photons is given by

9att(1)

5e(1) .

(22)

Next, dark photon is a U(l) massive gauge boson
coupled to the U(1),, current J,. The massive dark photon
with mass m is described as
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Ly = —;LFWF”” + %mzA”A” —eepJpA,,  (23)
where F,, is the field strength of dark photon, and ¢, is a
dark photon coupling constant normalized to an electro-
magnetic one, e. The background dark photon exerts the
dark “Lorentz force” on experimental equipment. The dark
electric force dominates the magnetic force since the
momentum of DM is much smaller than its mass.
Then, the dark electric force acts on an object with charge

Q as F(1,X) = —eepQA(t, %). When there is no other force
exerting the object, the displacement of the object is
given by

5R(1, % q) = / dﬂ% ~ ey (%) /% (24)

where M is mass of the object. In the last equality, we
approximate that the field value oscillates with a frequency
about f ~ m/(2x). Note that the ratio of a charge to a mass,
(Q/M), depends on an ingredient.

In both cases of axion and dark photon, above inter-
actions induce a periodic signal with the frequency
f ~m/(2r). The gravitational-wave interferometer experi-
ments like alLIGO are sensitive to the signal with
10 Hz < fpy < 10° Hz, which corresponds to the DM
mass

m=41x10"1 ev(lgfi“{z). (25)

The corresponding coherence time and coherent length are
given by

10-13 eV 2 10-3 eV
r=03day——~, Ly=——~100m— "
m mv v m
(26)
A. Axion DM

In the interferometer experiments, the signal of axionlike
particles would be measured as the polarization rotation of
laser beam in the interferometer arms, caused by the
difference of phase velocity dc between two circular
polarizations. We can extract this polarization rotation by
installing polarization optics at the detection port of laser
interferometers [26]. While the parity-flipping effect at the
reflection of mirror degrades the accumulation of polari-
zation rotation caused by axion DM, the arm cavity
transmission ports can avoid this issue because the light
at the transmission ports experience an odd number of
mirror reflections and enables us to probe the axion DM in
a low-mass regime m < 10710 eV [34].

In data analysis, we look for the DM signal in the
frequency space. By using Eqgs. (8) and (12), the Fourier
mode of the signal is given by

/2 ‘
salfa) = [ aremnise(o

/2

=T VAT | Jsen]. )

where we redefine the phase 6, to include an unneces-
sary phase.

B. Dark photon DM

U(1), dark photon induces the dark electric force on a
movable mirror. In the interferometer search, we can detect
it through the difference of light traveling time between two
interferometer arms, which is given by [13]

0(1.8) — p(1.d)

h(t) =
() drvL

, (28)

where v is the frequency of the laser, L is the length of
interferometer arms. € and d are unit vectors directed to two
interferometer arms, where € - d = 0 for LIGO, Virgo, and

KAGRA, and ¢ - d=1 /2 for ET, DECIGO, and LISA. We
describe the typical direction of the interferometer arms for
LIGO-like experiment in Fig. 3. The phase ¢(z, €) is gained
through the reflection from the € arm, which is contributed
by (i) a finite-time traveling effect, (ii) a spatial difference
of the dark photon field value, and (iii) a difference of the
ingredient of two mirrors. The first effect is pointed out for
the dark photon search in Ref. [13].

round-trip time T,
pE——

laser Zin (1) (1)

FIG. 3. Configuration of laser interferometer arms. Two arms

are parallel to d or €. The laser makes a round trip between an
input mirror at x;, and an end-test-mass mirror at x,, respectively.
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The signals in the frequency space are written as

T/2 .
SA (fn) = /T/2 dte_sz”th(l) & Stime + Sspace + Scharge>

(29)

where each subscript corresponds to displacement of
mirrors induced by the three effects. Using stochastic
representations of the dark photon (19) and (20), the
signals are written by (see Appendix B for a derivation)

Stime(fn) = <66DT <%> . %SinQ (mTL> \/§>

< VAT | enp(i0). (30)

sspace(fn) = <€€DT<§)' 032_))

x \/;Kd,-v 618, exp (10,

(31)
Setarge(f) = <e€DT’ <AQ4> B <AQ4> n

x /B, (f) [%exp(im], (32)

where we assume the interferometer with two ortho-
gonal arms like LIGO, Virgo, and KAGRA. (Q/M);,
and (Q/M), are ratios of charge to mass of the
input and end-test-mass mirrors. @, follows a uniform
distribution over [0,2z], and r, follows a standard
Rayleigh distribution. The spectral shape of Sy and Scharge
follows A, which is the same to the axion signal (27). On
the other hand, the spectral shape of sy, is determined by

o4 \/§>

2Lm

Bopce = D [(d)? + (¢)2] Ay, (33)

which depends on the orientation of the interferometer arms
relative to the direction of the solar velocity 7. Here,
we consider two typical interferometer orientations: (i) a

conservative orientation with d = (1,0,0),¢ = (0,1,0),

and (i) an optimal orientation with d = (1,0,0),
¢ = (0,0, 1). In other words, the Sun moves in a direction
perpendicular to the interferometer arms in the conservative
case and parallel to one of the interferometer arms in the
optimal case. Compared to Ay, Ay, has broader distri-
bution on the frequency space. We discuss constraints in the
conservative and optimal cases in Sec. V B.

We present the normalized signals in Fig. 4 to compare the
strength of three signals. We take the typical parameters,

0.100 ¢

0.010

normalized signal

0.001 ¢

107 ¢

1075" P
10

0.100 1 10 100
mL

“ooor oot
FIG. 4. Normalized signals of a dark photon, sy /(eeposT/m,,),
for X = time (red), charge (blue dotted), and space (green dashed).
These sy are given in Eqgs. (30), (31), and (32). We adopt typical
parameters,  m, (Q/M);, = 0.501, m,|(Q/M), = (Q/M);,| =
0.51 —0.501, |¢ — d| = V2, and ¥ ~ 1.2 x 1073. We ignore the
stochastic effect by setting (r,/v/2)exp(if,) = 1 and fix the
spectral amplitudes with A; =1 and Ay, = 1 in this figure.

p~12x 1072, m,(Q/M),, = 0.501, and m,|(Q/M), —
(Q/M);,| = 0.51 —0.501 with the neutron mass m,. The
stochastic effect and spectral shape are fixed in this figure by
setting 2727, exp(if,) - 1, Ay > 1, and A, — 1.
First, the signal from the finite-time-traveling effect, s;e,
is prominent for mL Z 1, while it is suppressed for mL < 1
due to a short traveling time. Second, the signal from a
charge difference of mirrors, s cprge, depends on the coupling
of dark photon and ingredients of mirrors. For the KAGRA-
like interferometer, the mirrors are made of fused silica and
sapphire. The B — L charge of fused silica and sapphire are
(Q/M) =0.501/m, and 0.51/m,. While scpyee is sup-
pressed by mn|(Q/M)e - (Q/M)m| = ]0_2’ Scharge is more
sensitive for dark photon with a small mass than the other

two signals. It is because sqpqrge 18 induced by A while other

two signals are induced by the derivative of A. Third, the
signal from a spatial difference of field value, sqyce, 1S
effective for mL > 1. This signal is highly suppressed by a
small DM velocity by a factor # ~ 107>, Note that the
expression is valid only for Lm? < 1, because of the linear
approximation made in Eq. (B8). Considering Fig. 2, all the
signals are important when we search for DM with various
masses. In the following section, we estimate the sensitivity
to these signals.

IV. ESTIMATION OF AN UPPER BOUND ON A
COUPLING CONSTANT

In this section, we derive the likelihood function to
constrain the DM coupling constant for a given experi-
mental data, taking into account the stochastic nature of
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DM signal derived in Sec. II. Assuming that the experi-
mental data consists of the instrumental noises and the DM
signal, we can discuss the statistics of normalized data (or
signal-to-noise ratio) of a single detector. The stochasticity
of the DM signal affects the resultant likelihood function.
We confirm the derived likelihood function by using
numerical simulation.

A. Likelihood function of data

Interferometer experiments measure a time-series data
on laser power. Here, we assume a measurement time 7" and
investigate the Fourier-transformed data to extract the
periodic signal of the bosonic DM. The measured data is
written as N'(f,) + s(f,), where NV (f,) is instrumental
noise, s(f,) is a signal in the frequency space, and f,, is the
nth frequency bin with a finite frequency resolution
Af = 1/T. We assume that the instrumental noise follows
the Gaussian distribution characterized by its power spec-
tral density, S;oise(f)-

We define normalized data at a frequency f, around the
oscillation frequency fpy = m/(27) as

_AWG) P
(s s
i, = 2 39

V TSnoise (fn) ’

where r, follows a standard Rayleigh distribution, and 6,
follows the uniform distribution. The normalized noise,

A

N,, is a complex stochastic variable following the
Gaussian distribution,

Puanel )2, = 5. exp(=| V7, /2)dRelA7, Jaim[ ., |

(36)

A, is the amplitude of the DM signal normalized by the
noise power spectrum, which is decomposed by the
frequency independent and dependent parts,

An = 2x\/ Bx (f): (37)

where X is the label of signal type. According to the
discussion in Sec. III, the explicit formula for an axion
signal (27) and dark photon signals (30)-(31) for a
interferometer with two orthogonal arms like LIGO are
written by

A T g Ppm M
axion ma m2 2k7

j'time =€pe

2T 2ppm (Q/M)in sin2 (m_L)

VTShoise V 3m*>  mL 2
7 —ere 2T 2ppm (Q/ M), 0
wpaee P TSnoise 3m2 2\/§ ’
- 2T 2ppm [(Q/M), —(Q/M);,|

(38)

A =epe

charge =EDT TS oV 3m? 2Lm
See Appendix B for a signals in a general interferometer
configuration. Ay (f,) denotes the deterministic part of the
spectral shape of the signals and is given by

AS (fﬂ)

Aspace(fn) ’ (39)

axtr) = {

where the above case is for the velocity-independent signals
(X = axion, time, charge), the below case is for the
velocity-dependent signal (X = space), and A, and A;
are given in Eqgs. (9) and (14), respectively. The signals
with X = time and space could be comparable in a
gravitational wave observatory. Then, the combined signal
is given by a root of squared sum of both signals since a
phase between s, and sqy,. 18 different by a factor i.

The likelihood for data p,, with a given DM signal 4,7, is
expressed as

E(pnMnrn) = /danPnoise(Nn)é(pn - ’J(/‘n +lnrnei6" ’2)

)2
1exp (_pnﬂ%n)) Lo(\/PudnTn),  (40)

2

where I(x) is the modified Bessel function of the first
kind. Note that the signal phase e can be absorbed
by the noise phase, and its dependence vanishes after the
integration of the noise. The signal fluctuates due to the
stochastic nature of the field value, and the random
variable r, represents the stochastic effect, which
follows the Rayleigh distribution. Its squared average is
[ dr,Pg(r,)r2 =2. We call L(p,|1,V/2) a likelihood in a
deterministic case [29], in which we neglect the Rayleigh
distribution of the field value and replace r, by its RMS
value /2. We marginalize the likelihood over r, as

Z:(pnMn) E/drnPR(rn)ﬁ(pnMnrn)
o 1 —Pn
20 +A$,)6Xp(z(1 H%,))' (1)

We call L(p,|A,) the likelihood in a stochastic case in
contrast with a deterministic case, L£(p,|4,v2). The
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marginalization over r, broadens the distribution of
L(py|4,) due to the field fluctuation unlike £(p,|1,v/2),
which will weaken the constraint on the DM coupling
constant [29].

Since the DM signal is extended in the frequency space
around fpy = m/(2z), we take the summation of the
power spectrum over the frequency range,

p= > o (42)

Som<fu<fom(14x7?)

where we introduced a new parameter k representing the
frequency range to include the tail of DM distribution. In
this paper, we will use x ~ 1.69 for the velocity-indepen-
dent signals and x ~ 2 for the velocity-dependent signals so
that the ranges cover 99% of DM signals. We discuss the
choice of x in Appendix D. Considering the finite fre-
quency resolution Af = 1/T, the number of bins in this
range is estimated as

o= [Tl S [E] e

where [x] represents the minimum integer larger than x.
The likelihoods of p in a deterministic and a stochastic
case are estimated in Appendix C, and results are

Lol = /(NHdp £V )5 s sz>

e—(P+N)/2 Byl
= Y <%> INbin—l (\/ Aﬂ)’ (44)
_ me
Eoltah) = [ (H A0, L (pald

b5

w, p
212;32(1-%Ag)eXp <__2(1—%ﬂ§)>’ (43)

Nbin Npin

A=2) ()%

1422
w, = H P /12 , (46)

n'(#n) "

where we assume A, # A, for all n # n’ in a stochastic case,
and a formula with 1, = 4, is shown in Appendix C. [,_; is
the modified Bessel function of the first kind. Note that
L(p|{4,}) follows the noncentral chi-square distribution
when the number of degrees of freedom is 2NV,;, and the
noncentrality parameter A. The numerical estimate of £
requires a large computational cost for a large Ny;, due to
huge w,’s. In this case, one can use an approximate formula
in Eq. (D6) to reduce the computational cost.

We see the difference between the stochastic and
deterministic cases in the following sections. In Ref. [29],
the authors found that field fluctuations loosen the upper
bound of the coupling constant by a factor of about 3 in the
case of Ny;, = 1, where they compared the deterministic
likelihood (40) and the stochastic one (41). In Sec. V, we
revisit this point and extend their analysis to Ny;, > 1 by
using the likelihood of p in Egs. (44) and (45).

By using the above likelihood, we discuss an upper
bound on the coupling constant by frequentist’s method.
When we conduct an experiment, obtain a observed data
Pobs» and do not find any signal of DM, we can set the upper
bound on the DM coupling constant based on the like-
lihood function. We regard the power spectrum of back-
ground noise S, (f) as constant in a frequency range
f €lfom fom(1 +«2?)] since the typical timescale of
noise fluctuations is much larger than the coherence time.
For a given observed data p,, the upper bound on the DM
coupling constant is determined in the following way. We
first seek to put an upper bound on Ay, which was defined
in Eq. (38). Then this bound is easily translated into the
bound on the coupling constant. We determine the upper
bound on 1y so that the false exclusion of the true signal
occurs by a probability smaller than 1 — /. In this paper, we
take 1 — # = 0.05 as an example. The upper bound, 1
determined by the following integration:

1=p= [ L (ol = 2uVBrF)}). @7

The right-handed side of Eq. (47) decreases as /_1up
increases. Thus, the smaller 1 — f leads to the looser upper
bound on the coupling constant.

up’

B. Simulation of dark matter signals

We performed numerical simulations to validate our
algorithm of calculating the upper bound on a coupling
constant. We generated hundreds of simulated data con-
taining dark matter signal and applied our algorithm to the
simulated data. If the algorithm works properly, the upper
bound with a confidence level of p should be larger than the
true value for a fraction p of simulations. For example, the
90% upper bounds should be larger than the true value for
90% of simulations.

We consider U(1), dark photon and simulated dark-
photon signal observed by an interferometric gravitational-
wave detector. For each simulation, a dark photon field was
calculated as the sum of 10* partial waves, whose velocities
were drawn from the velocity distribution of the standard
halo model, constant phases were drawn uniformly
between 0 and 27z, and polarization vectors were randomly
chosen among 3 unit vectors pointing in the x, y, and z
directions. The signal was calculated from the generated
dark photon field and injected into Gaussian noise colored
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by the design sensitivity of advanced LIGO [35]. We
assume that the two arms of the detector point in the x
and y directions. For each simulated data, the detection
statistic p was calculated, and the upper bound of e; was
obtained. For the choice of frequency bins to sum over,
k =2 was applied.

We consider two fiducial values of the signal frequency
JSom: 20 Hz and 100 Hz. sy, and sy are comparable in
the former case as /_Ispace /Aime = 1, while s is dominant
in the latter case as Zspace /Aime =~ 0.2. For each frequency,
we generated two sets of data of different duration,
T =17/10 and T = 57. The stochastic effect of signals is
expected to be significant in the former case, while it is
suppressed in the latter case.

We simulate the case where the signal and the noise are
comparable since this paper aims to put the upper bound of
the coupling constant. For this purpose, we tuned the true
value of ez so that the expected signal to noise ratio is
moderate for each measurement time. For T = /10, only a
single frequency bin contributes to p. Given n denotes the
index of that frequency bin, ez was determined so that
(A2r2) =222 =5, which leads to (p) =7, where the
bracket represents the expectation value for the stochastic
realizations. The sensitivity to signal is improved for longer
integration time, and the detectable value of ¢ scales with

0.14 [ Simulation
—— Deterministic
0.12 ~——— Stochastic
0.10
= 0.08
[
[al)
0.06
0.04
0.02
0.00 * +
10 20 30 40 50
p
0.14 [ Simulation
—— Deterministic
0.12 — Stochastic
0.10
[
a 0.08
a W
0.06
0.04
0.02
0.00 + .
0 10 20 30 40 50
p

FIG. 5.

1/ min [T7, (zT)3] [4]. Thus, the detectable value of e for
T = 57 is 4.7 times smaller than that for T = 7/10, and the
true value of ey for the longer duration was set to be 4.7
times smaller than that for 7 = 7/10. More concretely, we
considered the following four pairs of frequency, duration,
and coupling constant,

(fom: T.ep) = (20 Hz,3.6 x 10° s, 1.1 x 10722),
x (20 Hz, 1.8 x 10° 5,2.3 x 10723),
x (100 Hz, 7.1 x 10% 5,5.1 x 10723),
x (100 Hz,3.6 x 10* s, 1.1 x 10723),

For each pair, we generated 400 realizations of data.
Figure 5 shows the histograms of p obtained from
simulated data. For comparison, each panel shows the
model probability distribution in the deterministic and
stochastic cases, which are given in Eqgs. (44) and (45),
respectively. In either value of frequency, the deterministic
model fails to fit the observed distribution for 7 = 7/10,
while the stochastic model fits it well. The p values of the
Kolmogorov-Smirnov tests for fpy = 20 Hz (100 Hz) are
2.6 x 107%(1.6 x 107°) and 0.32(0.75) for the deterministic
and stochastic models, respectively. On the other hand, the
stochastic model asymptotes to the deterministic model for

[ Simulation
—— Deterministic
0.04 —— Stochastic
0.03
=5
)
[a Wy
0.02
0.01
0.00 + + +
0 20 40 60 80 100
p
[ Simulation
0.04 —— Deterministic
—— Stochastic
0.03
[
a
0.02
0.01
0.00 + L . 1
0 20 40 60 80 100
p

The probability distribution of p obtained from 400 simulated data in comparison with the deterministic (blue) and stochastic

(orange) models. The upper left panel is for (fpm, T, €5) = (20 Hz,3.6 x 10° s, 1.1 x 10722), the upper right for (20 Hz, 1.8 x 10° s,
2.3 x 1072%), the lower left for (100 Hz,7.1 x 10% 5,5.1 x 1072%), and the lower right for (100 Hz,3.6 x 10* s, 1.1 x 10723).
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T = 57, and either model fits the observed distribution
well. The p values of the Kolmogorov-Smirnov tests for
fom = 20 Hz (100 Hz) are 0.56(0.13) and 0.58(0.47) for
the deterministic and stochastic models, respectively. Thus,
the stochastic effect is negligible in a long measurement
time. It is because we choose the small coupling constant
in the simulation for 7 = 57, and the stochastic effect
becomes subdominant compared to the experimental noise.
This setup of simulation corresponds to realistic experi-
ments since experiments with a long measurement time
inevitably search for such a small coupling constant to put
an upper bound. Moreover, both distributions converge to
the Gaussian distribution in a large measurement time. In
Sec. V, we will show that the stochastic nature of DM
becomes negligible to estimate the upper bound of the
coupling constant in a long measurement time.

To assess the impact of each of sy, and sgpe for
fpm = 20 Hz, we also compute p values in comparison
with the stochastic model in which each contribution is
turned off. The p values are reduced to 3.5 x 107® and
6.7 x 1078 for T = 7/10 and T = 57, respectively, if Sspace
is turned off, and 7.2 x 1073 and 4.9 x 107 if s, is
turned off. The results show that both contributions need to
be taken into account to fit the observed distribution, and
our model accurately incorporates both of them.

The upper bounds on e were calculated for confidence
levels of 0.1,0.2, ..., 0.9 in the deterministic and stochastic
models. Figure 6 shows the fraction of simulations where
the true value of ep is lower than the obtained upper bounds
for each confidence level and each pair of (fpy, 7', €5). The
gray regions represent the 1-o, 2—0, and 3—¢ confidence
intervals of statistical errors due to the finite number of
simulations. For T = 57, both models are within the
confidence intervals. For T = 7/10, the deterministic
model shows statistically significant deviations from the
diagonal line, while the stochastic model is well within the
confidence intervals. Thus, we need to include the stochas-
tic effect to evaluate the upper limit of the coupling
constant.

V. APPLICATION FOR FUTURE UPPER BOUND

In this section, we apply our method to derive expected
constraints by a future experiment. Here, we use an
alternative to the observational data p,, in order to give
a rough estimate of the upper bound put by future experi-
ments. We numerically evaluate the future upper bound
on velocity-dependent and independent signals. Then, we
consider an alIGO-like experiment in the following
analysis to investigate the stochastic effect on axion and
dark photon DM signals. Assuming the measurement
time 7, we use discretized frequencies f, = fpm +
T='(n—1/2) in the following calculation.

A. Future upper bound by frequentist’s method

We assume that no detectable DM signal is included in
an experimental data, and the data is mostly contaminated
with noise. Although the typical size of the experimental
noise is estimated by S, the observed data can
accidentally become much larger than it. Considering
this point, we introduce the false alarm rate @ and the
detection threshold py, assuming the background only case,
Ax =0, as

a= [~ apliplio)) = TP,

Pdt

(48)

where I’s are (incomplete) gamma function. a is the
probability that the noise-only data exceeds the threshold
value py. By inversely solving Eq. (48), py for a given «
can be determined. For a smaller false alarm rate a, one
obtains a higher threshold py. In this paper, we adopt pgy
with @ = 0.05 as an alternative to p,.. Note that the
concrete value of « is rather arbitrary and 0.05 is just an
example. The black line in Fig. 7 presents the noise-only
likelihood function with Ny, = 1. The integration in
Eq. (48) corresponds to the gray shaded region, and the
gray vertical line indicates pg ~ 6.0 for a = 0.05 there.
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FIG. 6. The fraction of simulations for which the upper bounds on ey calculated by the deterministic (blue) and stochastic (orange)
models are above its true value for each confidence level among 0.1,0.2,...,0.9. The first panel is for (fpm.7.€5) =
(20 Hz,3.6 x 103 s, 1.1 x 10722), the second for (20 Hz, 1.8 x 10° 5,2.3 x 10723), the third for (100 Hz,7.1 x 10? 5,5.1 x 10723),

and the fourth for (100 Hz,3.6 x 10* s, 1.1 x 10723).
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FIG. 7. Likelihood functions for single measurement Ny;, = 1
with Ay = A, multiplied by p for illustration purpose. We present
the noise-only likelihood (black solid), the one marginalized over
the DM stochasticity r (red solid), and the reference case with a
fixed r = v/2 without maginalization (blue dashed), based on
Egs. (40) and (41). The gray vertical line denotes pgy, =~ 6.0 above
which the integral of the noise-only likelihood becomes a = 0.05

(gray shaded region). The upper bounds on 1y for the other two
likelihoods are obtained such that their integrals for p < pg, (red
and blue shaded regions) are equal to 1 — = 0.05 according to
Eq. (47) with the replacement of p.,, by p4. Since the margin-
alized likelihood has a more extended distribution for a higher p,
we obtain a more conservative upper bound than the reference
case.

Now we can compute the upper bound Zup in Eq. (47) by
replacing p.,s by pg obtained above. For Ny, =1 and
A = A,, we obtain Zup ~7.6 in a stochastic case. We also
compute the upper bound in the deterministic case, where
the DM stochasticity is not marginalized but fixed as
r=+/2, and we find a tighter constraint, Zup ~2.8. As
shown in Fig. 7, this difference comes from the distribution
of the likelihood functions. The stochasticity of the DM
amplitude broadens the likelihood function when it is taken
into account by marginalization. Then, for the same
integrated value over the tail of its distribution, the
marginalized one (red solid) is more shifted than the
reference one (blue dashed), which implies a looser bound
on the signal size ly.

The translation from Zup into the upper bound on the DM
coupling constant is straightforward by Eq. (38). Using these
formulas, we can determine the upper bound of the coupling
constant including the noise and the stochastic effect, which
is numerically discussed in Secs. VB and V C.

Before we perform the numerical calculation, we show
the analytic formula for ,,(7) derived in Appendix D:

= {(AX,tol)_l/z izgzg— 1, forT <z/x,

/Iup(T) =
(Ax o) V2 /My + M\ _5(xT/7)/* for T>>1,
(49)

where Ay, represents the sum of all A(f,) over the
whole frequency range n as defined in Eqgs. (11) and (18),
and their values are given by A, = 1, A} ,, ~0.19, and
A =0.62. M, represents the relation between the

peak width and the area of the Gaussian distribution
defined by

dz—GXP(—z2/2)-

27

The analytic formulae correctly reflect the dependence
on the measurement time as /_Iup x T for T < 7/k and
Aup o TV/* for T > 7. We need the numerical calculation
for the marginal region (T ~ 7), which is discussed in the
following section.

Note that the derived upper bound is more conservative
than one simply estimated by the signal-to-noise ratio
(SNR) equal to one. Indeed, SNR =1 corresponds to
the Zup =1 for Ny, = 1, while /_lup(T) is usually larger
than one for small @ and 1 —/f in our estimate. The
difference comes from the stochastic effect and the
conservative choice of p.,,, which leads to the looser
upper bound. When we conduct the measurement and
compute the upper bound in Eq. (47) without the replace-
ment by pg, the actual upper bound can be tighter.

x= (50)

B. Velocity-independent signal

Here, we numerically estimate the upper bound (47) for a
velocity-independent signal, which is denoted by ZSQ(T)
and a superscript “s” represents the velocity-independent
signal. The deterministic part of the spectral shape of
velocity-independent signals is represented by A(f,) =
A (f,) in Eq. (9), which reflects the velocity distribution
of DM.

By using the likelihood function, we perform the
frequentist’s method developed in Sec. IVA to compute

251;) (T). We show the upper bound of the coupling constant
in Fig. 8, where the vertical axis describes iup( /T

whose 7 dependence is the same as g,,(7). AANT) is
calculated with 1—-/=0.05, py for a=0.05 and
k = 1.69. The approximate formulas in Eq. (49) are plotted

as dot-dashed and dashed lines, where we use A ~ 1.
The upper bound improves by time, where g,,(T) o« T~!/2
for T < 7 and g,,(T) o T7'/* for T > 7. The numerical
result (red line) smoothly connects two limiting cases.
Since we treat the number of the frequency bins Ny, as an
integer, /_11(1';;) has small jumps when Ny;, changes. Note that
Npin = 1 (43) is different from 7'/ = 1 due to the choice of
Kk~ 1.69 in a velocity-dependent signal.

To compare the effect of the stochastic field value, we
also show the upper bound calculated for the deterministic
case (blue line), where the fluctuation of the field amplitude
is neglected, and the likelihood is estimated by Eq. (44).
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The stochastic and deterministic cases have the largest
deviation for Ny;, = 1, where the ratio of them is about 2.7,
which is consistent with the previous result in Ref. [29]. As
the measurement time or the number of bins becomes
larger, the difference between the stochastic and determin-
istic results shrinks. It is because fluctuations of the field
value become negligible compared to the instrumental

In(a)
)~ 1

() =

where the index ¢ is determined by the least squares
method. The fitting value is ¢ ~ —0.61, and it fits well the
numerical result (red line) as shown by a black dotted line
in Fig. 8.

C. Velocity-dependent signal

Next, we numerically estimate the upper bound (47) for
the velocity-dependent signal, /_11(]1}? (T). The main difference
from the velocity-independent signal is the spectral shape.
The deterministic part of the spectral shape of velocity-
dependent signals is represented by Agc(f,), which

Nbin
1 2 345 50 100 150
: T o i
7-1/2 .
X — Stochastic
—~ 10f — Deterministic
S
e [
2 F 5}
[~ L
~
= -
- L TE=al
1t =
[ DL
0.5 L L L L L
0.1 05 1 5 10 50 100
measurement time 7'/
FIG. 8. Upper bound on the coupling constant for velocity-

independent signals. We perform the frequentist’s method to

estimate A% (T) (red line) for the likelihood Eq. (45) with
Ax(f,) = Ay(fn), a=1—=0.05and « = 1.69. The vertical
axis describes the normalized upper bound of coupling constant.
The blue line represents the upper bound for the deterministic
case, where the fluctuation of the field amplitude is neglected and
the likelihood is estimated by Eq. (44). The dot-dashed and
dashed lines represent the approximation formulas for short-time
and long-time measurement Eq. (49), respectively. /_IE{;)(T) is
fitted by Eq. (51), which is shown as the dotted line.

VM, +M, (K§> 1/4 +(kT/7)4 {, /}Eggg -1-/M,+ Ml—ﬂ:| for T > 7/k,

noise when the coupling constant is severely constrained
by a long measurement time.

For the later convenience, we find the fitting formula of
the numerically computed /_11(1‘;,) (T). We require that /_1[(1‘;) (T)
smoothly connects the asymptotic formulas in Eq. (49). We
approximate the transient behavior by adding the power of
T in the following way:

for T < 7/k,
(51)

depends on the relative direction of the interferometer
arms to the solar velocity. Here, we consider the two typical
directions introduced below Eq. (31):

A 2A |
- A+ A, for optimal direction.

for conservative direction,
(52)

Their integrated signals are given by

2A ) 1 ~0.38 for conservative direction,
Ax ot =

A o+ A =0.81 for optimal direction.
(53)

Again, we perform the frequentist’s method in Sec. IVA
to estimate A4 (T) with @ = 1 — § = 0.05 and x = 2. The
results are shown in Fig. 9. The two upper limits (red and
blue lines) are estimated based on these two directions. The

optimal direction leads to about 4/0.81/0.38 ~ 1.5 times
more stringent upper bound than that of the conservative
direction. However, the interferometer arms can take the
optimal direction only in limited instances, if any, due to the
rotation of the Earth. To be conservative, we focus on the
upper bound for the conservative direction in the following
calculation.

In the same way to the velocity-independent signal, we
compare the stochastic case to the deterministic case
(magenta and cyan lines) estimated by Eq. (44). Since
the probability distribution is the Rayleigh distribution both
for the velocity-independent and velocity-dependent sig-
nals, the stochastic effect for the velocity-dependent signal
is similar to that for the velocity-independent signals
in Fig. 8.

For later convenience, we estimate the fitting formula of
ZS%)(T) in the same way as the case of the velocity-
independent signal. The fitting formula for the velocity-
dependent signal with the conservative direction is
given by
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(Axao) ™1~ 1

with k =2, Ay ~038, and g~-0.61. The fitting
formula is shown as a black dotted line in Fig. 9.

D. Constraint on axion DM

In the aLIGO-like experiment, the axion signal appears
in two detection ports, a transmission and reflection port,
where the former is more sensitive to the low-mass
range since the photons travel cavity for an odd-number
of times [34]. Using Egs. (38) and (51), we translate

Aaxion < /_151‘;2 into the upper bound of coupling constant as

8\/§7T TSnoise (fDM) 7(s)

< T) = yl T
9a < Jaup(T) mao,(2n/k) 2T ap (T)
= 1064 nm
~5x 1071 GeV 20 (1)~
X 0.4 GCV/C]‘H3 Snoise(fDM) 1 day 1/2
PDM 1079 Hz7! T '
(55)
Nbin
1 2 345 50 100 150
50' T T T 7 [ 7 7 rrrrrrmmmmmmm 7 y "
o T2 — Stoch. (conservative)

—— Det. (conservative)
— Stoch. (optimal)

Det. (optimal)

measurement time 7'/

FIG. 9. The same plot as Fig. 8 for the velocity-dependent
signal. We perform the frequentist’s method to estimate lﬂf;)(T)
(red and blue lines) for the likelihood Eq. (45) with
a=1-=0.05, k=2, and A(f,) defined in Egs. (52). The
red and blue solid lines represent the upper bound when the Sun
moves relative to the interferometer arms in a conservative and an
optimal directions, respectively. The magenta and cyan lines
represent the upper bounds for the deterministic case, where the
fluctuation of the field amplitude is neglected and the likelihood
is estimated by Eq. (44). The dot-dashed and dashed black lines
represent the approximation formulas for short and long meas-

urement time in Eq. (49), respectively. Aﬁ;)(T) is fitted by
Eq. (54), which is shown by the dotted black line.

4 n(a
(AX,tot)_1/2<\/ M, + Ml—ﬁ(Kg)l/ + (Kf)q [\/ingﬁ; -1-/M,+ Ml—/j:|> for T > 7/x,

for T < 7/k,
(54)

|

We show the future constraint on g, for an aLIGO-like
experiments with a laser wavelength 2z/k = 1064 nm and
T =1 hour in Fig. 10, where the noise spectrum is
calculated in Ref. [34]. The orange and cyan lines represent
the sensitivity by the transmission and reflection ports,
respectively. The solid and dotted lines represent the upper
bound by the stochastic and deterministic cases. The upper
bound becomes looser for the smaller axion mass than
10715 eV due to the stochastic effect.

Compared to the previous results [34], our results put the
looser constraint for the following two reasons. At first, we
estimate the future exclusion limit by frequentist’s method,
while the Ref. [34] estimates the future sensitivity with
SNR = 1, which leads a difference of about factor of 2.
Second, as we mentioned, the stochastic fluctuation of field
value loosen the upper bound by about factor of 3, which is
shown by the difference between the solid and dotted lines.
Due to these reasons, we estimate the conservative upper
bound for the aLIGO-like experiment.

E. Constraint on dark photon DM

The interferometer experiment on dark photon DM has
three different signals, Simes Sspace> @A Scharge- The upper
bound of the coupling constant is placed by the strongest
one among them:

107

reflection, with

transmission, with

-------- reflection, without

1078 1
transmission, without

L " L " L " L

1078 1071 1072 10710

DM mass [eV]

FIG. 10. Upper bound of coupling constant g, for axion DM
with 95% confidential level (CL) (@ = 1 — # = 0.05). We assume
the alLIGO-like detector with a measurement time 7 = 1 hour,
where the response function is calculated in Ref. [34]. The solid
and dotted lines represent the future exclusion limit with and
without the stochastic effect of the field value, respectively. The
orange and cyan lines represent the sensitivity by the transmission
and reflection ports. The gray vertical line represents a mass at
T=r1.
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ep < min (e(time) (space) €(charge)). (56)

D,up ’eD,up »~D,up

As we derived in Sec. IIIB, sgjpe and Schorge are the
velocity-independent signals and have similar power
spectrum to the axion except for the constant coefficient.
On the other hand, sy, 18 a velocity-dependent signal, and
its spectral distribution is different from that of the axion.
Then, the upper bounds of coupling constant are given by

—1
e(time) i (Q/ M )in 2ppm sin2 m_L
D.up mL 3m? 2

TSnoise (fDM) 7(s)
X 5T Aup (T). (57)

D.up

hage) [ 1(Q/M), = (Q/M),| Ppow )"
—\¢ 2Lm 3m?

VTSpa) 307, &

x 2T *
B -1
(space) —|e (Q/M)inU 2pDM
D’up 2\/5 3m2
TSpoise (/M) 5(v)
X T’Iup (1), (59)

where /_ll(]?(T) is evaluated by Eq. (54).

For the alIGO-like experiment, the arm length is
L = 4 x 10° m, and mirrors made of the same ingredients,
Gin = 4. ~0.5/m,, for D = B — L charge. In this case, the

upper bound is put by both egi_rfifp and ej,f_";‘fjg. We estimate

the upper bound by adopting the same noise spectrum as

Ref.[13]and /_Il(,fg) for the conservative direction. We show the

future constraints on €_;, with 7 = 1 hour in Fig. 11, where

. (time) (space)
the orange and cyan lines represent €, ., and €g; .,

respectively. Since we use the fitting formula for /_11(,}’,) , the

small jumps of /_L(ff)) inFig. 4 disappearin Fig. 11. As we show

in Fig. 4, egf’zl?fg dominates the upper bound for small-mass

region. The dotted line describes the upper bounds without
the stochastic effect; it converges to the solid line for large
mass since the number of bins increases as Ny, « m.
Although Fig. 11 describes a slight difference between
solid and dotted lines for m > 10712 eV, the difference
comes from a errors on the fitting function of /_11(1’{,).

Compared to the previous work [13], our estimate
predicts looser constraints due to some different calcula-
tions. First, Ref. [13] estimates the sensitivity by SNR = 1,
while we calculate the future exclusion limit by frequent-
ist’s method. Second, the stochastic effect loosens our
constraints.

1020 ¢ T

.
.
i

D
\
.

.
.
.

10721

3 ol .o T—=
) = Time,with ~ """~
"""" Time, without
1028 ¢
F Space, with
Space, without
10—24 n PR L il L il PR
10—14 10—13 10—12 10—11 10—10
DM Mass [eV]
FIG. 11. The upper bound of coupling constant ep_; for dark

photon DM with 95% CL (a =1 —f = 0.05). We assume the
alLIGO like detector with a measurement time 7 = 1 hour, where
the noise spectrum is calculated in Ref. [13,35]. The solid and
dotted lines represent the future exclusion limit with and without
the stochastic effect of the field value, respectively. The orange
and the cyan lines represent the upper bound from the temporal
and spatial modulation of mirrors induced by dark photon
DM. The gray vertical line represents a mass at 7 = 7. The
cyan line describes the conservative direction of the solar
velocity, while the optimal direction put a severe constraint
(cyan shaded region).

Reference [36] investigated the constraints on dark
photon DM with almost one of year data of LIGO and
Virgo between 10-2000 Hz. Let us revisit their results
considering our discussion. First, the coherence time of
these DMs is much shorter than the observation time; e.g.,
the coherence time is shorter than one day for DM
with a mass corresponding to 10 Hz oscillation. Thus,
the stochastic effect of amplitude hardly affects their
results. Second, Ref. [36] assumed the isotropic velocity
distribution of the dark photon dark matter, and they
estimated the dark photon signal from the spatial
gradient [Eq. (31)] by integrating over all the propagating
direction and polarization directions. Actually, the pecu-
liar velocity of the Sun might affect the signal as we
discussed in Sec. V C. The direction dependence, how-
ever, is averaged by the rotation of the Earth. A detailed
analysis including a rotation of the Earth is left in a
future work.

We comment on the daily modulation of signals.
Although we assume that 7, are constant in the above

discussion, v, and A actually change due to the rotation
and revolution of the Earth. When the measurement time is
much smaller than one day, we can safely neglect its
rotation. If not, the daily modulation could modify the
sensitivity and upper bound of an interferometer experi-
ment. We leave the detailed treatment of the daily modu-
lation to a future work.
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VI. CONCLUSION

The ultralight bosonic field is a fascinating candidate of
DM and intensively searched by various experiments.
Understanding the characteristics of DM signals is crucial
for these experiments to properly put the upper limit on the
coupling constant. In this paper, we investigated the
stochastic nature of bosonic DM fields including the dark
photon DM and evaluated the upper bound of a DM
coupling constant.

The ultralight bosonic field is described by the super-
position of classical waves, which results in the stochastic
amplitude and phase. In Sec. II, we estimated the proba-
bility distribution of the field value in frequency space. We
extended Ref. [27] to include the spatial derivative of the
field value, which is closely related to the dark photon DM
signal in interferometer searches. We found that a power
spectrum of the spatial derivative has a different spectral
shape compared to that of the field value. Using these
probability distributions, we derived likelihood functions of
axion and dark photon DM signals in interferometer
searches. We numerically simulated the dark photon DM
signals to confirm our semianalytic calculations.

Based on the frequentist’s method, we can easily translate
a power spectrum of interferometer searches to the upper
bound of the coupling constant through Egs. (45) and (47)
including the stochastic nature of DM signals. Next, we
apply our formalism to estimate the upper bound by the
future interferometer experiments. We estimated the typical
experimental data without DM signals from the projected
experimental noise. Then, we perform the frequentist’s
method to put on the projected upper bound. The normalized
upper bounds are shown in Figs. 8 and 9. For the velocity-
dependent and velocity-independent cases, the stochasticity
on the amplitude loosens the upper limit up to about a factor
of 3, which is consistent with the previous work [29].
Although Ref. [29] focused on the shorter measurement time
than the coherence time, we extend their analysis to the
longer measurement time. We found that as the measure-
ment time exceeds the coherence time, the stochastic effect
becomes inefficient. We explicitly derived the time depend-
ence of the upper limit, & 7~'/2 for a measurement time
smaller than the coherence time and « T~'/* for a meas-
urement time larger than the coherence time.

The expected constraints from alLIGO like experiments
are shown in Fig. 10 for axion DM and Fig. 11 for dark
photon DM. Our analysis works for both axion and dark
photon DM in a similar way. The stochastic nature of the
DM especially affects constraints on a small mass region
due to long coherence time. Our formulation can be applied
to other experiments searching the ultralight bosonic DM
including axion and dark photon DMs. As future experi-
ments will search low frequency (small mass) regions, the
stochastic effect becomes more important.

In this work, to derive the sensitivity curve of aLIGO
with the stochasticity of the velocity-dependent signal of

dark photon DM, we have assumed 7 =1 hour and
separated its component into two directions parallel and
perpendicular to that of the Sun’s velocity. However, this is
not an effective method once the measurement time
becomes longer than one day due to the detector’s rotation
on Earth [27,37,38]. We leave the treatment of the effect of
Earth’s rotation and considerations analyzing the signal in
the frequency domain with the longer measurement time to
a future work.
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APPENDIX A: FOURIER TRANSFORMATION OF
FIELD VALUE AND ITS DERIVATIVE

In this section, we derive the Fourier transformed field
value (8) and its derivative (13). We formally perform the
summation in Eq. (5). At first, we reorganize the summa-
tion over the label i in Eq. (5) by introducing three labels

(n.l,p) as

Aan

D(1,X) _6¢N¢l/zzz Z
n P

x cos (m(1+12/2)t + mv,&,-E+00""), (A1)
where n is the label of DM speed |¥| = v, [ is the label of the
direction of DM velocity 7 = v,¢;, and p labels the
oscillation phase of the contributions with the same n and
l. Each label (n, [) represents partial waves within a finite-
size bin of the velocity Av,AQ;, where Av, and AQ;
represent ranges of the speed and direction of partial waves.
Note that the Awv, is related to the frequency resolution
of an actual experiment as Av, = v~'Af,/f with 2zf, =
m(1 +v2/2) in a nonrelativistic limit, v, < 1. AN,
represents the number of waves that belongs to the (n, [)-
th bin. Using the velocity distribution in Eq. (2), AN, is
given by
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AN, =N [ M”/‘dQJWM( &) +7). (A2)

The summation over the index p in Eq. (A1) is computed as
Z cos (m(l +v2/2)t+mv,é; - X+ 6’5,"'1))

=Re [exp(im(l +v2/2)t +imv,é; -

(A3)

The summation of random phases can be understood
as the random walk in two-dimensional space, which is
described by Gaussian variables in the limit of large AN, ; as

Z?N”'l exp(if;) = \/AN, ;/2(R,; + il,,), where R, ; and
1, ; follow the standard Gaussian distribution. We can further
rewrite them in the polar coordinate as r, e =
R, ;+il,;, where the phase 6, ; follows a uniform distri-
bution over [0, 2x], and the radius r,; follows the standard
Rayleigh distribution (10). Using these stochastic variables,
the total field value is written as [27,29]

D(1,X) = Z® 1, %),

AN,
tx _U(/Z Nd)

x L o (m(1+ v2/2)t + mv,é;-X+0,,).

V2

(A4)

An experiment searching for an ultralight scalar field often
analyzes the Fourier-transformed data to extract the periodic
signal. Provided that we have the time-series data of
the field value over the observation time 7 spanning

= [-T/2,T/2], we find the Fourier-transformed field

value at the nth frequency bin @, as

. e . B
&, (f.5) = / dte=2l1p, (1, %)

-T/2
T AN” n P d I = .
TR Bew(imi(f.E) ¥ o)

(If = ful S1/T)
0 (|f_fn| > I/T)7

(A5)
with ¥(f, €) = \/2(2zf/m — 1)e. Here, we approximated

the time integral by the leading contribution at f = f,,, while
d, (f, X) is extended in the Fourier space over the frequency
resolution Af = 1/7. Note that since each ®,, contributes to
the total field value ® = >on @, at different frequency f,,

AN”»[
) Z exp (iﬁg,"’l))] .
p

®(f,) is equal to ®,(f,). Therefore, we obtain a master
formula for the stochastic bosonic field as

AIVn,l
Ny

- - T
cD(fn’x) ':Eo-zﬁz
1

T A
X |—=exp (imv(f,,e;) - x + 10 , (A6
exp (ni(f,,) 7+ 0, (A6)
where the number of waves with the same velocity vector
v,€; can be computed as

N /fn+Af'/2 oy
T feare o df

x/’&@ﬁmwma+%» (A7)
AQ,

This result is an extension of the formula in Ref. [27],
because it also describes the velocity direction, which is
important for the signal induced from the spatial derivative
of a field value.

Using Eq. (A6), we estimate the power spectrum of an
observed field value, which reproduces the known results on
the axion field value [27]. We can choose at X = 0 without
loss of generality since a shift of the coordinate just results in
a constant phase of each partial wave. Since ® becomes
independent of a direction of velocity in this case, we sum
the index / to marginalize the direction dependence. After
the summation over /, the field value at X = 0 is written as

6¢ \/ fn |: exp lan :| (AS)
AN, FutF/2
mm52ﬁ4=/ Foma(0) 207 (A9
¢ famAf/2 df
:l erf(v_vo) —l—erf(v—H}O)
2 Vyir Vyir
_(v+ve)? _(-1p)?\ | U(fatAS/2)
+ Vyir <€ 2o e T2 >‘|
Vo o(fu=Af/2)
(A10)

where we omit ¥ = 0 in the argument, and erf(x) represents
the error function. Note that A (f,) appears inside the
square root in Eq. (A8) since we estimate the variance of the
sum over / in a similar way to derivation in Egs. (A1)—(A4).

We show (T/7)A,(f,) in Fig. 12, where blue, green, and
red lines represent the measurement time 7' = 0.57, 7, and
10z, respectively. For T > 7, (T/7)A(f,) converges to the
distribution of standard halo model (black line) whose 99%
of power is contained within f € [m/2z, m/2x + 1.6977!]
(gray vertical line). We can approximate A (f,)
in two cases: When the observation time is shorter
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14F
1‘2i — T =0.57
1.0? — T =17
= o8l
E.<\]L~ — T =107
0.6j
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04f v
[ Tl fsma(f)
A ? o(f)
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FIG. 12. Deterministic part of the power spectrum of bosonic
field amplitude A; in Eq. (A9). A vertical axis represents the
spectral shape normalized by 7/z such that the spectral shape
converges to (3%/v) fsum (black line) in large T limit. The three
colored lines present cases with different measurement times,
T = 0.57 (green), 17 (blue), and 107 (red). The frequency space is
discrete as Af = 1/T for each case.

than the coherence time 7 < 7, the frequency bin is so wide
that one bin contains almost all DM waves,
fAf]_”SHM(v)ﬁdf — 1 at f ~m/(2x). On the other hand,
when 7 > 7, the integration range is so narrow that the
integration is approximated by [, fsum(v) g—}id f ~
Ssum(v)
is given by

g—;A f. Thus, the typical value of power spectrum

(T <)

A = 1T ot ()

(Al1)

’*]I'—‘ D’)

where 7. is an index of a bin including fpy = m/(27), and
v, is the velocity of DM at the nth frequency bin.

The spatial derivative of field value is more complicated.
Using the sum of partial waves in Eq. (A6), the spatial
derivative of field value is given by

AN )
= —G¢Zlm1ij fnr &) an et
®

(A12)

Vi®(fu¥)|_

We employ a coordinate system whose z axis is aligned
with U and perform the summation over / in the same way
as Eq. (8), and we derive

Som /a0 [Hexs i0,)]
(A13)

A=) [Uf(fffl)] AN,

i v
f,z+Af/2
= / df / 2Q,
fn_Af/z
[Uj(fmel)]z

X fsum(U(f, €) + 17@)72, (A14)
where r, ; and 6, ; for each n and j follow statistically
independent Raylelgh distribution and uniform distribution
between O and 2z, respectively. The analytic representa-
tions of A; for j = x, y and j = z are shown in Egs. (16)
and (17), respectively. In an arbitrary coordinate system,
V;® and V,®(k # ) are correlated due to the constant
velocity .

APPENDIX B: SIGNALS OF DARK PHOTON IN
INTERFEROMETER

Here, we derive the signals of dark photon for the
interferometer search in detail. At first, we relate the light
traveling time of the laser (28) to the displacement of
mirrors (24). Interferometer experiments observe the differ-
ence of light traveling times between two interferometer
arms defined in Eq. (28) [13]

9(1,8) — p(1.d)

h(t) =
() drvL

(B1)
The laser phase ¢(t, ¢) depends on the round-trip time 7,,
in which the injected light return back to the injected point.
Using the positions of an input and end-test-mass mirrors,
Xin(2) and x,(z), T, is written as

Tr(t) = _xin(t) + 2xe(t - L) - xin<t - 2L>, (B2)
and the laser phase is given by
¢(t,€) = 2av(t = T,) + o, (B3)

where ¢, is a constant phase. The dark electric force
fluctuates the position of mirrors. Without fluctuations, the
input mirror is located at X = 0, and the end-test-mass
mirror is at X = Lé. With fluctuations, their positions
projected on the arm direction € are given by

Xin(7) 0: (Q/M);n),
x, (1) =L +&-6%(t.L& (Q/M),).

=2 8% % (B4)

(BS)

where (Q/M),, and (Q/M), are the charge mass ratios of
the input and end-test-mass mirrors, respectively. When
ingredients are different between two mirrors, the charge-
mass ratio is different, (Q/M),, # (Q/M),.

Next, we decompose the phase into the three different
terms in the following way:
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(P([, E) =@o+ 27”/(t - 2L) - 27”/(5Ltime + 5Lspace + 5Lcharge)' (B6)
The first term represents the phase shift by a finite-time traveling effect, which is defined by
OLime = é: [_5)?0 0; (Q/M)m) + 25}0 —-L,0; (Q/M>1n) - 5550 —2L.0; (Q/M)m)]
M) o
% Ze [—Ak 1,0) + 24, (1 — L,0) — Ay (t — 2L,0)]
4e€D(Q/M)in . mL\ 0
[ TSII’I2 7 ot ;ekAk(t — L 0) (B7)

The second term is induced by the spatial difference of the
DM field value,

5Lspace =2é- [5}0 —L, LE’ (Q/M)m)
= 8%(1 = L,0;(Q/M);,)]

2eep(Q/M);, , O a5
m L E;ekejv]/ak(z —L,0), (B8)

where we assume that L|k| ~ Lm# < 1, which is valid in
the case of ground based interferometers. The third term
only appears when the ingredient of two mirrors are
different,

5Lcharge =2é- [5)_50 —L,Le; (Q/M)e)

—0x(t = L, Lé; (Q/M);,)] (B9)
_2eep((Q/M), — (Q/M);,)
~ p

x ;;ekAk(t —L,L?). (B10)

Since each term differently depends on parameters of a
detector, we consider them separately.

After the Fourier-transformation, the field values of the
vector field are represented by Egs. (19) and (20). Then,
Sime 1S given by

/2 . 8L (&) —6L..(d
stime(fn) :/T/2 dt€_27”fnl tlme(e)_ZL t]me( )

M). L
- eeDTi(Q/ L)mGA sin? (m7>
m

X/ As(fn) |:§k:(ek - dk) %exp(iekﬂ)} ’

(B12)

(B11)

where we redefine 6, ,, to include constant phases. Since the
factor in [...] is a sum of three complex Gaussian variables,
we replace it by one complex Gaussian variable with a

variance Soi(ex —dy)?> = |é —d|. Considering the
above, s;me 1S Written by using new stochastic variables,
r, and 6,, as

sime(f) = <eeDT(Q/’fL)m"Asm2 <’”2L> @ - Zz|>
507 | sexatio)] (B13)

where 6, follows a uniform distribution over [0, 2z], and r,,
follows a standard Rayleigh distribution.
In the similar way, Sparge 18 €valuated as

) (eeDT((Q/M) (o ;_g)
507 | sexatio,)] (B14)

Both sjme and schqrge are similar to the axion signal except

for the proportional constants.
On the other hand, sy, depends on a frequency
differently,

(Q/M);,040

eepT >

Xzeke di)\/Aj(fn)

Tkon.j .
X exp (0, ) |-
|:\/§ p( k, ,./):|

For an interferometer with two arms pointed to unit vectors,

Sspace (fn) =

(B15)

Zand d, Sspace (fn) 18 written by

Sspace(fn) - (66 TW)

¢z

x {jiexp (ien)] .

2-2(d-2)dje A,

(B16)
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APPENDIX C: LIKELIHOOD IN A DETERMINISTIC AND A STOCHASTIC CASE
We showed the likelihood of the total power spectrum p (42) in Sec. IVA. Here, we derive the likelihood for a

deterministic case (44) and a stochastic case (45).

First, we consider the deterministic likelihood of p neglecting the Rayleigh distribution of the field value:

Loltah = [ (ﬁdpn V2 )o(s

Npin
/ <H%e—m2/2) /
: 2w _

e—(/)+A)/2 1

o dk
. Z—”exp [ik (p -

dk .
-A/2 T ikp .
¢ /2ne ;m! 20

Nyin
Z pn>

Nin

Z|J\7n + V24,

)

1 1 A\ ™
(] k)Nbin+m 2

2 p” m!(m—i—Nbin—

e~ N2 () Npig =1
2 A

where we define the sum of signals
Nbin

A=2> ()2

and we use the modified Bessel function of the first kind
I,,_,, which satisfies

(C2)

- 1 1-n
| X" = len—l (2\/-;)

«m!(m+n—1)! (3)

m=

This is the noncentral chi-square distribution when the
number of degrees of freedom is 2Ny;,, and the non-
centrality parameter A.

Next, we estimate the stochastic likelihood marginalising
the amplitude of the field value:

Eplta) = | (ﬁdpn L(plin) sz)

Nbin

w, p
N " (P C4
;2(1+A§)6Xp< 2(1+/15)>’ (C4)
Nypin 2
1+/1
o= 11 55 (cs)
W ()

where we assume A, # 1}, for all n # n’. To evaluate the
integration, we transform the delta function as
8(x) = [dk/(2x)e™, perform the integration on p,, and
then evaluate the integration on k by the saddle point

A\ m p Nyip+m—1
() )

s (VD).

(C1)

method. Assuming each A, has a different value, Ny;,
distinct saddle points appear. On the other hand, when all 4,
have the same value 4,, = 4, these saddle points degenerate,
and the likelihood is computed by the Ny;,-th residue as,

L(pl{an = 2})
p
P (_m>

1 '[)Nbin_l
(Co)

" (o = D12V (1 4 22) Ve

APPENDIX D: APPROXIMATE FORMULA FOR
SHORT- AND LONG-TIME MEASUREMENTS

We derive the analytic formula for the upper bound
Agp (47) in two limiting cases, Ny, = 1 and Ny, > 1. We
use the detection threshold py, (48) instead of the observed
data ps, Where one can easily perform the similar analysis
on p.,s- Here, we choose the analyzed frequency range « in
Eq. (42) large enough to cover almost all DM distributions
for simplicity. We discuss the optimal choice of « later.

When the measurement time is much smaller than the
coherence time 7 < 7z, the DM signal only appears at a
single frequency bin; that is, Ny;, = 1. Then, the spectral
shape of the DM signal is given by

AX(fn) - AX.totén.nc for T' < T/K1 (Dl)
where n, is the index of the bin that includes fpy, and
T < t/k is the condition for Ny;, = 1 found in Eq. (43).
Ay o is the sum of all Ax(f,) over the whole frequency
range n as defined in Egs. (11) and (18), and their values are

092010-20



STOCHASTIC EFFECTS ON OBSERVATION OF ULTRALIGHT ...

PHYS. REV. D 108, 092010 (2023)

given by Ag =1, Ay o2 0.19, A o = 0.62. Note that
A(f,) becomes proportional to Kronecker delta 6, ,, , since
the frequency resolution is so rough that the single
frequency bin covers almost all DM particles. In this Ny;, =
1 case, the likelihood function is given by Eq. (41). The
detection threshold defined in Eq. (48) is calculated as [29]

pac = 2In(a™"). (D2)

The upper bound on 4 is given by Eq. (47) as

Pdt
_ ), D3
2 + 2(lup)zAX,tot> ( )

| [ Pt . /In(a) _
/IUP B \V4 AX,tot _2lnﬁ_ = AV4 AX,tot ln(ﬂ) 8 (D4)

Using Eq. (38), we relate Zup to the upper bound on the
coupling constant as

l—ﬁzl—exp<—

In(a) _q \/m

]n(ﬁ) 2 AX.totT
o T—l/2

€D.up ’ ga,up (T) &

for T < 7/k. (D5)
This formula explicitly shows the improvement of the
upper bound by time for a short measurement time.

On the other hand, when the measurement time is much
larger than the coherence time 7 > 7, the DM signal
spreads over Ny;,(>> 1) frequency bins. In this case, we
can approximate the probability distribution of p by a
Gaussian distribution in the following way. The likelihood
in each frequency bin is given by Eq. (41). Let us consider a
group of bins whose frequencies lie within a certain range,
f < f. <f+f. Wechoose a sufficiently small 5f so that
the differences in the likelihood function between the bins
in the group are negligible. In the large Ny, limit, the
frequency interval Af = 1/T becomes infinitesimally
small, and the number of bins in the group blows up.
Then, by virtue of the central limit theorem, the sum
of p, in the bin group follows Gaussian distribution. Based
on the likelihood (41), the mean value and variance
of the summed p, are given by E[p,] = 2(1 +42) and
Varlp,] = 4(1 + 42)?, respectively. The total sum,
p= ZQ’“" P> also follows the Gaussian distribution with
a mean value u,=E[]p] = SN E[p,] and a variance
o} = Var[p] = 3" Var[p,]. The likelihood of p is
approximated by

L(pl{A.}) =

#y(2x) = 22(1 +42) = 2(Npin + 23Ax00). (D7)
o2(x) =4Y _(1+22)?
~4 <Nbin + 223 Ax ot + Z/ﬁi) . (D8)

where we use 4, = Ay /Ay (f,) and S0 Ay (f,) = Ax ot
Now we can compute the upper bound by plugging the
approximated likelihood function (D6) into Eq. (47).

For later convenience, it is useful to define a function M,
which denotes the relation between the peak width and the
area of the Gaussian distribution as

¥ = /oo dzLexp(—zz/Z), (D9)

M, V2n

where y is a probability where a standard Gaussian variable
exceeds M, (> 0). Note that M, is the inverse function
of the complementary error function. For example,
Mgz, ~0.468, My o5~ 1.64, and M ~2.33. Given that
the likelihood in Eq. (48) is well approximated by a
Gaussian function (D6), the threshold py, reads

ﬂm:ﬂp(/—lx :0)+Ma5p</_1x =0) :2(Nb1n+Ma Vv Nbi“)'

(D10)
In the same way, Eq. (47) is evaluated as
Pdt = .up(j“up) - Ml—ﬁ(fp (j“up) (Dl 1)
=~ 2(Npip + Z%pAX,tot)
— 4M_y(Nyjp + 2/_13pr¢01>- (D12)

In the last line, we neglect Y, A% term since it is
subdominant in a large Ny;, limit as we will confirm later.
Combining both relations, 4, is estimated as

- 1
/lﬁpzA (Ma+M1—/i)\/ Nbin-

X, tot

(D13)

Here, we revisit the validity of approximation in Eq. (D12).
In a large Ny, limit, >, A% is subdominant because
- 1/4 - N
of Ay« N, Ay(f,) « 1/T «Ngh, and 30,7 =
> n AuplAx(f)]* & N°. Finally, the upper bound of the

coupling constant is given by

€ g (T) X (Ma + Ml_ﬁ) v Nbin TSnoise (fDM)
P e Ax ot 2Ty
« (KT /)V4TV2 o« T-V* for T > 1.
(D14)
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Here, we explicitly showed that the slow down of improve-
ment by time holds even in the case with DM fluctuations.

In summary, we derived two analytical formulas of /_Iup(T)
fortr < T (D5)and T > 7 (D14) as

_ Ay o) /2 In(a) 4
/Iup(T): ( Xt t) In(p)
(Ax o)™V /My+M,_5(kT/7)V/* forT>>1.

(D15)

forT <7/k

In the above discussions, we limit the frequency range of
data as fpy < fn < fom(1 + «2?). Here, we investigate
the optimized choice of x and its effect on the sensitivity by
using the analytic formula (49). We consider the long
measurement case 7 >> 7, in which the number of bins is
given by Ny, ~«T/z. The upper limit of the coupling
constant depends on « through 4y, o (A o)~/ 2c!/* as
shown in Eq. (D15). When we use a small k, Ay, depends
on « through the integration range of a frequency in the
following way:

Sfomtk/T _ dv
Al = [ Famw ar. @16
fou df
for the velocity-independent signal. When « is

much smaller than unity, the measurement covers an only
small fraction of the DM signal, which leads to
smaller Ay . Since gy, o Ay & (Ax o)™/ 2614, we
present (Ay )~ "/?«"/* in Fig. 13 for a velocity-
independent signal (blue line) and a velocity-dependent
signal (orange line). Although the upper bound becomes

L A B R
2.4 .
[ — for A = Ay

22r ]
& : for A =2A, ]
T 20f ]
= ]
e ]
~ 18} ]
I ]
D el ]
= [ ]
= [ ]
e 14} ]
1.0' 1 n n L n 1 n n n n 1 n n n n 1 n n n n 1 n n n ]

05 1.0 15 2.0 25

K

FIG. 13. « dependence of the upper bound on the coupling

constant for Ny, ~ kT/7 > 1,€p 45, Gaup X Aup % (A o) 72614
[see Egs. (38) and (49)]. x determines the frequency range
[foms fom + k/7] of our analysis defined in Eq. (42). The blue
and orange lines represent the cases with the velocity-independent
signal A = A, and the velocity-dependent signal of the conservative
direction Ay = 2A,, which has been discussed below Eq. (31),
respectively. For x <1, Ay, increases and results in a tighter
constraint as k increases. However, for a too large x > 2, the analysis
includes an additional frequency range where DM signal is very
little and ends up weakening the constraint.

the smallest for k ~ 1, the choice of k does not dramatically
change the upper bound and is less important compared to
the amplitude fluctuation on 7' Z 7. In this paper, in order to
gather up most of the signal, we adopt a value of ¥ which
covers 99% of the dark matter signal: x ~ 1.69 for the
velocity-independent signals and x ~2 for the velocity-
dependent signals.
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