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We use unlabeled collision data and weakly supervised learning to train models that can distinguish
prompt muons from nonprompt muons using patterns of low-level particle activity in the vicinity of the
muon and interpret the models in the space of energy flow polynomials. Particle activity associated with
muons is a valuable tool for identifying prompt muons, those due to heavy boson decay, from muons
produced in the decay of heavy flavor jets. The high-dimensional information is typically reduced to a
single scalar quantity, isolation, but previous work in simulated samples suggests that valuable
discriminating information is lost in this reduction. We extend these studies in LHC collisions recorded
by the CMS experiment, where true class labels are not available, requiring the use of the invariant mass
spectrum to obtain macroscopic sample information. This allows us to employ classification without labels,
a weakly supervised learning technique, to train models. Our results confirm that isolation does not
describe events as well as the full low-level calorimeter information, and we are able to identify single
energy flow polynomials capable of closing the performance gap. These polynomials are not the same ones
derived from simulation, highlighting the importance of training directly on data.
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I. INTRODUCTION

Data collected in hadronic collisions offer a significant
opportunity to precisely test the Standard Model (SM) and
to search for physics beyond the SM. The identification of
muons resulting from electroweak boson decays (called
“prompt”) is a crucial part of many such studies, as muons
are typically well measured and have low rates of back-
ground. An important source of background for these events
comes from muons produced within jets from decays in
flight. This “nonprompt” background is largest at the lower
end of the muon transverse momentum spectrum, which has
become important in searches for supersymmetry [1–6] as
well as for low-mass resonances [7–10].
Prompt muons tend to have less nearby detector activity

as compared to muons from jets, which are found near
hadrons from the rest of the jet. The concept of “isolation”
is therefore important to much of the work involving the
discrimination of prompt muons from the nonprompt

backgrounds. A complete description of the isolation
requires capturing the high-dimensional data in the vicinity
of the muon. In practice, high-dimensional data are
challenging to analyze and isolation is typically reduced
to a scalar quantity [11,12]. However, in the reduction from
a high-dimensional (low-level) representation of the data to
a lower-dimensional (high-level) one, information can
be lost.
Deep learning with low-level inputs has been demon-

strated to exceed the performance of engineered high-level
observables on a number of tasks in high energy physics,
starting with Refs. [13,14] and now including many studies
[15]. In the context of prompt muon identification, deep
neural networks were able to outperform classical isolation
definitions using simulated data—by as much as 50% in
nonprompt background rejection at a prompt muon effi-
ciency of 50% [16]. This was achieved by processing all of
the calorimeter cells1 in the vicinity of the muon, corre-
sponding to roughly 1000 dimensions per event. Significant
suppression of nonprompt backgrounds with a deep learning
approach has the potential to improve the precision and
sensitivity of many measurements and searches involving
muons at the Large Hadron Collider (LHC).
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1The previous work mentioned here only used calorimeter
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However, previous studies were based on simulations,
with relatively simple detector effects. Hadronic final states
are complex and difficult to model, so it is reasonable to be
concerned that the performance of a deep-learning-based
isolation strategy trained on simulated events may depend
on details of the simulation that are not faithful reproduc-
tions of collider data. Scale factors derived using standard
tag-and-probe methods [17,18] may correct the efficiency,
but the performance in data would be suboptimal [19].
Achieving optimal performance in data requires training
with data. The limitation is that data are not labeled as
prompt or not prompt, so the supervised machine learning
strategies used in previous studies and which require such
labels cannot be applied to data.
We propose to overcome this limitation with weakly

supervised learning. In contrast to supervised learning,
where every event is labeled with certainty as prompt or
nonprompt, weakly supervised learning is trained with
noisy labels, which describe the overall composition of the
sample but not individual events. Specifically, we use the
classification without labels (CWoLa) [20] approach to
weak supervision where two samples of training events are
prepared. One sample is dominated by prompt muons and
receives the noisy label of “signal” (and will be called
“prompt abundant”); the second sample, while still mostly
containing prompt muons, has a relatively higher fraction
of nonprompt muons and receives the noisy label of
“background” (and will be called “prompt moderate”).
Under mild assumptions, training a standard classifier with
these noisy labels converges to the same classifier found in
a supervised setting. While weak supervision has been used
previously for data analysis [21–25], these studies only
used 2–18 inputs. Our goal is to approach the muon
isolation problem with weak supervision directly on
low-level, high-dimensional [Oð100Þ] inputs. While the
inputs are high dimensional enough to hold a large number
of detected objects, this is only necessary for a small
number of events, as on average the inputs have Oð10Þ
nonzero entries.
Even if proven effective in data, deep networks operating

on low-level observables can be opaque. To improve the
interpretability and compactness of the network, we follow
Ref. [16], bridging the performance gap between the low-
level observables and classical isolation variables through a
small set of additional high-level observables identified by
the decisions of a network operating at the low level. We
search for new high-level observables among the energy
flow polynomials (EFPs) [26], a set of relatively simple
combinations of energies and angles of reconstructed
objects within the isolation cone. EFP observables are
identified automatically using the average decision order-
ing method [27], which uses the decisions of the low-level
network as a guide. While still complex, the resulting EFP
is more physically interpretable than the original deep
neural network. Interestingly, the first EFP selected through

this process was not identified in the previous study as a top
candidate for closing the corresponding gap in simulation
[16]. This is one more reason why it is essential here to train
directly on data. Additionally, it should be noted that, while
this study delves into the feasibility of training on data, it
does not comprehensively address instrumental effects and
systematic uncertainties.
This paper is organized as follows. Section II introduces

the dataset, which is from the CMS experiment [28,29].
Then, Sec. III describes the machine learning strategy.
Numerical results are presented in Sec. IV. The paper ends
with conclusions and outlook in Sec. V.

II. DATASET

Proton-proton collisions at
ffiffiffi
s

p ¼ 8 TeVwere recorded in
2012 and curated by the CMS Collaboration and made
available through the CERN Open Data Portal [29]. The
number of collisions corresponds to 19.5 fb−1. Recon-
structionwas performedwith the particle flow (PF) algorithm
[11], which integrates calorimeter and tracker information to
approximate individual particle four-vectors. The PF algo-
rithm also assigns a particle identification (PID) from one of
the following types: muon, charged hadron, neutral hadron,
photon, or pileup. For the charged PF objects, the sign of the
charge is reconstructed. PF object momenta are represented
by their transverse momentum (pT), pseudorapidity (η), and
azimuthal angle (ϕ).
We select events with exactly two muons, both with

pT ≥ 25 GeV, jηj ≤ 2.1, and with a dimuon invariant mass
between 70 and 110 GeV to accommodate the Z boson
mass of 90 GeV [30]. Events are separated into two
samples that have different mixtures of prompt and non-
prompt muon events, as is required by the CWoLa method.
One sample, with a higher fraction of nonprompt muons,
consists of all events in which the muons have identical
electric charge, as well as events with muon pairs of
opposite electric charge but reconstructed invariant mass
far from the Z boson invariant mass, below 84 GeV or
above 96 GeV. This sample is referred to as the prompt
muon moderate sample. The remaining events, which are
almost entirely prompt muons, form the complementary
sample and are referred to as the prompt muon abundant
sample. These regions are illustrated in Fig. 1. The opposite
sign sample is almost entirely from Z boson decays and so
is peaked at the Z boson mass. The same sign sample is
mostly from decays in flight and has a nearly smooth and
steeply falling spectrum.
In order to ensure that the two samples have similar

kinematic distributions, event weights are computed so that
the muon pT and η spectra are the same between the
prompt- and nonprompt-enriched samples. The unbinned
likelihood ratio is estimated using a two-dimensional kernel
density estimator with Gaussian kernels. The preweighted
spectra are displayed in Fig. 2. The pT spectrum is peaked
nearmZ=2 and the sharp features in the muon histogram are
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due to detector acceptance effects. We additionally validate
the core assumption of CWoLa (see Sec. III)—that the
(non)prompt muons look the same in both samples—using
samples of simulated muons; see the Appendix.
Once events are selected, they are formatted to be used as

inputs to the neural networks. The low-level inputs are
composed of the pT, η, ϕ, and PID for each constituent
within a 0.45 radius around a given muon. We additionally
preprocess the low-level input by centering on the muon
and dividing the momenta by the muon transverse momen-
tum. Avisualization of the momentum in the vicinity of the
muon, not including the muon itself, for both samples is
shown in Fig. 3. We see that the sample means per pixel
have distinct distributions, with the more prompt sample
being more uniform.
Traditional high-level scalar observables are calculated

from the low-level data. These observables include the
summed pT of nonmuon objects in an event, isolation, and
EFP observables. We calculate isolation as defined in

FIG. 1. Histogram of the dimuon invariant mass near the Z
boson peak, for events in data with identical (yellow) or opposite
(blue) electric charges. The unshaded area indicates the region for
the oppositely charged pairs that comprises our prompt muon
abundant sample. The gray shaded region for the oppositely
charged pairs, as well as the entire region for identically charged
pairs, comprise our prompt muon moderate sample.

FIG. 2. Histograms of muon pT and pseudorapidity η in the two
samples with varying fractions of prompt muons, as defined in
text and Fig. 1.

FIG. 3. The average image of hadronic activity in the vicinity of
an identified muon, in angular coordinates of azimuthal angle ϕ
and pseudorapidity η, for our two training samples, one which is
dominated by prompt muons (top) and a second which has a more
moderate mixture of prompt and nonprompt muons (bottom). The
muon itself is excluded from these visualizations, but the energies
are normalized by that of the muon.
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Eq. (1), where h� and h0 denote charged and neutral
hadrons, respectively. This definition quantifies the activity
around a muon within a given radius strictly in terms of
particle flow objects and treats the objects differently
according to their particle flow ID. The expression is
composed of terms that sum over the transverse momenta
of the nonmuon particle flow candidates within the chosen

radius, and the result is normalized by the muon momen-
tum. Pileup is mitigated by subtracting half of its sum from
the neutral hadron and photon sums, and clamping the
result of this subtraction at 0. Distributions of the isolation
for two choices of cone radius are shown in Fig. 4. The
larger of the two choices of radius tends to yield larger
isolation values, as one might expect,

IμðR0Þ ¼
� XNh�

i;R<R0

pi
T;h� þmax

�
0;

XNh0

i;R<R0

pi
T;h0

þ
XNγ

i;R<R0

pi
T;γ −

1

2

XNpileup

i;R<R0

pi
T;pileup

��
=pT;muon: ð1Þ

We calculate isolation quantities for a set of radii from
0.025 to 0.45 in steps of 0.025. CMS has previously studied
isolation at radius of 0.3 [11], which is included in our
generated set.
While, in principle, the demonstration of weak super-

vision as a technique for learning to improve muon

isolation beyond cone-based quantities could use simula-
tion instead of data, we have chosen to use collider data for
a number of reasons. First, realistic simulation of muon
isolation is very challenging, for both the prompt and
nonprompt categories; see the Appendix. Second, a dem-
onstration in data can confirm (or refute) the results of
earlier studies in simulation, which showed a significant
gap between the power of isolation cones and full use of the
lower-level data. If such a gap exists in collider data, it
would indicate that additional information is available in
nature; the interpretation of that gap in terms of EFP
observables will provide clues as to the physical processes
involved, and the size of the gap can motivate a further
study in a complete experimental context. For this reason,
we also do not estimate systematic uncertainties, which
would be required before application to searches and
measurements. As a data-driven method, there are no
simulation-based uncertainties, but there would be method
closure uncertainties related to the underlying assumptions
of CWoLa and sPlots.

III. METHODS

CWoLa defines a weakly supervised setting that relies on
the principle that, given two classes, an optimal classifier
may be obtained by training to discriminate between two
samples composed of different mixtures of the classes,
rather than training directly on two pure class samples. This
technique only requires that the two samples have different
class mixtures, and these mixtures do not need to be known
in order for training to proceed. The essential assumption is
that class fraction is the only feature that determines the
different properties of the two samples. This means that the
spectrum of radiation around the muon for prompt leptons
is identical for the prompt muon abundant and the prompt
muon moderate samples. Similarly, the probability density
for hadrons around the muon for nonprompt leptons should
be the same within the prompt muon abundant and the
prompt muon moderate samples. We expect this to be the
case here, since the invariant mass of the muons and their
relative electric charges should be statistically independent
from the radiation pattern around the muons given the

FIG. 4. Histograms of the muon isolation [defined in Eq. (1)]
for each of our training samples, one of which is dominated by
prompt muons, for two choices of isolation cone radius parameter
R0 ¼ 0.025 (top) and R0 ¼ 0.45 (bottom).
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prompt status. This expectation is validated in simulation in
the Appendix.
While CWoLa does not need class labels to derive a

classifier, some class information is required to determine
the performance of the method. The only information
needed is the proportion of prompt muons in each sample;
from this information, it is possible to characterize the full
trade-off between signal efficiency and background rejec-
tion. The prompt muon fraction is measured directly from
the data in each sample by modeling the invariant mass
distribution as a mixture model with two components: one
peaking component of Z bosons, which decay to two
prompt muons, and a second, nonpeaking component. The
invariant mass spectrum is fit using a Voigt profile and an
exponential function for the respective components. Fitting
is done with SciPy v1.7.3 [31] and visually demonstrated in
Fig. 5, where the fit is applied to the full dataset, finding an
overall prompt fraction of 95.6� 0.6%, where the error bar
corresponds to 1σ statistical. In the prompt muon abundant
sample, the prompt fraction is measured to be 98.9%; in the
prompt muon moderate sample, the prompt fraction is
measured to be 56.0%. This is the first application of weak
supervision in particle physics where the relative propor-
tions have also been extracted directly from data.
Characterizing the network performance is nontrivial

without pure samples. To measure the efficiency of a
varying network threshold in the prompt and nonprompt
samples, one could fit the distribution of the invariant mass
of events surpassing each threshold. Measurement of the
efficiencies of each class allows calculation of performance
metrics, such as the standard receiver operating character-
istic (ROC) and its associated statistics. However, fits are
expensive and stochastic. Fitting the mass spectrum for
each threshold output can be avoided using the sPlots
technique [32], which can decompose the prompt and
nonprompt contributions to distributions of the network

output given weights from the single invariant mass fit into
the full sample. sPlots assumes that the variable being
weighted is statistically independent of the invariant mass,
within the individual classes. The correlation coefficientmay
be evaluated to assess howwell this assumption holds.While
we lack a pure background sample, the coefficient for the
signal case may be well estimated using the nearly pure
prompt muon abundant sample. Evaluating the average of
this coefficient between the outputs of the networks trained
and the invariant masses yields a small value of 0.0664,
suggesting that themethodmay be applied.Once thevariable
has been separated by the components, the resulting histo-
grams may be integrated to calculate true and false positive
rates and construct a ROC curve. Performance is evaluated
through the area under the curve (AUC) and the signal
efficiency at 50% background efficiency. While we do not
perform a full determination of the uncertainty, we do
consider statistical sources of uncertainty from the training
and from the fit.2 While not an uncertainty per se [33], the
statistical variation from the finite size of the training dataset3

gives a sense for the stability and optimality of the result. This
effect is estimated using bootstrapping [34] with 100 event
ensembles with a new classifier trained per ensemble.
Additionally, we propagate the statistical uncertainty from
the fit in each ensemble by sampling 100 times from the fitted
parameter covariance matrix. Metrics are recomputed and
averaged across each ensemble, and we report the 1σ
confidence intervals according to the resulting set of values.
We consider two types of neural networks: high-level

networks with an increasing list of engineered observables
(such as isolation) and low-level networks that process the
full muon image. For the high-level networks, one of our
goals is to determine the minimal set of isolation observ-
ables that will saturate the performance. To do this, we start
by training a network using the single isolation cone
corresponding to the largest radius in our set and sub-
sequently train networks with incrementally smaller cones
included as inputs. The summed event pT is included as an
input in all of these sets, in order to be sensitive to overall
normalization effects.
The low-level networks take the full high-dimensional

representations of the events as inputs. We use the deep set
architecture [35] implemented as particle flow networks
(PFNs) [36] to process these data. This architecture was
chosen because the inputs are a permutation invariant,
variable-length set of four-vectors and so a point-cloud
model is the natural choice for processing them. Deep set
models are composed of two fully connected networks. The
first network embeds each particle flow object [represented
by ðpT; η;ϕ; PIDÞ] into a latent space. The second network

FIG. 5. Avisualization of the masses overlaid with the fit and its
prompt/nonprompt components. The shaded regions indicate
events that are included in the relatively less prompt sample.
Here we fit the full CMS sample used in the study, finding that it
is 95.6� 0.6% prompt overall.

2While these are the only sources of uncertainty quantified in
Table I, other sources are present, such as a bias due to imperfect
description of the mass distribution by the fit function.

3The random initialization of the network is also folded into
this estimation.
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processes the sum of these latent space vectors across all
inputs. The sum operation is permutation invariant and can
readily process variable-length inputs.
Additionally, we strive to close the gap in performance

between low- and high-level networks using relatively
simple variables. Energy flow polynomials [26] serve as
a set of potential variables for this purpose. EFPs are a set of
parametrized functions that sum over objects within an
event, were each term is weighted using the angular
relations between these objects. EFPs can be represented
using graphs, where

each node ⇒
XN
i¼1

zi; ð2Þ

each k-fold edge ⇒ ðθijÞk: ð3Þ

ðziÞκ ¼
�

pTiP
jpTj

�
κ

; ð4Þ

θβij ¼ ðΔη2ij þ Δϕ2
ijÞβ=2: ð5Þ

When κ ¼ 1 the EFPs form a basis for infrared-and-
collinear- (IRC) safe observables [26]. We compute a set of
EFPs that contains IRC-safe, as well as unsafe, informa-
tion, using the same parametrizations as in Ref. [16]:
κ∈ ½−1; 0; 1

4
; 1
2
; 1; 2� and β∈ ½1

4
; 1
2
; 1; 2; 3; 4�, for graphs

with up to n ¼ 7 nodes and up to d ¼ 7 edges.
We use the average decision ordering (ADO) [27] metric

to determine which EFPs from this generated set might
bridge the performance gap to the PFN. ADO compares two
classifiers on signal and background input pairs, measuring
howoften the classifiers rank the inputs in the sameway. This
is quantifiedwith aHeaviside step functiononmanydifferent
pairs, and the results are averaged to obtain the ADO. The
ADO can be interpreted as the probability that a given pair
will be ordered in the sameway by the two classifiers. This is
intuitively similar to the AUC metric, which measures the
probability that a given signal example will be ranked higher
than a given background example.WhileAUCcan be seen as
comparing a classifier to the truth, the ADO compares two
classifiers to one another without regard for correct ordering.
To avoid training a large set of new high-level networks, one
for each EFP being considered as an additional observable,
we follow the strategy of Ref. [27] and search for EFPs that
have a highADOwith our PFN for the subset of eventswhere
the PFN and the high-level network disagree. In general, this
process can be iterated, selecting new observables until the
ADO no longer improves.

IV. RESULTS

The performance of each network is measured through
ROC AUC as well as the signal efficiency at a fixed
background efficiency of 50%. Figure 6 illustrates the

effects of including additional isolation cones as network
input features. Adding cones tends to increase performance
up until nine cones are used, after which there is no clear
further gain in AUC. There is a significant performance gap
between the network that uses nine cones and the PFN,
which, respectively, yield AUCs of 0.848(1)4 and 0.874(1),
as well as signal efficiencies of 0.939(1) and 0.957(1). This
suggests that isolation cones alone do not capture all
discriminating information available in the low-level data.
This is consistent with previous results shown on simulation
[16], and it is notable that it holds for real collider data.While
the improvement over isolation is subtle, any performance
gain is valuable given the importance ofmuons. For example,
inmultilepton final states, the event efficiency depends on the
lepton efficiency raised to the number of leptons and so even
a modest change may be significant.
We use the ADO metric to search among the EFP

observables for ways to close the gap with the PFN

FIG. 6. Isolation network performance shown as a function of
number of input cones. Performance of the PFN and best
performing high-level network are shown as benchmarks.
ROC AUC is shown for each model (top) as well as the signal
efficiency at a fixed background efficiency (bottom).

4The reported error values should be understood as rounded to
1 × 10−3 from values calculated to be ≲1 × 10−3.
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performance. Note that the EFPs lack the built-in radial
symmetry of the isolation cones and so may contain
additional useful information. The networks using EFP
features are also provided the nine largest isolation cones
and the summed event pT. Remarkably, the ADO search
method is able to identify a single IRC-safe EFP that
obtains an AUC of 0.871(1) and signal efficiency of
0.953(1), almost fully closing the gap in AUC to the
PFN from 0.026 to 0.003. The graph representation of this
EFP, as well as class distributions separated through the
sPlots technique, are illustrated in Fig. 7. This EFP
corresponds to parameters κ ¼ 1 and β ¼ 0.25, and the
full expression is provided in Eq. (6),

XN
a;b;c;d¼1

zazbzczdðθabθacθbdθ4cdÞ1=4: ð6Þ

An additional scan is done over the quadratic EFPs
included in our full set of calculated EFPs, as these are
simple in structure and are therefore more interpretable.
This identifies another single EFP with κ ¼ 1 and β ¼ 0.25
which yields performance close to that of the one identified
by the first ADO search, at an AUC of 0.870(1) and signal
efficiency of 0.956(1). We further check the performance of
sets of EFPs identified as useful by previous work done on
simulation [16], which selected an IRC-safe set of EFPs, as
well as a set not restricted to be safe. The IRC-safe set
yields an AUC of 0.868(1) with a signal efficiency of
0.949(1), while the unsafe set yields an AUC of 0.865(1)
with a signal efficiency of 0.954(1). While these sets
identified in simulation close much of the performance
gap, they require more features and are outperformed by the
EFPs identified directly on the CMS data, underscoring the
importance of training in data.
A full summary of performance across the methods used

is presented in Table I, as well as depicted in Fig. 8. Our
results indicate that we are able to construct a minimal set
of high-level observables that perform comparably to the
low-level inputs, allowing for the use of more physically
intuitive features and less complex networks without
making concessions regarding performance.

V. CONCLUSIONS

On collision data from the LHC, we apply neural
networks to the problem of prompt muon discrimination.
We investigate how much information is present in high-
and low-level representations of the data, finding that the
traditionally used scalar isolation does not capture all
useful classification information present at the low level.

FIG. 7. Distribution of the EFP observable identified in the
search described by the text. Samples shown are separated by
class using the sPlots weighting technique after applying a 50%
background efficiency cut according to the outputs of the 9
isolation cone network. Also shown is the graph representation of
the EFP.

FIG. 8. Comparison of the performance of the networks
described in Table I, via ROC curves. Shown is background
rejection (inverse of efficiency) versus signal efficiency.

TABLE I. Comparison of the performance of the various
networks discussed in the text. Performance is measured through
ROC AUC, as well as signal efficiency [the true positive rate
(TPR), or proportion of actual positives correctly identified] at
50% background efficiency. Standard error is evaluated to be
≲1 × 10−3 for both metrics over a 1σ confidence interval (see
Sec. III for details on calculation). While the reported perfor-
mance values refer only to testing done on CMS data, the “EFP
scan” column indicates whether the EFP inputs used were
identified as useful by a scan over CMS or simulated (Sim)
data. These results correspond to the ROC curves in Fig. 8.

Input features AUC TPR EFP scan

Single isoconeþP
pT 0.835 0.922

9 Iso,
P

pT 0.848 0.939
9 Iso,

P
pT, ADO EFP 0.871 0.953 CMS

9 Iso,
P

pT, Quadratic EFP 0.870 0.956 CMS
9 Iso,

P
pT, 4 IRC-safe EFP 0.868 0.949 Sim

9 Iso,
P

pT, 5 EFP 0.865 0.954 Sim
Full details PFN 0.874 0.957
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Furthermore, we find that another high-level set of observ-
ables, the EFPs, may be used to create a network that
performs almost as well as one operating at the low level,
while providing the advantage of being less complex and
more human interpretable. In addition to being notable for
using real rather than simulated data, this study demon-
strates the use of weakly supervised training methods with
CWoLa on low-level features, as well as performance
evaluation without having access to individual class labels.
Future work may include investigating the interpretation of
the observables selected here, exploring how much infor-
mation might be captured by other types of high-level
observables, and the generalizability of these results. While
our study indicates that additional information is available
beyond the use of simple cones, and the identification of a
single EFP observable that captures that information allows
for simple application and interpretation, further work
would be required before implementation within an exper-
imental context. A robust estimate of the systematic
uncertainties involved has not been done, which would
be necessary to establish the optimal observables. Our
result does not replace work by the experimental collab-
orations, but motivates further study.

The code for this paper can be found at [37] to isolate
muons in data. The datasets will be provided upon
reasonable request to the authors.
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APPENDIX: ASSUMPTIONS AND
SUPPLEMENTARY FIGURES

CWoLa assumes that the mixed samples are generated in
such a way that a given component feature is distributed the
same way in one sample as it is in the other. While we
cannot explicitly demonstrate this on an unlabeled dataset,
we can use a simulated dataset similar to the experimental
data to probe whether we can reasonably expect this
assumption to hold.
We simulate events where prompt muons are generated

by the process pp → Z → μþμ− and nonprompt muons by
pp → bb̄. A center of mass energy of s ¼ ffiffiðp

13Þ TeV is
used. MadGraph5, PYTHIA, and DELPHES are used, respec-
tively, for collision and heavy boson decay simulation,
showering and hadronization, and the detector simulation,

with pileup included. In total we generate 22766 events,
where half are prompt and the other half are nonprompt
events. The muon transverse momentum and pseudorapid-
ity distributions for this dataset are shown in Fig. 9, and the
average event images are shown in Fig. 10, where quan-
tities are separated between the prompt and nonprompt
distributions.
Using the simulated dataset, we compute one of the

features included in our models that use the CMS dataset,
the summed transverse momentum of the objects in an
event. We see in Fig. 11 that the component distributions do
approximately match across the samples for the simulated
dataset. Similarly, the class components of a network
classifier should be distributed the same way, regardless
of which mixed sample the events were drawn from. We
check this by training a PFN using the simulated dataset
and looking at the distributions of the outputs, as shown in
Fig. 12. Once again we see that the distributions depend on
the class rather than the mixed sample to which events
belong.

FIG. 9. (MG5+PYTHIA+DELPHES) Distributions of the simulated
muon transverse momentum and pseudorapidity.
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FIG. 11. (MG5+PYTHIA+DELPHES) Top: the total summed event
pT distributions for two simulated mixed samples. Middle: only
the signal components of the two simulated mixed samples.
Bottom: only the background components of the two simulated
mixed samples. We see that, while the class proportions are
different, the signal and background distributions are approx-
imately the same across the samples.

FIG. 10. (MG5+PYTHIA+DELPHES) Average event images similar
to Fig. 3, but for the simulated dataset and separated by prompt
and nonprompt events.
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