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In this study, we employ a modified soft-wall holographic model with four flavors to investigate the
meson spectra, decay constants, electromagnetic form factors, and charge radius of various mesons. We
obtain the spectra for vector, axial vector, and pseudoscalar mesons. Decay constants are calculated and
compared with experimental and lattice QCD data. The pion and kaon electromagnetic form factors are
compared with the experimental data, and a good agreement is achieved for the kaon at low Q2. For the
charmed mesons, the electromagnetic form factors of the D and Ds and electric form factors of the D� and
D�

s are well consistent with the lattice QCD data. Moreover, the electric, magnetic, and quadrupole form
factors are predicted for the ρ, K�, a1, K1, D1, and Ds1 mesons. Furthermore, the charge radius of the
vector, axial vector, and pseudoscalars, including the strange and charmed mesons, are computed.
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I. INTRODUCTION

Understanding the internal structure of hadrons involves
studying electromagnetic form factors, which provide
information about their magnetic moments and charge
distributions. Since the electromagnetic form factors are
nonperturbative quantities, one cannot use the quantum
chromodynamics (QCD) to compute them. Experimental
efforts have been underway for several decades to measure
the electromagnetic form factors of light pseudoscalar
mesons such as the pion and kaon. The pion and kaon
form factors and their charge radius have been measured in
Refs. [1–3], respectively. However, the experimental data
for heavy mesons are not yet available. From a theoretical
perspective, various nonperturbative approaches have been
proposed in the literature; e.g., see details in Refs. [4–15].
Moreover, the lattice QCD approach has extensively
studied the electromagnetic form factors and charge radii
of both light and heavy mesons [16–21].
The holographic QCD approach as a low energy QCD

model was established in the works of Refs. [22–36] for the
light mesons with the features of the dynamical chiral

symmetry breaking. Extensions of this model have been
made to include three flavors and flavor symmetry breaking
due to the strange quark mass [37,38]. Recent develop-
ments have further extended the holographic QCDmodel to
four flavors [39–41]. In Refs. [39,40], the masses of the ρ,
ω, and J=ψ mesons are the same due to the fact that the
mass term is zero in the 5D action. However, the masses of
the axial vector and pseudoscalar mesons differ due to
nonzero mass terms. In Ref. [41], an auxiliary scalar field
was introduced to the action to explicitly break the SUð4ÞV
symmetry to SUð3ÞV , resulting in different mass values for
the J=ψ meson.
The electromagnetic form factors have been investigated

in the bottom-up holographic QCD model since the
establishment of the model. For the first time, the pion
electromagnetic form factor was studied in the hard-wall
model in Ref. [42]. Similarly, in the work of [43], the
pion electromagnetic form factor was discussed in the soft-
wall model, and then they improved their previous results
in Ref. [44] by considering a background field that
interpolates between the hard-wall and soft-wall models.
Furthermore, the kaon form factor was calculated within
the hard wall-model [45,46], yielding results that align with
experimental data within the uncertainties at the low Q2.
The pioneering work on the vector sector has been
investigated in Refs. [47,48], where the ρ meson form
factor and charge radius have been studied in the hard- and
soft-wall models, respectively. By taking into account the
flavor symmetry breaking, the electromagnetic form factor
of the π, ρ, K, K�, D, and D� mesons investigated in the
work of Ref. [39].
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In the present paper, we follow the work of Ref. [41] and
take the bottom-up holographic approach. Moreover, we
include the higher-order potential in the 5D action. Below,
we proceed by calculating the masses and decay constants
of the π, K, η, D, Ds, ρ, K�, ω, D�, D�

s , a1, K1, f1, D1, and
Ds1 mesons in the ground and excited states. Additionally,
we predicted and compared the electromagnetic form factor
of the pion and kaon mesons with the experimental data,
andD andDs mesons with the lattice QCD data. Moreover,
for the vector mesons the electric, magnetic, and quadru-
pole form factors and charge radii of the ρ and K� mesons
are predicted; then when we compare the lattice results of
D� and D�

S mesons, we obtain a good agreement. Finally,
we predict the form factors and the charge radii of the axial
vector mesons, a1, K1, D1, and Ds1.
The paper is organized as follows. In Sec. II, we revisit

the formalism of the bottom-up holographic QCD model
for Nf ¼ 4 flavor. Section III describes the equations of
motion for vector, axial vector, and pseudoscalar fields
derived from the second-order 5D action. Section IV
presents the derivation of coupling constants, electromag-
netic form factors, and charge radii from the three-point
functions obtained from the cubic-order 5D action. The
numerical results are presented in Sec. V. Finally, we
conclude our work in Sec. VI.

II. THE HOLOGRAPHIC QCD MODEL
FOR Nf = 4

In this section, we revisit the formalism of the bottom-up
holographic QCD model, specifically focusing on the
inclusion of the charm quark. The original formalism for
the light flavor sector (Nf ¼ 2) can be found in
Refs. [22,24] for the hard-wall and soft-wall approaches,
respectively. Additional works [37,39–41] discuss the
extension of the model to include strange and charm
quarks. Here, we mainly follow the conventions used
in Ref. [41]. The five-dimensional metric defined in the
anti–de Sitter (AdS) space is given by

ds2 ¼ 1

z2
�
ημνdxμdxν þ dz2

�
; ð1Þ

where ημν is the four-dimensional metric in the Minkowski
space, and z is the fifth dimension of the AdS space, which
has an inverse energy scale. It is well known that in the
AdS=CFT model for each operator in the 4D theory
(also called boundary theory), there is a corresponding
field in the 5D theory (bulk theory). The operators that
are important for the chiral dynamics are left- and right-
handed currents JaR=Lμ ¼ ψ̄qR=LγμtaψqR=L and quark bilin-
ear ψ̄qLψqR which correspond to the Ra

μ and La
μ gauge fields

and complex scalar fields X, respectively. Moreover,
in Ref. [41] a heavy scalar field H and vector field VH
were introduced to describe the difference between the

mass of the light vector meson (ρ) and heavy charmed
meson (J=ψ). Now, we have all the ingredients to write
down the general five-dimensional action with SUð4ÞL ×
SUð4ÞR symmetry as follows.

SM ¼ −
Z

zm

ϵ
d5x

ffiffiffiffiffiffi
−g

p
e−ϕTr

�
ðDMXÞ†ðDMXÞ þM2

5jXj2

þ 1

4g25

�
LMNLMN þ RMNRMN

�

þ ðDMHÞ†ðDMHÞ þM2
5jHj2

�
; ð2Þ

where DMX ¼ ∂MX − iLMX þ iXRM and DMH ¼ ∂MH −
iVHM þ iHVHM are the covariant derivative of the scalar
fields X and H, respectively, and M2

5 ¼ ðΔ − pÞðΔþ p −
4Þ ¼ −3 where Δ ¼ 3 and p ¼ 0. Despite introducing the
dilaton field ϕ, a hard cutoff zm is inserted as the upper limit
of the model. So now the limits of the integration represent
the IR (zm) and UV (ϵ) regions. The coupling constant g5 is
related to the number of color (Nc) using the AdS=CFT
dictionary g25 ¼ 12π2=Nc [22], where Nc ¼ 3. The gauge
field strengths LMN and RMN are defined by

LMN ¼ ∂MLN − ∂NLM − i½LM; LN �;
RMN ¼ ∂MRN − ∂NRM − i½RM;RN �: ð3Þ

To simplify the analysis, the left- and right-handed gauge
fields are replaced with the vector [VM ¼ 1

2
ðLM þ RMÞ]

and axial fields [AM ¼ 1
2
ðLM − RMÞ]. The decomposition

allows us to express the chiral gauge fields and the
covariant derivative of the complex scalar field in terms
of the vector and axial fields,

VMN ¼ ∂MVN − ∂NVM − i½VM; VN � − i½AM; AN �;
AMN ¼ ∂MAN − ∂NAM − i½VM; AN � − i½AM; VN �;
DMX ¼ ∂MX − i½VM; X� − ifAM; Xg: ð4Þ

The complex scalar field can be decomposed as

X ¼ eiπX0eiπ; ð5Þ
where X0 ¼ 1

2
diag½vuðzÞ; vdðzÞ; vsðzÞ; vcðzÞ� the vacuum

expectation value, and π is the pseudoscalar field.
Moreover, The action also includes a dilaton field ϕ. In
the original hard-wall model [22], it is impossible to get the
mesons’ linear mass trajectories. To overcome the issue, a
quadratic dilaton field is introduced in Ref. [24] that only
depends on the fifth dimension z,

ϕðz → ∞Þ ¼ μ2z2; ð6Þ

where μ is related to the Regge slope and sets the mass scale
for the meson spectrum.
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To study the behavior of the background X0 and find
the vacuum expectation value, one needs to turn off all the
fields in the action [Eq. (2)] except the background. The
equation of motion for the scalar vacuum expectation value
vq¼l;s;cðzÞ with l ¼ u, d is obtained as

−
z3

e−ϕ
∂z
e−ϕ

z3
∂zvqðzÞ −

3

z2
vqðzÞ ¼ 0: ð7Þ

The analytical solutions of Eq. (7) are given by the
Tricomi confluent hypergeometric function Uða; b; yÞ and
the generalized Laguerre polynomial L.

vqðzÞ ¼ Cq1z
ffiffiffi
π

p
U

�
1

2
; 0;ϕ

�
− Cq2zL

�
−
1

2
;−1;ϕ

�
ð8Þ

As reported in [49], the second part of the solution must
be disregarded to get a finite action at the IR region. In the
UV region, Eq. (8) expands to

vqðzÞjz→0
¼ 2Cq1zþ Cq1

	
−μ2 þ 2γEμ

2 þ 2μ2 log z

þ 2μ2 log μþ μ2Ψ
�
3

2

�

z3: ð9Þ

Comparing this solution to the UV behavior of the chiral
condensate in the hard-wall model [vqðzÞ ¼ mqzþ σqz3]
[22], one can notice that the quark mass is mq ¼ 2Cq1 and
the quark condensate σq is also proportional with Cq1.
Now, spontaneous and explicit chiral symmetry breaking is
related. In contradiction with QCD, in the massless limit,
the spontaneous chiral symmetry vanishes [50]. As pointed
out in Ref. [24], the issue is present because the equation of
motion is linear in vqðzÞ. A modified dilaton profile was
proposed in [51], and this work also considers higher-order
potential to solve this issue by adding higher-order terms in
the scalar potential that can remedy it [24].
In Ref. [50], a higher-order term (quartic term) in the

potential VðXÞ is added to the 5D action,

SM ¼ −
Z

zm

ϵ
d5x

ffiffiffiffiffiffi
−g

p
e−ϕTr

�
ðDMXÞ†ðDMXÞ þM2

5jXj2

− κjXj4 þ 1

2g25

�
VMNVMN þ AMNAMN

�

þ ðDMHÞ†ðDMHÞ þM2
5jHj2

�
; ð10Þ

where κ is a parameter and can be determined. Keeping
only the background in the action, the zeroth order of the
action is given by

Sð0Þ ¼ −
1

4

Z
zm

ϵ
d5x

�
e−ϕðzÞ

z3
�
2v0lðzÞv0lðzÞ þ v0sðzÞv0sðzÞ þ v0cðzÞv0cðzÞ

�
−
e−ϕðzÞ

z5

�
3
�
2vlðzÞ2 þ vsðzÞ2 þ vcðzÞ2

�

−
κ

4

�
2vlðzÞ4 þ vsðzÞ4 þ vcðzÞ4

��þ e−ϕðzÞ

z3
�
h0cðzÞh0cðzÞ

�
−
3e−ϕðzÞ

z5
hcðzÞ2

�
: ð11Þ

Now, the equation of motion for the scalar vacuum
expectation value is not linear anymore and becomes

−
z3

e−ϕ
∂z
e−ϕ

z3
∂zvqðzÞ −

3

z2
vqðzÞ −

κ

2z2
v3qðzÞ ¼ 0: ð12Þ

An appropriate parametrization that respects the UVand
IR asymptotic behavior of the vacuum expectation value is
given in Ref. [50]

vðzÞ ¼ azþ bz tanh ðcz2Þ; ð13Þ

with the definitions for parameters a, b, and c as

a ¼
ffiffiffi
3

p
mq

g5
; b ¼

ffiffiffiffiffiffiffi
4μ2

κ

r
− a; c ¼ g5σffiffiffi

3
p

b
: ð14Þ

Now vðzÞ in Eq. (13) satisfies the UV and IR behavior at
small and large z,

vðz → 0Þ ¼ azþ bcz3 þOðz5Þ; ð15Þ

vðz → ∞Þ ¼ðaþ bÞz ¼
ffiffiffiffiffiffiffi
4μ2

κ

r
z: ð16Þ

Furthermore, one can obtain the dilaton profile by
substituting Eq. (13) into (12) and solving the following
equation for ϕðzÞ:

ϕ0ðzÞ ¼ 1

∂zvqðzÞ
	
z3∂z

1

z3
∂zvqðzÞ þ

3

z2
vqðzÞ þ

κ

2z2
v3qðzÞ



;

ð17Þ

where the asymptotic behavior of the dilaton profile is
obtained as the following:

ϕðz → 0Þ ¼ κ

4
a2z2 þOðz6Þ; ð18Þ
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ϕðz → ∞Þ ¼ κ

4
ðaþ bÞ2z2 ¼ μ2z2: ð19Þ

It is worth pointing out that the dilaton profile in Eq. (17)
depends on the quark flavor, and for each flavor one can
obtain a different dilaton profile. This behavior can be
clearly seen in the UV asymptotic behavior of ϕðz → 0Þ in
Eq. (18), where ϕ is proportional to the square of the quark
mass. Conversely, the IR behavior of the ϕ field is similar to
the one used in the original soft-wall model [24] and does
not depend on the quark mass. This IR behavior secures the
linear trajectories of the mass spectra. In order to avoid the
flavor dependence of the dilaton profile and guarantee
the linear Regge slope, we use the IR asymptotic behavior
of the ϕ field in the present work. It is also noticed that
comparing with the modified dilaton profile proposed
in [51], where there is a negative quadratic dilaton at
UV and a positive quadratic dilaton at IR, our solution
obtained in Eqs. (18) and (19) requires positive quadratic
dilaton at both UV and IR.

Similar to the bilinear field X, the auxiliary field H is a
diagonal matrix. However, it only reflects the effect of the
charm quark mass, H ¼ 1

2
diag½0; 0; 0; hcðzÞ�. Then, hc at

the UV boundary should behave like hcðz → ∞Þ ¼ mhcz.
To get such a behavior, we assume that hc ¼ az, where the
value of mhc is different from the charm quark mass used
in Eq. (13).

III. EQUATIONS OF MOTION

In the AdS=CFT model, one can find the mass eigen-
values by solving the equation of motion of each particular
field. The equation of motion can be found from the
expansion of the action in Eq. (10) up to the second order
in the fields VM, Am, and π. The fields VM, Am, and π in
Eq. (10) expanded to Va

Mt
a, Aa

mta, and πata, respectively,
where ta, a ¼ 1; 2;…; 15 are the generators of SUð4Þ
group which satisfy TrðtatbÞ ¼ 1

2
δab. Now we can write

the action up to the second order as the following:

Sð2Þ ¼ −
Z

d5x

�
ηMN e−ϕðzÞ

z3
�ð∂Mπa − Aa

MÞð∂Nπb − Ab
NÞMab

A − Va
MV

b
NM

ab
V þ Va

HMV
b
HNM

ab
VH

�

þ e−ϕðzÞ

4g25z
ηMPηNQðVa

MNV
b
PQ þ Aa

MNA
b
PQÞ

�
; ð20Þ

where ηMN is the metric in 5D Minkowski space which is ηMN ¼ diag½−1; 1; 1; 1; 1�, Va
MN ¼ ∂MVa

N − ∂NVa
M, and

Aa
MN ¼ ∂MAa

N − ∂NAa
M. The vector, axial, and pseudoscalar fields are described by 4 × 4 matrices,

V ¼ Vata ¼ 1ffiffiffi
2

p

0
BBBBBBB@

ρ0ffiffi
2

p þ ω0ffiffi
6

p þ ψffiffiffiffi
12

p ρþ K�þ D̄�0

ρ− − ρ0ffiffi
2

p þ ω0ffiffi
6

p þ ψffiffiffiffi
12

p K�0 D�−

K�− K̄�0 −
ffiffi
2
3

q
ω0 þ ψffiffiffiffi

12
p D�−

s

D�0 D�þ D�þ
s − 3ffiffiffiffi

12
p ψ

1
CCCCCCCA
; ð21Þ

A ¼ Aata ¼ 1ffiffiffi
2

p

0
BBBBBBB@

a0
1ffiffi
2

p þ f1ffiffi
6

p þ χc1ffiffiffiffi
12

p aþ1 Kþ
1 D̄0

1

a−1 − a0
1ffiffi
2

p þ f1ffiffi
6

p þ χc1ffiffiffiffi
12

p K0
1 D−

1

K−
1 K̄0

1 −
ffiffi
2
3

q
f1 þ χc1ffiffiffiffi

12
p D−

s1

D0
1 Dþ

1 Dþ
s1 − 3ffiffiffiffi

12
p χc1

1
CCCCCCCA
; ð22Þ

π ¼ πata ¼ 1ffiffiffi
2

p

0
BBBBBBB@

π0ffiffi
2

p þ ηffiffi
6

p þ ηcffiffiffiffi
12

p πþ Kþ D̄0

π− − π0ffiffi
2

p þ ηffiffi
6

p þ ηcffiffiffiffi
12

p K0 D−

K− K̄0 −
ffiffi
2
3

q
ηþ ηcffiffiffiffi

12
p D−

s

D0 Dþ Dþ
s − 3ffiffiffiffi

12
p ηc

1
CCCCCCCA
: ð23Þ
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The mass terms in the action Mab
A , Mab

V , and Mab
VH

are
defined by

Mab
A δab ¼ Trðfta; X0gftb; X0gÞ;

Mab
V δab ¼ Trð½ta; X0�½tb; X0�Þ;
Mab

VH
¼ Trð½H; ta�½H; tb�Þ; ð24Þ

where Ma;b
VH

is zero except for the case a ¼ b ¼ 15. The
vector field in Eq. (20) satisfies the following equation of
motion:

−∂M
e−ϕ

g25z
Va
MN −

e−ϕ

z3
�
Maa

V Va
M −Maa

VH
Va
HM

� ¼ 0; ð25Þ

where Va
M ¼ ðVa

μ; Va
z Þ. The gauge fixing for the vector field

is Va
z ¼ 0 and for the transverse part of the vector field

ðVa
μ ¼ Va

μ⊥ þ Va
μkÞ, ∂μVa

μ⊥ ¼ 0. Applying the decomposi-

tion and gauge choices, Eq. (25) reduces to the following
form:

�
−

z
e−ϕ

∂z
e−ϕ

z
∂z þ

2g25ðMaa
VH

−Maa
V Þ

z2

�
Va
μ⊥ðq; zÞ

¼ −q2Va
μ⊥ðq; zÞ; ð26Þ

where Va
μ⊥ðq; zÞ is the 4D Fourier transform of Va

μ⊥ðx; zÞ.
According to the AdS=CFT conjecture, one can write the
vector field according to the bulk-to-boundary propagator
and its boundary value at UV, which acts as a Fourier
transform of the source of the 4D conserved vector current
operator, Va

μ⊥ðq; zÞ ¼ V0a
μ⊥ðqÞVaðq2; zÞ. It is worth knowing

that the bulk-to-boundary propagator V0aðq2; zÞ satisfies the
equation of motion for the vector field with the boundary
condition Vaðq2; ϵÞ ¼ 1 and ∂zVaðq2; zmÞ ¼ 0. To find the
mass eigenvalues of the vector mesons, we need a wave
function ψVðzÞwith−q2 ¼m2

V , which satisfies Eq. (26) with
the boundary conditions ψVnðϵÞ ¼ 0 and ∂zψVnðzmÞ ¼ 0,
and normalized as

R
dz e−ϕ

z ψn
VðzÞψm

V ðzÞ ¼ δnm. Moreover,
the bulk-to-boundary propagator can be written as a sum
over meson poles.

Vaðq2; zÞ ¼
X
n

−g5faVnψa
VnðzÞ

q2 −ma2
Vn

; ð27Þ

where faVn ¼ j∂zψa
VnðϵÞ=ðg5ϵÞj is the decay constant of the

nth mode of the vector meson [22].
The equation of motion for the axial vector field is

similar to the vector field, except the auxiliary field H does
not contribute. The axial vector field Aa

μ can be decomposed
to the transverse and longitudinal parts, Aa

μ ¼ Aa
μ⊥ þ Aa

μk,

where Aa
μk ¼ ∂μϕ

a has the contribution to the pseudoscalar

mesons. The equation of motion derived from Eq. (10) is
given by

�
−

z
e−ϕ

∂z
e−ϕ

z
∂z þ

2g25M
aa
A

z2

�
Aa
μ⊥ðq; zÞ ¼ −q2Aa

μ⊥ðq; zÞ;

ð28Þ

with the gauge fixing and transverse condition Aa
z ¼ 0,

and ∂
μAa

μ⊥, respectively. The bulk-to-boundary propagator
of the axial vector field Aaðq2; zÞ satisfies the boundary
conditions, Aaðq2; ϵÞ ¼ 0 and ∂zAaðq2; zmÞ ¼ 0, in the
UV and IR region.
Finally, the mass spectra of the pseudoscalar mesons can

be found by solving the coupled equation of motions
between the pseudoscalar field π and the longitudinal part
of the axial vector field ϕ,

q2∂zφaðq;zÞþ2g25M
aa
A

z2
∂zπ

aðq;zÞ¼0;

z
e−ϕ

∂z

�
e−ϕ

z
∂zφ

aðq;zÞ
�
−
2g25M

aa
A

z2
�
φaðq;zÞ−πaðq;zÞ�¼0;

ð29Þ

with the boundary conditions πaðq2; ϵÞ ¼ ϕaðq2; ϵÞ ¼ 0

and ∂zπ
aðq2; zmÞ ¼ ∂zϕ

aðq2; zmÞ ¼ 0. In the holographic
QCD approach, the decay constants for the vector, axial
vector, and pseudoscalar mesons are defined by

faVn ¼ e−ϕ

g5z
∂zψ

a
VnðzÞ

���
z→ϵ

;

faAn ¼ e−ϕ

g5z
∂zψ

a
AnðzÞ

���
z→ϵ

;

faπn ¼ −
e−ϕ

g5z
∂zφ

a;nðzÞ
���
z→ϵ

; ð30Þ

where ψa
VnðzÞ, ψa

AnðzÞ, and φa;nðzÞ are the normalized wave
functions for the vector, axial vector, and pseudoscalar
mesons, respectively.

IV. THREE-POINT INTERACTION COUPLING
CONSTANTS AND FORM FACTORS

The coupling constants and form factors can be obtained
from the cubic order of the 5D action in Eq. (10),
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Sð3Þ ¼ −
Z

d5x

�
ηMN e−ϕðzÞ

z3
�
2ðAa

M − ∂Mπ
aÞVb

Nπ
cgabc

þ Va
M

�
∂NðπbπcÞ − 2Ab

Mπ
c
�
habc − Va

MV
b
Nπ

ckabc
�

þ e−ϕðzÞ

2g25z
ηMPηNQ

�
Va
MNV

b
PV

c
Q þ Va

MNA
b
PA

c
Q

þ Aa
MNV

b
PA

c
Q þ Aa

MNA
b
PV

c
Q

�
fbca

�
ð31Þ

with the following definitions for gabc, habc, and kabc:

gabc ¼ iTrðfta; X0g½tb; ftc; X0g�Þ;
habc ¼ iTrð½ta; X0�ftb; ftc; X0ggÞ;
kabc ¼ −2Trð½ta; X0�½tb; ftc; X0g�Þ: ð32Þ

In the present work, we are interested in the three-point
interactions of the VVV, VAA, and Vππ. The correspond-
ing part of the action to these three-point interactions are

SVVV ¼ −
Z

zm

ϵ
d5

e−ϕðzÞ

2g25z
ηmpηnq

�
Va
mnVb

pVc
q

�
fabc ð33Þ

SVAA ¼ −
Z

zm

ϵ
d5

e−ϕðzÞ

2g25z
ηmpηnq

�
Va
mnAb

pAc
q þ Aa

mnVb
pAc

q

þ Aa
mnAb

pVc
q

�
fabc ð34Þ

SVππ ¼ −
Z

zm

ϵ
d5x

�
ηmn e

−ϕðzÞ

z3
�
2ðAa

m − ∂mπ
aÞVb

nπ
cgabc

þ Va
mð∂nðπbπcÞ − 2Ab

nπ
cÞhabc�

þ e−ϕðzÞ

2g25z
ηmpηnqðVa

mnAb
pAc

qÞfabc
�
: ð35Þ

In the AdS=CFT approach, the coupling constants of
three-point interaction can be obtained from the three-point
correlation functions by functional variation of the 5D
action with respect to the sources of the 5D fields [42,44].
The relevant coupling constants calculated are given by

gVVV ¼ g5fabc
Z

zm

ϵ
dz

e−ϕðzÞ

z
VaðzÞVbðzÞVcðzÞ; ð36Þ

gVAA ¼ g5fabc
Z

zm

ϵ
dz

e−ϕðzÞ

z
VaðzÞAbðzÞAcðzÞ; ð37Þ

gVππ ¼ g5

Z
zm

ϵ
dz

e−ϕðzÞ

z

�
fabc∂zϕaVbðzÞ∂zϕa

−
2g25
z2

ðπa − ϕaÞVbðzÞðπc − ϕcÞ�gabc − hbac
��

:

ð38Þ

Moreover, we study the electromagnetic (EM) form
factors of the channels VVV, VAA, and Vππ and the
charge radius. The EM form factors of the vector, axial
vector, and pseudoscalar mesons are defined by [39,42,52]

hVaðpþ qÞ; ϵ0jJμEMð0ÞjVaðpÞ; ϵi
¼ −ðϵ0 · ϵÞð2pþ qÞμF1

Vaðq2Þ þ ½ϵ0μðϵ · qÞ − ϵμðϵ0 · qÞ�

× ½F1
Vaðq2Þ þ F2

Vaðq2Þ� þ 1

M2
Va

ðq · ϵ0Þðq · ϵÞ

× ð2pþ qÞμF3
Vaðq2Þ; ð39Þ

hAaðpþ qÞ; ϵ0jJμEMð0ÞjAaðpÞ; ϵi
¼ −ðϵ0 · ϵÞð2pþ qÞμF1

Aaðq2Þ þ ½ϵ0μðϵ · qÞ − ϵμðϵ0 · qÞ�

× ½F1
Aaðq2Þ þ F2

Aaðq2Þ� þ 1

M2
Aa

ðq · ϵ0Þðq · ϵÞ

× ð2pþ qÞμF3
Aaðq2Þ; ð40Þ

hπaðpþ qÞjJμEMð0ÞjπaðpÞi ¼ ð2pþ qÞμFπaðq2Þ; ð41Þ

where ϵ and ϵ0 are the polarization vectors of the initial
and final vector mesons, respectively, and JμEMð0Þ is the
electromagnetic current. The electromagnetic current can
be represented by the linear combination of the flavor
currents via [39]

JμEMðxÞ ¼
X

a¼ðρ;ω;J=ψÞ
caJ

μ
aðxÞ; ð42Þ

where the coefficient ca is a constant depending on the
contribution of the quarks in the EM current. The electric
(charge), magnetic, and quadrupole form factors of the
vector and axial vector mesons can be deduced from the
linear combination of the form factors in Eqs. (39) and (40),
respectively.

FE
Va ¼ F1

Va þ q2

6M2
Va

	
F2
Va −

�
1 −

q2

4M2
Va

�
F3
Va



;

FM
Va ¼ F1

Va þ F2
Va ;

FQ
Va ¼ −F2

Va þ
�
1 −

q2

4M2
Va

�
F3
Va: ð43Þ
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FE
Aa ¼ F1

Aa þ q2

6M2
Aa

	
F2
Aa −

�
1 −

q2

4M2
Aa

�
F3
Aa



;

FM
Aa ¼ F1

Aa þ F2
Aa ;

FQ
Aa ¼ −F2

Aa þ
�
1 −

q2

4M2
Aa

�
F3
Aa : ð44Þ

For the elastic case, the electromagnetic form factors
obtained as

F1
Va ¼ F2

Va ¼ FVa ¼
X
n

fVagVVV
M2

Va þQ2
;

F3
Va ¼ 0; ð45Þ

F1
Aa ¼ F2

Aa ¼ FAa ¼
X
n

fVagVAA
M2

Va þQ2
;

F3
Aa ¼ 0; ð46Þ

Fπa ¼
X
n

fVagVππ
M2

Va þQ2
; ð47Þ

where Q2 ¼ −q2. Using the couplings in Eqs. (36)–(38)
and the definition of the bulk to boundary in Eq. (27), one
can reach the final version of the form factors for the vector,
axial vector, and pseudoscalar mesons,

FVðQ2Þ ¼ fabc
Z

dz
e−ϕðzÞ

z
VaðQ2; zÞVbðzÞVcðzÞ; ð48Þ

FAðQ2Þ ¼ fabc
Z

dz
e−ϕðzÞ

z
VaðQ2; zÞAbðzÞAcðzÞ; ð49Þ

FπðQ2Þ ¼
Z

dz
e−ϕðzÞ

z
VbðQ2; zÞ

�
fabc∂zϕa

∂zϕ
c

−
2g25
z2

ðπa − ϕaÞðπc − ϕcÞ�gabc − hbac
��

: ð50Þ

Note that the bulk-to-boundary propagator for vector
sector VbðQ2; zÞ can be obtained by solving the equation of
motion, Eq. (26). The analytical solution of Eq. (26) can be
obtained only for the off-shell mode of the ρ meson; for
others, one has to use the numerical method. The solution
reads

VbðQ2; zÞ ¼ Γ
�
1þ Q2

4μ2

�
U

�
Q2

4μ2
; 0; z2μ2

�
: ð51Þ

The charge radius can be obtained from the low Q2

expansion of the EM form factors of a pseudoscalar meson
and the charge form factors of the vector meson,

FðCÞðQ2Þ ¼ 1 −
1

6
hr2iQ2 þ � � � ; ð52Þ

then, the charge radius is given by

hr2i ¼ −6
dFðQ2Þ
dQ2

����
Q2→0

: ð53Þ

V. RESULTS

This section presents the numerical results for the meson
spectra, decay constants, electromagnetic form factor, and
charge radii obtained from our holographic QCD model.
The model incorporates various free parameters, such as μ,
mu, ms, mc, mhc, σu, σs, σc, zm, and κ. The values of these
parameters are determined by fitting the model with the
experimental value of the mass and decay constant of the
following mesons, mρ, mπ, fπ , ma1 , mK , fK , mηc , mχc1 ,
mJ=ψ , and mψð3770Þ. The values of the parameters obtained
from the fitting are provided in Table I.

A. Meson spectra

Once the parameters are fixed, the model enables the
calculation of meson spectra and decay constants for
vector, axial vector, and pseudoscalar mesons. The masses
of vector mesons are determined by solving the equation of
motion given in Eq. (26), where m2

V ¼ −q2. Similarly, by
solving Eqs. (28) and (29), one can get the masses of the
axial vector and pseudoscalar mesons. The resulting meson
masses compared to the values listed by the Particle Data
Group (PDG) [53] are presented in Tables II–IV for vector,
axial vector, and pseudoscalar mesons, respectively.
Considering the exact SUð4ÞV symmetry, the masses of
the ρ, ω, and J=ψ mesons should be equal. As a
consequence of the SUð4ÞV symmetry, we can see that
from Table II, the masses of the ground and excited states of
the ρ and ω mesons are exactly the same. However, the
mass of the J=ψ meson differs because of the explicit
symmetry breaking of the action by introducing an aux-
iliary field H. For the case of D� and D�

s mesons, the
inclusion of the nonzero value of Maa

V in the equation of
motion [Eq. (25)] leads an explicit SUð4Þ flavor symmetry
breaking. In addition, for the case of the axial vector and
pseudoscalar mesons, the mass term Maa

A is nonzero for all
the mesons, and then the chiral symmetry is explicitly
broken by the different values of the quark masses for all
the axial vector and pseudoscalar mesons. Moreover,

TABLE I. The values of the free parameters with the unit
of MeV.

μ ¼ 430 σu ¼ ð296.2Þ3
mu ¼ 3.2 σs ¼ ð259.8Þ3
ms ¼ 142.3 σc ¼ ð302Þ3
mc ¼ 1597.1 zm ¼ 10000
mhc ¼ 1985 κ ¼ 30
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comparing our meson spectra with the one obtained in
Ref. [41], one can conclude that our results are well
improved, especially for the pseudoscalar mesons. This
improvement comes from the inclusion of the higher-order
terms in the scalar potential.

B. Decay constant

The calculated decay constants are presented in Table V
for various mesons within our model. In the vector meson
sector, we compared the decay constant of the ρ meson to
the experimental value obtained from Ref. [54]. Our result
shows a discrepancy of 16% compared to the experimental
value. Additionally, we predicted the decay constants for
the K�, D�, and D�

s mesons. Moving to the axial vector
sector, only the experimental value for the a1 meson (taken
from Ref. [55]) is available for the comparison, while the
decay constants of the other axial vector mesons are
predicted in our model. Notably, the predicted value for
the a1 meson aligns well with the experimental value. In the
pseudoscalar sector, the decay constants of the pion and
kaon are found to be compatible with the values listed in

TABLE II. Comparison of the vector mesons masses with the values listed in PDG [53].

n mρ Experiment mK� Experiment mω Experiment mD� Experiment mD�
s

Experiment mJ=ψ Experiment

1 860 775 860.05 892 860 782 1914.90 2007 1911.40 2112 3099.21 3097
2 1216.24 1465 1216.29 1414 1216.24 1410 2110.04 2627 2107.36 2714 3329.54 3686
3 1490.09 1570 1490.15 1718 1490.09 1670 2286.48 2781 3702.95 3733
4 1726.63 1720 1726.63 1960 3863.62 4040
5 1957.02 1900 1957.02 2205
6 2201.44 2150 2201.44 2290
7 2462.12 2330

TABLE III. Comparison of the axial vector mesons masses with the values listed in PDG [53].

n ma1 Experiment mK1
Experiment mf1 Experiment mD1

Experiment mDs1
Experiment mχcl Experiment

1 1286.95 1230 1287.67 1253 1287.97 1282 2641.47 2422 2657.55 2460 3511.04 3511
2 1541.88 1411 1542.90 1403 1543.32 1426 4050.30 3872
3 1765.28 1655 1766.30 1672 1766.73 1518 4149.46 4147
4 1968.94 1930 1970.32 1971 4340.88 4274
5 2172.45 2096 2173.82 2310
6 2393.35 2270

TABLE IV. Comparison of the pseudoscalar mesons masses with the values listed in PDG [53].

n mπ0 Experiment mK0 Experiment mη Experiment mD0 Experiment mD�
s

Experiment mηc Experiment

1 141.69 139.57 622.15 498 740.52 548 2032.67 1865 2114.32 1968 2968.46 2984
2 1439.04 1300 1451.28 1482 145.78 1294 2913.25 2549 3894.14 3637
3 1698.20 1810 1709.18 1629 1716.10 1475
4 2124.64 2070 1927.17 1874 1933.92 1751
5 2345.61 2360 2142.68 2010

TABLE V. The predicted decay constants calculated from the
hQCD compared to experimental or lattice data.

Observable Nf ¼ 4, hQCD (MeV) Measured (MeV)

f1=2ρ 288.50 345 [54]

f1=2K� 288.28

f1=2D� 413.36

f1=2D�
s

427.78

f1=2a1
351.34 354 [55]

f1=2K1

348.26

f1=2f1
346.79

f1=2D1

502.11

f1=2Ds1
475.74

fπ 91.03 92.07 [53]
fK 108.5 110 [53]
fη 126.32
fD0 199.31 149.8 [53]
fDs

197.73 176.1 [53]
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PDG [53]. However, for the D0 and Ds mesons, there are
only results from lattice QCD studies, and no experimental
data is directly comparable in this context. Similar to the
meson spectra, the decay constants of our work have better
compatibility with the experimental and lattice data com-
pare to Ref. [41].

C. Three-particle coupling constant

In our analysis of three-point functions, we have calcu-
lated the coupling constants for three types of interactions:
VVV (vector-vector-vector), VAA (vector-axial vector-
axial vector), and Vππ (vector-pseudoscalar-pseudoscalar).
It is worth noting that, assuming the equal masses and
condensates for the quarks, the couplings should satisfy the
following relations, which is the manifestation of flavor
symmetry restoration,

gρKK ¼ gρDD ¼ 1

2
gρππ;

gρK�K� ¼ gρD�D� ¼ 1

2
gρρρ;

gρK1K1
¼ gρD1D1

¼ 1

2
gρa1:a1 : ð54Þ

The numerical value of the ratios between the strong
coupling constants are reported in Table VI. The SUð4Þ
flavor symmetry is clearly seen in Table VI, where the
symmetry is badly broken in the case of including the
charm quark. Similar results are reported in the hard-wall
model [39] and QCD sum rules [56].

D. Form factor

We present the results of the meson form factors obtained
using the definitions of EM form factors described in the
previous section. First, we focus on the vector meson form
factors and display them in Fig. 1. The form factors at

TABLE VI. Reporting the flavor symmetry breaking in our
calculations.

SUð4Þ symmetry relation Violation in Nf ¼ 4, hQCD (%)

2gρKK=gρππ 14
2gρDD=gρππ 47
2gρK�K�=gρρρ 0
2gρD�D�=gρρρ 36
2gρK1K1

=gρa1a1 1
2gρD1D1

=gρa1a1 76

FIG. 1. The electric (red), magnetic (blue), and quadrupole (black) form factors of the vector mesons (ρ: top-left, K�: top-right,
D�: bottom-left, D�

s : bottom-right). The lattice QCD data for the electric form factor of D�, and D�
s are taken from Ref. [16] with

mπ ¼ 300 MeV and [17] for mπ ¼ 300 MeV (cyan points) and mπ ¼ 315 MeV (magenta points), respectively.
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Q2 ¼ 0 are well defined for the ground states of the four
vector mesons studied in this work, ρ, K�, D�, and D�

s ,
such that FE

Vað0Þ ¼ 1, FM
Vað0Þ ¼ 2, and FQ

Vað0Þ ¼ −1.
Unfortunately, the experimental data are not available for
the EM form factors of the vector mesons. However, one
can find the lattice QCD result for the D� meson in the
Ref. [16] with mπ ¼ 300 MeV, and Ref. [17] provided
two sets of solutions for theD�

s based on a different value of
the lattice spacing and pion mass (mπ ¼ 300 MeV, and
mπ ¼ 315 MeV). From Fig. 1, one can see that the electric
form factors of the D� and D�

s mesons are compatible with
the lattice QCD results.
Similarly, we display the results of the electric, magnetic,

and quadrupole form factors of the axial vector mesons in
Fig. 2. Experimental data and lattice QCD results are
currently unavailable for the axial vector sector. We hope
that experimental and lattice QCD collaborations will
report these results in the future. Our results for the axial
vector mesons are comparable to those studied in the hard-
wall holographic approach [39]. Finally, we examine the
form factors of the π, K,D, andDs mesons, and present the
results in Fig. 3.
The pion form factor has been extensively studied from

both theoretical and experimental perspectives. Previous

works have investigated the pion form factor within the
hard-wall and soft-wall holographic QCD models for
the two-flavor case [36,42,44,50]. Experimental data for
the pion form factor have been reported by the Jefferson
Lab Collaboration for Q2 ¼ 0.60–2.45 GeV [2].
There are different lattice QCD results, and we compare

our results with the ones reported by JLQCD [18], ETMC
[19], and Lattice Hadron Physics (LHP) [20] Collaborations.
Figure 3 demonstrates that our result is consistent with the
lattice QCD result reported in Ref. [20], although discrep-
ancies with experimental data have been reported in earlier
works within holographic QCD [36,42,44,50]. Moreover,
the comparison of the kaon form factor with the exper-
imental data at low Q2 [3] is shown in Fig. 3 (top-left). One
can see that our prediction is in very good agreement with the
available data. For the case of the D0 and Ds mesons, only
the data from the lattice QCD are available. The results of the
EM form factors for D0 and Ds mesons are shown in Fig. 3
(bottom-right) and (bottom-left), respectively. Our model’s
predictions are well consistent with the lattice QCD data.
From the results comparing with data, we can see that the

form factors in the charm sector are in good agreement with
experimental data, but for light mesons, especially for pion,
the form factor deviates from the experimental data.

FIG. 2. The electric (red), magnetic (blue), and quadrupole (black) form factors of the axial vector mesons (a1: top-left, K1: top-right,
D1: bottom-left, D1s: bottom-right).
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E. Charge radii

We calculate the charge radii of vector, axial vector, and
pseudoscalar mesons in holographic QCD using Eq. (53).
The results are presented in Table VII. We compare the

charge radii of the pion and kaon with the values listed by
the PDG [53]. For the Dþ and D�þ mesons, we compare
our results with lattice data from Ref. [16]. Similarly, we
compare the Dþ

s and D�þ
s mesons with lattice data from

Refs. [21,17]. However, there are no available experimental
or lattice results for the remaining mesons’ charge radii. It
is seen that the charge radii of the pion are in 65%
agreement with the experimental data, and the D�þ

s meson
is in 95% agreement with the experimental data.

VI. CONCLUSIONS

In the present work, we performed the four flavors
modified soft-wall holographic model to investigate various
aspects of mesons, including meson spectra, decay con-
stants, electromagnetic form factors, and charge radii of the
vector, axial vector, and pseudoscalar mesons. The model
parameters were fitted to experimental meson masses and
decay constants, enabling us to obtain the meson spectra for
the vector mesons, ρ, K�, ω, D�, D�

s , and J=ψ , axial vector
mesons, a1, K1, f1, D1, Ds1, and χc1, and pseudoscalar
mesons, π, K, η, D, Ds, and ηc. By considering the higher-
order terms in action in our model, comparing the meson

FIG. 3. The form factors of the pseudoscalar mesons (π: top-left, K: top-right, D: bottom-left,Ds: bottom-right). The pion form factor
is compared with the experimental data (blue points) [2] and LQCD data which are magenta points [18], green points [19], and cyan
points [20]. The kaon form factor is compared with the experimental data in Ref. [3]. The lattice results from which theD andDs mesons
are compared to are taken from Refs. [16,21], respectively.

TABLE VII. Set of predictions for charge radius, compared to
experimental or lattice QCD data.

Observable Nf ¼ 4, hQCD (fm) Data (fm)

rπþ 0.43 0.66 [53]
rKþ 0.45 0.56 [53]
rDþ 0.29 0.37 [16]
rDþ

s
0.31 0.35 [21]

rρþ 0.65
rK�þ 0.65
rD�þ 0.57 0.44 [16]
rD�þ

s
0.46 0.44 [17]

raþ
1

0.62
rKþ

1
0.62

rDþ
1

0.28
rDþ

s1
0.32
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spectra with the results obtained in Ref. [41], our results are
significantly improved, especially for the pseudoscalar
sector. Moreover, the decay constants were also computed
and reported in Table V. In the vector sector, we predicted
the decay constants of the K�, D�, and D�

s mesons and
compared the result for the ρmeson with experimental data,
revealing a discrepancy of 16%. In the axial vector sector,
the decay constant of the a1 meson exhibited excellent
agreement with the experimental data. Additionally, the
decay constants of the pion and kaon were well reproduced
in our model and compared with the experimental data,
while the comparison forD andDs mesons were made with
lattice data.
Considering the strong coupling constants of the gρππ ,

gρKK , gρDD, gρρρ, gρK�K� , gρD�D� , gρa1a1 , gρK1K1
, and gρD1D1

,
we investigated the SUð4Þ flavor symmetry breaking. The
results demonstrated that flavor symmetry is broken due to
the different values of the quark masses and condensates, as
indicated in Table VI.
Furthermore, we studied the electromagnetic form fac-

tors and charge radii of the mesons of ρ,K�,D�,D�
s , a1,K1,

D1,Ds1, π, K,D, andDs. In the vector sector, our predicted
electric form factors for D� and D�

s were found to be
compatible with available lattice data. The predicted results
of the axial vector mesons’ electric, magnetic, and quad-
ruple form factors are shown in Fig. 2. For the pion meson,
our work has a discrepancy with the experimental data;
however, it is in agreement with the lattice results from
Ref. [20], as depicted in Fig. 3. Moreover, the kaon form

factor exhibited good agreement with experimental data at
low Q2, similar to the results for D and Ds mesons, which
also aligned well with lattice data. Finally, we calculated
the charge radii using the holographic QCD. The obtained
values are provided in Table VII, where we predicted and
compared the results with the available experimental or
lattice data.
From these results, we can see that the physical quan-

tities in the charm sector are in good agreement with
experimental data, but for light flavor mesons, the model
predictions deviate away from the experimental data. This
may indicate that the realization of chiral symmetry break-
ing in the light flavor sector needs to be improved further.
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