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We prove novel far-from-equilibrum bounds on conformal field theories, upper bounding the growth rate
of entanglement entropy in spatially uniform states. When equal-time correlators and Wilson loops are
computed by geodesics and world sheets, we also bound the growth rate of these. Example applications
include lower bounds on thermalization times or the time it takes to achieve deconfinement. Our bounds are
proven for holographic conformal field theories at strong coupling and large–N, but we provide evidence
that they are valid independent of these assumptions. In two dimensions, our results prove a conjectured
bound on entanglement growth by Liu and Suh for a large class of states. We also derive bounds on spatial
derivatives of correlation measures. From a gravitational perspective, our results constitute new lower
bounds on the mass of asymptotically AdS spacetimes with planar symmetry, strengthening the positive
mass theorem for these spacetimes. We also derive novel relations in AdS=CFT relating various geometric
features directly to entanglement entropy derivatives. For example, we show that conformal field theory
entanglement growth corresponds to bulk matter falling deeper into the bulk.
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I. INTRODUCTION

Entanglement is one of the defining features of quantum
mechanics, and its effects are ubiquitous in modern
physics. It is now understood that entanglement entropy
plays a significant role in a variety of fields, including
quantum many-body physics [1–3], quantum information
theory [4–6], quantum gravity [7–21], and renormaliza-
tion group flows in quantum field theory [22–30].
A central question relevant to the above subjects is how

entanglement behaves dynamically. In this paper, we address
the following question: can we find growth bounds on the
entanglement entropy and other correlation measures, even
when we are far from equilibrium or when the coupling is
strong? Answering these questions is relevant to under-
standing how rapidly quantum information can propagate,
how long it takes a many-body system to thermalize,
bounding decoherence times, or, in quantum gravity, for
constraining the dynamics of emergent spacetime.

While calculating entanglement entropies is notoriously
hard, several lessons have nevertheless been learned over
the last two decades. Quantum quenches in particular have
been a fruitful arena of inquiry. In a quantum quench, the
Hamiltonian is abruptly changed, or a source is turned on
over a small time interval δt. In either case, there is an
abrupt injection of energy into the system, kicking an
initially stationary state out of equilibrium. The subsequent
approach to equilibrium can then be computed in various
setups. For example, in a seminal paper by Calabrese and
Cardy [23], the entanglement entropy SR of an interval R of
length l in a (1þ 1)-dimensional conformal field theory
(CFT) after a uniform quench was computed. For large
times and interval lengths, it was found to behave as

SRðtÞ − SRðt ¼ 0Þ ¼
�
2stht t < l=2

sthl t ≥ l=2
; ð1Þ

where sth the thermal entropy density of the final state.
Linear growth of entanglement for large regions R after
uniform quenches has also been found in higher dimen-
sional holographic CFTs [31–34]. In particular, after local
equilibration and before late time saturation, the entangle-
ment entropy of a region R after a quench was found to
behave as [33,34]
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SRðtÞ − SRðt ¼ 0Þ ¼ vEsthArea½∂R�tþ… ð2Þ

with vE the so-called entanglement velocity, which
satisfies vE ≤ 1.
Quenches provide rich insights on entanglement dynam-

ics, and they have inspired powerful phenomenological
models for entanglement dynamics that reproduce findings
of quenches [35–37]. However, quenches represent special
setups, and it would be useful to understand whether
lessons learned from quenches represent the much larger
space of possible far-from-equilibrium states. Some results
covering more general states do exist. Consider two
quantum systems A ∪ a and B ∪ b coupled by an inter-
action Hamiltonian HAB acting only on the subsystems A
and B. In [38] (building on [39]) it was proven that���� dSA∪adt

���� ≤ ηkHABk log d; ð3Þ

where d ¼ minfdimA; dimBg, and where η is an order 1
constant. While this bound has broad generality for finite-
dimensional systems, it is not useful in QFT, where d is
infinite. Even if we UV-regulate to make d finite, the norm
of the interaction Hamiltonian is infeasible to compute.
Furthermore, the bound is state-independent, and it is
natural to suspect the rate of entanglement growth under
Hamiltonian evolution is limited by the energy of the
system. Thus, in local quantum many-body systems with
conservation of energy, we would expect that more power-
ful bounds exist.
A bound on entanglement growth useful in QFT was

conjectured in [33,34], based on the findings in holographic
quenches. It was proposed that a normalized instantaneous
entanglement growth R in relativistic QFT satisfies the
bound

R≡ 1

Area½∂R�sth

���� dSRdt
���� ≤ 1: ð4Þ

The authors of [40] utilized relativistic QFT to prove that,
for convex regions R in spatially uniform states, R ≤ 1
holds to leading order in a large subregion expansion, where
nonextensive contributions to SR were neglected [41].
However, it was found in [34] that the largest values for
R were obtained for intermediate sized regions, where
existing proofs of R ≤ 1 do not apply. Thus, the validity
of (4) for general regions is still an open question [44].
In this work, we will prove novel speed limits on

the growth of entanglement, and in some cases other
correlation measures, in a large class of CFTs far-
from-equilibrium. Our bounds will imply R ≤ 1 for a
number of situations not previously covered—in particular,
our results are not restricted to quenches or large subregions.
We will however need to make some restrictions. First, we
will work with spatially uniform states. Next, we will work

with holographic CFTs at strong coupling and largeN (large
effective number of degrees of freedom), so that we can
utilize the equivalent dual gravitational description available
through the AdS=CFT correspondence. For several of our
bounds, however, we will provide evidence that they are
valid for CFTs more broadly, even when they are not
holographic, strongly coupled, or at large–N. Finally, for
technical reasons we will have to assume that certain scalar
single trace operators have vanishing one-point functions,
but we will again provide evidence that our bounds are true
irrespective of these assumptions, even though we cannot
give a proof.
Let us now summarize our results. We start with 2d,

where our results are strongest. Consider a 2d CFT on
Minkowski space in a homogeneous and isotropic state
undergoing time-evolution. Let t label the time slices on
which the state is uniform, and let R be a union of intervals
of any size. Assuming an energy condition and certain
falloff conditions on the matter fields in the bulk, whose
CFT interpretation we will discuss below, we prove that

���� dSRdt
���� ≤ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πc
3

hTtti
r

; ð5Þ

where c is the central charge and hTtti the CFT energy
density one-point function, which is the same everywhere
in a uniform state. This is our main result. If we work with
uncharged states, (5) implies that R ≤ 1. Thus, for the 2d
theories under consideration, we have given a proof ofR ≤
1 to regions of arbitrary finite size and with any number of
connected components [46].
Next, in cases where the geodesic approximation can be

utilized, we prove that

���� ddt log hOðxÞOð0ÞiρðtÞ
���� ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96πΔ2

c
hTtti

r
; ð6Þ

where OðxÞ is a heavy primary operator of scaling
dimension Δ ≫ 1. This bound is respected (and in certain
regimes saturated) in the global CFT2 quenches studied
in [47,48] (even when Δ and c are not large). The fact that
(5) and (6) are saturated in direct CFT computations that
make no assumption of holography, large central charge or
strong coupling suggest that these bounds could be true
beyond the context in which we have proven them.
Next, for small separations x, we prove a stronger bound

on heavy correlators, again valid in the cases where
geodesic approximation holds:���� ddt log hOðxÞOð0ÞiρðtÞ

���� ≤ 12πΔjxj
c

hTtti½1þ…�; ð7Þ

where dots indicate Oðx2hTtti=cÞ corrections. Before turn-
ing to higher dimensions, we note that the bounds (5)–(7)
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are valid also for CFTs on a spatial circle, provided we
replace hTtti → hTtti − hTttivacuum.
Next, consider d ≥ 2-dimensional holographic CFTs on

Minkowski space, again in a time-evolving uniform state.
Taking R to be either a single ball or strip of characteristic
size l, we prove that���� dSRdt

���� ≤ κVol½R�hTtti
�
1þO

�
ldhTtti
ceff

��
; ð8Þ

where κ is an Oð1Þ numerical constant given in the main
text [see (29)], and which depends only on d and the shape
of R. ceff is the effective central charge, which for a given
theory can be extracted from the vacuum entanglement
entropy—see main text. This bound is only applicable for
small regions, but it is much stronger than R ≤ 1 [49]. For
an uncharged state, if β is the effective inverse temperature
at which the thermal energy density equals hTtti, we have
shown that R ≤ Oðld=βdÞ ≪ 1.
We also prove a higher-dimensional analog of (5),

although in this case the proof is more limited. Consider
a family of states where in the gravitational description, all
nongauge-field matter is localized to a thin planar shell,
which under the radius-scale duality in AdS=CFT corre-
sponds to states where all dynamics at a given time takes
place at a single (time-dependent) energy scale. For these
states we prove that���� dSRdt

���� ≤ 1

4
Area½∂R�ceff

�
16π

ðd − 1Þceff
hTtti

�d−1
d

; ð9Þ

where R either is a single ball or the union of any number of
strips. Considering a neutral state whose holographic dual
is a uncharged black brane, (9) translates intoR ≤ 1. While
our proof of (9) applies to a smaller class of states, we give
substantial numerical evidence that it holds more generally
for all uniform states—at least in holographic CFTs.
Next, for the special case of d ¼ 4, we prove bounds on

Wilson loops WðCÞ of spacelike circles C, assuming we
can compute these using classical worldsheets in the
gravitational bulk. Like for the geodesic approximation,
we do not claim that this approximation is always valid (see
for example [51]). However, when it is justified to use it, we
do get a bound. In terms of the variables characterizing
N ¼ 4 super Yang-Mills with the gauge group SUðNÞ and
’t Hooft coupling λ, we then show that���� ddt log hWðCÞiρðtÞ

���� ≤ Length½C�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ

3N2
hTtti

r
: ð10Þ

For other potential d ¼ 4 holographic CFTs, our result can
be written in terms of the effective central charge and
effective coupling—see main text. In d ¼ 3, we prove a
similar result, but for the more restricted set of states where
all dynamics is restricted to a single energy scale [see (134)].

For small Wilson loops, we again have stricter bounds,
which we give in the main text [see (130)]. If we have a
phase transition with onset of confinement, bounds of the
form (10) could be used to bound how rapidly Wilson loops
can transition from a phase perimeter law to a phase with
area law.
Let us now comment on the energy condition and

asymptotic falloffs at large radius assumed in the gravita-
tional bulk for the proofs. We assume the dominant energy
condition, which in the CFT most significantly implies that
the one-point functions of relevant scalar primary operators
(Δ < d) should be vanishing in our states. However, we
provide strong numerical evidence, and some more general
arguments, that the dominant energy condition is unneces-
sary, although we cannot prove it. Next, the falloff condition
precisely corresponds to the assumption that one-point
functions for relevant scalar primary operators with scaling
dimension in the restricted band d−2

2
≤ Δ < d

2
are vanishing.

However, since the proofs of R ≤ 1 for large connected
convex subregions do not require the absence of such
operators, nor does the Calabrese-Cardy global quench
computation that respects our bounds, it is plausible that
our bounds are true also in states violating this assumption.
Let us now sketch the broad picture of how our bounds

are proven, restricting to the time-derivative of the entan-
glement entropy of a strip for concreteness. For CFTs dual
to classical Einstein gravity, the von Neumann entropy of
the reduced state ρR on a subregion R is given by the HRT
formula [10,11,52], which says that

SR ¼ Area½X�
4GN

; ð11Þ

where X is the so-called HRT surface in the gravitational
dual spacetime, which roughly means a codimension 2
spacelike surface that has stationary area under compact
perturbations of X. Bounding ∂tSR in uniform states now
corresponds to bounding ∂tArea½Xt�, where Xt is a one-
parameter family of surfaces living in general time-
dependent spacetimes with planar symmetry. Central to
our proof is showing that the change in entanglement
entropy is given by

dSR
dt

¼
Z
Xt

GP; ð12Þ

where P is the matter momentum density in a direction
orthogonal to HRT surface, and where G essentially is a
propagator that only depends on the smallest radius probed
byXt, and not any other details of the spacetime. We thus see
that the flux of matter falling across the HRT surface is
directly responsible for the increase in entanglement entropy.
The formula (12) can be seen as a new momentum-
entanglement correspondence in AdS=CFT, analog to the
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momentum-complexity correspondence proposed by
Susskind in [53] and given a precise form in [54–56].
To leverage (12) to get our proofs, we study two

quasilocal masses and that find that in certain dimensions,
the integral in (12) is exactly encoded in the difference
between these two quasilocal masses at infinity. This
follows from an analysis of the monotonicity properties
of these masses, essentially through a combination of so-
called Lorentzian and Riemannian inverse mean curvature
flows. To our knowledge, our proof techniques leveraging
this delicate interplay between these two quasilocal masses
is novel, and the power of our methods our highlighted by
that fact that our bounds alternatively can be viewed as
lower bounds on hTtti, i.e. strengthenings of the positive
mass theorem.
In constructing our proofs, we also prove several new

relationships between geometry and CFT entanglement in
AdS=CFT. In addition to the relation between ∂tS and the
infalling matter momentum, we prove that for strip-shaped
region R (or an interval for 2d), we have

∂xSR ¼ Area½∂R�
4GN

�
r0
L

�
d−1

; ð13Þ

where GN is Newton’s constant, r0 is the smallest radius
probed by the HRT surface, and L the AdS radius, which is
simply related to the cosmological constant. That is, for
uniform states, the derivative with respect to strip width is
exactly determined by how deep into the bulk spacetime the
surface probes. From this, we for example see that ∂2xS → 0
geometrically means that the HRT surface on the gravity
side is encountering a barrier, preventing it from reaching
deeper into the spacetime. This suggests the presence of a
horizon.
This paper is organized as follows. In Sec. II we set up

our assumptions and prove our entanglement growth
bounds for when the subregion R is a strip. We also prove
our correlator bounds for d ¼ 2 in this section. In Sec. III
we prove the entanglement growth bounds for ball shaped
regions R and furthermore derive general properties
(qþ 1)-dimensional extremal surfaces anchored at q-
dimensional spheres on the boundary, leading to our results
for Wilson loops and a new general class of lower bounds on
the spacetime mass in odd-dimensional spacetimes. In
Sec. IV we prove bounds on spatial derivatives of the
entanglement entropy of strips in general dimensions and
equal-time two-point correlators in d ¼ 2. In Sec. V, for a
subset of our bounds, we give numerical evidence that the
dominant energy condition is not required. Finally, in
Sec. VI, we conclude with a discussion of the implications
of our findings, together with future directions. For a reader
only wanting to understand the results without getting into
the details of the proofs, it is possible to only read Secs. II A,
III A, and IV–VI.

II. BOUNDS FOR STRIPS AND CORRELATORS

A. Setup and summary of results

Consider a d-dimensional holographic CFT in
Minkowski space dual to classical Einstein gravity, so that
we are working to leading order in large N. Consider now
some general time-evolving state ρðtÞ possessing a geo-
metric dual, and having spatially homogeneous and iso-
tropic one-point functions for local operators dual to bulk
fields, such as the CFT stress tensor Tij. Homogeneity and
isotropy ensures that the dual asymptotically AdSdþ1

spacetime ðM; gÞ has planar symmetry. We allow ρðtÞ to
live on either one or two copies of Minkowski space, so that
the dual spacetime can have either one or two asymptotic
boundaries. For a single system, we allow ρðtÞ to be
mixed [57].
Our goal in this section is to use the HRTentropy formula

in this setup to derive a speed limit on the growth of the
entanglement for a strip, and in some cases the union of any
number of strips, provided they all live on the same
connected component of the conformal boundary. Since
HRT surfaces in two dimensions are geodesics, our results
for entanglement entropy will also imply bounds on
correlators computed by geodesics. In Sec. III we will
generalize to spherical subregions, and to Wilson loops.
However, we will present the results on entanglement
growth for spherical regions in this section, since they
naturally are presented together with the results for strips.
Before presenting our results, let us set up our assump-

tions. We will assume that our spacetimes are AdS-
hyperbolic, meaning that we can foliate ðM; gabÞ with
spacelike hypersurfaces Σt that all have the same topology
and are geodesically complete as Riemannian manifolds.
These represent moments of time. Next, letting L be the
asymptotic AdS radius, we assume that ðM; gabÞ satisfies
the Einstein equations

Rab −
1

2
gabR −

dðd − 1Þ
2L2

gab ¼ 8πGNT ab; ð14Þ

and that the dominant energy condition (DEC) holds for
the bulk stress tensor T ab, meaning that

T abuavb ≥ 0 for all timelike ua; vb: ð15Þ

Next, we assume that the matter fields fall off sufficiently
fast at infinity so that the Balasubramanian-Kraus [59]
boundary stress tensor hTiji is finite. When it is finite, it
corresponds to the one-point function of the CFT stress
tensor. To specify falloff assumptions more explicitly, let Ω
be any defining function, meaning any function on the
conformal compactification ofM such that the pullback of
Ω2gabj∂M to the conformal boundary is a Lorentzian
metric. We then require that the bulk stress tensor satisfies
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T abuavb ∼ oðΩdÞ; ∀ unit vectors va; ua; ð16Þ

near the conformal boundary ∂M. In the radial coordinate r
introduced below, this means the stress tensor in an
orthonormal basis falls off as oðr−dÞ. Matter fields with
falloffs sufficiently slow to require modifications of the
definition of the spacetime mass are not covered by our
results [60]. To avoid having to repeat the same assump-
tions in every theorem, let us define the following:
Definition 1. We say that an AAdSdþ1 spacetime

ðM; gabÞ is regular if it is AdS-hyperbolic, has falloffs
(16), and gab is C2.
For index conventions, we will take a; b;… to be

abstract spacetime indices, and α; β;… to be abstract
indices on spacelike hypersurfaces Σ. We take μ; ν;… to
be coordinate indices on Σ. Other indices should be clear in
the context. Furthermore, whenever intrinsic tensors on
submanifolds are written with spacetime indices, we mean
the pushforward/pullback to spacetime using the embed-
ding map.
To describe the boundary regions R covered by our

results, we select a Minkowski conformal frame on the
conformal boundary with coordinates

ds2j
∂M ¼ −dt2þL2ðdϕ2 þ dx2Þ; ðϕ;xÞ∈Rd−1; ð17Þ

where the constant t-slices are the ones on which we have
uniform one-point functions for local operators. For d ¼ 2
we can allow ϕ to be periodically identified, in which case
we say that M has spherical symmetry. Now, if the
conformal boundary ∂M has two connected components,
we focus on a particular one. We then define Rt0 to be the
one-parameter family of boundary regions given by

−
l
2L

≤ ϕ ≤
l
2L

; t ¼ t0; ð18Þ

which just corresponds to a strip or interval of length l at
time t0. In this section, when we talk about strips or refer to
a one-parameter family, we always mean the family (18).
We will abbreviate Rt¼0 ≡ R, and define

Area½∂Rt� ¼ Area½∂R� ¼ Ld−2
Z
Rd−2

dd−2x; d > 2; ð19Þ

while for d ¼ 2, we have Area½∂R� ¼ 2. For d > 2 this is of
course divergent, but since it always appears as an overall
prefactor it causes no difficulties.
Next, the HRT formula [10,11,52] states that the

von Neumann entropy of the reduced CFT state on Rt,
ρRðtÞ≡ trRcρðtÞ, is given by

SRðtÞ ¼ −tr½ρRðtÞ ln ρRðtÞ� ¼
Area½Xt�
4GN

; ð20Þ

where Xt is the minimal codimension-2 spacelike surface in
ðM; gabÞ that is (1) a stationary point of the area functional
(i.e. extremal), (2) anchored at ∂Rt on the conformal
boundary (∂Xt ¼ ∂Rt), and (3) homologous to Rt. The
latter means that there exists spacelike hypersurface Σ
with ∂Σ ¼ Xt ∪ Rt, where we here mean the boundary in
the conformal completion. We will use the gravitational
description to derive an upper bound on���� ddt

�
Area½Xt�
4GN

����� ð21Þ

purely in terms of quantities that have a known interpre-
tation in the CFT. While Area½Xt� is formally divergent,
since we (1) work with spacetimes with falloffs (16) and
(2) Area½∂Rt� is time-independent, (21) is in fact finite up to
the constant Area½∂R� prefactor.
Let us now summarize our main results, which are

broadly divided into two categories. The first class of
bounds scales like Area½∂R�, and they are strongest when
R is large. The second class of bounds scales like Vol½R�,
and they are consequently the strongest for small subre-
gions. For intermediate sized regions, where the entangle-
ment entropy is about the enter the volume-scaling regime,
we expect the two types of upper bounds to be roughly
comparable.
First, for a three-dimensional bulk, we obtain the

following
Theorem 1. Let ðM; gabÞ be a regular asymptotically

AdS3 spacetime with planar or spherical symmetry satisfy-
ing the DEC. Assume that Xt is the HRT surface of a finite
interval Rt. Then���� ddt

�
Area½Xt�
4GN

����� ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πc
3

ðhTtti − hTttivacÞ
r

; ð22Þ

where c ¼ 3L
2GN

.
Since the HRT surface of a union of strips is just the union
of HRT surfaces of a collection of individual strips, this
bound immediately implies that if R is a union of n intervals
contained in a single moment of time on one of the
connected components of ∂M, then���� ddt SR

���� ≤ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πc
3

ðhTtti − hTttivacÞ
r

: ð23Þ

While we are not able to give a general proof of the analog
of Theorem 1 in higher dimensions, we prove a version in
thin-shell spacetimes:
Theorem 2. Let ðM; gabÞ be an asymptotically AdSdþ1≥3

spacetime with planar symmetry satisfying the DEC.
Assume that Xt is the HRT surface of a region Rt
corresponding to either a strip or a ball. Assume that the
bulk matter consists of Uð1Þ gauge fields and a thin shell of
matter:
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T ab ¼ T shell
ab þ T Maxwell

ab ; ð24Þ

where T shell
ab has delta function support on a codimension–1

world volume that is timelike or null, and with T shell
ab

separately satisfying the DEC. Assume ðM; gabÞ is regular,
except we do not require gab to be C2 at the shell. Then���� ddt

�
Area½Xt�
4GN

����� ≤ 1

4
Area½∂R�ceff

�
16π

ðd − 1Þceff
hTtti

�d−1
d

;

ð25Þ

where

ceff ¼
Ld−1

GN
: ð26Þ

As a special case, this theorem applies to thin-shell
Vaidya spacetimes and charged generalizations. These
spacetimes (and related setups) have been studied exten-
sively [31–34,37,43,50,61–101] as holographic models
CFT quenches. However, more general cases than Vaidya
are allowed, where the shell might correspond to some
energy-shell in the bulk interior, propagating in a timelike
direction and never actually hitting the boundary. Using the
duality between radius and scale in the CFT, thin shell
spacetimes correspond to CFT states where all dynamics is
happening at a single scale that evolves with time.
We also should note that (25) holds if R is a union of any

number of strips on the same conformal boundary, due to
the fact that the HRT surface of n strips is just equal to n
HRT surfaces of n (generally different) strips. One can hope
that this might also be true for multiple spheres or other
shapes, but this does not follow from our proofs. Also,
while we do not have a proof, we conjecture that (25) is
valid in all DEC respecting regular planar symmetric
AAdSdþ1 spacetimes, and we provide strong numerical
evidence for this in Sec. V. In fact, our numerics seem to
indicate that the DEC is even unnecessary, as long as our
theory has a stable AdS vacuum, which is required for a
holographic dual CFT to have a Hamiltonian that is
bounded below.
Also, note that ceff can be defined purely in CFT in terms

of a universal prefactor of the sphere vacuum entanglement
entropy [10,52], or in terms of the renormalized entangle-
ment entropy [102,103]. So our final bounds on j∂tSj make
no reference to the bulk.
The previous two theorems give upper bounds scaling

like Area½∂R�. Now let us turn to bounds scaling like
Vol½R�. We prove the following bound on small regions,
valid for all d ≥ 2:
Theorem 3. Let ðM; gabÞ be a regular asymptotically

AdSdþ1≥3 spacetime with planar symmetry satisfying the
DEC. Assume that Xt is the HRT surface of a region Rt
corresponding to either a strip or a ball. Let l be either the
strip width or ball radius, and assume that

ldhTtti
ceff

≪ 1: ð27Þ

Then���� ddt
�
Area½Xt�
4GN

�����≤ κdVol½R�hTtti½1þO
�hTttild

ceff

��
; ð28Þ

where

κd ¼
Γ
	

1
2ðd−1Þ



Γ
	

d
2ðd−1Þ



8>><
>>:

2π R is an interval and d ¼ 2;ffiffi
π

p
d−1 R is a strip and d > 2;

2
ffiffiffi
π

p
R is a ball and d > 2:

ð29Þ

For thin shell spacetimes, volume-type bounds like the one
above can be proven exactly for subregions of any size, at
the cost of a slightly larger prefactor. See Theorem 5.
We will now outline the strategy used to obtain these

bounds. First, we show that there exists exactly one
homology hypersurface Σt that both contains Xt, and which
respects the planar symmetry of ðM; gabÞ. Then we show
that the location of Xt on Σt can be solved for exactly in
terms of the intrinsic geometry on Σt. Together with the
DEC, this fact allows us to lower bound the radius of the tip
of the HRT surface. Next, we use the fact that since Xt is
extremal, the first order variation of its area is a pure
boundary term located at ∂Xt [104], and we show that this
boundary term is simply given by a particular component
of the extrinsic curvature of Σt as r → ∞. Then wework out
the form of Einstein constraint equations on Σt, and show
that the relevant extrinsic curvature component can be
written as an integral of the matter flux over the HRT
surface. Finally, essentially relying on inverse mean curva-
ture flow of Lorentzian and Riemannian Hawking masses,
and their monotonicity properties under these flows, we
bound the integrated matter flux across the HRT surface
from above in terms of the mass of the spacetime.
Now, before we dive in, we should clarify the meaning of

radii in planar symmetric spacetimes. Since we have planar
symmetry, spacetime has a two-parameter foliation where
each leaf is a codimension–2 spacelike plane that has the
usual flat intrinsic metric. When we talk about a plane, we
always mean one of these leafs. These planes can all be
assigned an “area radius” r, and it is possible to view r as a
scalar function on spacetime which is not tied to any
coordinate. Nevertheless, unlike in spherical symmetry,
there is an overall scaling ambiguity in this function, since
the noncompactness of the planes means we cannot normal-
ize r to some area—there is no “unit plane.” However, if we
choose some Minkowski conformal frame on the boundary,
we can fix the overall normalization of r by demanding that
the defining function Ω that takes us to the chosen
conformal frame is Ω ¼ r=L. We will implicitly assume
such a choice, and refer to the radius of a plane.
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B. An explicit solution for the HRT surface location

Without loss of generality, we will bound the time-
derivative at t ¼ 0 and use the shorthands Xt¼0 ¼ X and
Rt¼0 ¼ R. Since R is a strip contained in a canonical time
slice of Minkowski on the boundary, and since the bulk
spacetime has planar symmetry, there exists a homology
hypersurface Σ̂ of X respecting the planar symmetry—see
Fig. 1. We can pick coordinates on Σ̂ so that its induced
metric Hαβ reads

Hμνdyμdyν ¼ BðrÞdr2 þ r2ðdϕ2 þ dx2Þ;
r∈ ½r0;∞Þ;ϕ∈ ½−ΦðrÞ;ΦðrÞ�; ð30Þ

where ϕ ¼ ΦðrÞ is the coordinate embedding function of
(half of) the HRT surface in Σ̂, as illustrated in Fig. 1. r0 is
the smallest value of r probed by the HRT surface,
corresponding to its tip. Σ̂ can naturally be extended to
include all ϕ∈R by planar symmetry, and this choice turns
out to be convenient for us. We denote the corresponding
hypersurface as Σ, and refer to it as the extended homology

hypersurface [105]. See Fig. 1. The boundary of Σ (in the
bulk proper) is a plane of radius r0.
Relying on the formulas derived in the remainder of this

section, we prove the following technical Lemma in
Appendix A 6:
Lemma 1. Let Σ be the extended homology hypersurface

of an HRT surface X anchored at a strip region given
by (18). Then a single coordinate system of the form

ds2 ¼ BðrÞdr2 þ r2dx2 ð31Þ

is enough to cover all of Σ. Furthermore, X has only one
turning point, meaning that embedding function rðϕÞ is
monotonically increasing for ϕ ≥ 0.
This means one function ΦðrÞ contains all the information
about the embedding of X in Σ—we do not need multiple
branches. It also means that Σ cannot have any locally
stationary planes—that is, no planes of vanishing mean
curvature, where BðrÞwould blow up [106]. The means we
never need to worry about patching across coordinate
systems when working on Σ. Geometrically, it implies
that Σ has no “throats,” i.e. locally minimal planes.
Now, taking ðr; xÞ to be coordinates on X, the induced

metric on X reads

ds2jX ¼ ½BðrÞ þ r2Φ0ðrÞ2�dr2 þ r2dx2: ð32Þ

Since X is an extremal surface, its area is stationary under
all variations, including under variations within Σ.
Enforcing this gives an ODE for ΦðrÞ in terms of BðrÞ.
To find it, we compute the mean curvature K of X viewed
as a submanifold of Σ and demand it to be zero. This gives
the equation (see Appendix A 1 for a computation)

rBΦ00 þ ðd − 1Þr2ðΦ0Þ3 þΦ0
�
dB −

r
2
B0
�

¼ 0: ð33Þ

The relevant boundary conditions are

Φ0ðr0Þ ¼ ∞; Φðr0Þ ¼ 0; ð34Þ

where the former says that r0 is the radius of the plane
tangent to the tip of the HRT surface (i.e. where dr

dϕ ¼ 0),
while the latter implements that ϕ ¼ 0 corresponds to the
center of the strip. It turns out that Eq. (33) can be
integrated, and the unique solution with the correct boun-
dary condition is (see Appendix A 3)

ΦðrÞ ¼
Z

r

r0

dρ

ffiffiffiffiffiffiffiffiffiffi
BðρÞp

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ=r0Þ2d−2 − 1

p : ð35Þ

This gives the location of the HRT surface within Σ
explicitly in terms of the geometry of Σ. We now use this
solution to determine the Einstein constraint equations on Σ,

FIG. 1. Top: the planar symmetric homology hypersurface Σ̂
with respect to the HRT surface X. Σ is the extended homology
hypersurface, whose boundary is the plane at r ¼ r0. Dashed lines
are planes—i.e. constant r surfaces. Bottom: example conformal
diagram indicating possible embeddings of two extended homol-
ogy hypersurfaces Σ and Σ0. The grey line is an apparent horizon,
with vanishing outward null expansion, θþ ¼ 0.
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and to derive a formula for the rate of change of the
entanglement growth.

C. A momentum-entanglement correspondence

Since Xt is extremal, its first order variation reduces to a
pure boundary term given by (see for example the
Appendix of [104,107]):

dArea½Xt�
dt

����
t¼0

¼
Z
∂X

Naηa; ð36Þ

where ηa is the translation vector generating the flow of ∂Xt
at conformal infinity at t ¼ 0, while Na is the normal to ∂X
that is also tangent to X, and that points toward the
conformal boundary. In writing this formula, we implicitly
assume that it is evaluated with some near-boundary cutoff
that is subsequently removed. As is well known, given some
choice of boundary conformal frame, a canonical choice of
cutoff exists [108–110], which in our case reduces to a
cutoff in the radial coordinate r. With a cutoff adapted to the
Minkowski conformal frame and the falloffs (16) and (36) is
finite, even though Area½Xt� diverges.
Now we write (36) in a more useful form. We will give

all the main steps, but relegate tedious but straightforward
computations to the Appendix.
Using the planar symmetry of Σ, the extrinsic curvature

Kαβ of Σ is given by

Kμνdyμdyν ¼ KrrðrÞdr2 þ KϕϕðrÞ½dϕ2 þ dx2�; ð37Þ

where we take the extrinsic curvature to be defined with
respect to the future directed normal. Using this, we show
in Appendix A 4, retracing the steps of [106], that

dArea½Xt�
dt

����
t¼0

¼ −
Area½∂R�
Ld−2 lim

r→∞
rd−3Kϕϕ: ð38Þ

Physically, limr→∞ rd−3Kϕϕ measures the boost angle at
which X hits the conformal boundary, or rather, the
subleading part of the angle, since extremality implies that
X hits ∂M orthogonally. This can be seen by studying
extremal surfaces in a near-boundary expansion. Thus, we
see that the entanglement growth is, up to a factor,
identically given by the (subleading) boost angle at which
the HRT surface hits the boundary. The same was found for
extremal codimension-1 hypersurfaces in [106].
Next we want to find a more explicit expression for

limr→∞ rd−3Kϕϕ. To do this, we need to use the Einstein
constraint equations, which read

Rþ K2 − KαβKαβ þ
dðd − 1Þ

L2
¼ 16πGNT abtatb;

DαKα
β −DβK ¼ 8πGNT abtaebβ; ð39Þ

whereR is the Ricci scalar of the metric on Σ, ta the future
unit normal to Σ, K ¼ HαβKαβ, and eaα a set of tangent
vectors to Σ. To write these equations in coordinate form, it
is convenient to introduce the function ωðrÞ as

BðrÞ ¼ 1

r2

L2 − ωðrÞ
rd−2

: ð40Þ

We will call ωðrÞ the Riemannian Hawking mass [111]. It
will play a central role in our work. Whether or not ωð∞Þ is
proportional to the spacetime mass for some general
spacelike hypersurface Σ depends on the behavior of the
extrinsic curvature Σ at large r. It turns out that for d ≥ 3,
and with Σ being the extended homology hypersurface of
an HRT surface, it has the property that it is proportional to
the CFT energy density:

hTtti ¼
d − 1

16πGNLd−1 ωð∞Þ; d ≥ 3: ð41Þ

For d ¼ 2, the right hand side is a lower bound on
hTtti − hTttivac, where the vacuum energy must be sub-
tracted when we allow ϕ to be periodic. We will explain
these facts in Sec. II E.
To get the constraints in a more manageable form, it is

also convenient to write KrrðrÞ in terms of a function FðrÞ
which is the rr-component of the extrinsic curvature in an
orthonormal basis,

KrrðrÞ≡ BðrÞFðrÞ: ð42Þ

In terms of these functions, the constraint equations in
coordinate form read

ðd − 1Þω
0ðrÞ
rd−1

¼ 2EðrÞ − ðd2 − 3dþ 2Þ
r4

KϕϕðrÞ2

−
2ðd − 1Þ

r2
FðrÞKϕϕðrÞ; ð43Þ

K0
ϕϕðrÞ −

KϕϕðrÞ
r

¼ rFðrÞ − r2

d − 1
J ðrÞ; ð44Þ

where we introduced the notation

E ¼ 8πGNT abtatb;

J ¼ 8πGNT abð∂rÞatb: ð45Þ

These are proportional to the energy density and radial
momentum density of the matter with respect to the frame
ta. J > 0 corresponds to matter falling into the bulk toward
smaller r. From (16) and the fact that BðrÞ ∼Oðr−1Þ, we
find that

ÅSMUND FOLKESTAD and ADITYA DHUMUNTARAO PHYS. REV. D 108, 086032 (2023)

086032-8



E ∼ oð1=rdÞ; J ∼ oð1=rdþ1Þ; ð46Þ

where we use that 1ffiffiffi
B

p ð∂rÞa is a unit vector.

To turn (43) and (44) into a closed system, we will
eliminate FðrÞ. We do this by imposing extremality of X in
the direction of ta. To do this, note that the inward (outward)
null expansion θþ (θ−) of X can be written as (see for
example the Appendix of [106])

ffiffiffi
2

p
θ�½X� ¼ �K½X� þ K − nαnβKαβ; ð47Þ

where nα is the outward normal to X within Σ [116], and
where we remind that K½X� is the mean curvature of X
within Σ. Extremality means θþ ¼ θ− ¼ 0, which implies
that K ¼ 0 and

KjX ¼ nαnβKαβjX: ð48Þ

This equation holds at ϕ ¼ ΦðrÞ, which by planar
symmetry means it holds everywhere on Σ. Writing out
this equation in coordinates, carried out in Appendix A 2,
we find

F þ ðd − 2ÞKϕϕ

r2
þ ðd − 1ÞKϕϕ

ðΦ0Þ2
B

¼ 0: ð49Þ

Plugging in the solution forΦðrÞ, given in (35), we get that

FðrÞ ¼ −
KϕϕðrÞ

r2

�ðd − 2Þr2d−2 þ r2d−20

r2d−2 − r2d−20

�
; ð50Þ

which upon insertion into the constraints, gives a closed
system of ODEs for the functions ω; Kϕϕ:

ω0ðrÞ
rd−1

¼ 2

d − 1
EðrÞ þ K2

ϕϕ

r4
h1ðrÞ; ð51Þ

K0
ϕϕðrÞ þ

Kϕϕ

r
h2ðrÞ ¼ −

r2

d − 1
J ðrÞ; ð52Þ

where

h1ðrÞ ¼
ðd − 2Þðr=r0Þ2d−2 þ d

ðr=r0Þ2d−2 − 1
;

h2ðrÞ ¼
ðd − 3Þðr=r0Þ2d−2 þ 2

ðr=r0Þ2d−2 − 1
: ð53Þ

Now, FðrÞ is a component of the extrinsic curvature in an
orthonormal basis, so it must be finite at r0. Using this to
fix an integration constant, we find that the solutions of
(51) and (52) are

KϕϕðrÞ ¼ −
r2

ðd − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=r0Þ2d−2 − 1

p ð54Þ

×
Z

r

r0

dρJ ðρÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ=r0Þ2d−2 − 1

q
; ð55Þ

ωðrÞ ¼ ωðr0Þ ð56Þ

þ
Z

r

r0

dρ

�
ρd−5h1ðρÞKϕϕðρÞ2 þ

2ρd−1

d − 1
EðρÞ

�
; ð57Þ

where Kϕϕðr0Þ ¼ 0 follows from boundedness of the
matter momentum density J ðρÞ [117]. Inserting (55) into
(38) and multiplying by ð4GNÞ−1, we get that

dSR
dt

����
t¼0

¼ Area½∂R�
4GNLd−2ðd − 1Þ

Z
∞

r0

drJ ðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2d−2 − r2d−20

q
:

ð58Þ

Since J > 0 corresponds to a flux of energy density
toward decreasing r, we see that matter falling out of the
entanglement wedge and deeper into the bulk is directly
responsible for the increase of entanglement. Conversely,
outgoing matter is responsible for decrease in entangle-
ment. We can also rewrite this formula in a covariant way.
In Appendix A 4 we show that

dSR
dt

����
t¼0

¼
Z
X
GT abnata; ð59Þ

where na is the outward unit normal to X that is tangent
to Σ, and

GðrÞ ¼ 2πrd

ðd − 1Þrd−10

: ð60Þ

The formulas (38) and (55)–(60) are the main results of
this section. These results together with the theorems
proven in the following section are crucial pieces to our
proven bounds.

D. Geometric constraints on the HRT surface

In this section, we prove the following result, while will
be used to get our final bounds:
Theorem 4. Let ðM; gabÞ be a regular asymptotically

AdSdþ1≥3 spacetime with planar symmetry satisfying the
DEC. Let X be the HRT surface of a strip R of width l, and
let be r0 be the smallest radius probed by X. Then

L2

r0
≤

Γ
	

1
2ðd−1Þ



2

ffiffiffi
π

p
Γ
	

d
2ðd−1Þ


l: ð61Þ
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Furthermore, if r0;vac is the smallest radius probed by the
HRT surface X0 of a strip of width l in pure AdSdþ1, then

r0 ≥ r0;vac: ð62Þ

We now give the proof assuming that ωðr0Þ ≥ 0, and then
we will spend most of the rest of this section proving this
assertion.
Proof. By Lemma 3, proven below, we have that

ωðr0Þ ≥ 0. Furthermore, the DEC implies that E is positive.
Hence, (57) gives that ωðrÞ is everywhere positive. But this
means that

BðrÞ ¼ 1

r2

L2 − ωðrÞ
rd−2

≥
L2

r2
; ð63Þ

which allows us to lower bound the strip width as follows:

l ¼ 2LΦð∞Þ ¼ 2L
Z

∞

r0

dρ

ffiffiffiffiffiffiffiffiffiffi
BðρÞp

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ=r0Þ2d−2 − 1

p
≥ 2L2

Z
∞

r0

dρ
1

ρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ=r0Þ2d−2 − 1

p
¼ 2L2

r0

ffiffiffi
π

p
Γ
	

d
2ðd−1Þ



Γ
	

1
2ðd−1Þ


 : ð64Þ

Finally, if we are in pure AdS, we must have that the
spacetime mass is vanishing, implying that ωð∞Þ ¼ 0, and
so by ω0ðrÞ ≥ 0 and the fact that ωðr0Þ ≥ 0, we must have
ωðrÞ ¼ 0 everywhere. But that means that the above
inequalities become equalities, giving L2

r0
≥ L2

r0;vac
, which

implies (62). ▪
Now we turn to proving that ωðr0Þ is non-negative. The
crucial tool is a planar-symmetric AdSdþ1 version of the
Lorentzian Hawking mass [118], which we define for a
planar surface σ as

μ½σ� ¼ rd

L2
−

2rdθþθ−
kþ · k−ðd − 1Þ2 ; ð65Þ

where kþ and k− are the outward and inward null vectors
orthogonal to σ, respectively, and θ� the corresponding null
expansions. In [119], generalizing the results of [120] to
planar symmetry and AAdSdþ1 spacetimes, it was shown
that the DEC implies that μ½σ� is monotonically non-
decreasing when σ is moving in an outward spacelike
direction, provided we are in a normal region of spacetime,
meaning that θþ ≥ 0; θ− ≤ 0 when we take kaþ and ka− to be
future directed [121].
Furthermore, it is useful to rewrite the Riemannian

Hawking mass ωðrÞ in a different way. ω can be thought
of as a function of a planar surface σ together with a

hypersurface Σ containing it, and in [106] it is shown that
we can write ω as

ω½σ;Σ� ¼ rd

L2
−

K½σ�2
ðd − 1Þ2 ; ð66Þ

where K is the mean curvature of σ in Σ. Using (47), which
assumes the normalization kþ · k− ¼ −1, we see that
2θþθ− ¼ ðK − nαnβKαβÞ2 −K2, and so we get the follow-
ing relation between the Hawking masses

μ½σ� ¼ ω½σ;Σ� þ rd

ðd − 1Þ2 ðK − nαnβKαβÞ2: ð67Þ

With this in hand, we prove the following Lemma.
Lemma 2. Let Γ be a complete planar symmetric

hypersurface with one conformal boundary. Let σr be a
one-parameter family of planes in Γ with radius r, and with
r∈ ð0; ϵ� for any ϵ > 0. Then

lim
r→0

μ½σr� ≥ 0: ð68Þ

Proof. Let us pick coordinates

ds2jΓ ¼
�
r2

L2
−
ωðrÞ
rd−2

�−1
dr2 þ r2dx2 ð69Þ

on Γ in a neighborhood of r ¼ 0. Since Γ is complete and
we only have one conformal boundary, arbitrarily small r
must be part of Γ. Since Γ is spacelike, we must have
ωðrÞ ≤ rd=L2, which means that ωðrÞ ∼OðrdÞ at small r.
Now, from (67) we see that μ½σr� ≥ ω½σr;Γ� and so

μ½σr� ≥ OðrdÞ: ð70Þ

Taking r → 0 proves our assertion. ▪
Now we are ready to prove that ωðr0Þ ≥ 0. The proof will
also teach us that the tip of the HRT surface cannot lie in a
trapped region, which itself is an interesting result.
Lemma 3. Let ðM; gabÞ be a planar-symmetric regular

asymptotically AdSdþ1 spacetime. Let X be the HRT
surface of a strip. Then the tip of X lies in an untrapped
region of spacetime, meaning the future null expansions of
the plane σ tangent to X at the tip satisfies

θþ½σ� ≥ 0; θ−½σ� ≤ 0: ð71Þ

Furthermore, if the DEC holds and ðM; gÞ is regular, the
Riemannian Hawking mass of σ is non-negative:

ω½σ;Σ� ¼ ωðr0Þ ≥ 0: ð72Þ

Proof. Let Σ be the unique planar symmetric extended
homology hypersurface containing X. Let σ be the boun-
dary of Σ in the bulk, having radius r0. Its null expansion is
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ffiffiffi
2

p
θ�½σ� ¼ �K½σ� þ K − rαrβKαβ; ð73Þ

where rα ¼ 1ffiffiffi
B

p ð∂rÞα. An explicit computation gives

K½σ� ¼ d − 1

r0
ffiffiffiffiffiffiffiffiffiffiffi
Bðr0Þ

p ;

K ¼ 1

B
Krr þ

Kϕϕðd − 1Þ
r2

; ð74Þ

and so we find

ffiffiffi
2

p
θ�½σ� ¼ � d − 1

r0
ffiffiffiffiffiffiffiffiffiffiffi
Bðr0Þ

p −
Kϕϕðr0Þðd − 1Þ

r20
: ð75Þ

From (55) we have that Kϕϕðr0Þ ¼ 0, and so we get that

�θ� ≥ 0; ð76Þ

proving the first assertion.
Next, since Kϕϕðr0Þ ¼ 0 we see that 2θþθ−jσ ¼ −K2jσ,

implying that μ½σ� ¼ ω½σ;Σ�. Now, since our spacetime is
AdS-hyperbolic, we can embed σ in a complete hypersur-
face with planar symmetry Γ, see Fig. 2. Since σ lies in an
untrapped region of spacetime, and since Γ is spacelike,
μ½σ� is monotonically nonincreasing as we deform σ in
inward along Γ while preserving its planar symmetry. Since
the gab is C2, θ� are continuous, and so as we deform σ

inward, one of two things happen. Either we hit a margin-
ally trapped surface, where θþθ− ¼ 0 and where μ is
manifestly positive, or we approach r ¼ 0, where we again
have that μ is non-negative by Lemma 2. See Fig. 2. But
since μ is nonincreasing along this deformation, and since it
ends up somewhere non-negative, we must have μ½σ� ≥ 0.
But μ½σ� ¼ ω½σ;Σ�, completing the proof. ▪
We have illustrated the fact that the tip cannot lie in a

trapped region of spacetime in Fig. 1—the tip cannot lie
behind the gray line. Note that the proof of this fact does
not rely on the DEC. This result improves on the findings
of [123] in the special case where we have planar symmetry.
In [123], they showed without any symmetry assumptions
that the tip of an HRT surface in a (2þ 1)–dimensional
spacetime can never lie in the so-called umbral region,
which is a special subset of the trapped region that lies
behind regular holographic screens [123,124]. They also
showed this result with planar symmetry in all dimensions.
Here we extend this result to show that the whole trapped
region is forbidden, although our result is more limited in
that it always requires planar symmetry and a strip (or
spherical) boundary region. Note also that this result does
not forbid X to probe inside trapped regions—it is only the
tip that is forbidden to lie there (see Fig. 1). For example, for
early times after a quench, the HRT surface will have
portions threading through the trapped region [33,34].

E. Proofs

1. Proof of d = 2 entropy bound

We are now ready to prove Theorem 1. Evaluating the
Lorentzian Hawking mass on a sphere at large r in a planar
symmetric AAdSdþ1 spacetime with falloffs (16), we
get that

hTtti ¼
d − 1

16πGNLd−1 μð∞Þ: ð77Þ

This is valid also for d ¼ 2, except if ϕ is periodically
identified, we must replace the left-hand side with
hTtti − hTttivac. It can readily be seen to be true by
evaluating μð∞Þ near the boundary in the usual
Fefferman-Graham expansion [108–110]. Now, from (67)
and (74) we have that

μðrÞ ¼ ωðrÞ þ rd−4KϕϕðrÞ2: ð78Þ

From (55), we see that Kϕϕ has asymptotic falloff
Kϕϕ ∼Oðr3−dÞ. Thus, we get that for d ≥ 3, μð∞Þ ¼
ωð∞Þ, while for d ¼ 2, we have

μð∞Þ ¼ ωð∞Þ þ ðlimr→∞r−1KϕϕÞ2: ð79Þ

Since ωð∞Þ ≥ 0 by the DEC, when d ¼ 2 we obtain

FIG. 2. Example of two complete hypersurfaces Γ and Γ0. The
Lorentzian Hawking mass is vanishing at r ¼ 0 and positive at
marginally trapped surfaces, given by the planes contained in the
gray line. μ is monotonically nondecreasing along spacelike
outward flows in the untrapped region, where θþ ≥ 0; θ− ≤ 0. At
the boundary σ of the extended homology hypersurface Σ, the
Riemannian Hawking mass ω with respect to Σ agrees with the
Lorentzian Hawking mass μ.

MAXIMAL ENTANGLING RATES FROM HOLOGRAPHY PHYS. REV. D 108, 086032 (2023)

086032-11



j lim
r→∞

r−1Kϕϕj ≤
ffiffiffiffiffiffiffiffiffiffiffi
μð∞Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGNLhTtti

p
: ð80Þ

Using that Area½∂Rt� ¼ 2, and combining (80) and (38)
then yields

���� dSRdt
����
t¼0

≤
1

2GN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGNLhTtti

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πc
3

hTtti
r

; ð81Þ

where we used the known Brown-Henneaux expression for
the central charge: c ¼ 3L

2GN
[125]. This proves Theorem 1.

2. Proof of d = 2 correlator bound

The above result also implies a bound on correlators that
can be computed using the geodesic approximation, since
in d ¼ 2 the HRT surfaces are just geodesics. The geodesic
approximation says that the two-point function of a CFT
scalar operator O of large scaling dimension Δ ≫ 1 can be
computed as

hOðxÞOð0ÞiρðtÞ ¼ ηe−
Δ
LkXtkreg ; ð82Þ

where η is some constant, and kXtkreg is the regularized
distance of a geodesic anchored at the points ðt; xÞ and ðt; 0Þ
on the conformal boundary. We here adopted the
Schrödinger picture. Combining (38), (80), and (82), we get

���� ddt log hOðxÞOð0ÞiρðtÞ
���� ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
96πΔ2

c
hTtti

r
; d¼ 2: ð83Þ

3. Proof of bounds for small l

Now let us consider the result for small subregions, given
by Theorem 3. The following Lemma is what we need:
Lemma 4. Let ðM; gabÞ be a regular asymptotically

AdSdþ1≥3 spacetime with planar symmetry satisfying the
DEC. Let X be the HRT surface of a strip R of width l, and
let be r0 be the smallest radius probed by X. Assume that

ldhTtti
ceff

≪ 1: ð84Þ

Then

j lim
r→∞

rd−3Kϕϕj ≤
L
2r0

ωð∞Þ
�
1þO

�
ldhTtti
ceff

��
: ð85Þ

Proof. Let us for convenience define W ¼
− limr→∞ rd−3Kϕϕ, and assume without loss of generality
that W > 0 (otherwise, just reverse the time direction).
Using the solutions (55) and (57), we have that

ðd− 1ÞW
ωð∞Þ ¼

R
∞
r0
drJ ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2d−2 − r2d−20

q
ωðr0Þ þ

R
∞
r0
dr
h
rd−5h1ðrÞKϕϕðrÞ2 þ 2rd−1

d−1 EðrÞ
i

≤
ðd− 1ÞR∞

r0
drrd−1J ðrÞ

2
R∞
r0
drrd−1EðρÞ : ð86Þ

The DEC requires that

0 ≤ 8πGNT ab

�
ta � 1ffiffiffiffi

B
p ð∂rÞa

�
tb ¼ E � 1ffiffiffiffi

B
p J ; ð87Þ

and so we have that

E ≥
1ffiffiffiffi
B

p jJ j: ð88Þ

Writing B in terms of ω, and enforcing the DEC, we get

W
ωð∞Þ ≤

R∞
r0
drrd−1J ðrÞ

2
L

R∞
r0
drrd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ωðrÞL2

rd

q
jJ ðrÞj

: ð89Þ

Let us now for a moment assume that we are perturbatively
close to the vacuum, where ϵ is a perturbative parameter
parametrizing the magnitude of ωð∞Þ. By monotonicity
and positivity of ωðrÞ, ωðrÞ ∼OðϵÞ as well, and so the
ωðrÞ appearing in the square root gives higher order
contributions:

W
ωð∞Þ ≤

R∞
r0
drrd−1jJ ðrÞj

2
L

hR
∞
r0

drrdjJ ðrÞj − L2

2

R
∞
r0

drωðrÞjJ ðrÞj þ…
i

¼ L
2

R
∞
r0
drrd−1jJ ðrÞjR

∞
r0
drrdjJ ðrÞj

�
1þ L2

2

R
∞
r0
drωðrÞjJ jR
∞
r0
drrdjJ j þ…

�

≤
L
2r0

�
1þ L2

rd0
ωð∞Þ þ…

�

≤
L
2r0

�
1þ L2d

rd0

μð∞Þ
L2d−2 þ…

�

¼ L
2r0

�
1þ 16πηd

d − 1

ldhTtti
ceff

þ…

�
; ð90Þ

where ηd is the Oð1Þ number coming from using (61). We
see that the effective expansion parameter is the dimen-

sionless quantity ldhTtti
ceff

. So the expansion is not really in
small mass, which is dimensionful, but in small strip width
relative to the inverse energy density per CFT degree of
freedom. Either way, we obtain (85). ▪
From (38) and (61), we get, up to the perturbative

corrections,
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���� dSRdt
���� ≤ Area½∂R�

4GNLd−2
L
2r0

ωð∞Þ

≤
ffiffiffi
π

p
d − 1

Γð 1
2ðd−1ÞÞ

Γð d
2ðd−1ÞÞ

lArea½∂R�hTtti

¼ Vol½R�hTtti
8<
:

2π d ¼ 2ffiffi
π

p
d−1

Γð 1
2ðd−1ÞÞ

Γð d
2ðd−1ÞÞ

d > 2
; ð91Þ

where we used (41) and (61) in the second inequality. This
also holds for d ¼ 2, since ωð∞Þ ≤ μð∞Þ, provided we
replace hTtti → hTtti − hTttivac if ϕ is compact. Also, note
that for d ¼ 2 we have that lArea½∂R� ¼ 2Vol½R�. This
completes the proof of Theorem 3 for strip regions.
These computations also gives the d ¼ 2 bound on

equal-time correlators for small separation. Combining
(82) with (36) and (85), we get

���� ddt log hOðxÞOð0ÞiρðtÞ
���� ≤ 12πΔjxj

c
hTtti

× ½1þOðx2hTtti=cÞ�: ð92Þ

4. Proof of bounds in thin-shell spacetimes

We now turn our attention to thin-shell spacetimes, to
prove Theorem 2. Furthermore, we will be able to establish
a bound of the form j∂tSj ≤ #Vol½R�hTtti that holds for
any l.
Consider a spacetime where the matter consists of a

single thin shell of matter that separately satisfies the DEC,
together with a possible contribution from any number of
Uð1Þ gauge fields:

E ¼ κδðr − r̂Þ þ EMaxwell;

J ¼ ηδðr − r̂Þ; ð93Þ

for some η; κ; r̂ > r0. See Fig. 3. Here we used that in
planar symmetry, Maxwell fields give no contribution to
the radial momentum density J (see for example Sec. 3
of [106]).
The DEC, through (88), imposes that J only can have

support at r̂. Without loss of generality, we take η > 0. Let
us in this section also use our scaling freedom in r to set
r0 ¼ L and choice of units to set L ¼ 1.
Define again W ¼ − limr→∞ rd−3Kϕϕ. Plugging (93)

into (55), the solution for Kϕϕ is

KϕϕðrÞ ¼ −
r2

d − 1
η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2d−2 − 1

r2d−2 − 1

s
θðr − r̂Þ; ð94Þ

and so

η ¼ ðd − 1ÞWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2d−2 − 1

p ; ð95Þ

which gives

KϕϕðrÞ ¼ −
r2Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2d−2 − 1
p θðr − r̂Þ: ð96Þ

Next, let us solve for the contribution to ωðrÞ from the
squared extrinsic curvature term in (57):

QðrÞ≡
Z

r

1

dρρd−5KϕϕðρÞ2h1ðρÞ

¼ θðr − r̂ÞW2

Z
r

r̂
dρρd−1

h1ðρÞ
½ρ2d−2 − 1�

¼ W2θðr − r̂Þ
�

r̂d

r̂2d−2 − 1
−

rd

r2d−2 − 1

�
: ð97Þ

To proceed, we need to understand what happens to ω as
we cross the shock. Restricting attention to a small
neighborhood of r̂, where we can treat explicit occurrences
of r not appearing in delta functions as constant, the
equation for ω reads

ðd − 1Þω
0ðrÞ
r̂d−1

¼ 2Eshell þ…; ð98Þ

where the terms indicated with dots will make no con-
tribution to the discontinuity. Remembering that the DEC
implies that

ffiffiffiffi
B

p
E ≥ jJ j, imposing the DEC on the shell

means that

Eshell ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2 −

ωðrÞ
r̂d−2

r
ηδðr − r̂Þ: ð99Þ

FIG. 3. Examples of thin-shell spacetimes, where the blue lines
correspond to the shells. The left space is dual to a uniform
quench, where matter is thrown in from the boundary, corre-
sponding to injection of a large amount of energy into the CFT.
The right is a spacetime with a shell of matter propagating purely
in the bulk interior, while CFT energy is conserved for all times.
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Inserting (99) into (98), dividing by the prefactor of the
delta function, and integrating from r̂ − ε to r̂þ ε for some
small positive ε, we findffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r̂2 −
ω−

r̂d−2

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2 −

ωþ
r̂d−2

r
≥

r̂
d − 1

ηþOðεÞ; ð100Þ

where we defined ω� ¼ ωðr̂� εÞ. We only have a sensible
solution when BðrÞ is real and positive everywhere, which
requires

1

d − 1
η ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω−

r̂d

r
: ð101Þ

Solving for ω− from (100) and inserting our expression for
η, we get that

ωþ ≥ω−þ
r̂dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r̂2d−2−1
p W

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ω−

r̂d

r
−

Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2d−2−1

p
�
: ð102Þ

Using this and (78), the Lorentzian Hawking mass at
infinity has the lower bound

μð∞Þ ¼ ωð∞Þ þ δd2W2

≥ ω− þ r̂dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2d−2 − 1

p W

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω−

r̂d

r
−

Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2d−2 − 1

p
�

þQð∞Þ þ δd2W2

¼ ω− þ r̂dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2d−2 − 1

p W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω−

r̂d

r
; ð103Þ

where δij is the Kronecker delta. Thus, for any real n, we
have that

Wn

μð∞Þ ≤
Wn

ω− þ r̂dffiffiffiffiffiffiffiffiffiffiffi
r̂2d−2−1

p W
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω−

r̂d

q ≡Un; ð104Þ

together with the constraints

0 ≤ ω− ≤ r̂d; ð105Þ

W ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2d−2 − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω−

r̂d

r
: ð106Þ

Our goal will now be to upper boundUn for all legal triplets
ðW; r̂;ω−Þ for n ¼ 1 and n ¼ d

d−1, which turns out to be
values that will give interesting growth bounds.
Note first that we have

∂
2
ω−
Un ≥ 0; ð107Þ

so any local extremum of Un with respect to ω− is a
minimum. Thus, for any given W and r̂, Un is maximized

when ω− is on the boundary of its domain. First, take
ω− ¼ 0. Then, assuming that 1 ≤ n ≤ d

d−1,

Un ¼
Wn−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2d−2 − 1

p

r̂d
≤
½r̂2d−2 − 1�n2

r̂d
≤
r̂nðd−1Þ

r̂d
≤ 1; ð108Þ

wherewe used (106) in the second inequality. For n ¼ 1, we
get the stronger bound

U1 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2d−2 − 1

p

r̂d
≤

ffiffiffiffiffiffiffiffiffiffiffi
d − 1

d
d

d−1

r
≡ αd; ð109Þ

where the upper bound is found by maximizing with respect
to r̂. Next, let us look at the maximal value for ω−, where we
have the equality

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2d−2 − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω−

r̂d

r
: ð110Þ

Neglecting the first ω− in the denominator of Un and using
W ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2d−2 − 1

p
, we get

Un ≤
½r̂2d−2 − 1�n=2

r̂d
: ð111Þ

But this is just the expression bounded earlier, and so (108)
and (109) holds generally. Restoring factors of L; r0, we
have the following true bounds

W ≤ L
d−2
d ωð∞Þd−1d ; ð112Þ

W ≤ αd
L
r0
ωð∞Þ: ð113Þ

Inserting (112) into (38), we find

���� dSRdt
���� ≤ 1

4
Area½∂R�ceff

�
16π

ðd − 1Þceff
hTtti

�d−1
d

; ð114Þ

proving Theorem 2 for strip regions.
Next, redoing the steps in (91) with the numerical factor

from in (113), we get the part of the following theorem
concerning strips:
Theorem 5. Consider the same setup as in Theorem 2.

Then

���� ddt
�
Area½Xt�
4GN

����� ≤ κ0dVol½R�hTtti; ð115Þ
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with

κ0d ¼ ιd

8>>><
>>>:

2π R is an interval and d ¼ 2;ffiffiffiffiffiffiffiffiffi
4π

ðd−1Þ
q

R is a strip and d > 2;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πðd − 1Þp

R is a ball and d > 2:

ιd ¼ d−
d

2ðd−1Þ
Γ
	

1
2ðd−1Þ



Γ
	

d
2ðd−1Þ


 : ð116Þ

The part concerning balls is proven in the next section.
Now, for a strip, a few values of the prefactor κ0d, together
with the prefactor κd in the more general bound (8), is

κd ¼

8>>>><
>>>>:
2π d¼ 2

2.62… d¼ 3

2.43… d¼ 4

2 d¼∞

; κ0d ¼

8>>>><
>>>>:

2π d¼ 2

3.25… d¼ 3

3.34… d¼ 4

4 d¼∞:

ð117Þ

F. Multiple strips and mutual information

Our results not scaling with Vol½R� can be generalized to
regions R consisting of n disjoint finite strips by simply
applying the same argument to each connected component
of the HRT surface separately. For d ¼ 2 this results in

���� dSRdt
���� ≤ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πc
3

hTtti
r

: ð118Þ

It is easy to see that (114) also holds true for n strips. No
modification is needed, since Area½∂R� implicitly contains
the factor of n present in the d ¼ 2 case.
For the bounds scaling like volume, the behavior is

different, since the upper bound depends on the connec-
tivity properties of the entanglement wedge (EW).
Consider for example d ¼ 2 and the three intervals R1,
R2, R3 in Fig. 4, and let R ¼ R1 ∪ R3 be the region under
consideration. We then see that

���� dSRdt
���� ≤ κhTtti

�
Vol½R� disconnected EW;

Vol½R� þ 2Vol½R2� connected EW;

ð119Þ

where κ is the relevant numerical prefactor in Theorem 3.
We get this result by adding the different volume factors
from each connected component of the HRT surface.
Similar games can be played for n strips in d dimensions.
Next, lets us consider d ¼ 2 and the mutual information

between two subsystems R1 and R2 consisting of n1 and n2
finite intervals, respectively. We then have

j∂tIðR1; R2Þj ¼ j∂tSR1
þ ∂tSR2

− ∂tSR1R2
j

≤ j∂tSR1
j þ j∂tSR2

j þ j∂tSR1R2
j

≤ ð2n1 þ 2n2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πc
3

hTtti
r

: ð120Þ

Using (25), the generalization to higher d is obvious.

III. MAXIMAL RATES FOR BALLS
AND WILSON LOOPS

A. Setup and summary of results

In this section we will consider extremal surfaces Xt of
dimension qþ 1 anchored at q-dimensional spheres ∂Rt at
time t on the conformal boundary. For q ¼ 0, ∂Rt just
consists of two points, and Xt is a one-parameter family of
geodesics. For q ¼ d − 2, Xt is a one-parameter family of
HRT surfaces anchored at spheres. For q ¼ 1, Xt are two-
dimensional spacelike world sheets anchored at circles. The
main application will be to derive growth bounds on Wilson
loops and entanglement entropy for ball regions. However,
we will also be able to given novel strengthenings of the
positive mass theorem in odd-dimensional spacetimes.
As before we are working with planar symmetric space-

times, subject to the same assumptions described in Sec. II
A. The logical steps will be mostly identical to Sec. II, but
with extra technicalities coming from the curvature of ∂Rt.
Note that since we now have submanifolds of varying
dimensions, we will use the symbol k · k to indicate the
measure of the surface in the natural induced volume form.
For quantities on the conformal boundary, k · k means with
respect to the induced metric from the Minkowski con-
formal frame. We will use Length½�, Area½� and Vol½� to
refer to the measure of surfaces of dimension 1, codimen-
sion 2, and codimension 1, respectively.
To describe the relevant subregions in our results, let z be

Cartesian coordinates in the direction transverse to the
sphere ∂Rt. We now choose coordinates for our Minkowski
conformal frame on the boundary to be

ds2 ¼ −dt2 þ L2ðdϕ2 þ ϕ2dΩ2
q þ dz2Þ; ð121ÞFIG. 4. Possible HRT surfaces X and X0 of the region R1 ∪ R3,

projected onto a timeslice.
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with dΩ2
q the metric of a round unit q-sphere, and with the

constant–t slices the ones on which one-point functions of
local operators are constant. For q ¼ 0 there is no dΩ2

q–
term, while for q ¼ d − 2 there is no dz2 term. ϕ is a
dimensionless radial coordinate on the boundary, and Rt0 is
given by

0 ≤ ϕ ≤
R
L
; t ¼ t0; z ¼ 0: ð122Þ

We now have

k∂Rtk ¼ k∂Rk ¼ ΩqRq; ð123Þ

whereΩq is the volume of a unit q-sphere, andR the radius
of Rt, which is kept constant in time.
Let us now summarize the results proven in this section.

For entanglement entropy, we will prove the parts Theorems
2, 3, and 5 that refer to spherical ∂R. For extremal surfaces
of more general dimensionalities, the following is our
strongest theorem:
Theorem 6. Let ðM; gabÞ be a regular asymptotically

AdSdþ1 spacetime with planar symmetry satisfying the
DEC. Assume that d is even, and let be Xt be an extremal
surface of dimension d=2, anchored on the conformal
boundary at the sphere ∂Rt. Then

���� ddt kXtk
���� ≤ k∂RkLd

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π

ceffðd − 1Þ hTtti
s

: ð124Þ

Of course, for d ¼ 2, this just reduces to Theorem 1. For
d ¼ 4 this can be converted to the growth bound on circular
Wilson loops, given by (10) [or by (173) in terms of the
effective central charge and effective ’t Hooft coupling].
Making no reference to the CFT, we can also write this as a
lower bound on the spacetime mass density μð∞Þ: [126]

μð∞Þ ≥
�

Lq

ΩqRq

d
dt
kXtk

�
2

: ð125Þ

This says that rapid changes in extremal surface areas
require large mass.
Next, for surfaces Xt anchored at small spheres on the

boundary, we get the following:
Theorem 7. Let ðM; gabÞ be a regular asymptotically

AdSdþ1 spacetime with planar symmetry satisfying the
DEC. Let be Xt be an extremal surface of dimension qþ 1,
anchored on the conformal boundary at the sphere ∂Rt
having radius R. Assume that

q ≥
d − 2

2
ð126Þ

and

RdhTtti
ceff

≪ 1: ð127Þ

Then

���� ddt kXtk
���� ≤ ηd;qk∂RkLqþ1Rd−q−1 hTtti

ceff

×

�
1þO

�
RdhTtti
ceff

��
; ð128Þ

where

ηd;q ¼
8π

d − 1

2
64 Γ

	
1

2ðqþ1Þ



ffiffiffi
π

p
Γ
	

qþ2
2ðqþ1Þ



3
75
d−q−1

: ð129Þ

Using well known dictionary entries, described in
Sec. III F, this converts to growth bounds on the entangle-
ment of small balls and small circular Wilson loops.
Specifically, for the latter, we get for d∈ f3; 4g that

���� ddt log jhWðCÞiρðtÞj
���� ≤ 8π

ffiffiffiffiffiffiffi
λeff

p
ðd − 1Þceff

ηd;1Rd−1hTtti þ…;

ð130Þ

where
ffiffiffiffiffiffiffi
λeff

p ¼ L2=l2
string is the effective ’t Hooft coupling,

and lstring the bulk string length. Corrections scale as
OðRdhTtti=ceffÞ.
Finally, for thin-shell spacetimes, we prove the

following:
Theorem 8. Let ðM; gabÞ be a spacetime satisfying the

same assumptions as in Theorem 2. Assume that Xt is an
extremal surface anchored at a boundary sphere of
dimension

q ≥
d − 2

2
: ð131Þ

Then

���� ddt kXtk
���� ≤ k∂RkLqþ1

�
16π

ðd − 1Þceff
hTtti

�qþ1
d ð132Þ

and

���� ddt kXtk
���� ≤ κd;qk∂RkLqþ1Rd−q−1 hTtti

ceff
ð133Þ

with κd;q given by (192).
The main application of (132) is to bound Wilson loops in
d ¼ 3, where we get
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���� ddt log jhWðCÞiρðtÞj
���� ≤

ffiffiffiffiffiffiffi
λeff

p
Length½C�
2π

�
8π

ceff
hTtti

�
2=3

:

ð134Þ

Let us now turn to the proofs.

B. An implicit solution for the extremal surface location

As earlier, let Σ be the extended planar symmetric
homology hypersurface containing X. For the exact same
reason as earlier, there is a unique choice of Σ. We can now
pick coordinates on Σ given by

ds2jΣ ¼ Hμνdyμdyν ¼ BðrÞdr2 þ r2ðdϕ2 þ ϕ2dΩ2
q þ dz2Þ:

ð135Þ

Again, one such coordinate system covers all of Σ, as
shown in Appendix A 6.
We take our intrinsic coordinates on X to be ðr;ΩiÞ,

where Ωi are coordinates on the sphere. The embedding
coordinates of X in Σ reads

Xμ ¼ ðr;ϕ ¼ ΦðrÞ;Ωi; z ¼ 0Þ; ð136Þ

where the symmetries of the problem dictate z ¼ 0. The
induced metric on X is

ds2jX ¼ ½BðrÞ þ r2Φ0ðrÞ2�dr2 þ r2ΦðrÞ2dΩ2
q: ð137Þ

Now we must implement the condition that X is extremal,
which requires us to compute all its mean curvatures and
demand them to be vanishing. To do this, let nIa be an
orthonormal basis of normal forms to X that are tangent to
Σ, labeled by I. Let ta be the future timelike normal
orthogonal to Σ. A complete basis of mean curvatures of X
now is

KI ¼ hab∇anIb;

K0 ¼ hab∇atb; ð138Þ

where hab ¼ gab þ tatb − δIJnaI n
b
J . All of these quantities

must vanish. Considering the KI corresponding the z
directions, we just get 0 by our symmetries. Letting I ¼ n
denote the remaining normal direction in Σ, we get by
direct computation that (see Appendix A 7)

Kn¼ 1

r
ffiffiffiffi
B

p ½Bþr2ðΦ0Þ2�3=2
�
r2BΦ00 þðqþ1Þr3ðΦ0Þ3

þ
�
ðqþ2ÞB−

1

2
rB0

�
rΦ0−

qB
Φ

ðBþr2ðΦ0Þ2Þ
�
: ð139Þ

If it was not for the last term, we would reproduce (33) by
setting q ¼ d − 2. The new term is caused by the curvature
of ∂R. Now, with this last term, we no longer have an

explicit analytical solution (when q > 0). However, we
can find an implicit solution that lets us proceed. Define

χðrÞ ¼ qB
ΦΦ0

�
B
Φ02 þ r2

�
; ð140Þ

so that our equation for extremality reads

ðqþ 1Þr3ðΦ0Þ3 þ
�
ðqþ 2ÞB −

1

2
rB0

�
rΦ0

þ r2BΦ00 − ðΦ0Þ3χðrÞ ¼ 0: ð141Þ

Imposing Φðr0Þ ¼ 0, where r0 is the tip of the extremal
surface, we have the implicit solution

ΦðrÞ ¼
Z

r

r0

dρ

ffiffiffiffiffiffiffiffiffiffi
BðρÞp

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cρ2qþ2hðρÞ − 1

p ; ð142Þ

where

hðrÞ ¼ 1 −
2

C

Z
r

r0

dρχðρÞρ−6−2q; ð143Þ

for some C that is fixed by imposing Φ0ðr0Þ ¼ ∞.
Assuming hðr0Þ is finite, we get that C ¼ r−2q−20 . This
is indeed correct, even though χðr0Þ looks superficially
divergent. Since we are near a minimum of rðΦÞ we have
that r ¼ r0 þOðΦ2Þ near r0, and so for r close to r0 we get
Φ ¼ α

ffiffiffiffiffiffiffiffiffiffiffiffi
r − r0

p
for some α. Even though Φ goes to zero at

r0 we find that

χðrÞ ∼Oð1Þ ð144Þ

near r0, and so hðr0Þ ¼ 1. Next, reality of ΦðrÞ demands
that hðρÞ ≥ ðr0=rÞ2qþ2, while positivity of Φ and Φ0
ensures that hðrÞ ≤ 1, and so in total we know that [127]

ΦðrÞ ¼
Z

r

r0

dρ

ffiffiffiffiffiffiffiffiffiffi
BðρÞp

ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ=r0Þ2qþ2hðρÞ − 1

p ;

0 < ðr0=rÞ2qþ2 < hðrÞ ≤ 1: ð145Þ

C. The relation between the Hawking masses

Take Kαβ to be the extrinsic curvature of the extended
homology hypersurface. Like in the case of the strip, we
have that

μðrÞ ¼ ωðrÞ þ rd−4KϕϕðrÞ2; ð146Þ

which follows from the same computation as in the
previous section, together with (A43) in Appendix A 7.
We have that Kϕϕ ∼Oð1=rq−1Þ, as becomes clear in the
next section. Thus, at large r we have
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μðrÞ ¼ ωðrÞ þOðrd−2−2qÞ: ð147Þ

Consequently, ωð∞Þ is proportional to spacetime mass if
and only if

q >
d − 2

2
: ð148Þ

If 2q ¼ d − 2, ωð∞Þ is smaller than μð∞Þ by some finite
number. For 2q < d − 2, we get ωð∞Þ ¼ −∞ by (147) and
the fact that μð∞Þ is finite and positive. We will see below
that this comes out of the constraint equations, since exactly
when 2q < d − 2, ωðrÞ is neither positive nor monotoni-
cally increasing. We will not be able to say anything about
the case 2q < d − 2.

D. ∂tkXtk ≤ momentum on Xt

The time-derivative of the generalized volume satisfies
[104,107]

d
dt
kXtk ¼

Z
∂Xt

Naηa; ð149Þ

where ηa ¼ ð∂tÞa generates the deformation of ∂Xt, while
Na is the unit vector that is (1) tangent to Xt, (2) orthogonal
to ∂Xt, and (3) pointing toward the conformal boundary. A
computation in Appendix A 5 shows that (149) can be
written as

d
dt
kXtkjt¼0 ¼ −

k∂Rk
Lq lim

r→∞
rq−1KϕϕðrÞ: ð150Þ

Now we again reach the stage where we must write the
Einstein constraint equations as a closed system, which
requires us to impose extremality in the timelike direction.
First, note that from the planar symmetry of Σ, if x are

Cartesian coordinates on the plane containing R, then we
have that the extrinsic curvature of Σ reads

Kμνdyμdyν ¼ KrrðrÞdr2 þ KϕϕðrÞðdx2 þ dz2Þ
¼ KrrðrÞdr2 þ KϕϕðrÞðdϕ2 þ ϕ2dΩ2

q þ dz2Þ:
ð151Þ

Thus, the components of the extrinsic curvature with
indices in the sphere directions reads

Kij ¼ KϕϕðrÞϕ2wij; ð152Þ

where wij is the unit metric on the q-sphere. Define again
FðrÞ through the relation KrrðrÞ ¼ FðrÞBðrÞ. Computing
K0 ¼ 0, using (152), and solving for FðrÞ (see
Appendix A 7), we get, after substituting our expression
for ΦðrÞ, that

FðrÞ ¼ −
KϕϕðrÞ

r2
HðrÞ; ð153Þ

where we for convenience defined the function

HðrÞ ¼ qðr=r0Þ2qþ2hðrÞ þ 1

ðr=r0Þ2qþ2hðrÞ − 1
: ð154Þ

Since ∂hH < 0 and hðrÞ ≤ 1, we get the lower bound

HðrÞ ≥ qðr=r0Þ2qþ2 þ 1

ðr=r0Þ2qþ2 − 1
≡HLðrÞ: ð155Þ

The constraint equations (43) and (44) are unchanged,
except now the expression for FðrÞ is different. Plugging it
in we get

ðd−1Þω
0ðrÞ
rd−1

¼2Eþðd−1Þ
r4

KϕϕðrÞ2½2HðrÞ−dþ2�; ð156Þ

K0
ϕϕ þ ½HðrÞ − 1�Kϕϕ

r
¼ −

r2

d − 1
J ðrÞ: ð157Þ

Now, using the lower bound HLðrÞ, let us note the
following:

2HðrÞ− dþ 2 ≥
ð2q− dþ 2Þðr=r0Þ2qþ2 þ d− 1

ðr=r0Þ2qþ2 − 1
: ð158Þ

This is positive definite for all r only when q ≥ d−2
2
, so for

geodesics (q ¼ 0), we only have monotonicity of ωðrÞ
when d ¼ 2. But this is just the case studied in the previous
section. For (q ¼ 1), which is the relevant case for Wilson
loops, we have monotonicity of ωðrÞ only for d ≤ 4. For an
HRT surface we have q ¼ d − 2, and so we have monot-
onicity in all dimensions. It is in fact quite surprising that
we have monotonicity for any q whatsoever, since when
looking at the Einstein constraint equations in covariant
form, monotonicity of the Riemannian Hawking mass is
only manifest on hypersurfaces that have vanishing mean
curvature.
Let us assume 2q ≥ d − 2 going forward, and let us

bound Kϕϕ and μ at infinity. Fixing an integration constant
by demanding that Fðr0Þ ¼ finite, the solution to the
momentum constraint is

KϕϕðrÞ ¼ −
1

d − 1

Z
r

r0

dρρ2J ðρÞe−
R

r

ρ
d1zðHðzÞ−1Þ

: ð159Þ

We have that
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jKϕϕðrÞj ≤
1

d − 1

Z
r

r0

dρρ2jJ ðρÞje−
R

r

ρ
d1zðHLðzÞ−1Þ

¼ r2

ðd − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=r0Þ2qþ2 − 1

pZ
r

r0

dρjJ ðρÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ=r0Þ2qþ2 − 1

q
: ð160Þ

We see from this expression that Kϕϕ ∼Oð1=rq−1Þ. Also,
in this last expression, if we replace jJ j → −J , we just get
the solution of (157) with HðrÞ replaced by HLðrÞ. We will
use this fact later.
Inserting (160) in (150), we finally get���� ddt kXtk

���� ≤ ðd − 1Þk∂Rk
Lq

Z
∞

r0

dρjJ ðρÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2qþ2 − r2qþ2

0

q
:

ð161Þ

Unlike for an HRT surface anchored at a strip, we are here
only able to write an inequality.
Next, let us turn to the second ingredient: the mass.

Rewriting (156) in terms of μðrÞ, we get

ðd − 1Þ μ
0ðrÞ
rd−1

¼ 2E þ ðd − 1Þ
r4

KϕϕðrÞ2½2HðrÞ þ d − 6�

þ 2ðd − 1Þ
r3

d
dr

K2
ϕϕ: ð162Þ

After an integration by parts and using HðrÞ ≥ HLðrÞ, we
get that

μð∞Þ ≥ μðr0Þ þ
2

d − 1

Z
∞

r0

dρρd−1EðρÞ

þ
Z

∞

r0

dρρd−5KϕϕðrÞ2½2HLðrÞ þ d�; ð163Þ

where

2HLðrÞ þ d ¼ ðdþ 2qÞðr=r0Þ2qþ2 þ ðd − 2Þ
ðr=r0Þ2qþ2 − 1

≥ 0: ð164Þ

Possessing now an upper bound on ∂tkXtk and a lower
bound on mass, we next need an upper bound on L2=r0.

E. Constraints on boundary anchored
extremal surfaces

It turns out that generalizations of Lemmata 2 and 3
remain true for the surfaces considered in this section. The
proof of Lemma 2 is unchanged, while from the discussion
in Appendixes A 6 and A 7, together with the proof of
Lemma 3, we get the following constraints on the tip of X:
Lemma 5. Let ðM; gabÞ be an asymptotically AdSdþ1≥3

spacetime with planar symmetry. Let X be a (qþ 1)-

dimensional extremal surface anchored at a q-sphere on
the conformal boundary. Then the tip of X lies in an
untrapped region. Furthermore, if ðM; gabÞ is regular and
satisfies the DEC, then ωðr0Þ ≥ 0, where r0 is the radius of
the tip of X.
With this in hand, we readily obtain the spherical

dimension–(qþ 1) version of Theorem 4:
Theorem 9. Let ðM; gabÞ be a regular planar-symmetric

asymptotically AdSdþ1≥3 spacetime satisfying the DEC.
Let X be a dimension qþ 1 extremal surface anchored at a
sphere of radius R. Let be r0 be the radius of the plane
tangent to the tip of X. Then if

q ≥
d − 2

2
; ð165Þ

we have

L2

r0
≤

Γ
	

1
2ðqþ1Þ



ffiffiffi
π

p
Γ
	

qþ2
2ðqþ1Þ


R: ð166Þ

Proof. For 2q ≥ d − 2, (156) implies ω0ðrÞ ≥ 0.
Combining with ωðr0Þ ≥ 0, we get ωðrÞ ≥ 0. Using now
hðrÞ < 1 and that ωðrÞ ≥ 0 implies BðrÞ ≥ L=r, we get

R ¼ LΦð∞Þ ¼ L
Z

∞

r0

dr

ffiffiffiffiffiffiffiffiffi
BðrÞp

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=r0Þ2qþ2hðrÞ − 1

p
≥ L2

Z
∞

r0

dr
1

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=r0Þ2qþ2 − 1

p
¼ L2

r0

ffiffiffi
π

p
Γ
	

qþ2
2ðqþ1Þ



Γ
	

1
2ðqþ1Þ


 : ð167Þ

▪

F. Proofs

1. Bounds for even d

Consider the special dimension

q ¼ d − 2

2
; ð168Þ

which can only happen when d is even. As seen previously,
we have that ωðrÞ ≥ 0 in this case. Furthermore, (146)
becomes

μð∞Þ ¼ ωð∞Þ þ ½limr→∞rq−1Kϕϕ�2; ð169Þ

and so

j lim
r→∞

rq−1Kϕϕð∞Þj ≤
ffiffiffiffiffiffiffiffiffiffiffi
μð∞Þ

p
; ð170Þ
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which gives

���� ddt kXtk
����
t¼0

≤
k∂Rk
Lq

ffiffiffiffiffiffiffiffiffiffiffi
μð∞Þ

p

¼ k∂RkLqþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π

ceffðd − 1Þ hTtti
s

: ð171Þ

This proves Theorem 6.
Next, for d ¼ 4, (171) holds for q ¼ 1, where the Xt are

two-dimensional world sheets anchored at circles on the
boundary. If WðCÞ is a Wilson loop of a circle C ¼ S1, we
have that [128,129]

hWðCÞiρðtÞ ¼ ηe−
1

2πα0kXtk; ð172Þ

where α0 ¼ l2
string and η again some constant. Combining

(171) and (172) we get

���� ddt log hWðCÞiρðtÞ
���� ≤ Length½C�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λeff
3πceff

hTtti
s

; ð173Þ

where Length½C� ¼ 2πR. With the precise dictionary for
the duality between type IIB supergravity on AdS5 × S5

andN ¼ 4 super Yang-Mills with gauge group SUðNÞ and
’t Hooft coupling λ, given by

GN

R3
¼ π

2N2
;

ffiffiffi
λ

p
¼ L2

α0
; ð174Þ

(173) can be written as (10).

2. Proof of bounds for small R

Next we prove bounds that are strong at small radii R.
We have:
Lemma 6. Consider the same assumptions as in

Theorem 9. Assume furthermore that RdhTtti=ceff ≪ 1
and 2q ≥ d − 2. Then

j lim
r→∞

rd−3Kϕϕj≤
L

2rd−q−10

ωð∞Þ
�
1þO

�
RdhTtti
ceff

��
: ð175Þ

Proof. Define W ¼ − limr→∞ rq−1Kϕϕ, and assume
without loss of generality that W > 0. Using (55) and
(156) and the exact same logic as in the proof of Lemma 4,
we get

W
ωð∞Þ ≤

L
R∞
r0

drrqþ1jJ ðrÞj
2
R
∞
r0
drrd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ωðrÞL2

rd

q
jJ ðrÞj

≤
L
R∞
r0
drrqþ1jJ ðrÞj

2
R∞
r0

drrdjJ ðrÞj
�
1þ L2ωð∞Þ

2rd0
þ…

�

≤
L

2rd−q−10

�
1þO

�
RdhTtti
ceff

��
: ð176Þ

▪
Inserting now (175) into (150), we get

���� ddt kXtk
����
t¼0

≤
8πk∂RkL1þq

ðd − 1Þceff
L2ðd−q−1Þ

rd−q−10

hTtti

≤
k∂RkL1þq

ceff
ηd;qRd−q−1hTtti; ð177Þ

where

ηd;q ¼
8π

d − 1

2
64 Γ

	
1

2ðqþ1Þ



ffiffiffi
π

p
Γ
	

qþ2
2ðqþ1Þ



3
75
d−q−1

: ð178Þ

We can convert this to bounds on two-point functions
and circular Wilson loops. Combining (177) with (82)
and (172), we get the bounds (92) and (130).
Finally, with q ¼ d − 2 and d > 2, the entanglement

entropy of small spheres is bounded as

���� dSRdt
���� ≤ 2

ffiffiffi
π

p
Γ
	

1
2ðd−1Þ



Γ
	

d
2ðd−1Þ


 Vol½R�hTtti þ… ð179Þ

where we used that Vol½R� ¼ Area½∂R�R=ðd − 1Þ. This
proves the part of Theorem 3 where ∂R is a sphere.

3. Proof of bounds for thin-shell spacetimes

Finally, let us prove our thin-shell results, assuming
2q ≥ d − 2. Since we already have general bounds on
Wilson loops in d ¼ 4 and balls for smallR, this section is
most relevant for entanglement in medium or large balls in
general d, and for Wilson loops in d ¼ 3. We consider the
same setup as in Sec. II E, and use the same notation.
Again, we choose r0 ¼ L ¼ 1.
Now, let us consider the solutions (156) and (157) with

the replacement HðrÞ → HLðrÞ. As discussed in Sec. III D,
this gives a smaller value for μð∞Þ and larger value for
j lim rq−1Kϕϕj if J has a fixed sign, which is the case here.
Since we will consider bounds of the form lim rq−1Kϕϕ ≤
#μð∞Þn for n > 0, the bounds we obtain with this replace-
ment will be valid for the original spacetime.
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Now, with a delta function shock, solution for Kϕϕ reads

KϕϕðrÞ ¼ −
r2

d − 1
η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2qþ2 − 1

r2qþ2 − 1

r
θðr − r̂Þ

¼ −
r2Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2qþ2 − 1
p θðr − r̂Þ: ð180Þ

From (163) we get that the contribution to μð∞Þ from the
extrinsic curvature reads

Qð∞Þ≡
Z

∞

r0

dρρd−5KϕϕðrÞ2
ðdþ 2qÞr2qþ2 þ ðd − 2Þ

r2qþ2 − 1

¼ W2
r̂d

r̂2qþ2 − 1
: ð181Þ

The analysis of how the DEC changes across the shock is
unchanged from the strip case, except for a few exponents,
and we find

ωþ¼ω−þ
r̂dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r̂2qþ2−1
p W

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

ω−

r̂d

r
−

Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2qþ2−1

p
�
: ð182Þ

By the same logic as in Sec. II E we get,

Wn

μð∞Þ ≤
Wn

ω− þW r̂dffiffiffiffiffiffiffiffiffiffiffiffi
r̂2qþ2−1

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω−

r̂d

q ≡ Un; ð183Þ

where

0 ≤ ω− ≤ r̂d; ð184Þ

W ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2qþ2 − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω−

r̂d

r
: ð185Þ

Again, it now suffices to take ω− at the boundary of its
allowed domain. With ω− ¼ 0 and 1 ≤ n ≤ d

qþ1
we get

Un ¼
Wn−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2q−2 − 1

p

r̂d
≤
½r2qþ2 − 1�n=2

r̂d
≤ 1; ð186Þ

and for n ¼ 1 we get the stronger bound

U1 ≤
ffiffiffiffiffiffiffiffiffiffiffi
qþ 1

d

r �
d

d − 1 − q

�qþ1−d
2ðqþ1Þ ≡ αd;q: ð187Þ

For saturation of (185), neglecting the first ω− in the
denominator of Un and using thatW ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2qþq − 1

p
, we get

Un ≤
½r2qþ2 − 1�n=2

r̂d
≤ 1: ð188Þ

Restoring factors of L; r0, we have the following general
bounds

W ≤ αq;d
L

rd−q−10

ωð∞Þ; ð189Þ

W ≤ L
2qþ2−d

d ωð∞Þqþ1
d : ð190Þ

Combining (189) with (150) and (165) now gives that���� ddt kXtk
���� ≤ κd;qk∂RkL1þqRd−q−1 hTtti

ceff
; ð191Þ

where

κd;q ¼
16π

d − 1

ffiffiffiffiffiffiffiffiffiffiffi
qþ 1

d

r �
d

d − 1 − q

�qþ1−d
2ðqþ1Þ

×

2
64 Γ

	
1

2ðqþ1Þ



ffiffiffi
π

p
Γ
	

qþ2
2ðqþ1Þ



3
75
d−q−1

: ð192Þ

This shows that the type of bounds derived in the small R
limit holds in thin shell spacetimes for all R, at price of a
larger prefactor. For the entanglement entropy of balls,
we get

���� dSRdt
���� ≤ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðd − 1Þ

d
d

d−1

s
Γ
	

1
2ðd−1Þ



Γ
	

d
2ðd−1Þ


Vol½R�hTtti: ð193Þ

For Wilson loops we get���� ddt log jhWðCÞiρðtÞj
���� ≤ fd

ffiffiffiffiffiffiffi
λeff

p
ceff

Rd−1hTtti; ð194Þ

where

fd ¼

8><
>:

ffiffiffiffiffiffiffi
128π

p
Γð1=4Þ

33=4Γð3=4Þ ≈ 26 d ¼ 3

8Γð1=4Þ2
3Γð3=4Þ2 ≈ 23 d ¼ 4:

ð195Þ

Next, consider (190). This gives us that

���� ddt kXtk
����
t¼0

≤ k∂RkLqþ1

�
16π

ðd − 1Þceff
hTtti

�qþ1
d ð196Þ

For q ¼ d − 2, corresponding to entanglement for ball
subregions, this just gives (25), verifying that it holds
for spheres as well, completing the proof of the part of
Theorem 5 concerning spherical ∂R.
For q ¼ 0, d ¼ 2 and q ¼ 1, d ¼ 4we just reproduce the

bounds of Sec. III F, which are anyway proven with weaker
assumptions there. For q ¼ 1, d ¼ 3we get a new bound on
Wilson loops, given by (134).
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IV. BOUNDING SPATIAL DERIVATIVES

The technology we have developed to bound time
derivatives also lets us bound spatial derivatives of extremal
surface areas for strips.
Consider a one parameter family of strips Rl of variable

width l at some fixed boundary time, given by (18) with t0
now held fixed. Let Xl be the corresponding one-parameter
family of HRT surfaces. A computation in Appendix A 4
gives that

d
dl

Area½Xl� ¼
Area½∂R�
Ld−1 rd−10 : ð197Þ

For a strip, we thus see that the radius of the HRT surface
tip uniquely determines ∂lS. To our knowledge, this is a
new direction relation between entropy derivatives and
geometry.
Using our lower bound on r0 given by (61), we now

immediately get the following:
Theorem 10. Let ðM; gabÞ be a regular asymptotically

AdSdþ1≥3 spacetime with planar symmetry satisfying the
DEC. If Xl is the HRT surface of a strip Rl of width l, then

d
dl

�
Area½Xl�
4GN

�
≥

ceff
4ld−1Area½∂R�

2
642

ffiffiffi
π

p
Γ
	

d
2ðd−1Þ



Γ
	

1
2ðd−1Þ



3
75
d−1

:ð198Þ

The lower bound is equal to ∂lSvacuum, and so we get

d
dl

ΔS½ρRl
� ≥ 0; ð199Þ

where ΔS is the vacuum subtracted entropy. Since we get
the vacuum entanglement entropy in the limit l → 0, this
implies that

ΔS ≥ 0: ð200Þ

It is easy to see that (199) and (200) applies to a subregion
R corresponding to a union of any number of finite width
strips, with ∂l now interpreted as the derivative with respect
to increasing width of one or more of the connected
components.
For d ¼ 2, we also get a bound on correlators of heavy

scalar single trace primaries. Working at a fixed moment of
time with a homogeneous state ρ, the combination of (61),
(82), and (197) for x > 0 gives

d
dx

ln hOðxÞOð0Þiρ ≤
d
dx

ln hOðxÞOð0Þivacuum ¼ −
2Δ
x
ð201Þ

which means that correlations must die of faster than the
vacuum for the states and operators covered by our
assumptions. This in particular implies that

hOðxÞOð0Þiρ ≤ hOðxÞOð0Þivacuum; ð202Þ

since we just get the vacuum correlator as x → 0.

V. EVIDENCE FOR BROADER VALIDITY
OF BOUNDS

In the previous sections, we have shown that the DEC
allows us to prove several general bounds on the growth of
entanglement, correlators and Wilson loops. However, the
proofs crucially relied on the dominant energy condition.
While the dominant energy condition holds in type IIA,
IIB and eleven-dimensional supergravity when the com-
pact dimensions are included (see for example the
Appendix of [130]), it is typically violated after dimen-
sional reduction [131]. The prototypical example is a
scalar field dual to a relevant CFT operator. This field has
negative mass squared, leading to DEC violation.
Even though our proofs assumed the DEC, we will now

provide strong evidence for a subset of the bounds that they
hold when the DEC is violated in reasonable ways. That is,
we provide evidence in scalar theories that violate the DEC,
but which have proven positive mass theorems [132,133]
(so pure AdS is stable) and respect the null energy
condition (NEC). This is evidence that our bounds are
true even in CFTs with DEC-violating bulks, since the NEC
and a stable vacuum are both necessary conditions for
sensible bulk theories [134].
In fact, we provide evidence not just that

R ≤ 1; ð203Þ

but also that when d > 2,

R ≤ vðSAdSÞE þ δvE < 1 ð204Þ

for some small δvE that seems to depend on the scalar
potential. Here

vðSAdSÞE ¼
ffiffiffiffiffiffiffiffiffiffiffi
d

d − 2

r �
d − 2

2ðd − 1Þ
�d−1

d

≤ 1 ð205Þ

is the entanglement velocity computed from a holographic
quench, with the final state being neutral and dual to the
AdS-Schwarzschild black brane [33,34].
The theories we will consider are neutral scalars min-

imally coupled to gravity,

8πGNL ¼ 1

2
R −

dðd − 1Þ
2L2

−
1

2
jdϕj2 − VðϕÞ; ð206Þ

where V is negative somewhere, leading to violation of the
DEC (but not the NEC). These theories are common in
consistent truncations and dimensional reductions of type
IIA, IIB, and eleven-dimensional supergravity [135–138].
We consider these theories because, for standard forms of
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minimally coupled bosonic matter, neutral scalars appear to
pose the biggest risk to our bounds. This is because gauge
fields give no direct contribution to J , and they have a
manifestly positive contributions to the mass (they respect
the DEC).
For free theories where V ¼ 1

2
m2ϕ2, in order to maxi-

mize the chance of violating our bounds, we choose
potentials that are close to “maximally negative,” meaning
we pick m2 just slightly above the Breitenlohner-Freedman
[139,140] bound:

m2L2 ≥ m2
BFL

2 ≡ −ðd=2Þ2: ð207Þ

It is known that if m2 < m2
BF, AdS is unstable, and so these

theories cannot be dual to CFTs with a Hamiltonian that is
bounded from below. Additionally, to have an example of
an interacting potential, in d ¼ 3 we consider a top down
potential that becomes exponentially negative for large jϕj.
The more negative the potential, the more danger for our
theorems, so this should give a fairly strong test.

A. The numerical procedure

Let us now explain our procedure. For a given VðϕÞ and
spacetime dimension, we will construct an n-parameter
family of initial data, parametrized by coefficients ffigni¼1.
The data will be provided on an extended homology
hypersurface of some HRT surface. Then we will define
the function AðffigÞ to be equal to the ratio

j lim
r→∞

rd−3Kϕϕj=μð∞Þd−1d ð208Þ

in the initial dataset specified by parameters ffig. Different
initial datasets correspond to different moments of time in
different spacetimes (with different sizes of R). The value
of A in some particular initial dataset corresponds to the
instantaneous value of R in that configuration, and we will
do a numerical maximization of A with respect to the
parameters ffig. If we find that A is upper bounded, and
that the upper bound is Amax, we have provided evidence
that���� dSRdt

���� ≤ 1

4
AmaxArea½∂R�ceff

�
16π

ðd − 1Þceff
hTtti

�d−1
d

: ð209Þ

If A is not upper bounded, or if Amax > 1, we have a
counterexample to R ≤ 1 in the theory under
consideration.
We will also evaluate the function BðffigÞ, which we

define as the value of

j∂tSRj
Vol½R�hTtti

¼ 4π

d− 1

L
l
j lim rd−3Kϕϕj

μð∞Þ
�
2 d¼ 2

1 d > 2
ð210Þ

for any given initial dataset. By the same logic as earlier, if
B is upper bounded by Bmax, we have evidence that���� ddt S½ρRðtÞ�

���� ≤ BmaxVol½R�hTtti: ð211Þ

If B is not upper bounded, then our volume-type bounds
break without the DEC.
Assuming we work with strips R, for a single evaluation

of A and B, we need to numerically solve the ODEs given
by (51) and (52). For simplicity we will restrict to strips,
since for spheres we cannot solve for ΦðrÞ analytically. In
this case we would need to solve a set of three coupled
equations instead.
Let us now specify our family of initial data. An explicit

computation gives that

E ¼ 1

2
ϕ̇ðrÞ2 þ 1

2

�
r2

L2
−
ωðrÞ
rd−2

�
ϕ0ðrÞ2 þ VðϕÞ;

J ¼ ϕ̇ðrÞϕðrÞ; ð212Þ

where ϕ̇ ¼ ta∇aϕjΣ. Specifying an initial dataset now
corresponds to specifying the two profiles ϕðrÞ and
ϕ̇ðrÞ, together with the initial value of ωðr0Þ. Letting

Δ ¼ d=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd=2Þ2 þm2L2

q
ð213Þ

be the scaling dimension of the CFT operator dual O to ϕ,
the profiles we consider are

ϕ ¼ f1 exp

�
−
�
r − f2
f3

�
2
�
þ f4
rΔ

þ f5
rΔþ2

ϕ̇ ¼ f6 exp

�
−
�
r − f7
f8

�
2
�
þ f9
rΔþ1

þ f10
rΔþ3

ð214Þ

which gives a ten-parameter family of initial data. The
Gaussians give localized lumps of matter, while the power
law falloffs ensures that we can turn on a VEVof O in the
CFT, with hOi ∝ f4 and h∂tOi ∝ f8. Note that the seem-
ingly unusual 1=rΔþ1 falloff in ϕ̇ is just caused by the fact
that the time derivative is with respect to a unit normal
rather than the more standard global time coordinate near
the conformal boundary.
What remains is to pick ωðr0Þ. To minimize the CFT

energy, we want ωðr0Þ small. When the DEC holds, we
know that AdS hyperbolicity implies that ωðr0Þ ≥ 0, as
proven in Lemma 3. However, without the DEC we can
have that ωðr0Þ is negative, but not arbitrarily negative. If
we pick ωðr0Þ too negative, it will forbid an embedding of
Σ in a complete slice. A difficulty is that how negative
ωðr0Þ can be depends on ϕðr0Þ, ϕ̇ðr0Þ, and VðϕÞ. We will
thus restrict to ωðr0Þ ¼ 0 and relegate a more complete
study of the future. Even with ωðr0Þ ¼ 0, it is far from
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obvious if our results survive breaking of the DEC, as we
can easily obtain large regions of ω < 0 even with
ωðr0Þ ¼ 0.
Finally, we need to deal with invalid datasets. For a given

scalar profile, it could be that ωðrÞ overshoots rd=L2. In
this case, the relevant solution does not correspond to a
spacelike hypersurface, and so it must be discarded. In this
case we conventionally define A ¼ B ¼ 0. Consequently,
the functions we are maximizing will have discontinuities.
We are now ready to proceed to the numerical results.

B. Numerical results: d = 2

We now consider a free massive scalar field with mass

m2L2 ¼ 0.9m2
BFL

2 ¼ −0.9; ð215Þ

dual to a relevant operator with Δ ≈ 1.32. We do not
consider saturation of the BF bound, since this requires
modification of the mass formula. Furthermore, we do not
want to go too close to the BF bound, since then ωðrÞ
converges slowly at large r, and so the numerical maxi-
mization procedure becomes prohibitively expensive.
Using Mathematica’s built in NMaximize function to

maximize over our ten-parameter family of initial data,
trying all methods for nonconvex optimization imple-
mented in Mathematica and picking the best result, we
find that

Amax ≈ 0.999 ≤ vEjd¼2 ¼ 1: ð216Þ

Thus, in d ¼ 2 we have evidence that (22) holds without
the DEC—at least in free tachyonic scalar theories.
Next, maximizing B, we find that

Bmax ≈ 3.29 ≤ κd¼2 ¼ 2π: ð217Þ

This provides evidence that (115) holds when the DEC is
violated, and that the OðldhTtti=ceffÞ corrections are not
needed, even though we could not prove their absence
outside thin shell spacetimes. In fact, given the large gap
between Bmax and κd¼2, the numerical results suggest that
our proofs might possibly be sharpened.

C. Numerical results: d = 3

Now we consider two potentials:

VIðϕÞ ¼
1

2
ð0.9m2

BFÞϕ2;

VIIðϕÞ ¼ 1 − cosh
ffiffiffi
2

p
ϕ; ð218Þ

with ϕ dual to operators with scaling dimensions ΔI ≈ 1.97
and ΔII ¼ 2, respectively. The potential VII comes from a
consistent truncation and dimensional reduction of eleven-
dimensional SUGRA on AdS4 × S7 [135]. We find

AI;max ≈ 0.693;

AII;max ≈ 0.702: ð219Þ

In both cases Amax < 1, and so we have evidence that the
conjectured bound (25) is true—even without the DEC and
outside thin-shell spacetimes.
Now, we have that

vðSAdSÞE ¼
ffiffiffi
3

p

24=3
¼ 0.687…

In both casesAmax is close to v
ðSAdSÞ
E , although it is slightly

larger. It seems possible that a stronger bound

R ≤ vðSAdSÞE þ δvE ð220Þ

is true for some small δvE that potentially depends on the
scalar potential.
For B we find

BI;max ≈ 1.71 ≤ κd¼3 ≈ 2.62;

BII;max ≈ 1.72: ð221Þ

Again, there is a significant gap, with the implications
being the same as for d ¼ 2.

D. Numerical results: d = 4

We now consider

VðϕÞ ¼ 1

2
ð0.9m2

BFÞϕ2: ð222Þ

and find

Amax ≈ 0.643: ð223Þ

Again we find evidence that (9) is true without the DEC or
outside thin-shell spacetimes. We have

vðSAdSÞE ¼
ffiffiffi
2

p

33=4
¼ 0.620…; ð224Þ

and so the instantaneous growth can be above vðSAdSÞE , but
possibly only slightly so.
We also find

Bmax ¼ 1.91 ≤ κd¼4 ≈ 2.43: ð225Þ

Again, there is a significant gap, with the implications
being the same as for d ¼ 2.
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VI. DISCUSSION

In this work we have proven several new upper bounds
on the rate of change of entanglement entropy, spacelike
Wilson loops, and equal-time two-point functions of heavy
operators. The proofs apply for spatially homogeneous and
isotropic states in strongly coupled CFTs with a holo-
graphic dual. We summarize our bounds in Table I. We
have also provided numerical evidence that the bounds
have broader validity than our proofs. We will now discuss
our findings and possible future directions.
A 2d quantum weak energy condition: The bound (5) can

also be seen as a quantum weak energy condition (QWEC).
Let S be the entropy of be a single interval as a function of
one of the endpoints p, so that ∂tS now refers to the change
of S under the perturbation of this single interval endpoint,
rather than both. Then we have

hTtti ≥ hTttivac þ
3

2πc
ð∂tSÞ2; ð226Þ

while the classical weak energy condition implies that
Ttt ≥ 0. Equation (226) closely resembles the conformal
quantum null energy condition (QNEC) [19,141–145] in
two dimensions [146]. Consider 2d Minkowski space,
where hTttivac ¼ 0. Letting x� be null coordinates, the
conformal QNEC says that [141,144]

hTþþijp ≥
1

2π
∂
2þSþ 3

πc
ð∂þSÞ2: ð227Þ

The structural similarity between (226) and (227) is
obvious. While (226) does not contain a second derivative,
it is in principle possible that (226) could be true also for
inhomogeneous states, provided we include a term a∂2t S to
the right hand side for some fixed constant a. In fact, the
conformal QNEC suggests that a ¼ ð4πÞ−1, since in the
special case of a half-space in a homogeneous state, where
∂xS ¼ 0, the conformal QNEC and Tμ

μ ¼ 0 implies

hTttijp ≥
1

4π
∂
2
t Sþ 3

2πc
ð∂tSÞ2: ð228Þ

Strengthened bounds: Our proof that���� dSRdt
���� ≤ 1

4
Area½∂R�ceff

�
16π

ðd − 1Þceff
hTtti

�d−1
d

; ð229Þ

which implies that R ≤ 1 in neutral states, only applied to
thin-shell spacetimes, which are dual to CFT states where
all dynamics happen at a single energy scale (that evolves
with time). However, we gave numerical evidence that this
bound also holds in general planar symmetric spacetimes
with extended matter profiles. A natural extension of this
work is trying to generalize the proof to include this. This

TABLE I. Proven bounds on entanglement, spatial Wilson loops and equal-time correlators. We suppress Oð1Þ
numerical constants in the table. Dots mean corrections scaling as OðldhTtti=cÞ where l is the relevant
characteristic length scale, corresponding to strip width or ball radius. We abbreviate the effective central charge
and ’t Hooft coupling as c and λ, respectively. For proof validity equal to quench+, we mean proofs valid for states
dual to spacetimes with thin-shell matter, which includes quenches as a subset. With “general,” we mean proofs
valid for general regular asymptotically AdSdþ1≥3 planar symmetric spacetime satisfying the DEC.

∂tS ≤ d Region R Proof validity EquationsffiffiffiffiffiffiffiffiffiffiffiffiffiffihTtti=c
p

2 n intervals General (22)
Vol½R�hTtti þ � � � ≥ 2 Small strip or ball General (28)
Area½∂R�½hTtti=c�ðd−1Þ=d ≥ 2 n strips Quench+ (25)

Area½∂R�½hTtti=c�ðd−1Þ=d ≥ 2 Ball Quench+ (25)
Vol½R�hTtti ≥ 2 Strip or ball Quench+ (115)

∂lS ≥

∂lSvacuum ≥ 2 n strips General (198)

∂t ln hWðCÞi ≤ Length [C]ffiffiffi
λ

p
Length½C�½hTtti=c�1=2 4 Any General (173)ffiffiffi
λ

p
Length½C�d−1hTtti þ � � � 3,4 Small General (130)ffiffiffi
λ

p
Length½C�½hTtti=c�2=3 3 Any Quench+ (134)

∂t ln hOðxÞOð0Þi ≤ jxj
Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffihTtti=c
p

2 Any General (83)
ΔjxjhTtti=cþ � � � 2 Small General (92)

∂x ln hOðxÞOð0Þi ≤
∂x ln hOðxÞOð0Þivacuum 2 Any General (201)
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will likely require a better understanding of nonlinearities
of the Einstein constraint equations.
Next, we found that in our numerical maximization of

R over a ten-parameter family of initial datasets in
d ¼ 3, 4, that

R ≤ vðSAdSÞE þ δvE; ð230Þ

where

vðSAdSÞE ¼
ffiffiffiffiffiffiffiffiffiffiffi
d

d − 2

r �
d − 2

2ðd − 1Þ
�d−1

d ð231Þ

is the entanglement velocity computed in a holographic
quench having a neutral final state, and δvE a small
correction that seemed to depend on the scalar potential,
but which was always small for the theories we studied (less
than 0.03). This hints that it might be possible to strengthen
the prefactor in (229). Similarly, our numerics suggested that
the prefactors of (8) could be strengthened, and furthermore
that this bound is true without OðldhTtti=ceffÞ corrections.
1=N corrections: It seems quite likely that R ≤ 1

remains true with perturbative 1=N corrections. In fact,
the pure QFT proofs of R ≤ 1 for large subregions [40,42]
made no assumption about large-N, so only intermediate
and small subregions could be sources violation. But for
small subregions we showed that R ≤ Oðl=βÞ ≪ 1 for β
the effective inverse temperature, which means perturbative
1=N corrections are unlikely to pose a of danger [148]. For
intermediate sized regions things are less clear, but for
d ¼ 3, 4 we numerically did not manage to pushR close to
1, hinting that 1=N corrections do not pose a danger in
these dimensions.
Finite coupling: Our bounds were proven at strong

coupling, but it seems possible that our bounds survive
for arbitrary coupling. In [42] it was found that the
entanglement velocity of a free theory (for d > 2) is strictly
smaller than the holographic strong coupling result, sug-
gesting that dialing up the coupling increases the capability
of generating entanglement.
Primaries close to the unitarity bound: In order to turn

on bulk fields dual to relevant CFT operators with scaling
dimensions Δ in the window

d − 2

2
≤ Δ <

d
2
; ð232Þ

we must consider scalars with masses

m2
BF ≤ m2 < m2

BF þ 1=L2; ð233Þ

and turn on the modes with slow falloffs rather than fast
falloffs (see for example [149–152]). This leads to violation
of the falloff assumptions (16), and causes the ordinary
definition of the spacetime mass to be divergent. Then

neither of the Hawking masses reduce to the CFT energy at
conformal infinity. Consequently, significant modifications
of our proofs would be required. The same holds if we turn
on sources that perturb us away from a CFT. Things can get
even more challenging, given that for some falloffs ∂tS itself
might become divergent [45]. In this casewe should only try
to bound finite quantities, like the mutual information or the
renormalized entanglement entropy [102,103], where these
divergences cancel.
Bounds with charge: It is a persistent finding that Uð1Þ

gauge fields tend to slow down the growth of extremal
surfaces of various dimensions [33,34,43,153]. It thus
seems plausible that our bounds can be strengthened by
taking into account nonzero charges in the CFT. It is
suggestive that, in spherical and planar symmetry, Uð1Þ
gauge fields contribute energy density, but they have no
pure contribution to the momentum density—that is, they
only contribute to J through gauge covariant derivatives
acting on other matter fields.
Other boundary geometries: Except for d ¼ 2, our

proofs always assumed the CFT lives on Minkowski space.
However, our bounds survive if we compactify on a torus,
so the boundary geometry isR × Td−1, provided we make a
few additional assumptions. For the bounds of the type
j∂tSj ≤ κVol½R�hTtti þ � � � (and the similar bounds for
Wilson loops), we should always consider regions less
than half the system size—otherwise Vol½R� should be
replaced with the volume of the complement. For bounds
with multiple strips, if we have a torus, we need to make
sure that the entangling surfaces are all parallel, which
happens automatically in Minkowski due to the parallel
postulate.
Next, our proofs for single regions should imply growth

bounds for CFTs on the static cylinder R × Sd−1, as long as
we take the regions to be very small compared to the
curvature radius of the boundary sphere. The results for
balls will translate to results for small caps, while the result
for strips will translate to results for thin belts around the
equator.
Why do things fall? In [53] it was proposed that the

process of gravitational attraction is dual to the increase of
complexity in the CFT. Assuming the complexity ¼
volume conjecture [78], this was given a precise realization
in [54–56] (see also [106]), where it was shown that the rate
of change of the volume of a maximal volume slice is given
by the momentum integrated on the slice. However, our
formula

dSR
dt

¼
Z
X
GtanbT ab ð234Þ

shows that change in entanglement can also be seen as
directly responsible for the radial momentum of matter.
Thus, at present, “the increase of entanglement” seems like
an equally good explanation for why things fall.
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Relevant scalars, compact dimensions, and DEC
breaking: Our proofs rely critically on the dominant
energy condition—almost all steps of the proofs break
without it. This rules out having scalars with negative
squared mass, which are dual to relevant operators in the
CFT. Nevertheless, we found numerical evidence that the
bounds hold true without the DEC, as long as the scalar
theories we consider allow a positive mass theorem, so
that AdS is stable and hTtti is guaranteed to be positive in a
uniform state.
However, there are other reasons to believe that our

bounds remain true for these theories beyond our numerical
findings—at least when working with top-down theories.
Consider working with a theory that is a dimensional
reduction and consistent truncation of type IIA, IIB, or
eleven-dimensional SUGRA, so that any solution can be
lifted to solutions on asymptotically AdSdþ1 × K space-
times for some compact manifold K. These solutions will
typically be warped products rather than direct products,
but there exists significant evidence [154] that the entropy
computed by the HRT formula in the uplifted spacetime
agrees with the one computed in the dimensionally reduced
spacetime—even when the product is not direct. But in the
uplifted spacetime the DEC holds, since it holds for type II
and eleven-dimensional SUGRA. Thus, if our methods can
be generalized to work for warped compactifications over
spherically symmetric AAdSdþ1 bases, this appears to be
an avenue to prove our bounds even with relevant scalars
turned on. The drawback is that the proofs might have to be
carried out separately for each family of compactifications.
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APPENDIX

1. The mean curvature of X in Σ
Let now A;B;… be indices for tensors on X, and α; β;…

be indices for tensors on Σ, and consider intrinsic coor-
dinates on Σ and X from Sec. II B. The induced metrics are

ds2jΣ ¼ Hμνdxμdxν ¼ BðrÞdr2 þ r2½dϕ2 þ δijdxidxj�
ds2jX ¼ γABdyAdyB

¼ ½BðrÞ þ r2Φ0ðrÞ2�dr2 þ r2δijdxidxj: ðA1Þ

A basis of tangent vectors to X in Σ is feαAg, with
expressions

eαr ¼ ð∂rÞα þΦ0ðrÞð∂ϕÞα;
eαi ¼ ð∂xiÞα: ðA2Þ

The normal to X inside Σ reads

nα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Br2

Bþ r2ðΦ0Þ2

s
½Φ0ðrÞðdrÞα − ðdϕÞα� ðA3Þ

With this in hand, we can compute the mean curvature of
X in Σ:

K ¼ γABeαAe
β
B∇αnβ

¼ 1

r
ffiffiffiffi
B

p ½Bþ r2ðΦ0Þ2�3=2

×

�
ðd − 1Þr3Φ0ðrÞ3 þ

�
dB −

1

2
rB0

�
rΦ0 þ r2BΦ00

�
:

ðA4Þ

2. Explicit form of K − nαnβKαβ

Noting that

nα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Br2

Bþ r2ðΦ0Þ2

s �
Φ0ðrÞ
BðrÞ ð∂rÞ

α −
1

r2
ð∂ϕÞα

�
ðA5Þ

we get

K ¼ HαβKαβ ¼
1

B
Krr þ

d − 1

r2
Kϕϕ;

Kαβnαnβ ¼
Br2

Bþ r2Φ0ðrÞ2
�
Φ0ðrÞ2
B2

Krr þ
1

r4
Kϕϕ

�
: ðA6Þ

Inserting KrrðrÞ ¼ BðrÞFðrÞ and doing some algebra,
K − nαnβKαβ ¼ 0 becomes (49).

3. Uniqueness of ODE solution

Choose units of r0 ¼ L ¼ 1 without loss of generality,
and introduce a new variable hðrÞ through

Φ0ðrÞ ¼ hðrÞ
ffiffiffiffiffiffiffiffiffi
BðrÞp

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2d−2 − 1

p ; ðA7Þ

where we without loss of generality can take h positive.
Substitute into (33), we get the ODE
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h0ðrÞ ¼ ðd − 1Þ hðrÞ½1 − hðrÞ2�
r2d − r2

; r∈ ð1;∞Þ: ðA8Þ

There are only two constant solutions to this equation:
h ¼ 1 or h ¼ 0. h ¼ 0 gives the trivial solution, so h ¼ 1 is
the only nontrivial constant solution. Now, assume instead
that h is not constant, and consider two possible variable
redefinitions:

h ¼ ef−ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2f−ðrÞ þ 1

p ; h ¼ efþðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2fþðrÞ − 1

p ; ðA9Þ

The former is valid when h < 1 while the latter when
h > 1. In terms of these variables, the ODE becomes

f0�ðrÞ ¼
ðd − 1Þr
r2d − r2

; ðA10Þ

which has the unique solutions

f�ðrÞ ¼ cþ 1

2
log ð1 − r2−2dÞ ðA11Þ

for a real integration constant c. Inserting this into h gives

h ¼ ec
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2d−2 − 1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r2d−2 þ e2cðr2d−2 − 1Þ

p ; ðA12Þ

where � corresponds to f�. For any real c we see that h is
real valued on our domain only for the þ solution. But for
this solution, for any real c, we see that we get

lim
r→1

Φ0ðrÞ < ∞; ðA13Þ

which contradicts our initial condition Φ0ð1Þ ¼ ∞. Thus
h ¼ 1 is the unique solution satisfying our initial condition.

4. Deriving formulas for ∂tS and ∂lS

a. A formula for ∂tS

In this section, we show that the entropy growth is
proportional to the infalling matter flux. We will first need
to prove that

dArea½Xt�
dt

����
t¼0

¼
Z
∂X

Naηa ¼ −
Area½∂R�
Ld−2 lim

r→∞
rd−3Kϕϕ

ðA14Þ

For the calculation, we will construct the vector ηa, which is
tangent to the boundary ∂M, and Na, the outward unit
normal to ∂Σ ¼ ∂M ∩ Σ in Σ, in a coordinate system. To
do so, introduce the ADM coordinates adapted to the
extended homology hypersurface

ds2jM ¼ −r2dτ2 þHμνðτ; xÞdxνdxν; ðA15Þ

where we took the shift to be vanishing, and the lapse to be
r. xμ ¼ ðr; xÞ are the coordinates on Σ, and Hμνðτ ¼ 0; xÞ
its induced metric, given by (31). The extrinsic curvature of
Σ reads

Kαβ ¼
1

2r
∂τHαβjτ¼0: ðA16Þ

Imagine now we have the coordinates zi ¼ ðt; xÞ on ∂M
and take ∂Σ to be located at ðr ¼ rc; t ¼ τ ¼ 0Þ with a
temporary cutoff r ¼ rc. We want to find embedding
coordinates ðrðtÞ; τðtÞÞ for ∂M such that the induced
metric reads

ds2j
∂M ¼ hijdzidzj ¼

r2c
L2

½−dt2þL2dϕ2þL2dx2� ðA17Þ

The components of the induced metric then satisfy

htt ¼ grrṙ2 − r2τ̇2 ¼ −
r2c
L2

; ðA18Þ

hϕϕ ¼ gϕϕ ¼ r2c: ðA19Þ

Taking the derivative of the second equation, and then
setting t ¼ 0 gives a system of equations that is easily
solved to give (see the Appendix of [106])

τ̇ð0Þ ¼ 1

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − BK2

ϕϕr
−2

q ����
r¼rc

; ðA20Þ

ṙð0Þ ¼ −
Kϕϕ

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − BK2

ϕϕr
−2

q ����
r¼rc

; ðA21Þ

where we have chosen the branch τ̇ > 0. Thus, ηa in our
ADM coordinate system reads

ηa ¼ ð∂tÞa ¼ τ̇ð0Þð∂tÞa þ ṙð0Þð∂rÞa: ðA22Þ

Now, the tangents to ∂X are tangent to ∂R, and the sole
remaining tangent vector eαr in (A2) is then the normal to
∂Σ. Hence, up to a normalization C,

Nμ ¼ Ceμr ¼ Cð1;Φ0; 0Þ; ðA23Þ

which can be unit normalized and pushed forward to a
spacetime vector yielding [in the coordinates (A15)],

Na ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞ þ r2cΦ0ðrÞ2

p ð0; 1;Φ0ðrÞ; 0Þjr¼rc : ðA24Þ
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We can now compute the integral on the cutoff regulated
∂X:Z
∂X

ηaNa ¼ −
Kϕϕ

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − BðrcÞK2

ϕϕ=r
2
c

q ×
BðrcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BðrcÞ þ r2cð∂rΦÞ2
p

× rd−2c

Z
dd−2x

¼ −
Kϕϕ

ffiffiffiffiffiffiffiffiffiffiffi
BðrcÞ

p
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − BðrcÞK2

ϕϕ=r
2
c

q ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðr0=rcÞ2

q

× rd−2c
Area½∂R�
Ld−2 ; ðA25Þ

where we have used the differential equation for the
embedding function ΦðrÞ. In the large r limit, the asymp-
totic behaviors are

BðrÞ ∼Oðr−2Þ; Kϕϕ ∼Oðr−ðd−3ÞÞ: ðA26Þ

Taking the cutoff to the boundary, one finds the area growth
to be given by (38).

b. A covariant formula for ∂tS

Now let us write the integral formula for ∂tS in a
covariant way. Letting ta be the future unit normal to Σ
and na the outward normal to X tangent to Σ, we have for
some function G on X that only depends on r:

8πGN

Z
X
GðrÞtanbT ab

¼
Z

dd−2x
Z

∞

r0

drrd−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ r2ðΦ0Þ2

q
GðrÞnrJ

¼ Area½∂R�
Ld−2

Z
dr

rd−10

rd
GðrÞJ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2d−2 − r2d−20

q
; ðA27Þ

where we used (35) and (A3). Letting

GðrÞ ¼ 2πrd

ðd − 1Þrd−10

; ðA28Þ

we get a covariant formula for the entropy growth

dSR
dt

¼
Z
X
GtanbT ab: ðA29Þ

c. A formula for ∂lS

Consider a one-parameter family of HRT surfaces Xl
anchored at the strip region region Rl, given by (18), but
letting now l vary, holding t fixed. Taking the vector field
ηa generating the flow of ∂Xl to be ηaj

∂M ¼ 1
L ð∂ϕÞa, (36)

becomes

d
dl

Area½Xl� ¼
Area½∂R�
Ld−1 lim

r→∞
rd−2gϕϕNϕ: ðA30Þ

Using (35), (A15), and (A24), this evaluates to

d
dl

Area½Xl� ¼
Area½∂R�
Ld−1 lim

r→∞
rd

Φ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ r2ðΦ0Þ2

p
¼ Area½∂R�

Ld−1 rd−10 : ðA31Þ

5. Computing ∂tkXtk
The derivation of (150) is almost identical to the

derivation in Appendix A 4. Let us just highlight what
must be changed. First, we do not have an explicit formula
forΦ0ðrÞ, but this does not matter, since everything we need
is its rate of falloff, which we can read off to be Φ0ðrÞ ∼
Oð1=rqþ2Þ from (145). Next, in (A25), it is sufficient to
replace rd−2c → rqc . After doing that, and taking into account
that Kϕϕ now has falloff Oð1=rq−1Þ, the rc → ∞ limit
of (A25) with these modifications gives (150).

6. Geometric properties of X and Σ
Let us now prove various properties of extended homol-

ogy hypersurfaces. We give the proof for HRT surfaces of
strips and comment how the proofs are modified for
(qþ 1)-dimension extremal surfaces anchored at spheres.
Lemma 7. The extended homology hypersurface Σ of a

strip region in a spacetime with planar symmetry cannot
have a throat in its interior, i.e., a radius where BðrÞ
diverges.
Proof. Assume for contradiction that Σ has a throat T in

its interior—if there are multiple, take T to be the outermost
one. Since Σ by definition terminates at the plane tangent to
the tip of X, this means that X must pass beyond the throat.
But if X crosses the throat, there must be a point on X ∩ T
where X is not tangent to T. Let now U ⊂ Σ be the region
outside T, which we can always cover with a coordinate
system

ds2jU ¼ BðrÞdr2 þ r2dx2; r∈ ½rT;∞Þ;
BðrTÞ ¼ ∞; Bðr > rTÞ < ∞: ðA32Þ

where the throat is at r ¼ rT . The fact that X is not tangent
to T means that jΦ0ðrTÞj < ∞. But the solution for the
extremal surface reads

Φ0ðrÞ2 ¼ BðrÞ
r2ðr2d−2c − 1Þ ðA33Þ

for some constant c, and so jΦ0ðrTÞj ¼ ∞, which is a
contradiction. Hence T cannot exist in the interior of Σ. ▪
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This proof goes through the case of X anchored at a
dimension q sphere, as discussed in Sec. III, simply taking
Φ0 to be computed from (145).
Next, we have the following:
Lemma 8. The HRT surface X of a strip region R can

only have one turning point.
Proof. Assume for contradiction that X has multiple

turning points. Then there must be at least one turning point
of X in the interior of Σ that is a local maximum of the
embedding function rðϕÞ. Let ϕ ¼ ϕt where this turning
point occurs, and let us restrict our attention to a neighbor-
hood ϕ∈Oϵ ¼ ðϕt;ϕt þ ϵÞ, where we can invert rðϕÞ to
get ΦðrÞ, describing the embedding in Oϵ. We see that
Φ0ðrÞ < 0 and Φ00ðrÞ < 0 in this neighborhood. Now, the
equation for the HRT surface in the neighborhood Oϵ is

ðd − 1Þr3Φ03 þ r2BΦ00 þ rΦ0
�
dB −

r
2
B0
�

¼ 0: ðA34Þ

Since we are in the interior of Σ, B is bounded on Oϵ by
Lemma 7. Since Φ0 diverges at the turning point, the
equation for Φ0 near the turning point reads

r2BΦ00 ¼ −ðd − 1Þr3Φ03
�
1þO

�
1

ðΦ0Þ2
��

; ðA35Þ

where the correction can be neglected to arbitrarily good
precision since B is bounded. But this implies that Φ00 and
Φ0 must have opposite signs in Oϵ for sufficiently small ϵ,
which is a contradiction. Hence X can only have one
turning point. ▪
We did not consider the case where r0ðϕtÞ ¼ r00ðϕtÞ ¼ 0,

but this was shown to be ruled out by [123]. Also, note that
this proof survives the case of spherical boundary anchor-
ing and a (qþ 1)-dimensional extremal surface, since the
new term ðΦ0Þ3χðrÞ in the extremality Eq. (141) is sub-
leading at the prospective turning point, since it scales like
χ ∼ 1=Φ0. Thus, (A35) remains true [up to a numerical
factor and an Oð1=Φ0Þ correction].

7. General extremality conditions

Let

Hab ¼ gab þ tatb ðA36Þ

be the induced metric on Σ. Then we have hab ¼
Hab − δIJnaI n

b
J , and so

K0 ¼ ðHab − δIJnaI n
b
JÞ∇atb

¼ K − δIJnaI n
b
J∇ðatbÞ

¼ K − δIJnaI n
b
JKab; ðA37Þ

where we in the last line used that naI n
b
J is tangent to Σ,

which projects out the difference ∇ðatbÞ − Kab. Now, a
collection of tangents eαI to X are

eαr ¼ ð∂rÞα þΦ0ðrÞð∂ϕÞα
eαi ¼ ð∂ΩiÞα; ðA38Þ

where i runs over sphere directions. The unit normals to X
(in Σ) are

nrα ¼ αðdrÞα þ βðdϕÞβ;
njα ¼ rðdzjÞα; ðA39Þ

for some α, β we now work out, and where the coordinates
are with respect to the index μ on Σ. r; j should be view
as indices in the orthonormal tangent basis labeled by
I on X. Now

0 ¼ nrαeαr ¼ αþ βΦ0ðrÞ;

1 ¼ Hαβnrαnrβ ¼
α2

B
þ β2

r2
: ðA40Þ

Solving for α, β, we get

nrα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Br2

Bþ r2ðΦ0Þ2

s
ðΦ0ðdrÞα − ðdϕÞαÞ; ðA41Þ

Now we want to impose

K0 ¼ K − δIJnaI n
b
JKab ¼ 0: ðA42Þ

Explicitly we have

K ¼ 1

B
Krr þ

1

r2
Kϕϕ þ

wij

r2ϕ2
× ϕ2wijKϕϕ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Kij

þ d− 2− q
r2

Kϕϕ|{z}
Kzz

;

¼ 1

B
Krr þ

d− 1

r2
Kϕϕ; ðA43Þ

and

δIJnaI n
b
JKab ¼ ðnrrÞ2KrrþðnrϕÞ2Kϕϕþðd− 2−qÞ 1

r2
Kϕϕ:

ðA44Þ

Thus, with Krr ¼ BF, condition (A42) reads

½1 − BðnrrÞ2�F þ
�
qþ 1

r2
− ðnϕr Þ2

�
Kϕϕ ¼ 0 ðA45Þ

Using the explicit formula for nrr; n
ϕ
r in (A41), inserting

the explicit formula for ΦðrÞ from (145), and solving for
FðrÞ, we find (153).
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Note also that thanks to (A43) and (75) is unchanged, and so the proof that �θ�½∂Σ� ≥ 0 for strips survive for
dimension–qþ 1 surfaces anchored at q-spheres.
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http://www.numdam.org/item/AST_1985__S131__95_0/.

[109] C. Graham and J. M. Lee, Adv. Math. 87, 186 (1991).
[110] C. R. Graham and E. Witten, Nucl. Phys. B546, 52 (1999).

ÅSMUND FOLKESTAD and ADITYA DHUMUNTARAO PHYS. REV. D 108, 086032 (2023)

086032-32

https://doi.org/10.1007/JHEP07(2020)169
https://doi.org/10.1007/JHEP07(2020)169
https://doi.org/10.1103/PhysRevD.102.101901
https://doi.org/10.1103/PhysRevD.102.101901
https://doi.org/10.1007/JHEP04(2021)250
https://doi.org/10.1007/JHEP04(2021)250
https://doi.org/10.1007/JHEP05(2019)160
https://doi.org/10.1007/JHEP05(2019)160
https://doi.org/10.1007/s002200050764
https://doi.org/10.1007/s002200050764
https://doi.org/10.1007/JHEP11(2010)149
https://doi.org/10.1007/JHEP11(2010)149
https://doi.org/10.1007/JHEP03(2013)070
https://doi.org/10.1007/JHEP03(2013)070
https://doi.org/10.1007/JHEP09(2012)055
https://doi.org/10.1007/JHEP09(2012)055
https://doi.org/10.1007/JHEP07(2012)096
https://doi.org/10.1007/JHEP07(2012)096
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP12(2014)046
https://doi.org/10.1007/JHEP09(2013)057
https://doi.org/10.1007/JHEP09(2013)057
https://doi.org/10.1007/JHEP07(2013)170
https://doi.org/10.1007/JHEP07(2013)170
https://doi.org/10.1007/JHEP11(2013)052
https://doi.org/10.1007/JHEP11(2013)052
https://arXiv.org/abs/1311.2562
https://doi.org/10.1103/PhysRevD.89.066015
https://doi.org/10.1103/PhysRevD.89.066015
https://doi.org/10.1007/JHEP09(2015)165
https://doi.org/10.1007/JHEP08(2014)051
https://doi.org/10.1007/JHEP08(2014)051
https://doi.org/10.1103/PhysRevD.90.064033
https://doi.org/10.1103/PhysRevD.90.046004
https://doi.org/10.1007/JHEP06(2015)111
https://doi.org/10.1007/JHEP02(2015)017
https://doi.org/10.1007/JHEP02(2015)017
https://doi.org/10.1007/JHEP07(2015)137
https://doi.org/10.1103/PhysRevD.90.126007
https://doi.org/10.1103/PhysRevD.90.126007
https://doi.org/10.1007/JHEP08(2020)129
https://doi.org/10.1103/PhysRevD.92.126004
https://doi.org/10.1103/PhysRevD.92.126004
https://doi.org/10.1007/JHEP07(2015)146
https://doi.org/10.1007/JHEP07(2015)146
https://doi.org/10.1007/JHEP09(2015)114
https://doi.org/10.1103/PhysRevD.96.026012
https://doi.org/10.1007/JHEP09(2017)127
https://doi.org/10.1007/JHEP09(2017)127
https://doi.org/10.1007/JHEP04(2016)069
https://doi.org/10.1007/JHEP04(2016)069
https://doi.org/10.1103/PhysRevD.93.106008
https://doi.org/10.1007/JHEP11(2016)054
https://doi.org/10.1103/PhysRevD.96.066028
https://doi.org/10.1007/JHEP10(2017)104
https://doi.org/10.1007/JHEP10(2017)104
https://doi.org/10.1088/1751-8121/aa927c
https://doi.org/10.1088/1751-8121/aa927c
https://doi.org/10.1007/JHEP09(2017)115
https://doi.org/10.1007/JHEP01(2018)102
https://doi.org/10.1088/1742-6596/942/1/012010
https://doi.org/10.1088/1742-6596/942/1/012010
https://doi.org/10.1007/JHEP09(2018)131
https://doi.org/10.1007/JHEP09(2018)131
https://doi.org/10.1007/s10714-018-2492-z
https://doi.org/10.1007/s10714-018-2492-z
https://doi.org/10.1007/JHEP11(2018)072
https://doi.org/10.1007/JHEP11(2018)072
https://doi.org/10.1007/JHEP02(2021)149
https://doi.org/10.1088/1751-8121/ab2dae
https://doi.org/10.1088/1751-8121/ab2dae
https://doi.org/10.1103/PhysRevB.102.045114
https://doi.org/10.1088/1674-1137/44/2/023101
https://doi.org/10.1088/1674-1137/44/2/023101
https://doi.org/10.1103/PhysRevLett.124.201601
https://doi.org/10.1103/PhysRevLett.124.201601
https://arXiv.org/abs/2112.14388
https://doi.org/10.1007/JHEP04(2013)162
https://doi.org/10.1007/JHEP01(2014)098
https://doi.org/10.1088/1361-6382/ab377f
https://doi.org/10.1088/1361-6382/ab377f
https://doi.org/10.1007/JHEP01(2022)040
https://doi.org/10.1007/JHEP01(2022)040
https://doi.org/10.1088/1361-6382/aa6ad0
https://doi.org/10.1088/1361-6382/aa6ad0
http://www.numdam.org/item/AST_1985__S131__95_0/
http://www.numdam.org/item/AST_1985__S131__95_0/
http://www.numdam.org/item/AST_1985__S131__95_0/
https://doi.org/10.1016/0001-8708(91)90071-E
https://doi.org/10.1016/S0550-3213(99)00055-3


[111] For d ¼ 3 it is also known as the Geroch-Hawking mass
[112–115], and its was used to prove the Riemannian
Penrose inequality [115].

[112] R. Geroch, Ann. N.Y. Acad. Sci. 224, 108 (1973).
[113] P. Jang and R. Wald, J. Math. Phys. (N.Y.) 18, 41 (1977).
[114] X. Wang, J. Diff. Geom. 57, 273 (2001).
[115] G. Huisken and T. Ilmanen, J. Diff. Geom. 59, 353 (2001).
[116] We have here taken the outward and inward null vectors,

kaþ and ka−, respectively, to be ka� ¼ 2−1=2ðta � naÞ.
[117] For thin-shell spacetimes J ðρÞ can be a delta function, but

we can safely assume this delta function does not have
support exactly at r ¼ r0.

[118] S.W. Hawking, J. Math. Phys. (N.Y.) 9, 598 (1968).
[119] Å. Folkestad, Phys. Rev. Lett. 130, 121501 (2023).
[120] S. A. Hayward, Phys. Rev. D 53, 1938 (1996).
[121] This monotonicity is a planar-symmetric Lorentzian

version of the monotonicity the Riemannian Hawking
mass under inverse mean curvature flow, which has been
used to prove Riemannian Penrose inequalities [112–115].
A Lorentzian flow with a monotonic Lorentzian Hawking
mass for compact surfaces in three dimensions, without
any symmetry assumptions, was studied in [122].

[122] H. Bray, S. Hayward, M. Mars, and W. Simon, Commun.
Math. Phys. 272, 119 (2007).

[123] N. Engelhardt and S. Fischetti, Classical Quantum Gravity
32, 195021 (2015).

[124] R. Bousso, J. High Energy Phys. 06 (1999) 028.
[125] J. D. Brown andM. Henneaux, Commun. Math. Phys. 104,

207 (1986).
[126] The normalization here is such that a planar black brane

would have the metric −fdt2 þ f−1dr2 þ r2dx2 with
f ¼ r2=L2 − μð∞Þr2−d.

[127] By the same kind of analysis as in Appendix A 6, we
cannot have additional turning points where Φ0ðrÞ di-
verges, and so we have strict inequality in the lower bound.

[128] J. M. Maldacena, Phys. Rev. Lett. 80, 4859 (1998).
[129] S.-J. Rey and J.-T. Yee, Eur. Phys. J. C 22, 379 (2001).
[130] N. Engelhardt and Å. Folkestad, J. High Energy Phys. 07

(2022) 031.
[131] T. Hertog, G. T. Horowitz, and K. Maeda, J. High Energy

Phys. 05 (2003) 060.
[132] W. Boucher, Nucl. Phys. B242, 282 (1984).
[133] P. Townsend, Phys. Lett. 148B, 55 (1984).
[134] If we choose completely arbitrary bulk scalar theories, we

have no positive mass theorem, so we can have hTtti < 0 in

a homogeneous state, and the bounds are clearly violated.
But in these situations there is no sensible holographic
dual.

[135] M. Cvetic, M. J. Duff, P. Hoxha, J. T. Liu, H. Lu, J. X. Lu,
R. Martinez-Acosta, C. N. Pope, H. Sati, and T. A. Tran,
Nucl. Phys. B558, 96 (1999).

[136] H. Lu and C. N. Pope, Phys. Lett. B 467, 67 (1999).
[137] H. Lu, C. N. Pope, and T. A. Tran, Phys. Lett. B 475, 261

(2000).
[138] M. Cvetic, H. Lu, and C. N. Pope, Phys. Rev. Lett. 83,

5226 (1999).
[139] P. Breitenlohner and D. Z. Freedman, Phys. Lett. 115B,

197 (1982).
[140] P. Breitenlohner and D. Z. Freedman, Ann. Phys. (N.Y.)

144, 249 (1982).
[141] A. C. Wall, Phys. Rev. D 85, 024015 (2012).
[142] R. Bousso, Z. Fisher, J. Koeller, S. Leichenauer, and A. C.

Wall, Phys. Rev. D 93, 024017 (2016).
[143] C. Akers, J. Koeller, S. Leichenauer, and A. Levine,

arXiv:1610.08968.
[144] J. Koeller and S. Leichenauer, Phys. Rev. D 94, 024026

(2016).
[145] S. Balakrishnan, T. Faulkner, Z. U. Khandker, and H.

Wang, J. High Energy Phys. 09 (2019) 020.
[146] See [147] for a study on how the QNEC constrains

entanglement growth.
[147] M. Mezei and J. Virrueta, arXiv:1909.00919.
[148] The discovery of quantum extremal surfaces (QES) [18]

far from classical extremal surfaces [20,21] might make
this argument somewhat less convincing, but it seems
unlikely that these dominate/exist for small subregions,
whose QES reside close to the conformal boundary.

[149] T. Hertog and G. T. Horowitz, J. High Energy Phys. 07
(2004) 073.

[150] M. Henneaux, C. Martinez, R. Troncoso, and J. Zanelli,
Phys. Rev. D 70, 044034 (2004).

[151] M. Henneaux, C. Martinez, R. Troncoso, and J. Zanelli,
Ann. Phys. (Amsterdam) 322, 824 (2007).

[152] T. Hertog and K. Maeda, J. High Energy Phys. 07 (2004)
051.

[153] D. Carmi, S. Chapman, H. Marrochio, R. C. Myers, and
S. Sugishita, J. High Energy Phys. 11 (2017) 188.

[154] P. A. R. Jones and M. Taylor, J. High Energy Phys. 08
(2016) 158.

MAXIMAL ENTANGLING RATES FROM HOLOGRAPHY PHYS. REV. D 108, 086032 (2023)

086032-33

https://doi.org/10.1111/j.1749-6632.1973.tb41445.x
https://doi.org/10.1063/1.523134
https://doi.org/10.4310/jdg/1090348112
https://doi.org/10.4310/jdg/1090349447
https://doi.org/10.1063/1.1664615
https://doi.org/10.1103/PhysRevLett.130.121501
https://doi.org/10.1103/PhysRevD.53.1938
https://doi.org/10.1007/s00220-007-0203-9
https://doi.org/10.1007/s00220-007-0203-9
https://doi.org/10.1088/0264-9381/32/19/195021
https://doi.org/10.1088/0264-9381/32/19/195021
https://doi.org/10.1088/1126-6708/1999/06/028
https://doi.org/10.1007/BF01211590
https://doi.org/10.1007/BF01211590
https://doi.org/10.1103/PhysRevLett.80.4859
https://doi.org/10.1007/s100520100799
https://doi.org/10.1007/JHEP07(2022)031
https://doi.org/10.1007/JHEP07(2022)031
https://doi.org/10.1088/1126-6708/2003/05/060
https://doi.org/10.1088/1126-6708/2003/05/060
https://doi.org/10.1016/0550-3213(84)90394-8
https://doi.org/10.1016/0370-2693(84)91610-1
https://doi.org/10.1016/S0550-3213(99)00419-8
https://doi.org/10.1016/S0370-2693(99)01170-3
https://doi.org/10.1016/S0370-2693(00)00073-3
https://doi.org/10.1016/S0370-2693(00)00073-3
https://doi.org/10.1103/PhysRevLett.83.5226
https://doi.org/10.1103/PhysRevLett.83.5226
https://doi.org/10.1016/0370-2693(82)90643-8
https://doi.org/10.1016/0370-2693(82)90643-8
https://doi.org/10.1016/0003-4916(82)90116-6
https://doi.org/10.1016/0003-4916(82)90116-6
https://doi.org/10.1103/PhysRevD.85.024015
https://doi.org/10.1103/PhysRevD.93.024017
https://arXiv.org/abs/1610.08968
https://doi.org/10.1103/PhysRevD.94.024026
https://doi.org/10.1103/PhysRevD.94.024026
https://doi.org/10.1007/JHEP09(2019)020
https://arXiv.org/abs/1909.00919
https://doi.org/10.1088/1126-6708/2004/07/073
https://doi.org/10.1088/1126-6708/2004/07/073
https://doi.org/10.1103/PhysRevD.70.044034
https://doi.org/10.1016/j.aop.2006.05.002
https://doi.org/10.1088/1126-6708/2004/07/051
https://doi.org/10.1088/1126-6708/2004/07/051
https://doi.org/10.1007/JHEP11(2017)188
https://doi.org/10.1007/JHEP08(2016)158
https://doi.org/10.1007/JHEP08(2016)158

