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We show that the recently proposed equations for holomorphic sector of higher-spin theory in d ¼ 4, also
known as chiral, can be naturally extended to describe interacting symmetric higher-spin gauge fields in any
dimension. This is achieved with the aid of Vasiliev’s off shell higher-spin algebra. The latter contains ideal
associated to traces that has to be factored out in order to set the equations on shell. To identify the ideal in
interactions we observe the global spð2Þ that underlies it to all orders. The spð2Þ field dependent generators
are found in closed form and appear to be remarkably simple. The traceful higher-spin vertices are analyzed
against locality and shown to be all-order space-time spin-local in the gauge sector, as well as spin-local in
the Weyl sector. The vertices are found manifestly in the form of curious integrals over hypersimplices. We
also extend to any d the earlier observed in d ¼ 4 higher-spin shift symmetry known to be tightly related to
spin-locality.
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I. INTRODUCTION

The higher-spin (HS) interaction problem [1] dates back
to the early papers [2–4]. Being notoriously complicated, it
still remains only partially solved. In particular, a wealth of
no go arguments [5–9] (see also [10,11] for a more recent
account) seemingly preclude nonlinear HS propagation
on the Minkowski space.1 A green light was given by the
seminal results of Fradkin and Vasiliev [14,15], who
addressed the problem on the AdS background and showed
that some of the HS cubic vertices carry inverse powers
of cosmological constant. Ever since the field develops
rapidly and has led to many interesting ideas and new
results (see e.g., [16–36] and [1] for substantial, but still not
yet a fully comprehensive bibliography). One of the central
results in the field is the all-order HS generating equations
first obtained in d ¼ 4 in [17] and later on for symmetric
bosonic fields in any d in [24].
The AdS=CFT view proposed by Klebanov and

Polyakov [21] (see also [22,23] for closely related papers)
that suggests the correspondence of Vasiliev’s HS theory
and the OðNÞ vector model has added a potentially testable

playground for the weak-weak type duality with HS fields in
the bulk and free matter fields on the boundary. This line of
thought has been triggered by Giombi and Yin as they
directly computed the three-point correlation functions of
the boundary theory using the Vasiliev equations [37]
confirming the holographic expectations. The dual picture
suggests that the bulk theory is supposedly healthy. There
are many indications in favor of this statement including
those at quantum level, see e.g., [38–40].
In case the conjecture of [21] is valid2 it is natural

reconstructing HS theory from e.g., a free boundary scalar.
This way a partially gauge fixed HS cubic action was
successfully found in [41] and shown to be a perfect match
with the corresponding conformal field theory (CFT) inde-
pendent results from the Vasiliev theory [42–44]. At quartic
order, however, the reconstruction bumps into the locality
problem [45,46] that basically leads to a lack of computa-
tional control over the Noether procedure and to a potentially
unverifiable final result for the holographic vertex.
On the HS side the locality issue is present too, though in

a different form. Namely, Vasiliev equations are formulated
in a way which is invariant under field redefinitions, while
the reconstruction of HS vertices that they do amounts to
solution of a cohomological problem of fixing field repre-
sentatives3 in one way or another. Already in [37] the
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1See, however, [12,13] where the flat higher spins have been
recently reconsidered from the holography perspective.

2An alternative option proposed in [33] is the boundary dual
being a conformal HS theory rather than vector model.

3Interestingly, the L∞ structures arising within the unfolded
approach in HS interactions appear to be way more rigid than the
usual Noether perturbations. The former survive even beyond
locality limitations.

PHYSICAL REVIEW D 108, 086031 (2023)

2470-0010=2023=108(8)=086031(20) 086031-1 Published by the American Physical Society

https://orcid.org/0000-0002-6628-7513
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.086031&domain=pdf&date_stamp=2023-10-30
https://doi.org/10.1103/PhysRevD.108.086031
https://doi.org/10.1103/PhysRevD.108.086031
https://doi.org/10.1103/PhysRevD.108.086031
https://doi.org/10.1103/PhysRevD.108.086031
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


locality problem develops at the cubic order (quadratic at the
level of equations). It has been partly circumvented by a
smart analytic continuation in spins [37], but is still shown
to cause troubles in the form of artificial infinities in [47].
This problem was understood as the cohomological one and
solved at this order in [48] leading to a perfectly local
vertex. At the same time this analysis has raised a concern
regarding a systematic reconstruction of HS vertices from
the Vasiliev equations in a way compatible with locality,
whatever this means.
The locality problem has proven to be to be a highly

complicated one and has rolled out the ongoing research
mainly in d ¼ 4 [49–60] with a number of important
results4 already obtained. These include the introduction
of concepts of spin-locality and ultralocality, locality
theorems of [49,55], the manifest form of local interaction
vertices at the first few orders [50,54] as well as the
important observation of the limiting star product in [51].
The latter establishes spin-locality of the holomorphic sector
(also known as chiral) of the 4d theory to all orders [60],
thus proving the locality conjecture of [49] in this sector. In
addition, spin-locality itself seems likely to hinge upon
presence of the so-called HS shift symmetry [57,60]; the
physical origin of which remains to be understood. Its
observation was inspired by the earlier result of [49] known
as the structure lemma.
In proving locality of the holomorphic sector, the

Vasiliev-type equations in d ¼ 4 have been proposed
[60]. Unlike the original Vasiliev equations, the former have
no room for both the holomorphic and antiholomorphic
sectors of HS interactions simultaneously. Nevertheless,
their advantage is in that they result in all-order spin-local
vertices of the holomorhic theory effortlessly.5 More impor-
tantly, these equations can be straightforwardly generalized
to describe the interaction of symmetric HS gauge fields in
any dimension using the standard Vasiliev construction of
the off shell HS algebra [24], as well as to the 3d spinorial
HS systems.
The goal of this paper is to come up with a naturally spin-

local HS setup at least within the orders where spin-locality
is already known or expected. To this end we frame
equations of [60] to (i) describe interacting bosonic HS
fields in d dimensions and (ii) set the stage for further
analysis of locality. Our interest in generating the equations
of [60] is motivated by their somewhat unexpected feature
to capture spin-local rather than nonlocal HS vertices in an
unforced way. Yet, the structure that controls consistency of

the proposed equations is quite puzzling on its own and
extends beyond the realm of application to holomorphic
sector of the 4d HS theory.
The first problem (i) appears to be quite tractable as it

rests on the oscillator realization of HS algebra developed
in [24]. This leads us to the generating equations for the off
shell, equivalently, unconstrained unfolded equations of
nonlinear HS fields. The wording “off shell”means that the
equations actually describe no field dynamics rather pro-
vide with a set of consistency conditions similar to the
Bianchi identities of general relativity.
We then study the off shell vertices. Interestingly, these

turn out to be spin-local even beyond the cubic approxi-
mation. Specifically, we show that the so-called canonical
choice of physical fields gives rise to all-order ultralocality
of the gauge sector. As has been shown in [52], ultralocality
is equivalent to the standard space-time spin locality. The
Weyl sector of the theory, where, in particular, the scalar
resides is shown to be all-order spin-local. The developed
formalism brings HS interaction vertices in their manifest
form to any given order. All these vertices exhibit a curious
structure of integrals over n-dimensional hypersimplices
with n being the order of perturbations.
Apart from locality, HS vertices feature the shift sym-

metry transformation properties. Shift symmetry acts most
naturally in the Fourier space as a certain invariance of
vertices under shifts in “momenta” and, as it has been shown
recently in [57], goes hand in hand with locality being an
intriguing subject for future investigation. In particular, as
follows from analysis of [57,60], shift symmetry offers a
class of field redefinitions that respects spin locality.
To set our system on shell a quotienting of the trace ideal

of the off shell HS algebra is required. Generally, this
problem can be as complicated as constructing HS inter-
actions from scratch. Indeed, to factor out the ideal one has
to know its exact deformation due to interactions. The trace
ideal is known to be generated by a certain spð2Þ in the case
of totally symmetric fields [24]. In [24] such spð2Þ was
found to all orders. Its very existence rests on the properties
of the so-called deformed oscillators that underlie the
original Vasiliev equations. These generate the required
spð2Þ via bilinears. The lack of the deformed oscillators in
our case makes on shell reduction challenging. For a reason,
which is not immediately obvious to us, the required spð2Þ
is still there to all orders, while the corresponding generators
appear to be remarkably simple as we find them to be linear
in fields in a closed form. This is one of the most important
results of the present work. Having manifested the structure
of the trace ideal one can systematically analyze on shell
interactions order-by-order, which we plan to carry out
elsewhere.
The paper is organized as follows. In Sec. II following

[24] we review the structure of HS unfolded equations i.e.,
the spectrum of fields, higher-spin algebra and its oscillator
realization. Then, in Sec. II A we specify the recently

4Some of the developed approaches in this quest were
successfully applied to HS theories in d ¼ 3 [61].

5In this regard it is worth mentioning papers [58,59] that
propose spin-local holomorphic vertices too. The analysis relies
on the homological perturbation theory that, however, renders
uncertainties of the form 0 ·∞, thus compromising consistency.
As the system of [60] has no issues with consistency, it can be
used to offer validity checks of this proposal.
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proposed in [60] HS generating equations for the case of the
d-dimensional bosonic HS algebra and lay down their basic
properties. Section III deals with unconstrained that is off
shell analysis of HS vertices. We demonstrate the locality of
the vertices, provide their manifest form as integrals over
hypersimplices, as well as reveal the shift symmetry there.
Section IV is all about bringing our generating equations on
shell. Its central result is the manifest global spð2Þ that
generates the trace ideal along with the explicitly given

generators (4.36). We conclude in Sec. V. The paper is
supplemented with three appendixes.

II. UNFOLDING OF HS INTERACTIONS

A powerful approach to HS problem is provided by the
unfolded formulation [62] (see [63,64] for a recent develop-
ment). The spectrum of fields suitable for description of HS
symmetric fields in d dimensions consists of 1-forms and 0-
forms. The 1-forms [24]

ð2:1Þ

are given by the oðd − 1; 1Þ two-row Young diagrams

ωaðs−1Þ;abðn−1Þ ¼ 0; a; b ¼ 0;…d − 1; ð2:2Þ

where as typical in HS literature we denote by one and the
same letter symmetrization over a group of indices with
Eq. (2.2) being the standard Young condition. At free level
one imposes the irreducible traceless condition

ωaðs−3Þc
c;
bðnÞ ¼ 0: ð2:3Þ

The physical component which contains the usual Fronsdal
spin-s field corresponds to n ¼ 0, while n > 0 are auxiliary,
i.e., they can be expressed in terms of derivatives of the
physical field. Note that for each s there are finitely many
ω’s. Thus, introduced ω’s play the role of HS potentials
generalizing Maxwell potential A ¼ ω for s ¼ 1 and the
Lorentz connection ωa;b along with the frame field ea ¼ ωa

of the Cartan gravity for s ¼ 2.
The 0-forms

ð2:4Þ

having an arbitrary long first row are unbounded for fixed s.
The m ¼ s component corresponds to the rectangular HS
Weyl tensors generalizing Maxwell tensor Fa;b ¼ Ca;b for
s ¼ 1 and the Weyl tensor Cab;cd for s ¼ 2. Components
m > s are auxiliary, being expressed roughly via deriva-
tives of the primary fields with m ¼ s. Similarly, C is
subject to the Young constraint

CaðmÞ;abðs−1Þ ¼ 0 ð2:5Þ

along with the traceless condition

Caðm−2Þc
c;
bðsÞ ¼ 0: ð2:6Þ

A convenient way to work with the two-row Young
tensors was proposed in [24]. Accordingly, let us intro-
duce the following commuting variables y⃗α ≔ yaα and yα,
where α ¼ 1, 2. The two-component indices can be
associated with an spð2Þ algebra. To this end one
introduces the canonical spð2Þ form ϵαβ ¼ −ϵβα and its
inverse ϵαβϵαγ ¼ δγ

β and defines the lowering and raising
index convention, e.g.,

yα ¼ ϵαβyβ; yα ¼ yβϵβα; ð2:7Þ

then the Taylor coefficients of any analytic function
fðy⃗; yÞ are supplemented with the following condition:

�
y⃗α ·

∂

∂y⃗β
þ yα

∂

∂yβ
þ α ↔ β

�
f ¼ 0 ð2:8Þ

which form the two-row Young diagrams with respect
to Lorentz indices a; b;…. In other words, they satisfy
conditions like (2.2), but not the traceless constraint (2.3),
which has to be imposed additionally in order to stay with
oðd − 1; 1Þ irreducible components. Equation (2.8) has the
transparent meaning of an spð2Þ invariance. Indeed, by
introducing the standard Moyal star product

ðf �gÞðy; y⃗Þ¼
Z

fðyþu; y⃗þ u⃗Þgðyþv; y⃗þ v⃗Þeiuαvαþiu⃗αv⃗α ;

ð2:9Þ

where integration over u, v, u⃗, and v⃗ is assumed, it yields
the following commutation relations

½yaα; ybβ�� ¼ 2iηabϵαβ; ½yα; yβ�� ¼ 2iϵαβ; ½yaα; yβ�� ¼ 0:

ð2:10Þ

One then finds that (2.8) can be written down as
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½t0αβ; fðy; y⃗Þ�� ¼ 0; t0αβ ¼
1

4i
ðyaαyaβ þ yαyβÞ: ð2:11Þ

Generators t0αβ form the so-called Howe dual algebra to
oðd − 1; 2Þ spanned by various spð2Þ-invariant bilinears
of y⃗ and y

Pa ¼ yaαyα; Mab ¼ yaαybα: ð2:12Þ

It is easy to observe spð2Þ commutation relations for the
generators defined in (2.11)

½t0αβ; t0γδ�� ¼ ϵαγt0βδ þ ϵβγt0αδ þ ϵαδt0βγ þ ϵβδt0αγ: ð2:13Þ

Having introduced the above formalism, the HS algebra
can be constructed as follows [65]. Consider an associative
algebra spanned by various formal power series in y⃗ and y
that has product (2.9). This algebra contains a subalgebra S
generated by elements that fulfil spð2Þ singlet condition
(2.11). Algebra S is not simple since it contains two-sided
ideal I of the form

g ¼ t0αβ � fαβðy; y⃗Þ ¼ fαβðy; y⃗Þ � t0αβ ∈ I; ð2:14Þ

where g satisfies (2.11) which in practice means that spð2Þ
indices of fαβ should be carried by yα and y⃗α. One can
consider the quotient algebra S=I which is still an asso-
ciative algebra and then build out of it a Lie algebra using
the Lie bracket as a commutator. The latter algebra is the
HS algebra in d dimensions.6 Treating algebra S as a linear
space one can strip its ideal off. This means the following
decomposition for general f∈S

f ¼ fþ g; g∈ I; ð2:15Þ

where one has to specify any particular way of choosing the
representative. For the f∈S=I choice, its coefficients in
Taylor expansion can be chosen to correspond to traceless
Young diagrams [e.g., (2.3)].
Following the standard HS philosophy, consider now the

1-form ω and 0-form C taking values in the off shell HS
algebra. These encode fields (2.1) and (2.4) in the Taylor-
like expansion. The unfolded equations are

dxωþω�ω¼ϒðω;ω;CÞþϒðω;ω;C;CÞþ…; ð2:16Þ

dxCþω�C−C�πðωÞ¼ϒðω;C;CÞþϒðω;C;C;CÞþ…;

ð2:17Þ

where π is the reflection automorphism

πfðy; y⃗Þ ¼ fð−y; y⃗Þ ð2:18Þ

and ϒ’s are interaction terms that describe the HS gauge-
invariant off shell field identities. Abusing the terminology
we call such vertices “off shell” as opposed to the on shell
ones based on the factor algebra corresponding to dynami-
cal HS interaction. To arrive at the on shell HS evolution
one has to strip off the associated spð2Þ generated ideal. As
mentioned, this problem can be really complicated due to
the fact that ϒ’s on the right-hand side of (2.16) and (2.17)
are not built out of field star products. Instead, the off shell
HS algebra gets deformed which entails the deformation of
the ideal. As a result the factorization cannot be carried out
using the undeformed prescription (2.15). In other words,
generators of the spð2Þ algebra defined in (2.11) become
field dependent in the interactions.

A. Generating equations

To arrive at Eqs. (2.16) and (2.17) we follow [24,60].
Namely, using Vasiliev’s trick we enhance the space
spanned by Y ¼ ðy; y⃗Þ by introducing the auxiliary two-
component7 zα and embed the 1-form ω into this larger
space

ω→Wðz;YÞ≔ωðYÞþW1ðz;YÞþW2ðz;YÞþ…; ð2:19Þ

where Wn are yet to be defined perturbative in C
corrections. We call embedding (2.19) canonical provided

Wnð0; YÞ ¼ 0; ∀ n ≥ 1 ð2:20Þ

which means that the physical field representative ω ¼
Wð0; YÞ is chosen to be fixed and is not subject to field
redefinition in the interactions; this would not be the case if
Wkð0; YÞ ≠ 0 for some integer k. To avoid any confusion at
this point we want to stress here that constraint (2.20) just
defines the way one can solve the generating system rather
than forbids field redefinitions.8

We then also enhance the Moyal star product (2.9) to a
large z-dependent product [60] (see also [51])

ðf � gÞðz;YÞ ¼
Z

fðzþ u0; yþ u; yÞ

⋆gðz − v; yþ vþ v0; yÞ
× expðiuαvα þ iu0αv0αÞ; ð2:21Þ

6This algebra was originally obtained in terms of the envelop-
ing algebra in [66], where higher symmetries of the massless
scalar were studied. The corresponding algebra was called
conformal higher-spin algebra.

7Notice, however, that we do not double variables Y’s unlike
[24]. Our choice corresponds to a particular gauge fixing of
Stückelberg fields along with the conventional choice for the
compensator.

8Similarly, the so-called z-dominated constraints have been
imposed (see e.g., [49]) to the first few orders in solving
Vasiliev’s generating system to obtain spin-local vertices.
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where ⋆ is a part of star product (2.9) that acts on y⃗ only

ðf⋆gÞðy⃗Þ ¼
Z

fðy⃗ þ u⃗Þgðy⃗ þ v⃗Þ expðiu⃗αv⃗αÞ: ð2:22Þ

Notice, the ðz; yÞ ordering in (2.21) differs from the original
Vasiliev one [24]. For z-independent functions (2.21) is
identical to (2.9). Moreover, (2.21) coincides with that of
Vasiliev if either f or g is z-independent. The large star
product mixes z and y leaving transformation with respect
to y⃗ unaffected. A distinguishing property of (2.21) is

½zα; zβ�� ¼ 0: ð2:23Þ

More generally, one comes along with the following action

y� ¼ yþ i
∂

∂y
− i

∂

∂z
; z� ¼ zþ i

∂

∂y
; ð2:24Þ

�y ¼ y − i
∂

∂y
− i

∂

∂z
; �z ¼ zþ i

∂

∂y
; ð2:25Þ

y⃗� ¼ y⃗ þ i
∂

∂y⃗
; �y⃗ ¼ y⃗ − i

∂

∂y⃗
: ð2:26Þ

The important element of the star product (2.21) is a
“δ-function”

δ ≔ eizαy
α
; fðzÞ � δ ¼ δ � fðzÞ ¼ δ · fð0Þ: ð2:27Þ

Its square δ � δ ¼ 0 ·∞ is ill-defined that along with (2.27)
emphasizes an analogy with δ-function.9

Generating equations that reconstruct the right-hand
sides of (2.16) and (2.17) order-by-order has the form [60]

dxW þW �W ¼ 0; ð2:28Þ

dzW þ fW;Λg� þ dxΛ ¼ 0; ð2:29Þ

dxCþ ðWðz0; y; y⃗Þ � C − C �Wðz0;−y; y⃗ÞÞ
���
z0¼−y

¼ 0;

ð2:30Þ

where C ¼ Cðy; y⃗jxÞ is z-independent and Λ is the follow-
ing dz-form

Λ ¼ dzαzα

Z
1

0

dτ τCð−τz; y⃗Þeiτzαyα ; ð2:31Þ

which satisfies

dzΛ¼C � γ; γ ¼ 1

2
eizydzβdzβ dz ≔ dzα

∂

∂zα
; ð2:32Þ

where we use the following shorthand notation for index
contraction

ξαη
α ≔ ξη ¼ −ηξ: ð2:33Þ

Note that Eq. (2.30), unlike (2.28) and (2.29), contains no z
and, therefore the star product acts in Eq. (2.9) by ignoring
dummy argument z0 ofW which is set to z0 ¼ −y at the end.

1. Consistency

Unlike the original Vasiliev equations, consistency of
system (2.28)–(2.30) is far from being obvious. It rests
on the properties of functional class that admits evolution
on (2.28)–(2.30) and a particular projective identity (2.36).
All necessary details are laid in [60]. Here we briefly sketch
the basic steps:

(i) First, apart from formal consistency it is important to
examine whether or not star products of various
master fields in (2.28)–(2.30) exist at all. For
example, Λ � Λ can be checked to be ill-defined.
To answer that question one searches for a class of
functions that respects operations on the generating
equations. It turns out that if system (2.28)–(2.30)
has perturbative solutions, then they belong to dz-
graded classCr, where r is the rank of dz-differential
form (see Appendix A),

Cr1 � Cr2 → Cr1þr2 ; r1 þ r2 < 2; ð2:34Þ

dzCr → Crþ1; dxCr → Cr: ð2:35Þ

Correspondingly, W ∈C0, Λ∈C1, and C∈C0.
In [60] it was proven that functions (A3) indeed
respect requirements (2.34) and (2.35) and result in
well-defined star products provided r1 þ r2 ≠ 2. The
following products C0 �C2, C2 � C0, and C1 �C1

are sick unless C0 is z-independent. Luckily, there
are no ill-defined products in (2.28)–(2.30). It was
also shown that arbitrary z-independent functions of
grading r ¼ 0 do belong to C0, while δ∈C2 (2.27).

(ii) Now that we have identified proper functions (A3),
one proves the following projecting identity [60].
Suppose ϕðz; y; y⃗Þ∈C0 is a dx 0-form,10 then

dzðϕ � ΛÞ ¼ ðϕðz0; y; y⃗Þ � CÞ
���
z0¼−y

� γ;

dzðΛ � ϕÞ ¼ ðC � ϕðz0;−y; y⃗ÞÞ
���
z0¼−y

� γ: ð2:36Þ

9Let us stress that the square of ϰ ¼ exp izy is perfectly
well-defined in the Vasiliev ordering, ϰ � ϰ ¼ 1, [24].

10For space-time differential forms of higher ranks one should
bear in mind fdx; dzαg ¼ 0 that may result in overall signs
in (2.36).
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In proving (2.36) one needs (A3) and (2.31). Identity
(2.36) was coined projective in [60], since it some-
how projected out the dependence on z of ϕ into
δ-element (2.27) stored in γ. We note also, that while
it is tempting to use the Leibniz rule and Eq. (2.32) in
proving (2.36), this would lead to uncertainty because
both terms in decomposition dzðC0 � C1Þ ¼ dzC0 �
C1 þC0 � dzC1 do not exist separately.11

(iii) Armed with the class (2.34) and (2.35) and
identity (2.36) all is set to guarantee consistency of
(2.28)–(2.30). Equation (2.28) is clearly consistent
under d2x ¼ 0. Hitting (2.28) with dx and substituting
dxW from (2.28) back one faces no ill-defined objects
either. Now, applying dz to (2.28) and using (2.29) we
again find neither new constraints nor ill-defined
expressions. Less trivial is to check consistency of
(2.29) and (2.30). Applying dz to (2.29) gives the
following constraint

dzfW;Λg� ¼ dxC � γ: ð2:37Þ

The problem here is that one can not use Leibniz rule
on the left of (2.37) because product ofCr1 � Cr2 with
r1 þ r2 ¼ 2 is ill-defined as noted earlier. Another
point is since dxC is z-independent by definition, the
z-dependence of the left-hand side of (2.37) must be
of the very specific form FðYÞ � γ. At this stage
identity (2.36) helps. Using it one has

ðC�Wðz0;−y; y⃗ Þ−Wðz0;y; y⃗ Þ�CÞ
���
z0¼−y

�γ¼dxC�γ;
ð2:38Þ

which holds in view of (2.30). Finally, one has to
check that (2.30) is consistent with d2x ¼ 0. This is
indeed so, because (2.30) comes out as a conse-
quence of (2.29) in the form of (2.37), which is
equivalent to (2.30). The former is manifestly con-
sistent as can be seen upon applying dx to it and using
again (2.28) and (2.29). Let us also note in this regard
that (2.30), therefore, is not an independent equation.

2. Gauge symmetries

Equations (2.28)–(2.30) are invariant under the follow-
ing local gauge transformations parametrized by ϵ∈C0

δϵW ¼ dxϵþ ½W; ϵ��; ð2:39Þ

δϵΛ ¼ dzϵþ ½Λ; ϵ��; ð2:40Þ

δϵC ¼ ðϵðz0; yÞ � C − C � ϵðz0;−yÞÞz0¼−y: ð2:41Þ

The above transformations leave (2.28)–(2.30) and (2.32)
invariant, but not yet (2.31). In order to keep (2.31) intact
one has to require

δϵΛðCÞ ¼ ΛðδϵCÞ; ð2:42Þ

which is equivalent to

dzϵþ ½ΛðCÞ; ϵ�� − ΛðδϵCÞ ¼ 0; ð2:43Þ

where the last term in (2.43) is understood as (2.31) with C
being replaced by (2.41). Equation (2.43) is consistent as
can be seen upon acting with dz and using (2.36) and,
therefore, can be solved order-by-order using the standard
contracting homotopy. Functions ϵ∈C0 that satisfy (2.43)
determine true local gauge symmetries of HS generating
Eqs. (2.28)–(2.30). The corresponding solution space we
label by C0

c, where subscript C stands for a z-independent
element that Λ depends on. It is easy to see that these
functions form the Lie algebra. Indeed, on one hand from
(2.40) one finds

ðδϵδη − δηδϵÞΛ ¼ dz½ϵ; η�� þ ½Λ; ½ϵ; η����: ð2:44Þ

On the other hand, from (2.42) it follows δηδϵΛ ¼
ΛðδηδϵCÞ and so

ðδϵδη − δηδϵÞΛ ¼ Λððδϵδη − δηδϵÞCÞ; ð2:45Þ

where we have also taken into account that Λ is linear in C

ΛðC1 þ C2Þ ¼ ΛðC1Þ þ ΛðC2Þ: ð2:46Þ

Those parameters ϵgl ∈C0
c that leave fields W, Λ, and C

invariant generate global symmetries

δW ¼ δΛ ¼ δC ¼ 0: ð2:47Þ

In this case the corresponding global symmetry parameter
satisfies

dxϵgl þ ½W; ϵgl�� ¼ 0; ð2:48Þ

dzϵgl þ ½Λ; ϵgl�� ¼ 0: ð2:49Þ

Note that δϵglC ¼ 0 comes about as the integrability
consequence of (2.49). It also entails validity of (2.43).

3. Projectively twisted-adjoint module

The role of projective identity (2.36) is crucial for
consistency (2.28)–(2.30). One of its remarkable proper-
ties is it generates a kind of a twisted-adjoint representation

11It is worth to mention that the failure of Leibniz rule offers
some freedom in definition of dz in sector of dz one-forms in a
way that may differ from (2.32). Unfortunate choice might lead
to inconsistent vertices, however the one used in this paper and
in [60] is consistent. More details are in [67].
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of the large algebra that acts on its module spanned by
z-independent functions from the off shell HS algebra.
Since the module is z-independent, we call it projective.
Specifically, for a z-independent element Cðy; y⃗Þ and any
ϵ∈C0

c let us define the following action

ρϵðCÞ ≔ ðϵðz0; yÞ � C − C � ϵðz0;−yÞÞz0¼−y: ð2:50Þ

Recall, that star-product in (2.50) is insensitive to z0, which
stands idle there and then is set to −y. One can show that ρ
forms a representation of the large Lie algebra, as for two
such ϵ1;2 we have

ðρϵ1ρϵ2 − ρϵ2ρϵ1ÞC ¼ ρ½ϵ1;ϵ2��C: ð2:51Þ

The proof of this fact follows from (2.44). A brief
comment in regard of (2.51) is in order. We can not make
a stronger statement than (2.51). Looking at the large
algebra as at the associative one, we could have expected
the following map

τϵðCÞ ≔ ðϵðz0; yÞ � CÞz0¼−y ð2:52Þ

to be its representation. However, this is not the case as it
is not difficult to show that

τϵ1τϵ2 ≠ τϵ1�ϵ2 ð2:53Þ

for z-dependent ϵ1;2 ∈C0.
Notice, (2.51) guarantees that local gauge symmetries act

properly on the Weyl module C to form an algebra, i.e.,
δ½ϵ1δϵ2� ¼ δ½ϵ1;ϵ2�� . It is important also to stress that parameter
ϵðz; YjxÞ is not an arbitrary analytic function of z and Y but
belongs to a much smaller subset of analytic functions from
C0. Still, the latter class is big enough to capture HS
dynamics as it contains all analytic z-independent functions.

III. OFF SHELL: VERTICES, LOCALITY
AND SHIFT SYMMETRY

Equations (2.28)–(2.30) generate unconstrained, which is
off shell, HS vertices of (2.16) and (2.17). The procedure is
pretty standard for the Vasiliev-like systems. In our case it
boils down to a resolution for z-dependence of fieldW using
(2.29) and substitution of the result into (2.28) and (2.30).
Equation (2.30) being manifestly z-independent reproduces
(2.17). While z-independence of (2.28) that brings (2.16) is
not manifest, it is guaranteed by the fact that application of
dz to the left-hand side of (2.28) is zero provided (2.29)
imposed. This makes the analysis particularly simple as
substitution of any W that satisfies (2.29) into (2.28) can be
carried out at an arbitrary convenient value of z, e.g., at
z ¼ 0. Below we provide all necessary details. The impor-
tant conclusion here is the off shell vertices appear to be
properly local at any interaction order. Namely, we will

show that all ϒðω;ω; C…CÞ are space-time spin-local,
while all ϒðω; C…CÞ are spin-local.
Another observation, which is tightly related to locality

is the shift symmetry of the obtained vertices. It has been
already observed in [60] as a symmetry of the holomorphic
on shell HS vertices in four dimensions. Its effect has been
analyzed on general grounds within the Vasiliev theory in
d ¼ 4, [57] with a conclusion that if present, it leads to HS
spin-locality under some mild extra assumptions.

A. Contracting homotopy

First order in z partial differential equation (2.29)
determines z-dependence of the perturbative corrections
Wnðz;YÞ from (2.19). It brings a freedom in z-independent
functions at each perturbation order. This freedom is
naturally interpreted as field redefinition of the physical
field ωðYÞ by higher order in C terms

ω → ωþ Fðω; C…CÞ: ð3:1Þ

Field ω makes its appearance at zeroth order. For reasons
that will become significant upon on shell reduction of HS
equations, we stick to the canonical form (2.20) of
perturbative corrections Wn implying that we set

Fðω; C…CÞ ¼ 0: ð3:2Þ

In other words, we fix field ω at the very beginning
assuming no further field redefinitions. This choice lives
up to the standard contracting homotopy as will be
clear soon.
Consider the following equation for dz-zero form fðzÞ

dzfðzÞ ¼ gðzÞ ≔ dzαgαðzÞ; ð3:3Þ

which is consistent provided dzgðzÞ ¼ 0. In this case it can
be solved up to a constant as

fðzÞ ¼ ΔgðzÞ ≔ zα
Z

1

0

dτ gαðτzÞ: ð3:4Þ

Operator Δ is referred to as the contracting homotopy
operator. Note, that no part of gαðzÞ of the form zαϕðzÞ
contributes to the solution for f, sinceΔðdzαzαϕðzÞÞ≡ 0 as
zαzα ¼ 0. Now, substituting decomposition (2.19) into
(2.29) one finds

dzWn ¼ −fWn−1;Λg� − ðdxΛÞn; W0 ≔ ωðYjxÞ: ð3:5Þ

The solution satisfying (2.20) can be then written down as

Wn ¼ −ΔfWn−1;Λg�; ð3:6Þ

where ðdxΛÞn, being proportional to zα, (2.31) vanishes
upon application of Δ. Starting from physical ω, Eq. (3.6)
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generates any order OðCnÞ corrections Wnðz;YÞ such, that
Wnð0; YÞ ¼ 0 in accordance with the canonical embedding
(2.20). The corresponding HS vertices from (2.16) and
(2.17) acquire the following form:

ϒðω;ω; C…C|fflffl{zfflffl}
n

Þ ¼ −

 X
jþk¼n

Wj �Wk

!����
z¼0

; ð3:7Þ

ϒðω; C…C|fflffl{zfflffl}
n

Þ ¼ −ðWn−1ðz0; y; y⃗Þ

� C − C �Wn−1ðz0;−y; y⃗ÞÞ
���
z0¼−y

; ð3:8Þ

where in (3.7) we set z ¼ 0 for convenience as the vertex is
z-independent anyway. Since Wnð0;YÞ ¼ 0 for n > 0, this
choice leads to no contribution from dxWn.

B. Vertices

Star product (2.21) is well-suited for exponentials. It is
then convenient to use the Taylor representation with
respect to variable y of our fields

Cðy; y⃗Þ≡ e−ip
αyαCðy0; y⃗Þjy0¼0; pα ¼ −i

∂

∂y0α
; ð3:9Þ

ωðy; y⃗Þ≡ e−it
αyαωðy0; y⃗Þjy0¼0; tα ¼ −i

∂

∂y0α
; ð3:10Þ

where p acts on C, while t on ω. As the HS vertices, ϒ,
from (2.16) and (2.17) are strings of several C’s the number
of which depends on the order of perturbations, we endow
p with index pk which points at whichC it acts upon as seen
from left. Similarly, in (2.16) where two ω’s present, we
distinguish between t1 and t2. The only star product that one
faces in extracting vertices is the one of the Gaussian
exponentials. Notice also, that⋆-product with respect to y⃗’s
stays undeformed in interaction that makes it dummy in
practical calculation. Therefore, the vertices can be con-
veniently written down in the generating form using
functions Φ½δ1;δ2�ðy; t1;2; p1;…; pnÞ that reproduce various
order n vertex contributions via

ϒ ¼
X
δ2>δ1

Φ½δ1;δ2�ðy; t1; t2; piÞ

× ðC⋆…⋆ω⋆…⋆ω⋆…⋆CÞðy0I; y⃗ Þjy0I¼0; ð3:11Þ

where δ1;2 labels positions of two ω’s in the string of (3.11).
Vertices from (2.17) look similar

ϒ¼
X
δ

Φ½δ�ðy; t;piÞðC⋆…⋆ω⋆…⋆CÞðy0I; y⃗ Þjy0I¼0: ð3:12Þ

So, the HS vertices are unambiguously determined via
functions Φ, which we will call the off shell or uncon-
strained vertices abusing the terminology. We will also
ignore the part on which operators t and p act upon, that is
we adopt the following shorthand notation

ω → e−it
αyα ; ð3:13Þ

C → e−ip
αyα ; ð3:14Þ

Λ → dzα
Z

1

0

dτ τzαeiτzβðyþpÞβ : ð3:15Þ

Using (3.6) it is not difficult to arrive at manifested
expressions for Φ at any order. However, since these
vertices are mere the generalized Bianchi constraints,
one has to strip off the traceful ideal properly to set them
on shell. This problem will be addressed elsewhere, while
here we provide with examples of all order off shell
vertices, as well as spell out some properties that in fact
do not rely on their explicit form.
Using that W0 ¼ ωðy; y⃗Þ at the lowest order one finds

from (3.6), (3.13), and (3.15)

W1 ¼ Wð1Þ
ωC þWð1Þ

Cω; Wð1Þ
ωC ¼ −Δðω � ΛÞ;

Wð1Þ
Cω ¼ −ΔðΛ � ωÞ; ð3:16Þ

Wð1Þ
ωC ¼ tαzα

Z
d3
△
τeiτ1zαðyþpþtÞαþiτ2tαyαþið1−τ2Þpαtα ; ð3:17Þ

Wð1Þ
Cω ¼ −tαzα

Z
d3
△
τeiτ1zαðyþp−tÞαþiτ2tαyαþið1−τ2Þpαtα ; ð3:18Þ

where we have used the following shorthand notation for
τ-integrals

Z
d3
△
τ≔

Z
dτ1dτ2dτ3θðτ1Þθðτ2Þθðτ3Þδð1− τ1 − τ2 − τ3Þ:

ð3:19Þ

This simplex integration arises upon suitable integration
variable change along the lines of [48,50]. The vertex is
then obtained via (3.7)

ϒðω;ω; CÞ ¼ −ðω �W1 þW1 � ωÞz¼0 ð3:20Þ

with the final result readily accessible
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Φ½1;2� ¼ t1t2

Z
d3
△
τeið1−τ1Þt1αyαþiτ2t2αyα−iðτ1t1þð1−τ2Þt2Þαpαþið1−τ3Þt2αtα1 ; ð3:21Þ

Φ½1;3� ¼ t2t1

Z
d3
△
τeið1−τ1Þt2αyαþiτ2t1αyα−iðτ1t2þð1−τ2Þt1Þαpαþiðτ2−τ1Þt2αtα1

þ t2t1

Z
d3
△
τeið1−τ1Þt1αyαþiτ2t2αyα−iðτ1t1þð1−τ2Þt2Þαpαþiðτ2−τ1Þt2αtα1 ; ð3:22Þ

Φ½2;3� ¼ t1t2

Z
d3
△
τeið1−τ1Þt2αyαþiτ2t1αyα−iðτ1t2þð1−τ2Þt1Þαpαþið1−τ3Þt2αtα1 ; ð3:23Þ

where we also use the notation (4.21). Vertices ϒðω; C; CÞ
can be found from (3.8) as easily

ϒðω; C;CÞ ¼ −ðW1ðz0; y; y⃗Þ �C−C �W1ðz0;−y; y⃗ÞÞ
���
z0¼−y

ð3:24Þ

with the final result being

Φ½1� ¼ −ty
Z

d3
△
τeiðτ2p2þð1−τ2Þp1Þαtαþiðð1−τ1Þp2þτ1p1þð1−τ3ÞtÞαyα ;

ð3:25Þ

Φ½2� ¼ ty
Z

d3
△
τeiðτ2p2þð1−τ2Þp1Þαtαþiðð1−τ1Þp2þτ1p1−ðτ1−τ2ÞtÞαyα

þ ty
Z

d3
△
τeiðτ2p1þð1−τ2Þp2Þαtαþiðð1−τ1Þp1þτ1p2þðτ1−τ2ÞtÞαyα ;

ð3:26Þ

Φ½3� ¼ −ty
Z

d3
△
τeiðτ2p1þð1−τ2Þp2Þαtαþiðð1−τ1Þp1þτ1p2−ð1−τ3ÞtÞαyα :

ð3:27Þ

These simple examples above illustrate a few general
phenomena typical of all orders. Namely: (i) the exponential
part of the vertices never has contractions pi · pj. Moreover,
there is no a single contraction y · pi within Φ½δ1;δ2�; and
(ii) integration over τ’s goes along a simplex. At higher
orders the integration domain includes a peculiar structure
of two hypersimplices. For example, it is not difficult to
extract the following any order vertex explicitly

Φ½1�
nþ1 ¼ −ðWðnÞ

ωC…Cðz0;YÞ � CÞz0¼−y

¼ −WðnÞ
ωC…Cð−y; y − pnþ1; y⃗Þe−iypnþ1 : ð3:28Þ

To do so we needW to the nth order. It can be conveniently
found using that W ∈C0 that makes representation (A4)
particularly useful. The concise form follows from the
iterative equation

WðnÞ ¼ −ΔðWðn−1Þ � ΛÞ; ð3:29Þ

which gives us the final result (see Appendix B)

WðnÞ ¼ ðztÞn
Z

1

0

dτ τn−1ð1 − τÞZ
D
e−ið1−τÞrnytþiτzðyþBnÞ−iτrnBntþicn ; ð3:30Þ

where

Bn ¼
Xn
i¼1

λipi þ
�
1þ

Xn
i<j

ðλiνj − νiλjÞ
�
t; ð3:31Þ

cn ¼
Xn
i¼1

νipit; ð3:32Þ

rn ¼ 1 −
Xn
i¼1

νi; ð3:33Þ

with the integration domain D being the product of two
hypersimplices

D ¼ △n ×△�
n; ð3:34Þ

where

△n ¼
�
0 ≤ λi ≤ 1;

Xn
i¼1

λi ¼ 1

�
;

△�
n ¼

�
0 ≤ νi ≤ 1;

Xn
i¼1

νi ≤ 1

�
: ð3:35Þ

Note that the integration over λi goes along faces of
hypersimplex △n, while the integration over νi goes across
its volume. Note also for n ¼ 1 the integration over λ1
trivializes in a sense that λ1 ≡ 1 as follows from (3.35). The
appearance of integrals over hypersimplices might not be
too surprising. A suggested analogy is the structure of cubic
coupling constants for helicities hi obtained in [8]
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Ch1;h2;h3 ¼
1

Γðh1 þ h2 þ h3Þ
ð3:36Þ

while the typical simplex integral features the gamma
function in the denominator as well,ZP

i
νi≤1

νs1−11 …νsn−1n ¼ Γðs1Þ…ΓðsnÞ
Γð1þ s1 þ � � � þ snÞ

: ð3:37Þ

Another comment is since the result (3.30) belongs to
class C0, (A4), it can be conveniently rewritten in the
factorized form with respect to operation (A10)

WðnÞ ¼
Z

1

0

dτ τn−1ð1 − τÞ
Z
D
e−irnytþicn⊛ðtzÞneiτzðyþBnÞ:

ð3:38Þ

Vertex Φnþ1 is reproduced via (3.28). It carries the structure
of the hypersimplex integration domain just found.
Simplicity of the final result is noteworthy. All vertices
including those from (3.11) have similar form based on the
unique configuration space (3.34). For example, from (3.7)
one obtains

Φ½1;2�
n ¼ −WðnÞð−t1; yþ t1; y⃗Þe−iyt1 ð3:39Þ

with WðnÞðz; y; y⃗; t2; piÞ from (3.30). It would be interesting
to elaborate more on the geometric properties of the obtained
integrals.
The resulting vertices feature a particular simple trans-

formation under shifts pi → pi þ a, where a is an arbitrary
spinor. Specifically, one observes using (3.33) and (3.35)
that

Bnðpi þ a; tÞ ¼ Bnðpi; tÞ þ a; ð3:40Þ

cnðpi þ a; tÞ ¼ cnðpi þ a; tÞ þ ð1 − rnÞat: ð3:41Þ

These relations underlie the so-called shift symmetry of the
interaction vertices, which we discuss in the next section.
Technically, most of the properties discussed above are
literally coincide with the analysis from [60], where reader
can find more details.

C. Locality

1. Spin-locality

The problem of locality of the HS interactions in d
dimensions boils down to the analysis of the number of
Lorentz index contractions12 of various C’s within vertices

ϒðω; C…CÞ and ϒðω;ω; C…CÞ. This number can be
arbitrarily large even for fixed spins. Indeed, as the first
row in (2.4) is unbounded, there can be infinitely many
contractions of the form, for exampleX

m

gðm; s1; s2ÞCaðmÞ…;bðs1ÞCaðmÞ…;
bðs2Þ: ð3:42Þ

Whenever this happens the vertex is said to be spin
nonlocal. An infinite length of the first row of (2.4) is
supported by infinitely many yαy⃗α contracted with it.
Therefore, nonlocality can be rephrased using the language
ofΦ from (3.11) and (3.12) as a nonpolynomial dependence
on various contractions pi · pj. So, the vertex is said to be
spin-local ifΦ contains no nonpolynomial contractions p · p
[49,52]. Let us note, that dependence on t · t and t · p
is irrelevant for spin-locality. This is due to the fact that
1-forms ω belong to a finite-dimensional module of the HS
algebra for fixed spin (2.1) as opposed toC, which is infinite
dimensional (2.4).

2. Spin ultralocality

Another important concept introduced in [50] is spin
ultralocality. Suppose Φ from (3.11) depends on contrac-
tions y · pi. If such a dependence is at most polynomial,
then the corresponding vertex is called spin ultralocal. The
meaning of this concept is roughly the following. Imagine
(3.11) is spin-local but not ultralocal. This implies that the
number of various contractions is finite for fixed spins but
grows with spin sufficiently fast. As explained in [60], in
order for vertices (2.17) to be spin-local (3.11) should be
spin-ultralocal, which means that Φ½δ1;δ2� must contain no
nonpolynomial y · p contractions. These, if present, imply
that while vertex is still spin local, the depth of contractions
of first rows between various C’s grows with spins. This
ruins spin-locality of (3.12) at the next order in perturbation
via the integrability condition [60]. In addition, it was
shown in [52] in d ¼ 4 that if a vertex is spin-ultralocal,
then it is space-time spin-local in the usual sense.
To summarize, (non)locality of the vertex constrained to a

fixed set of spins si depends on function Φ. To be spin-
nonlocal, Φ must contain at least one nonpolynomial
contractions pk · pl. This is equivalent to having infinitely
many contractions with respect to first rows of two C’s.
Notice, that the presence of star product ⋆ in (3.11) and
(3.12) that acts on variable y⃗ yields no such contractions and
therefore can not affect locality. The important property of
Eqs. (2.28)–(2.30) is that the off shell vertices they generate
in (2.16) and (2.17) are naturally spin-ultralocal and spin-
local, respectively. Therefore, the problem of the HS locality
on shell resolves into the algebraic one of a proper
factorization of the trace ideal. We do not pursue on shell
(non)locality here leaving this analysis for the future.
Spin-locality of traceful ϒ’s follows literally from the

analysis of [60]. The only difference is one has to replace

12Recall, the rectangular Young diagram CaðsÞ;bðsÞ corresponds
to a spin s Weyl tensor, which is a physical field, while
CaðsþnÞ;bðsÞ is its descendant made of the derivatives for n > 0.
The number of these derivatives grows with n.
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�with⋆ leaving the rest as is. For details we refer the reader
to Sec. V in Ref. [60]. Here we state the final result. Namely,
Φ½δ1;δ2� contains neither p · y, nor p · p contractions which
implies that ϒ’s from (2.16) are ultralocal and therefore,
according to [52], are space-time spin-local at any order.
Analogously, it follows that Φ½δ� carry no p · p contractions
while vertices from (2.17) are spin-local off shell.

D. Shift symmetry

Remarkable property of vertices (3.11) and (3.12) is
particularly simple transformation laws under a shift of
parameters pi and oscillator y. Specifically, as was shown in
[60] and as is clear from (3.40) and (3.41) the following
transformations take place

Φ½δ1;δ2�ðy− a; t1; t2;pi þ aÞ ¼ eiðt1þt2ÞαaαΦ½δ1;δ2�ðy; t1; t2;piÞ;
ð3:43Þ

Φ½δ�ðy; t; pi þ bÞ ¼ eiðtþyÞαbαΦ½δ�ðy; t; piÞ; ð3:44Þ

where a and b are arbitrary spinor parameters. In particular,
the above shift transformations leave vertices unaffected for
aα ¼ μðt1 þ t2Þα and bα ¼ νðtþ yÞα with arbitrary num-
bers μ and ν. The proof is based on the transformations
(3.40) and (3.41) in the perturbative expansion. A more
detailed derivation can be found in [60].
The symmetry transformations (3.43) and (3.44) have

been already observed in four dimensions and dubbed shift
symmetry. Hence, shift symmetry has a straightforward
generalization to any d. This observation is closely related
to the earlier analysis of [49], where it was shown how
certain parameter shifts of the so-called shifted homotopies
reduce the degree of nonlocality of HS vertices. While we
use no shifted homotopies in our studies, the idea to look at
what shifts in (3.43) and (3.44) might lead to was to a large
extent inspired by the result [49]. Since (3.11) and (3.12)
represent the Fourier transformed HS vertices, the sym-
metry naturally acts in the Fourier space. However, its
physical interpretation remains unclear. The recent analysis
of [57] has revealed that spin-locality is intimately related
to shift symmetry. Given that, it would be interesting to see
whether or not shift symmetry in d dimensions is on the on
shell factorization.

IV. ON SHELL REDUCTION

Equations (2.28)–(2.30) with (2.31) are shown to be
consistent. They generate unfolded Eqs. (2.16) and (2.17).
As has been mentioned, the latter describe HS field
dynamics not until a proper factorization condition over
the traceful ideal is imposed. Recall, that at the free level the
ideal is generated by the Howe dual spð2Þ, (2.14), provided
the HS fields ω and C are spð2Þ singlets

½t0αβ; C�� ¼ ½t0αβ;ω�� ¼ 0; ð4:1Þ

Equation (4.1) guarantees the spectrum to consist of the
two-row Young diagrams (2.1) and (2.4), which, however,
are not traceless yet. To make them traceless one strips off
the ideal (2.14). This simply implies a subtraction of
traceful components of Young diagrams in practice.
Now, nonlinear equations (2.16) and (2.17) that we can

denote A1 ¼ 0 for 1-forms and A0 ¼ 0 for 0-forms, corre-
spondingly, span two-row Young diagrams as well and,
therefore, one should have

½A1; t0αβ�� ¼ ½A0; t0αβ�� ¼ 0: ð4:2Þ

A seemingly natural idea is to set equations A0;1 on shell by
assuming the fields ω and C are properly traceless and then
by dropping terms associated with traceful contributions of
the form t0αβ � Aαβ ¼ Aαβ � t0αβ, where Aαβ are chosen in
such a way, so as to make e.g., Eq. (2.16) totally traceless.
The procedure just prescribed however does not lead to
consistent interaction, because in adding terms from the
ideal one has to make sure that the resulting equations
remain consistent up to terms from the same ideal. For the
ideal in question this is not granted in interactions since the
off shell HS algebra along with its ideal get deformed. In
other words, the corresponding Howe dual spð2Þ generators
(2.11) receive field-dependent corrections

tαβ ¼ t0αβ þOðCÞ: ð4:3Þ

So, the problem that one would like to address is whether
there still exists an algebra spanned by (possibly) field-
dependent generators that satisfy commutation relations
(2.13)

½tαβ; tγδ�� ¼ ϵαγtβδ þ ϵβγtαδ þ ϵαδtβγ þ ϵβδtαγ; ð4:4Þ

and that allows for a consistent truncation of the associated
trace ideal at the level of the nonlinear equations, (2.16)
and (2.17).

A. Global spð2Þ and the quotienting

The described problem can be solved systematically if it is
noted that the singlet condition (2.11) can be viewed as a
requirement of existence of the global symmetry spð2Þ at the
level of the off shell equations. While deformed, it should
still be there in interactions to guarantee proper degrees of
freedom. Once the generating system (2.28)–(2.30) repro-
duces (2.16) and (2.17), we require the spð2Þ to be its global
symmetry,

δtW ¼ δtΛ ¼ δtC ¼ 0: ð4:5Þ

Using (2.39)–(2.41) one finds the corresponding generators
tαβ satisfy
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dxtαβ þ ½W; tαβ�� ¼ 0; ð4:6Þ

dztαβ þ ½Λ; tαβ�� ¼ 0; ð4:7Þ

ðtαβðz0; y; y⃗Þ � C − C � tαβðz0;−y; y⃗ÞÞjz0¼−y ¼ 0; ð4:8Þ

where one should also remember (4.4). Recall, (4.8) is a
consequence of (4.7). Notice, that neitherW norΛ are spð2Þ
singlets in a sense of (2.11).However, the equations are. This
can be shown using (4.6) and (4.7) provided tαβ ∈C0

½dxW þW �W; tαβ�� ¼ 0; ð4:9Þ

½dzW þ fW;Λg� þ dxΛ; tαβ�� ¼ 0; ð4:10Þ

where ½A;B�� ≔ A � B − B � A. Following [24] one wishes
to drop terms from the ideal at the level of the generating
equations to set it on shell. This is equivalent to adding an
arbitrary ideal contribution to the generating system
(2.28)–(2.30) so, that its consistency gets ruined in its ideal
part only. If this is the case, then the factorization results in a
consistent on shell system from the factor space. To be a bit
more specific, consider Eq. (2.16), for example, which we
have denoted by A1 already. Being an spð2Þ singlet, thanks
to (4.9), it is an element of the large HS off shell algebra

½A1; tαβ�� ¼ 0: ð4:11Þ

Decomposing

A1 ¼ Aþ Aid; Aid ¼ Aαβ � tαβ ¼ tαβ � Aαβ; ð4:12Þ

where A is any particular representative of the HS algebra
(factor algebra), while Aid is an element of the ideal. Both
should commute with tαβ

½A; tαβ�� ¼ ½Aid; tαβ�� ¼ 0: ð4:13Þ

In that case the equation of motion A1 ¼ 0 entails

A ¼ 0; ð4:14Þ

which is equivalent to dropping off the part associated
with the ideal from equations. In practice, once the
z-dependence of W is resolved via (2.29), Eq. (2.16)
becomes z-independent. The natural representative for
physical field ω is z-independent too. Hence, one has to
require the ideal part to be z-independent

dzðAαβ � tαβÞ ¼ 0: ð4:15Þ

Let us check now if the addition of Aid of the form (4.12)
to (2.16) is indeed consistent. To this end consider

dxW þW �W þ Aαβ � tαβ ≃ 0; ð4:16Þ

where≃means equality up to terms that belong to the ideal.
Hitting with dx on (4.16) gives

tαβ � DxAαβ ≃ 0; Dx ¼ dx þ ½W; •�; ð4:17Þ

which do belong to the ideal, since Dxtαβ ¼ 0 and tαβ �
Aαβ ¼ Aαβ � tαβ and, therefore, tαβ � DxAαβ ¼ DxAαβ � tαβ
is a two-sided ideal.
A similar analysis should be carried out for the rest of the

Eqs. (2.28)–(2.30). We do not do it here as we plan to
consider it in detail elsewhere.

B. Explicit form of spð2Þ generators
Let us collect all the conditions for tαβ together

½tαβ; tγδ�� ¼ ϵαγtβδ þ ϵβγtαδ þ ϵαδtβγ þ ϵβδtαγ; ð4:18Þ

dxtαβ þ ½W; tαβ�� ¼ 0; ð4:19Þ

dztαβ þ ½Λ; tαβ�� ¼ 0: ð4:20Þ

While the differential equations (4.19) and (4.20) are
consistent and must have solutions, a priori it is not
guaranteed that the spð2Þ condition (4.18) can be satisfied.
There is an elegant explanation on as to why the proper
spð2Þ exists within the approach of [24]. Its origin is the
algebra of the deformed oscillators that underlies Vasiliev’s
master equations. It generates the required spð2Þ in the
covariant way in terms of the field analogous to Λ via its
quadratic star-product combinations. Our approach is differ-
ent in some aspects. In particular, the star product operation
(2.21) leads to an ill-defined product C1 � C1 in contrast
with the Vasiliev case. Since Λ∈C1, there is no hope we
can define quadratic combinations out of it. Nevertheless, if
Eqs. (2.28)–(2.30) describe a certain deformation of the free
off shell HS unfolded equations, the global symmetry of
which is spð2Þ spanned by (2.13), then one should expect a
relevant deformation in interactions. Baring this option in
mind one can try to look at solutions of (4.18)–(4.20) in
perturbations in C (4.3).
At order zero it is easy to see that t0 of (2.11) solves all

the above conditions. Indeed, (4.18) is fulfilled by its
definition (2.13). Equation (4.19) is satisfied because t0

is space-time constant, whileW0 ¼ ωðYÞ at this order is an
spð2Þ singlet, (4.1). Equation (4.20) is satisfied since t0 is z-
independent, while the second term in (4.20) is of the
order OðCÞ.

1. First order

To proceed to the next order, let us resolve the unde-
formed singlet condition (2.11) explicitly. To this end we
use convention (2.33) and introduce the following short-
hand notation
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ηabyaαybβ ≔ y⃗α · y⃗β; ð4:21Þ

yaαyαb ≔ y⃗ ⊗ y⃗: ð4:22Þ

It is straightforward to check using (2.8), that functions of
the form

Cðy; y⃗jxÞ ≔ Cðy⃗y; y⃗ ⊗ y⃗jxÞ ð4:23Þ

are manifest t0-singlets. At order OðCÞ Eq. (4.19) boils
down to

dzt1αβ ¼ ½t0αβ;Λ��: ð4:24Þ

Its consistency (4.8) is just the free spð2Þ-singlet condition

½t0αβ; C�� ¼ 0; ð4:25Þ

which is solved by (4.23). Therefore, solution of (4.24)
exists and we can write it down using the standard
conventional homotopy. Substituting (2.31) into (4.24)
and using

½t0αβ; •�� ¼ y⃗α ·
∂

∂y⃗β
þ yα

∂

∂yβ
− i

∂

∂yα
∂

∂zβ
þðα↔ βÞ ð4:26Þ

gives (upon changing the integration variable)

t1αβ ¼ −zαzβ
Z

1

0

dτ τð1 − τÞCð−τy⃗z; y⃗ ⊗ y⃗Þeiτzy: ð4:27Þ

A possible freedom in z-independent function of this
solution is fixed to zero by (4.18). Indeed, suppose t1αβ
ruins spð2Þ commutation relations (4.18) up to OðCÞ.
Using that antisymmetric pair of spinor indices is propor-
tional to the spð2Þ epsilon, we have at this order

½tαα; tββ��jOðCÞ ¼ ½t0αα; t1ββ�� þ ½t1αα; t0ββ�� ¼ 2ϵαβSαβ; ð4:28Þ

where Sαβ ¼ Sβα and we suppose Sαβ ≠ t1αβ. From (4.20)
one concludes, however, that

dzSαβ ¼ ½t0αβ;Λ��: ð4:29Þ

Therefore, Sαβ ¼ t1αβ þ σαβðy; y⃗Þ, where σ is some arbitrary
function. Setting z ¼ 0 in (4.28) one finds that its left-hand
side vanishes, while the σ-contribution on the right-hand
side survives; thus, σαβ ¼ 0. Notice also that t1 ∈C0

as required.

2. Second order

Let us now inspect (4.20) at order OðC2Þ

dzt2αβ ¼ ½t1αβ;Λ��: ð4:30Þ

Consistency d2z ¼ 0 by virtue of (2.36) constrains

ðt1αβðz0; yÞ � C − C � t1αβðz0;−yÞÞ
���
z¼−y

¼ 0: ð4:31Þ

We can check whether (4.31) is fulfilled by direct compu-
tation that gives

ðt1αβðz; yÞ � CÞ
���
z¼−y

¼ −yαyβ
Z

1

0

dτ τð1 − τÞCðτy⃗y; y⃗ ⊗ y⃗Þ

⋆Cðð1 − τÞy⃗y; y⃗ ⊗ y⃗Þ; ð4:32Þ

ðC � t1αβðz;−yÞÞ
���
z¼−y

¼ −yαyβ
Z

1

0

dτ τð1 − τÞ

× Cðð1 − τÞy⃗y; y⃗ ⊗ y⃗Þ
⋆Cðτy⃗y; y⃗ ⊗ y⃗Þ; ð4:33Þ

where ⋆ is a part of the Moyal product (2.9) associated
with y⃗ variables (2.22). Note that the prefactor in (4.32)
and (4.33) is symmetric under τ → 1 − τ and therefore the
two terms above are the same as consistency (4.31) holds.
Less expected is that the whole right-hand side of (4.30)
vanishes for t1 from (4.27)

½t1αβ;Λ�� ¼ 0 ð4:34Þ

and, therefore, t2 is z-independent. The cancellation in
(4.30) can be observed by straightforward star-product
calculation using the singlet ansatz (4.23) along with
symmetry τ → 1 − τ in the measure of (4.27). Moreover,
similar analysis results in (see Appendix C)

½t1αβ; t1γδ�� ¼ 0: ð4:35Þ

This suggests higher order in C corrections to tαβ are absent
as the final result that satisfies both (4.18) and (4.20) is at
most linear in C

tαβ ¼
1

4i
ðy⃗α · y⃗β þ yαyβÞ − zαzβ

Z
1

0

dτ τð1 − τÞ

× Cð−τy⃗z; y⃗ ⊗ y⃗Þeiτzy: ð4:36Þ

There are no higher order in C corrections as (4.36) is all-
order exact.

3. Covariant constancy

Solution (4.36) is shown to satisfy all the required
conditions except for (4.19). Note, there is no freedom
left in (4.36). Given the freedom in solutions of (2.29) for
W, Eq. (4.19) can be satisfied for some particular choice of
W. We now prove that tαβ from (4.36) satisfies the
remaining covariant constancy condition (4.19) provided
field W is fixed canonically (2.20).
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Suppose now Eq. (4.19) is not valid and therefore,

dxtαβ þ ½W; tαβ�� ¼ Rαβ ≠ 0: ð4:37Þ

Using (4.20) one finds the following consistency constraint
for R

dzRαβ þ ½Λ; Rαβ�� ¼ 0: ð4:38Þ

Let us analyze (4.38) in perturbations. At zeroth order we
know that R0

αβ ¼ 0 and, therefore, it follows from (4.38)
that

R1
αβ ¼ R1

αβðy; y⃗Þ ð4:39Þ

is z-independent. Hence, R1 can be found from (4.37) by
setting z ¼ 0

R1
αβ ¼ ð½ω; t1αβ�� þ ½W1; t0αβ��Þjz¼0: ð4:40Þ

Let us show that

ð½ω; t1αβ��Þz¼0 ¼ ð½t0αβ;W1��Þz¼0 ⇒ R1
αβ ¼ 0: ð4:41Þ

To this end we use (4.26)

½t0αβ;W1��jz¼0 ¼ −
i
2

�
∂

∂yα
∂

∂zβ
þ ∂

∂yβ
∂

∂zα

�
W1jz¼0; ð4:42Þ

where y ∂

∂y in t0 does not contribute at z ¼ 0 since
W1ðz ¼ 0;YÞ ¼ 0. Then, from the z-evolution equa-
tion (2.29) we have

∂

∂zα
W1jz¼0 ¼ ðω � Λα − Λα � ωÞz¼0; ð4:43Þ

where one also takes into account that dxΛ ¼ 0 at z ¼ 0.
Note, W1 contains two possible orderings ω⋆C and C⋆ω.
If (4.41) is valid, it should be so for each ordering
separately. Let us check ordering ω⋆C first. It is convenient
to use the Taylor form of ω (3.13)

ωðy; y⃗Þ ¼ e−iytωðy0; y⃗Þjy0¼0: ð4:44Þ

Straightforward � calculation yields

∂

∂yα
ðω � ΛβÞz¼0 ¼ −itαtβ

Z
1

0

dτ τð1 − τÞe−ið1−τÞytωðy0; y⃗Þ

⋆Cð−τt; y⃗Þjy0¼0: ð4:45Þ

At the same time,

ðω � t1αβÞz¼0 ¼ −tαtβ
Z

1

0

dτ τð1 − τÞe−ið1−τÞytωðy0; y⃗Þ

⋆Cð−τt; y⃗Þjy0¼0 ð4:46Þ

which precisely matches (4.41) for ordering ω⋆C.
Similarly, the required cancellation takes place for ordering
C⋆ω.
At second order we find from (4.38) that once R1

αβ ¼ 0,
then R2

αβ is z-independent and therefore, from (4.38) the
latter can be found as

R2
αβ ¼ ð½W1; t1αβ�� þ ½W2; t0αβ��Þz¼0

: ð4:47Þ

The canonical W2 is of Oðz2Þ and, hence, once t0 contains
no more than first derivative over z, the second term on the
right-hand side of (4.47) vanishes. Furthermore, before
setting z ¼ 0 each term from commutator ½W1; t1αβ�� can be
shown to be ofOðzÞ by direct calculation. So, the first term
on the right of (4.47) vanishes at z ¼ 0 just as well. One
then concludes that R2

αβ ¼ 0. The above consideration
extends analogously to higher orders and thanks to Wn

is at leastOðz2Þ for n ≥ 2, provided the canonical choice of
field ω is made. This proves (4.19) and provides the final
simple form of all-order generators (4.36).

V. OUTLOOK AND DISCUSSION

We have shown that the Vasiliev type generating equa-
tions of [60] can be framed to describe interacting sym-
metric HS gauge fields in any dimension. Based on the off
shell HS algebra they provide a set of HS compatibility
constraints. The dynamical evolution originates from fac-
torization over the trace ideal governed by the Howe dual
spð2Þ that reduces the system down to its mass shell. Since
the off shell HS algebra gets deformed in interaction, the
factorization procedure becomes highly nontrivial and
a priori unknown. To solve this problem we explicitly
find field-dependent generators of spð2Þ commuting with
the generating equations. These allow one to set equations
on shell by stripping the traceful contributions off. The
remarkable feature of the generators obtained is a very
simple linear in field form (4.36), which is one of the main
results of the current research. The cancellation of higher-
order field corrections was not obvious and came as a
surprise. This is not typical of the original Vasiliev case as
field dependence of spð2Þ is not bounded by linear terms in
general. A concise form of the generators found makes on
shell analysis feasible, while the HS locality issue in d
dimensions amenable.
The main objective of using generating equations of the

proposed type is all-order spin-locality of the (off shell) HS
vertices manifestly available via canonical choice of field
variables (2.20). The respective vertices were shown to be
space-time spin-local in (2.16) and spin-local in (2.17). To
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arrive at this result one uses the standard contracting
homotopy resolution operator all the way in perturbations
without any further field redefinitions, thus implementing
the canonical embedding. The manifest form of off shell
HS vertices have been obtained at any order in a neat form
of integrals over hypersimplices, the dimension of which
grows with the order of perturbation theory.
While we have not carried out the on shell reduction in

this paper, an important remark in this regard is in order.
The canonical choice (2.20), being irrelevant to consistency
of the generating equations, plays an essential role in
factorization of the trace ideal. Namely, in manifestly
deriving spð2Þ generators (4.36), it was the canonical
embedding that guaranteed the proposed ansatz to satisfy
all necessary constraints.
Let us comment now on the differences between gen-

erating Eqs. (2.28)–(2.30) and the Vasiliev ones from [24].
The minor difference is we do not double variables Y’s at
nonlinear level, rather add a two-component zα which is
sufficient to grasp at nonlinear level. We do not take
advantage of the AdS covariant setting of the original
equations [24] either as we prefer to stay in the Lorentz
frame. The major departure is the choice of the z-commuting
large algebra (2.21) which significantly shifts the whole
setting.13 As explained in detail in [60] this choice does not
quite live up to the original Vasiliev construction causing
early infinities in interactions. This is one of the reasons why
Vasiliev’s Z does not commute.14 Nevertheless, it is precisely
the star product (2.21) that effectively manifests while
evaluating HS vertices [51] constrained by locality using
the original Vasiliev framework. This apparent contradiction
is resolved by postulating in [60] equations of the form
(2.28)–(2.30). As compared to the original Vasiliev ones,
they lack the 0-form module B, while HS vertices of (2.17)
are generated by (2.30). Consistency rests on the remarkable,
yet so far poorly understood projective identity (2.36). This
identity is strongly tied to a particular solution (2.31) of
(2.32). On the contrary, there is no formal solution selection
for the analog of field Λ within the Vasiliev equations.
Another important difference is the lack of quadratic

contribution Λ � Λ in (2.29) in contrast with the similar
Vasiliev case, where not only it is present due to consistency,
it plays a fundamental role. This term is responsible for the
local Lorentz symmetry of the spinorial d ¼ 4 equations
[17], that would be not otherwise guaranteed. It as well
plays a key role in the on shell projection of [24]. In both
cases the deformed oscillator algebra of the aforementioned

quadratic contribution does the job. This missing ingredient
challenges the global spð2Þ, which is necessary to make
sense of our equations on shell. Nevertheless, the global
spð2Þ does exist in our case, although we find its presence
not obvious beforehand. It is also worth recalling that the
corresponding generators are of remarkably simple form for
the canonical definition of the physical field (2.20). The
latter choice then again is in consonance with spin-locality.
Despite the differences we believe Eqs. (2.28)–(2.30)

should follow from Vasiliev’s ones perhaps nontrivially. It
would be interesting to understand the link between the two
systems. It is not unlikely that the former results from the
latter upon star-product contraction along the lines of
Sec. VI from [51] and a proper renormalization of the
Vasiliev vacuum state. Constrained by associativity, how-
ever, the limiting procedure makes its implementation
beyond order C2 challenging.15 One reason to expect
Eqs. (2.28)–(2.30) may appear as a result of a certain
contraction is the structure of functional class (A3), which is
a subclass of the one from [52] designed to reconcile
locality. However, in our case the system has no room for a
class bigger than (A3) at least in perturbations that indicates
its reductive origin.
In conclusion let us point out some interesting problems

for the future investigation:
(i) Computation of on shell HS vertices at orders C2 and

C3 and beyond along with examination of spin-
locality. The developed formalism seems quite suit-
able for that, as on the one hand HS vertices are
shown to be space-time local to any order in C at the
off shell level; thus one is left with a careful analysis
of the factorization condition. On the other hand, the
factorization procedure looks encouraging in view of
remarkably simple spð2Þ generators (4.36). At this
stage it is not clear whether one should proceed along
the lines of the quasiprojector technique [65,71–73]
(see also [74] for the somewhat degenerate lower-
dimensional case) in attacking this problem or some
new tools should be developed. Indeed, the action of
quasiprojectors might not be necessarily compatible
with locality.

(ii) An intriguing HS shift symmetry that manifests
itself within the spin-local setting has not received
an adequate explanation so far (a technical reason is
the presence of hypersimplex in the integration
domain). In particular, it is interesting to check if
it stands the on shell factorization. Given the results
of [57], where spin-locality was shown to follow
from the shift symmetry assumption, it seems likely
to define a class of proper on shell field represent-
atives from factor space.

13An observation of the limiting star product that leads to
(2.21) in [51] was stimulated by the results of [68], where a
relation of specific homotopy shifts to star-product ordering was
pointed out (see also [69,70] for further discussion on orderings).
Equation (2.21) plays a pivotal role in the analysis of [60].

14In [71] it was stressed that Z’s should be noncommuting for a
yet another reason.

15At order C2 equivalence of the two systems can be
established using a peculiar identity (6.29) of [51].

INTERACTION OF SYMMETRIC HIGHER-SPIN GAUGE FIELDS PHYS. REV. D 108, 086031 (2023)

086031-15



(iii) An immediate application of Eqs. (2.28)–(2.30)
could be the 3d HS interactions of Prokushkin
and Vasiliev [75], which are on shell due to their
spinorial setup. It would be interesting to revisit
locality issue for this theory.
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APPENDIX A: CLASSES OF FUNCTIONS

The important step is to identify a class of functions Cr

that lives on all operations entering (2.28)–(2.30). As the
degree of dz- is a grading, the class is graded correspond-
ingly. We define r ¼ 0, 1, 2 to be a label prescribed to zero-,
one-, and two-forms, respectively. Accordingly, we require

Cr1 �Cr2 ∈Cr1þr2 ; ðA1Þ

dzCr ¼ Crþ1: ðA2Þ

Conditions (A1) and (A2) have been analyzed in [60] with
the following explicit result: Cr consists of the following
functions

ϕðz; y; y⃗; dzÞ ¼
Z

1

0

dτ
1 − τ

τ

Z
dudv
ð2πÞ2 f

×

�
τzþ v; ð1 − τÞðyþ uÞ; y⃗; τ

1 − τ
dz

�
× eiτzαy

αþiuαvα ; ðA3Þ

where fðz; y; y⃗; dzÞ is such that the integration is well
defined and is otherwise arbitrary analytic function. A
convenient way to visualize the above class is to use the
source parametrization which gives ϕ in different dz-
sectors

1∶
Z

1

0

dτ
1 − τ

τ
eiτzαy

αþið1−τÞAαyαþiτBαzα−iτAαBα ; ðA4Þ

dzα∶
Z

1

0

dτeiτzαy
αþið1−τÞAαyαþiτBαzαþið1−τÞAαBα ; ðA5Þ

dzαdzα∶
Z

1

0

dτ
τ

1 − τ
eiτzαy

αþið1−τÞAαyαþiτBαzαþið1−τÞAαBα :

ðA6Þ

Differentiating with respect to sources A and B and then
setting them to zero one reproduces various elements ofCr.

Freedom in coefficients contains arbitrary functions of y⃗.
Note, that in order τ-integration to be well-defined, (A4)
and (A6) should be at least linear in A.
The important properties of functions from Cr are as

follows:
(i) While not immediately obvious, it has been shown

in [60] that functions (A3) exhaust all possible
perturbative solutions of (2.28)–(2.30). In particular,
z-independent zero-forms do belong to C0. There-
fore, field redefinitions ω → ωþ Fðω; C…CÞ are
not constrained by (A3). It is also important that
ΔC1 ∈C0, where Δ is the homotopy operator given
in (3.4).

(ii) There is an invariance (under proper rescaling) of
functions from Cr with respect to the following star-
product reordering operator

Oβϕðz; y; y⃗Þ ¼
Z

d2ud2v
ð2πÞ2 ϕðzþ v; yþ βu; y⃗Þ

× expðiuαvαÞ: ðA7Þ

It can be shown that

Oβϕðz;y; y⃗Þ¼ϕ

�
z

1−β
;y; y⃗

�
; ∀ ϕ∈Cr; ðA8Þ

where β is an arbitrary number. It plays a role of a
reordering parameter of the original Vasiliev star-
product [51]. The limiting star product (2.21)
emerges from the Vasiliev one in the limit
β → −∞. Equation (A7) implies that (A3) is a
fixed point of the reordering operator (upon a
proper rescaling).

(iii) Lastly, product Cr1 �Cr2 is well-defined provided
r1 þ r2 < 2 or one of the functions (from C0) is
z-independent, while another one belongs to C2.

There is a useful factorization formula for (A4)–(A6)
convenient in practice ([57,60]). Namely,

eiτzðyþBÞþið1−τÞyA−iτBA ¼ eiyA⊛eiτðzþyÞ; ðA9Þ

where

fðyÞ⊛gðz; yÞ ¼
Z

fðyþ uÞgðz − v; yÞeiuv: ðA10Þ

Note that fðyÞ is z-independent.

APPENDIX B: HIGHER ORDERS OFF SHELL

Here we derive Eq. (3.30). To do so we use the following
generating formula. For

f ¼
Z

1

0

dτ
1 − τ

τ
eiyA⊛eiτzðyþBÞ ðB1Þ
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one has

f �Λ¼ dzα
Z
½0;1�2

dτdσ
σ

1−σ
eiyA⊛τzαeiτzðyþσðp−AÞþð1−σÞBÞ;

ðB2Þ

where Λ is given in (3.15), while (B1) should be under-
stood as generating in terms of sources A and B. In order to
be well-defined there must be no contribution at B ¼ 0. In
other words, f should be at least linear in B.
As we consider mostly left ordering ωC…C, we have at

order nþ 1

Wnþ1 ¼ −ΔðWn � ΛÞ; ðB3Þ

where Δ is the standard contracting homotopy defined in
(3.4) that suggests the following ansatz

Wn ¼
Z

μne−irnytþicn⊛ðztÞnτn−1ð1 − τÞeiτzðyþBnÞ: ðB4Þ

Using (B2) and the identityZ
½0;1�2

dτ1dτ2fðτ1τ2; τ1Þ ¼
Z
½0;1�2

dτdρ
1 − τ

1 − ð1 − τÞρ
× fðτ; 1 − ð1 − τÞρÞ ðB5Þ

one finds from (B3)

Wnþ1 ¼
Z

μnþ1e−irnþ1ytþicnþ1⊛ðztÞnþ1τnð1− τÞeiτzðyþBnþ1Þ;

ðB6Þ

where

μnþ1 ¼ μnrnσnþ1ð1 − σnþ1Þn−1; ðB7Þ

Bnþ1 ¼ σnþ1ðpnþ1 þ rntÞ þ ð1 − σnþ1ÞBn; ðB8Þ

cnþ1 ¼ cn þ rnð1 − ρnþ1ÞðBnþ1tÞ; ðB9Þ

rnþ1 ¼ ρnþ1rn; ðB10Þ

where by σnþ1 and ρnþ1 we denote integration variables σ
and ρ from (B5) that arise at the stage nþ 1. The initial
values are

μ1 ¼ 1; σ1 ¼ 1; r1 ¼ ρ1;

c1 ¼ ð1 − ρ1Þðp1tÞ; B1 ¼ p1 þ t: ðB11Þ

The integration goes along σi (i ≥ 2), ρi (i ≥ 1), and τ in the
range [0, 1]. The solution of (B8)–(B10) is given by (3.31)
and (3.32) that can be proven by induction. Indeed,

assuming (3.31) and (3.32) hold at order n and plugging
these expressions explicitly in (B8) and (B9) we have

Bnþ1 ¼ σnþ1ðpnþ1 þ ρ1…ρntÞ þ ð1 − σnþ1Þ

×

 Xn
i¼1

λipi þ
�
1þ

Xn
i<j

ðλiνj − νiλjÞ
�
t

!
; ðB12Þ

cnþ1 ¼
Xn
i¼1

νiðpitÞ þ ρ1…ρnð1 − ρnþ1Þ

×

�
σnþ1pnþ1 þ ð1 − σnþ1Þ

Xn
i¼1

λipi

�
t; ðB13Þ

where

1 − ρ1…ρn ¼
Xn
i¼1

νi;
Xn
i¼1

λi ¼ 1 ðB14Þ

holds by inductive assumption. Introducing new variables

λ0nþ1 ¼ σnþ1; λ0i ¼ ð1− σnþ1Þλi ⇒
X
i0
λ0i0 ¼ 1; ðB15Þ

ν0i ¼ νi þ ρ1…ρnð1 − ρnþ1Þλ0i;
ν0nþ1 ¼ ρ1…ρnð1 − ρnþ1Þλ0nþ1; ðB16Þ

1 − ρ1…ρnþ1 ¼
X
i0
ν0i0 ; 1 − ρ1…ρn ¼

X
i

νi; ðB17Þ

where index i0 ranges nþ 1 values and observing that

λ0iνj − νiλ
0
j ¼ λ0iν

0
j − ν0iλ

0
j ðB18Þ

one easily finds

Bnþ1 ¼
X
i0
λ0i0pi0 þ

�
1þ

X
i0<j0

ðλ0i0ν0j0 − ν0i0λ
0
j0 Þ
�
t; ðB19Þ

cnþ1 ¼
X
i0
ν0i0 ðpi0 tÞ; ðB20Þ

rnþ1 ¼ 1 −
X
i0
ν0i0 ; ðB21Þ

thus proving (3.31)–(3.33).

1. Jacobian

Let us show now that ðλ; νÞ variables imply
μnþ1 × J ¼ 1, where J is the Jacobian of ðσ; ρÞ → ðλ; νÞ
variable change. For n ¼ 1 one notes that μ1 ¼ 1. For
n ≥ 1 we can show μn ¼ 1. The proof goes inductively.
Assuming μn ¼ 1, we then have from (B7)
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μnþ1 ¼ ρ1…ρnσnþ1ð1 − σnþ1Þn−1: ðB22Þ

Variable change (B15) and (B16) yields its further multiplication by the Jacobian arising from integration over the following
δ-functions

J ¼ δðλ0i − ð1 − σnþ1ÞλiÞδðν0nþ1 − ρ1…ρnð1 − ρnþ1Þσnþ1Þ

× δðν0i − νi − ρ1…ρnð1 − ρnþ1Þλ0iÞδ
�
1 −

X
i

λi

�
δ

�
1 − ρ1…ρn −

X
i

νi

�
; ðB23Þ

with respect to λi and νi. By integrating out delta-functions
we see that they exactly cancel out (B22)

μnþ1 × J ¼ 1: ðB24Þ

2. Integration domain

The configuration space is easily identified by induction.
Assuming it is given by (3.35) at order n, being the case at
n ¼ 1 (somewhat trivially, since λ1 ¼ 1) and n ¼ 2 (regu-
larly), one sees from (B15) that the λ-hypersimplex extends
to the order nþ 1, while from (B16) and (B17) the
ν-hypersimplex holds at nþ 1 too.

APPENDIX C: spð2Þ PROOF

Let us check that (4.36) indeed generates spð2Þ com-
mutation relations (4.18). We have

tαβ ¼ t0αβ þ t1αβ; ðC1Þ

where t0 is given in (2.11), while t1 is defined in (4.27). In
order to see that (4.18) is fulfilled we are left to check that

½t1αβ; t1γδ�� ¼ 0: ðC2Þ

Specific dependence on y⃗ in C is not going to be important
in what follows, so we just set C ¼ Cðy; y⃗Þ and, corre-
spondingly,

t1αβ ¼ −zαzβ
Z

1

0

dτ τð1 − τÞCð−τz; y⃗Þeiτzy: ðC3Þ

We proceed with the Taylor representation of field C, (3.14)

Cðy; y⃗Þ≡ e−iypCðy0; y⃗Þjy0¼0; pα ¼ −i
∂

∂y0α
: ðC4Þ

Using (2.21) it is easy to derive the following useful
product

zαzβ

Z
1

0

dτ1 τ1ð1−τ1Þeiτ1zðyþp1Þ �zγzδ

×
Z

1

0

dτ2τ2ð1−τ2Þeiτ1zðyþp2Þ

¼ zαzβzγzδ

Z
½0;1�2

dτdσσð1−σÞτ3ð1−τÞeiτzðyþσp1þð1−σÞp2Þ:

ðC5Þ

Having it we obtain

t1αβ � t1γδ ¼ zαzβzγzδ

Z
½0;1�2

dτ dσ σð1 − σÞτ3ð1 − τÞ

× eiτzyCð−τσz; y⃗Þ⋆Cð−τð1 − σÞz; y⃗Þ; ðC6Þ

where ⋆ acts on y⃗ via (2.22). Since measure in (C6) is
invariant under σ → 1 − σ one trivially obtains (C2). This
completes the proof of (4.18).
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