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We revisit the entanglement of a Schwinger pair created by external fields of arbitrary strength, using a
holographic dual description of QCD. When external fields are strong in comparison to the string tension,
the entanglement is geometrically tied to the Einstein-Rosen (ER) bridge in the bulk, and disappears when
the pair production is not exponentially suppressed at the boundary. For moderate external fields, the
entanglement is shown to follow from the geometrical interplay between the position of the ER bridge and
the confining wall in the bulk. We clarify the physical nature of quantum entanglement in pair production,
and connect it to the entropy of entanglement between the left- and right-moving fermions. In particular, we
clarify the effect of real radiation off the produced particles on quantum entanglement of the pair.
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I. INTRODUCTION

Entanglement underlies the quantum description of
physical laws. Quantum states are complex superposition
states in a Hilbert space, with a content that is revealed by
the projection measurement. As a result, two noncausally
related measurements can be correlated.
A striking example of these noncausal correlations is the

famous Einstein-Rosen-Podolsky (EPR) paradox. The
common realization of this paradox is that of an entangled
pair of spin-1

2
in an initial spin singlet state, with spins that

are correlated at spacelike separations. In particular, this
canonical setup allows to derive the simplest Bell inequality
that rules out the concept of hidden variables in quantum
mechanics.
Recently, the quantum entanglement in Schwinger pair

creation process [1] was described using a gravity dual
description [2,3]. Remarkably, the dual of the EPR pair in
bulk is a string [4–11] with a world sheet that sustains a
nontraversable wormhole [Einstein-Rosen (ER) bridge],
suggesting the equivalence between the entanglement and
the wormholes within the holographic correspondence
[12]. The extension to traversable wormholes was further
worked out in [13]. The possible applications entanglement

in pair production to phenomenology of high energy
hadron and nuclear collisions were discussed in [14,15].
In the Schwinger quark-antiquark pair production, the

endpoints are never causally connected. Nevertheless, the
pair is entangled due to its overall color neutrality. In
nonconfining dual gravity description, the entanglement
was found to be of order

ffiffiffi
λ

p
in the weak field limit [2,9],

where λ ¼ g2YNc is the ’t Hooft strong coupling.
Outside of the holographic framework, the entanglement

in Schwinger pair production was addressed in [16],
without considering the radiation emitted by the produced
particles. It has been found there that the entropy of
entanglement between the left-moving antifermions and
the right-moving fermions is exactly equal to the statistical
Gibbs entropy of the produced state. It is of great interest to
check whether this intriguing relation is modified in the
presence of radiation off the produced fermions. Recent
quantum simulations indicate that radiation off the pro-
duced pair reduces the amount of entanglement [17].
In this work, we will extend the holographic treatment of

Schwinger pair production to the external U(1) fields of
arbitrary strength, and consider also the effects of confine-
ment. The first study of the holographic Schwinger process
in a confining background was carried out in [18], where a
critical threshold for the electric field was noted. The case of
pair production in a confining geometry was studied also in
[19], and it was found that the wormhole does not appear
when the quark and antiquark are separated in the transverse
space. The emergence of horizon, and the ensuing inter-
pretation of Schwinger pair production in terms of thermal
Hawking-Unruh radiation was discussed in [14,20].
The organization of the paper is as follows: In Sec. II we

briefly outline the effect of confinement on the Schwinger
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pair creation process. Confinement inhibits the pair pro-
duction, unless the applied electric field is sufficiently
strong to overcome the effect of the confining string. In
Sec. III we discuss the holographic setup in the weak field
limit for Schwinger pair production. Mikhailov’s light-like
surface [21] for a quark and antiquark receding at a constant
lightlike acceleration in conformal AdS5 is used to evaluate
the bulk action explicitly. The emerging Unruh temperature
allows for the extraction of the free energy. We identify the
quantum entanglement entropy with the ensuing thermal
entropy. The results are readily extended to “walled” AdS5
to account for confinement. In Sec. IV we extend the
holographic setup to the strong field limit, and derive the
quantum entanglement entropy for the conformal and
confining geometries in curved AdS. In Sec. V we make
a link to phenomenology by using a schematic form of the
Lund model to derive the entanglement entropy associated
to the string fragmentation in jets. This entanglement
entropy measures the Schwinger pair creation probability.
This entropy is smaller than the single tunneling entangle-
ment entropy from the confining geometry, owing to the
decoherence due to the random tunnelings, yet it should be
accessible to experimental measurements. Our conclusions
are in Sec. VI.

II. PAIR CREATION

Before we detail the holographic analysis of the
Schwinger pair creation process in a confining AdS back-
ground, let us discuss the general features of this process. It
is clear that to produce a pair of quarks with mass M from
the vacuum, an electric field E should lose energy in excess
of 2M. In the presence of confinement described by a linear
quark-antiquark potential σTr (where σT is the string
tension), this requirement is made more prohibitive with
the threshold set at 2M þ σTr, with r the pair separation.
With this in mind, the effective potential for a qq̄ pair
undergoing pair production is typically of the form

VeffðrÞ ¼ 2M − ðE − σTÞr −
C
ffiffiffi
λ

p

r
; ð1Þ

where we have added the attractive Coulomb-type quark-
antiquark interaction that is important at short distances;
λ ¼ g2YNc is the strong ’t Hooft coupling, and the constant
C was fixed in [22]. Throughout this paper, we include the
coupling gY in the definition of E.
The potential (1) is illustrated in Fig. 1. Clearly, for

E < σT , the confined pair cannot be separated and pair
production is prohibited. Pair production is only possible if
E > σT , for which the tunneling through the potential
barrier is exponentially suppressed. For sufficiently strong
fields, E > Ec > σT , the barrier vanishes, and pair pro-
duction is no longer penalized. Without confinement (when
σT ¼ 0), a simple estimate of Ec can be made by assuming
that the work done by electric field Ecr should match 2M at

distance where the energy of the strong Coulomb attraction
equals 2M,

Ecr ∼ 2M ∼
C
ffiffiffi
λ

p

r
: ð2Þ

This relation yields r ∼ C
ffiffiffi
λ

p
=2M, and

Ec ∼
4M2

C
ffiffiffi
λ

p : ð3Þ

With confinement, the critical value is shifted by the string
tension, Ec → Ec þ σT .

III. HOLOGRAPHIC SETUP: WEAK FIELD

To address the pair production in a holographic setup
modeling QCD, we will use a bottom-up approach. In the
double limit of largeNc (at fixed number of flavors Nf) and
strong ’t Hooft coupling λ, quarks are permanently con-
fined with no string breaking. Large Wilson loops exhibit
an area law at all distances. In the gravity dual, the area law
follows from a simple AdS5 with a hard wall [23], with a
line element

ds2 ¼ L2

z2
ððdxμÞ2 þ dz2Þ z ≤ zH: ð4Þ

and zero otherwise. The string tension is readily found to be

σT ¼ 1

2πα0
L2

z2H
¼

ffiffiffi
λ

p

2π

1

z2H
: ð5Þ

FIG. 1. Effective potential VeffðrÞ versus the distance, for weak
(top) and strong (bottom) electric field (Ec > E > σT : blue,
E > Ec > σT : green, dashed).
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Here α0 is the Regge slope for an open string, fixed by the ρ
meson trajectory α0 ¼ 1=2m2

ρ. Inside the QCD string, the
strength of the chromoelectric field is proportional to the
string tension E ≃ 4σT [24].
For zH → ∞ at fixed coupling, the string tension

vanishes and (4) reduces to conformal AdS5. We will start
our discussion with this latter case to clarify some issues
regarding the evaluation of the entanglement entropy, and
then proceed to the pair creation process in the confin-
ing case.

A. AdS5

The holographic Schwinger effect in conformal AdS was
discussed in [5,11], using a string world sheet in Euclidean
signature. In Minkowski signature, the world sheet is the
ruled surface of delayed rays in the bulk [4,10,21,25],

XMðτ; zÞ ¼ ðzẋμðτÞ þ xμðτÞ; zÞ ð6Þ

with the 4d hyperbolic trajectories on the boundary

xμ�ðτÞ ¼
�
1

a
sinhðaτÞ;� 1

a
coshðaτÞ; 0; 0

�
ð7Þ

for constant acceleration a ¼ E=M. The world sheet (6)
and (7) is a hyperboloid

X2
M ¼ −t2 þ x2 þ z2 ¼ x2μðτÞ ¼

1

a2
ð8Þ

as illustrated in Fig. 2 for a2 ¼ ẍ2 ≡ 1. The line element
associated to (6) is

dXM ¼ ðdzẋþ zadτ þ ẋdτ; dzÞ: ð9Þ

The determinant of the induced metric of the world sheet
embedded in AdS5 is given by

det

�
gmn

∂Xm

∂ν

∂Xn

∂σ

�
¼ det

 
L2

z2 ðzaþ ẋÞ2 L2

z2 ẋðzaþ ẋÞ
L2

z2 ẋðzaþ ẋÞ L2

z2 ðẋ2 þ 1Þ

!

¼ det

�L2ða2 − 1
z2Þ − L2

z2

− L2

z2 0

�
; ð10Þ

since ẋ2 ¼ −1 and 0 ¼ d=dτðẋ2Þ ¼ 2aẋ.
Remarkably, (6) can be regarded as the locus of the

radiated gluons between the receding pairs at strong
coupling, as captured by dual gravity, with the power
radiated at the boundary [4,21]

dE
dt

¼
ffiffiffi
λ

p

2π
a2 ð11Þ

This is to be compared to the weak coupling, classical
dipole-like Larmor emission with the total radiated power P

P ¼ 2

3
g2Ya

2 ð12Þ

Causal contribution:
From (10) we note the appearance of a horizon at z ¼ 1

a,
whereby the produced pair loses causal contact [2,4]. With
this in mind, the Nambu-Goto action supported by the
causal part of the world sheet is

ΔS ¼ 2 ×
1

2πα0

ZT =2

−T =2

dτ
Z1=a
zM

dz
α0

ffiffiffi
λ

p

z2

¼
ffiffiffi
λ

p

2π
T 2

�
1

zM
− a

�
¼ 2T

�
M −

a
ffiffiffi
λ

p

2π

�
; ð13Þ

after using (10). The overall factor of 2 counts the two
separate sheet contributions in Fig. 2, when cut at 1

a. The
contribution from the boundary interaction term using (7), is

ΔSB ¼ −2 ×
E
2

Z
T =2

−T =2
dτðẋ0þðτÞx1þðτÞ − x0þðτÞẋ1þðτÞÞ

¼ −MT ð14Þ

Combining (13) with (14) yields the energy per particle,

E
2
¼
�
M −

ffiffiffi
λ

p
TU −

M
2

�
; ð15Þ

with the Unruh temperature TU ¼ a=ð2πÞ. The temperature
correction is reminiscent of the Debye correction to charge
particle’s self-energy

ED ∼ −λ
e−mDr

r
∼ −λmD ∼ −λ3

2TU; ð16Þ

at weak coupling, where we used r ∼mD
−1, mD ∼

ffiffiffi
λ

p
TU

for an estimate. The entanglement entropy follows

FIG. 2. Hyperboloid world sheet −t2 þ x2 þ z2 ¼ 1
a2 ≡ 1 for

jxj; jtj ≤ 5 and 0 ≤ z ≤ 6.
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from (15) if we interpret it as a free energy F of the particle
at the Unruh temperature [9,11], and use the thermody-
namic relation

SEE ¼ −
∂E=2
∂TU

¼
ffiffiffi
λ

p
: ð17Þ

Noncausal contribution:
The remainder of the action comes from the noncausal

contribution and describes the radiation from the produced
pair. We will now see that this radiation reduces the amount
of entanglement.
Let us begin by noting that the induced metric on the

world sheet

dX2
M ¼ L2

�
a2 −

1

z2

�
dτ2 −

2L2

z2
dτ dz: ð18Þ

may be written as the metric of a topological black
hole [26,27]. This is manifest, if we set w ¼ 1=ðazÞ and
τ ¼ t=a − 1=a arctanhw [28], so that (18) reads

dX2
M ¼ −ðw2 − 1Þdt2 þ dw2

w2 − 1
; ð19Þ

which clearly exhibits a world-sheet horizon for wh ¼ 1
(corresponding to z ¼ 1=a).

1. Hyperbolic black hole

The induced metric in (19) can be regarded as a hyper-
bolic black hole metric in dþ 1-dimensions, with a
warping factor [6]

hðwÞ ¼ w2 − 1 −
μ

wd−2 ð20Þ

in the limit μ → 0. The horizon is fixed by the condition
hðwhÞ ¼ 0, or

μ ¼ wd−2
h ðw2

h − 1Þ ð21Þ

with an inverse Rindler temperature

βh ¼
4π

h0ðwhÞ
→
μ→0

2π ð22Þ

or the Unruh temperature TU ¼ a=βh as μ → 0. This result
is based on the observation that hyperbolic coordinates in
AdS correspond to a Rindler state of the CFT in Minkowski
space at temperature βh ¼ 2π=wh [26,27]. In [27] it was
explicitly proved for this scenario that the EE across a
sphere in flat space is equal to the thermal entropy of the
Gibbs state with Unruh temperature TU. A rerun of the
preceding arguments using the regulated horizon in (13),
yields the energy per particle

1

2
E ∼ −

ffiffiffi
λ

p

2π
awh ð23Þ

which can be regarded as the energy of a string in the
hyperbolic black hole. The regulated EE as defined by
thermodynamics as in (17), now reads

SEE ¼ −
∂E=2
∂a=βh

¼ −
ffiffiffi
λ

p

2π
β2h

∂wh

∂βh
→

ffiffiffi
λ

p

d − 1
ð24Þ

with the rightmost result following the removal of the
regulator μ → 0, and in agreement with earlier results
[6,29–32]. The difference between (17) and (24) stems
from the change in the horizon regulator (21) in (24)
through ∂μ=∂wh → 2, in the limit μ → 0 or wh → 1.
A physical interpretation of this difference will be
given below.

2. Topological black hole

Alternatively and in Euclidean signature, we should
require that the Wick rotated time (replica) coordinate is
an angle with t ¼ tþ 2πn as we already hinted at in
Eq. (20). We can achieve this by replacing the blackening
factor fðwÞ ¼ −1þ w2 by [26,31]

fnðwÞ ¼ w2 − 1 −
ðwd

h − wd−2
h Þ

wd−2 ;

wh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2dðd − 2Þ

p
þ 1

nd
; ð25Þ

where the horizon is located at w ¼ wh and dþ 1 is the
dimension of the gravity theory.
The regulated metric corresponds to the metric of a

charged topological black hole, and the entropy is given by
the volume of the horizon region [27]. In fact, replacing the
upper integration limit in (13) by the regulated horizon
(25), taking the derivative with respect to n and setting
n ¼ 1 at the end, one gets [6,29–32]

SEE ¼ −
ffiffiffi
λ

p

2π
ð∂nð2πwhÞÞjn¼1 ¼

ffiffiffi
λ

p

d − 1
: ð26Þ

This result differs from (17) since an accelerated observer
detects quantum fluctuations of the vacuum as they appear
to them as thermal fluctuations. In our language these
fluctuations are encoded in fluctuations of the horizon
which are accounted for by regulating the topological
black hole.

3. EE and radiation

If we recall the causal contribution (17), then (26) in
d ¼ 4 can be represented as
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SEE ¼
ffiffiffi
λ

p
−
2

3

ffiffiffi
λ

p
; ð27Þ

where the first contribution to the entanglement arises from
the causal part of the entangling surface (representing the
dressing of the charge by virtual gluons), and the second
contribution—from the noncausal part of the entangling
surface that represents the emitted radiation. In the holo-
graphic description, this radiation is hidden behind the
world sheet horizon (dual to the Rindler horizon in
Minkowski space) as captured by the change in the
regulated horizon above. We thus conclude that the emitted
radiation reduces the amount of entanglement between the
produced particles.
The reduction of the entanglement entropy in the

presence of radiation can be expected if we correct the
energy per particle (15) for the energy radiated away. Using
(11), we find that the energy lost or radiated away from the
charged particle is

Eloss ¼
ffiffiffi
λ

p
TUaT ∼

ffiffiffi
λ

p
TU; ð28Þ

where we used for the duration of radiation T the time it
takes to reach the world sheet horizon, T ∼ 1

a.
Our result (27) clarifies the difference between the result

in [2], which states that the entanglement entropy of the
uniformly accelerated qq̄ pair is SEE ¼ 1

3

ffiffiffi
λ

p
, and the result

in [9] which finds SEE ¼ ffiffiffi
λ

p
. The latter takes only the

virtual radiation into account (shown in black in 4), while
the former also accounts for the real radiation of the moving
charged particles (shown in red in 4), which causes energy
loss and a decrease in the net entanglement entropy.

B. Walled AdS5

In order to have a confining background, we introduce a
hard wall at z ¼ zH as in (4). In case of zH ≥ 1=a, our
calculation reduces to the result of the last section as may
be seen from the cartoon in Fig. 3. In the case of zH < 1=a,
the surface consists of two parts. The first part corresponds
to the minimal surface in the conformal metric, stretching
from zM to zH is

ΔS1 ¼
ffiffiffi
λ

p

2π

ZT =2

−T =2

dτ
ZzH
zM

2dz
z2

¼
ffiffiffi
λ

p

π
T
�

1

zM
−

1

zH

�
: ð29Þ

The energy per particle, due to the presence of the hard wall
for the first contribution is

1

2
Eð1Þ
W ¼

ffiffiffi
λ

p

2π

�
1

zM
−

1

zH

�
: ð30Þ

It does not contribute to the entanglement, since it does not
depend on the Unruh temperature.

For the second contribution, we will evaluate the
pertinent action. For that, we note that in Euclidean
signature, (8) is the spheroidal surface

−t2 þ x2 þ z2 ¼ 1

a2
→ t2 þ x2 þ z2 ¼ 1

a2
: ð31Þ

The contribution of the hard wall reduces to the area of the
disk at the radial position z ¼ zH

ΔS2 ¼
ffiffiffi
λ

p

2πz2H
π

�
1

a2
− z2H

�
→

ffiffiffi
λ

p

2ðazHÞ2
; ð32Þ

with the rightmost term following from the weak field limit.
The corresponding free energy is then

βUF ¼
ffiffiffi
λ

p
β2U

8π2z2H
: ð33Þ

with βU ¼ 1=TU. The associated entanglement entropy is
solely due to (33)

Sð2ÞEE ¼ β2U
∂F
∂βU

¼
ffiffiffi
λ

p

2ðazHÞ2
: ð34Þ

which can be recast as

Sð2ÞEE ¼ πσTM2

E2
: ð35Þ

FIG. 3. Top panel: nonconfining case (zH > 1=a). The string
world sheet exhibits a nontraversable wormhole with world sheet
horizons at z ¼ 1=a. The hard wall does not affect the qq̄ pair.
Lower panel: confining case (zH < 1=a). The world sheet does
not have a wormhole which is cut off by the hard wall
at z ¼ zH < 1=a.
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IV. HOLOGRAPHIC SETUP: STRONG FIELD

The strong electric field analysis of the holographic
Schwinger model was initially discussed in the conformal
AdS case in [33], and revisited in [5]. The confining and
nonconformal case (Sakai-Sugimoto model) was analyzed
in [18]. In this section, we follow [5] and review briefly
their construction and results in the conformal case, and
then proceed to extend them to the confining case using
walled AdS.

A. AdS5

The nonconfining vacuum is unstable against qq̄ pair
creation for any finite electric field. The creation proba-
bility is exponentially suppressed by the action of the
tunneling pair through the potential barrier as illustrated in
Fig. 1 (bottom). In flat space and at weak coupling, this
action follows from the worldline instanton, the cyclotron
path traced by a charged quark, in a fixed external electric
field, which acts much like a magnetic field in Euclidean
signature. The result, is the famed Schwinger suppression
factor.
At strong coupling, the holographic construction sug-

gests that the action is that of a world sheet instanton traced
by the cyclotron path at the boundary, for infinitely massive
quarks. For quarks with finite massM, the cyclotron path is
a Wilson loop on a D3 brane fixed at z ¼ zM with

M ¼
ffiffiffi
λ

p

2πzM

as measured by the string hanging from D3 to the Poincare
horizon. The string world sheet in AdS with Euclidean
signature is describedby the standardNambu-Goto action [5]

SNG ¼
ffiffiffi
λ

p

4π

Z1
0

dτ
Z∞
σM

dσ
1

z2
ð∂Xμ∂Xμ þ ∂z∂zÞ þ i

I
A; ð36Þ

where ð∂; ∂Þ ¼ ð∂σ � i∂τÞ, with the additional Virasoro
constraints. The last contribution has support only on the
D3 boundary, and captures the effect of the Lorentz force
with F ¼ dA, on the source quarks,

xMðτÞ ¼ ðR cosð2πnτÞ; R sinð2πnτÞ; 0; 0; zMÞ ð37Þ

tracing n-times a circular Wilson loop of classical cyclotron
radius

R ∼
1

a
¼ M

E

for weak electric fields. For strong fields, the radius shrinks
critically to zero (see below). Note that the parameter shift
τ → 1=4 − aτ=2π in (37) brings (37) into (7).

The variational equations following from (36) and
subject to the Virasoro constraints were detailed in [5],
with the explicit world sheet solution

XMðτ; σÞ ¼
�
R cosð2πnτÞ coshð2πnσMÞ

coshð2πnσÞ ;

R sinð2πnτÞ coshð2πnσMÞ
coshð2πnσÞ ;

0; 0; zM
tanhð2πnσÞ
tanhð2πnσMÞ

�
; ð38Þ

and the condition sinhð2πnσMÞ ¼ zM=R. The line-element
corresponding to the world sheet instanton (38) is

ds2W ¼ 1

sinh2ð2πnσÞ ðdτ
2 þ dσ2Þ ð39Þ

Note that (39) develops a singularity at σ → ∞,

ds2W → 4e−4πnσð−dτ2 þ dσ2Þ ð40Þ

after the analytical continuation to Minkowski signature
τ → iτ. This is the conformal line element of a black hole,
with Rindler temperature TR ¼ 2π (after rescaling the
affine parameters by 2).
Inserting (38) into (36) yields the on-shell action

Son−shell ¼ n
ffiffiffi
λ

p ��
R2

z2M
þ 1

�1
2

− 1

�
−
1

2
ð2πnÞER2: ð41Þ

The cyclotron radius R is now fixed by the extremum of
(41), which satisfies

R2 þ z2M ¼ 1

a2
ð42Þ

The critical electric field is the electric field for which the
cyclotron radius R shrinks to zero, i.e.

zMac ¼ zM
Ec

M
¼ 1:

In terms of the critical electric field Ec (41), the on-shell
action reads [5]

Son-shell ¼
ffiffiffi
λ

p

2

 ffiffiffiffiffiffi
Ec

E

r
−

ffiffiffiffiffiffi
E
Ec

s !
2

; ð43Þ

This is consistent with Schwinger0s result S →
ffiffi
λ

p
Ec

2E in the
weak field limit. In the strong field limit, the endpoints of
the string on the D3 boundary accelerate substantially, as
the cyclotron radius shrinks
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ae ¼
1

R
¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ða=acÞ2
p : ð44Þ

If we recall that the Unruh temperature is TU ¼ a
2π for the

pair as it tunnels out of the vacuum, then in Euclidean
signature (43) amounts to the free energy

F
TU

¼
ffiffiffi
λ

p

2

Tc

TU

�
1 −

TU

Tc

�
2

ð45Þ

The entanglement entropy follows from thermodynamics,
with

STEE ¼ β2U
∂F
∂βU

¼
ffiffiffi
λ

p �
1 −

TU

Tc

�
ð46Þ

and βU ¼ 1=TU. Formula (46) generalizes (17) to the
strong field regime. It is the tunneling contribution to
the pair creation process. Note that it reduces to the causal
contribution (17) (when no real radiation is emitted) in the
weak field limit, when TU → 0.
On the basis of our strong field result (46), and the fact

that the result SEE ¼ ffiffiffi
λ

p
=3 holds for any field strength, we

can deduce the effect of real radiation on the entanglement
entropy in the strong field regime. To reconcile the result
for the total entanglement entropy SEE ¼ ffiffiffi

λ
p

=3 with the
result (46), we have to assume that the effect of real
radiation on the entanglement entropy in the strong field
regime is given by

SREE ¼ −
2

3

ffiffiffi
λ

p
þ

ffiffiffi
λ

p TU

Tc
: ð47Þ

The strong field calculation described above does not apply
for TU > Tc, when the pair production is not exponentially
suppressed. This is because the string world sheet has no
support for z < zM (the string calculation breaks down for
strictly R ¼ 0). Equations (46) plus (47) yield the net result

SEE ¼ STEE þ SREE ¼
ffiffiffi
λ

p �
1 −

TU

Tc

�
þ

ffiffiffi
λ

p �
−
2

3
þ TU

Tc

�

¼
ffiffiffi
λ

p

3
; ð48Þ

in agreement with (26), even for strong fields. At TU ¼ Tc
the tunneling barrier disappears. For TU > Tc, both the
tunneling and the world sheet black hole disappears as
the horizon moves below the D3 brane with 1

a < zM. The
ensuing pair creation process turns “classical,” with van-
ishing entanglement entropy.
The result (48) can be interpreted as follows: The first

bracket is the contribution of the virtual gluon interactions
to the quantum entropy of a receding pairs, as captured by
the tunneling world sheet instanton in bulk (depicted by the

green exchanges in Fig. 4 below the blue-dashed line). The
second bracket is the contribution to the entanglement
entropy from the real emission of gluons by the pair
(depicted by the black exchanges with red marks in
Fig. 4 above the blue-dashed line).

B. Walled AdS5

In walled AdS5, the string world sheet terminates on the
wall at z ¼ zH, provided that the hard wall occurs prior to
the effective horizon zM < zH ≤ 1

a. Using (31), the con-
tribution of the hard wall is given by the area of the disk at
the radial position z ¼ zH

ΔS2 ¼
ffiffiffi
λ

p

2πz2H
π

�
1

a2
− z2H

�
ð49Þ

The corresponding free energy is

βUF ¼
ffiffiffi
λ

p

2

�
β2U

ð2πzHÞ2
− 1

�
: ð50Þ

from which the entanglement entropy reduces to

Sð2ÞEE ¼ β2U
∂F
∂βU

¼
ffiffiffi
λ

p

2

�
1

ðazHÞ2
þ 1

�
ð51Þ

To evaluate the contribution of the side of the string as it
reaches the hard wall, we consider the action (36) and the
solution (38). The string reaches the hard wall at z ¼ zH. In
the world sheet coordinates, the string is parametrized by a
continuous function ranging from the starting point of the
string at the boundary at z ¼ zM ðσ ¼ σ0Þ to the turning
point of the string at z ¼ zmax ¼ 1

a ðσ ¼ ∞Þ. On the world
sheet this is related to

z=zM ¼ tanhð2πnσÞ= tanhð2πnσMÞ

FIG. 4. The trajectories of a produced qq̄ pair, with the
tunneling part in Euclidean signature (lower half). The dashed
blue line marks t ¼ 0where the pair appears in Minkowski space.
The virtual radiation is depicted in black and green, and the (real)
radiation leading to information loss is marked in red, both in the
large Nc planar approximation. The red cut indicates that the
exchanged gluon goes on-shell as radiation.
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or equivalently

2πnσ ¼ arctanh

�
z tanhð2πnσMÞ

zM

�
:

There are two different scenarios. If the cutoff is larger than
the turning point of the string zH > zmax, the hard wall does
not affect the string, and we find the solution of the last
section. If zH < zmax, we cut off part of the string at

σH ¼ arctanh

�
zH tanhð2πnσMÞ

zM

�
=ð2πnÞ:

Replacing the upper integration limit in (36) by σ ¼ σH, we
have

Son-shell ¼ n
ffiffiffi
λ

p �
1

azM
−

1

azH

�
−
1

2
ð2πnÞER2

¼ 1

2

ffiffiffi
λ

p
n

�
E
Ec

þ Ec

E
−

2M
EzH

�
: ð52Þ

Since the cutoff is a hard wall, the radius is still given by
(42). For zH ¼ zmax ¼ 1

a, the result reduces to (43).
The free energy following from the on-shell action (52)

for strong fields, is

F ¼ β−1U Son-shell ¼
ffiffiffi
λ

p
nðπðβ2U þ β2cÞ − β2Uβc=zHÞ

2πβ2Uβc
: ð53Þ

The contribution to the entanglement entropy is thus
given by

Sð1ÞEE ¼ β2U
∂F
∂βU

¼ −n
ffiffiffi
λ

p βc
βU

: ð54Þ

Adding the two contributions in (51) and (54), we find for a
single winding with n ¼ 1

SEE ¼ Sð1ÞEE þSð2ÞEE

¼
( ffiffiffi

λ
p ð M2

2ðEzHÞ2þ
1
2
− E

Ec
Þ for∶ zH ≤M=E¼ 1

a

1
3

ffiffiffi
λ

p
for∶ zH >M=E¼ 1

a

: ð55Þ

with zH fixed by the string tension in (5), i.e.

ffiffiffi
λ

p

2

M2

ðEzHÞ2
¼ σT

E
πM2

E
≡ σT

E
Δ →

1

4
Δ: ð56Þ

The rightmost result follows from the estimate for the
invariant electric field, as a source for the string tension
E ∼ 4σT [24]. Here Δ is the Schwinger tunneling action for
pair creation, with probability e−Δ. For a comparison, we
note the corresponding Shannon (information) entropy for
a single tunneling process

SI ¼ Δe−Δ − ð1 − e−ΔÞ lnð1 − e−ΔÞ → Δ ð57Þ

which is comparable to (56) in the weak field limit
(rightmost result).
In the limiting case of zH ¼ 1=a, the entanglement

entropy in (55) correctly reproduces the entanglement
entropy computed in (46). Furthermore, we correctly
reproduce the weak field limit in the deconfined case given
by (17), as well as the weak field confined case in (34). In
Fig. 5 we show the behavior of (55) versus E=Ec. The
entanglement is larger in the confining case for weak fields
with no radiation loss present, and decreases linearly as
the electric field increases following the depletion of the
tunneling process. The first order jump occurs when the
geometry flips from confining to black hole. The location
of the jump varies with M.
General case:
In general for weak electric fields (low Unruh temper-

ature), the entanglement entropy appears to diverge.
However, there is a lower bound on the electric field
determined by the string tension σT

Tmin

Tc
¼ Emin

Ec
>

σT
Ec

¼
ffiffiffi
λ

p

4π2α0M2
: ð58Þ

To make a contact with QCD phenomenology, we use
α0m2

ρ ¼ 1
2
(where mρ is the ρ meson mass), and find a light

constituent quark mass M, with M=mρ ∼ 1
2
. If we set

λ ¼ g2YNc ≈ 12, then the lower bound is

Tmin

Tc
¼ Emin

Ec
>

2
ffiffiffi
λ

p

π2
≈
4
ffiffiffi
3

p

π2
≈ 0.7: ð59Þ

In Fig. 5, we display the final result (55) for the entangle-
ment entropy in the confining geometry (blue-solid curve),
and the geometry without hard wall (dashed-black curve)

FIG. 5. Entanglement entropy (55) versus E=Ec, in the con-
fining background (blue-solid curve) and the deconfined back-
ground (black-dashed curve), for a hard wall at zH ¼ 0.89=Ec in
units of M ¼ 1. For E > 1=zH, the entanglement entropies
merge. The first order jump reflects on the transition from a
confining to a black-hole geometry.
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versus E=Ec in units of M ¼ 1. The hard wall is placed
at a fixed holographic distance zH ¼ 0.89=Ec. The entan-
glement entropy is dominated by confinement for
E=Ec < 0.89, and merges with the entanglement entropy
in conformal AdS, as the ER bridge overrides the hard wall
in bulk (red line).
Special case:
For the QCD string, the invariant electric field is about

E ∼ 4σT [24]. If we also fix the string tension to reproduce
the rho meson trajectory σT ¼ 1

2
m2

ρ, with a varying mass
ratio x ¼ M=mρ, and a fixed 0t Hooft coupling λ, then (55)
reduces to

SEEðx; λÞ ¼
8<
:

π2

16
x2 þ

ffiffi
λ

p
2
− 2λ

π2x2 for∶ x ≥ 4λ
1
4

π
ffiffi
2

p

1
3

ffiffiffi
λ

p
for∶ x < 4λ

1
4

π
ffiffi
2

p
: ð60Þ

In Fig. 6, we illustrate the dependence of the entanglement
entropy (60) on the mass ratio x for different values of the 0t
Hooft coupling λ. For smaller λ, we can reach smaller mass
ratios and the deconfinement transition is moving to
smaller values of the mass ratio x.

V. ENTROPY IN THE LUND MODEL

A simple but phenomenologically successful description
of a hadronization process in QCD, is the Lund model [34],
which makes use of the QCD string. The model describes
the break-up of the string into hadrons. For instance, as an
initial qq̄ pair is produced by a hard jet, the connecting
string stretches as the pair recedes away from each other.
Eventually, several qq̄ pair pop up by tunneling, and the
stretched string breaks into shorter strings, identified as
hadrons (mostly mesons).
A key feature of the multiple break-ups is the so-called

area law, at the origin of the probability distribution in the
Lund model. The area law is a product of Schwinger
tunneling like probabilities, as we have described in
the confining case above. Schematically, the normalized

probability for the string breaking to n-identical hadrons
(say pions) in 1þ 1 dimensions, is of the form

pn ¼ ðeA − 1Þe−nA ≈ ðe1
n̄ − 1Þe−n

n̄ ð61Þ

Here

A ∼
M2

σT
∼ Δ

is a typical fragment area of the string world sheet (in units
of the string length squared), with M the light quark
constituent mass at the string endpoints. Note that the
mean multiplicity n̄ and A, are tied by

A ¼ − ln

�
1 −

1

n̄

�
≈
1

n̄
; ð62Þ

which shows that (61) obeys Koba-Nielsen-Olesen (KNO)
scaling for large multiplicities

n̄pn ≈ e−
n
n̄ ð63Þ

Remarkably, this is a distribution of a thermal oscillator of
temperature T ¼ n̄=ω, with ω in units of the string length.
The corresponding Shannon (information) entropy is

SEE ¼ −
X
n

pn lnpn ≈ ln n̄ ð64Þ

which we identify as the entanglement entropy of the jet
fragmentation. It is a measure of the Schwinger tunneling
probability (as weighted by the mean area of the string
fragment). Note that the multiple breaking of the string in
the Lund model reduces the entanglement entropy com-
pared to the single string breaking (56), from 1

4
Δ to ln 1

Δ.
The reduction underlines the quantum decoherence caused
by the many random breaking on the string world sheet,
spanned by the initial receding pair from the jet. It is
analogous to the reduction of quantum entanglement by
radiation discussed above.
The result (64) is in agreement with the arguments

presented in [35,36] for jet fragmentation at large invariant
mass. This result was initially noted for pp and ep at small
Bjorken x [37,38]. The KNO-based arguments confirm the
identification of (64) with the entanglement entropy for
QCD, as computed from QCD evolution equations [38].
The fact that (64) is also recovered for the schematic form
of the Lund model discussed here, underlines the duality
of the partonic and string descriptions of QCD. It also
reflects on the Markovian character of both fragmentation
processes.

FIG. 6. Entanglement entropy (60) as function of the mass ratio
x ¼ M=mρ for different 0t Hooft coupling λ. The dashed lines

indicate x ¼ 4λ
1
4

π
ffiffi
2

p .
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VI. CONCLUSIONS

We have revisited the holographic Schwinger pair
creation process in the simplest confining AdS geometry,
a slab of AdS5 with a wall at z ¼ zH. When zH is removed
to infinity, confinement disappears and the pair creation
process in curved AdS initially discussed in [5] is recov-
ered for both weak and strong electric fields. As the pair
recedes, a holographic string develops with an ER bridge
forming in the bulk, encoding geometrically their quantum
entanglement [2].
In a dynamical pair creation process, the quantum

entanglement entropy is composed of a contribution from
the string above the ER bridge, minus the contribution from
the string as it enters the ER bridge [6,8]. The latter is dual
to the real radiation in the Minkowski space on the
boundary. Part of the contribution above the ER bridge
can be traced back to the tunneling process. It decreases
linearly the stronger the electric field, and vanishes when
the field reaches its critical value Ec, for which the potential
barrier disappears. The process of pair creation becomes
“classical,” with no tunneling penalty.
In the presence of confinement, the pair creation process

is altered. The creation process occurs only for electric
fields in the range σT < E < Ec. For sufficiently weak
electric fields in comparison to the string tension σT ,
confinement inhibits the pair creation process, as virtual
pairs strongly bind in the vacuum.
For moderately weak fields in the range σT < E ≪ Ec,

the quantum entanglement is stronger, since the confining
scale overrides the ER bridge. The increase in the quantum
entanglement of the produced pair is caused by their
binding through the string through the hard wall in bulk.

For moderately strong electric fields in the range
σT ≪ E < Ec, the ER bridge overrides the hard wall, with
the quantum entanglement reducing to that of the con-
formal AdS space, and fixed by the causal and noncausal
contributions delineated by the ER bridge.
Using the Lund model, as a prototype for string breaking

in 1þ 1 dimensions, we have suggested that the Schwinger
tunneling probability is directly related to the entanglement
entropy, through the KNO scaling.
The effects of strong coupling on quantum entanglement

between the produced particles in time-dependent electric
backgrounds is also of great interest. We will report on
the results of the corresponding study in a forthcoming
publication.
In recent years, the advent of intense lasers and energetic

particle beams has led to substantial progress in the study of
QED in intense background fields (see [39,40] for reviews).
One important nonperturbative phenomenon in this regime
is the Schwinger effect. The effects of quantum entangle-
ment in this process have to be explored, and we hope that
our work is a step in that direction.
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