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We study the phase diagram of a strongly coupled confining theory in 2þ 1 dimensions, as a function of
temperature and baryon chemical potential. The theory has a fully fledged supergravity holographic dual,
that we use to predict a line of first-order phase transitions separating a confining phase and a deconfined
phase. Both phases exhibit a nonzero baryon density thus providing a first example of baryonic matter in a
confining string dual that does not require the introduction of flavor branes. We argue that the confining
phase is a baryon superfluid, while the deconfined phase has nonzero baryon magnetization.
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I. INTRODUCTION

Quantum chromodynamics (QCD) at a few times the
nuclear saturation density, as found at the core of heavy
neutron stars, is notoriously hard to describe. Perturbation
theory is not applicable, lattice QCD suffers from the sign
problem, and one is outside the regime of controlled
effective theory descriptions such as chiral perturbation
theory. Gauge/gravity duality avoids the aforementioned
issues and may be useful to get a handle on this problem by
studying theories similar to QCD at nonzero baryon
density. However, it should be noted that an exact dual
of QCD is not know, and tractable holographic models
require additional simplifications of the field theory, such
as taking parametrically large number of colors and ’t Hooft
coupling, so one should be careful when extracting general
lessons.
A baryonic symmetry in holographic models is usually

realized through flavor branes [1]. Baryon charge density is
straightforward to introduce in deconfined phases, where
the baryon charge in the dual description is inside the

horizon of a black brane [2–8]. In confined phases,
however, it becomes technically challenging to deal with
a finite density of baryons, since the dual objects are heavy
solitons on the flavor branes [9–13]. This can be traced to
the classical approximation in gravity corresponding to a
large-N limit in field theory, so that baryons are large
operators with ∼N fields. Nevertheless, there have been
attempts to construct finite baryon density states through
soliton lattices [14–18] or by introducing additional phe-
nomenological simplifications to deal with homogeneous
configurations [19–34] (see [35,36] for recent reviews on
the topic). Alternatively, one may look for different
realizations that allow to introduce a nonzero baryon
density in the gravity dual without the need for charged
solitons. For instance, a possibility studied in [37] was to
employ a Corrigan-Ramond-type of extrapolation to large
N proposed in [38], but this was restricted to a quenched
approximation for flavors. Here, we will follow a different
path and present for the first time a fully fledged classical
supergravity solution that is dual to a three-dimensional
confining theory at nonzero baryon density in a homo-
geneous state and that does not rely on additional phe-
nomenological assumptions. We will study the phase
diagram as function of temperature and baryon chemical
potential and identify the location of transitions to a
deconfined phase. In contrast to other models, the flux
dual to the baryon density is not sourced by introducing
charged solitonic objects, but it is generated thanks to
nontrivial interactions among neutral supergravity fields.
Although this model cannot be applied directly to QCD,
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due to its different dimensionality, a similar mechanism
might allow to introduce baryon charge in supergravity
duals to confining four-dimensional theories such as
Klebanov-Strassler [39]. Black branes dual to deconfined
phases with baryon charge were already found in [40].

II. HOLOGRAPHIC MODEL

In the absence of baryon charge, the gravity dual
geometry is the Bconf

8 solution identified in [41–43] as
dual to a three-dimensional confining theory that flows in
the UV to a minimally supersymmetric Yang-Mills theory.
At large enough temperatures there is a first-order
(Hawking-Page) transition to a black hole dual to a
deconfined phase [44]. These solutions can be found in
a four-dimensional consistent truncation of supergravity
that allows for the inclusion of Abelian vector fields
[45,46], one of which is massless and therefore dual to a
global conserved current in the field theory. In [46] the
family of solutions was extended by turning on the electric
and magnetic components of the vector fields. Details about
the solutions are given in Appendix A. With Dirichlet
boundary conditions for the massless vector field, it was
argued there that the dual was a quiver theory with UðNÞ ×
UðN þMÞ gauge group, consisting of a N ¼ 1 vector
multiplet for each gauge group factor and four scalar
multiplets in bifundamental representations. The ratio
N=M ≫ 1 is an integer, and the global current was
identified as the topological current counting the magnetic
flux of the diagonal U(1) gauge group. The associated
charge thus counts the number of monopoles.
The same class of gravity solutions has a different

interpretation if an alternative set of boundary conditions
is chosen for the vector field, following the discussion in
[47]. With Neumann boundary conditions one can perform
an electromagnetic duality transformation in the four-
dimensional gravity theory, which from the three-
dimensional field theory point of view is a particle-vortex
ormirror-duality transformation [48,49]. In this case the field
theory becomes a quiver with SUðNÞ × SUðN þMÞ gauge
group, and the global conserved current corresponds to a
Uð1ÞB baryonic symmetry acting on fields in the bifunda-
mental representation. In this map, global charge and back-
ground magnetic field are interchanged. Therefore, the
confining solutions found in [46] with zeromonopole charge
and nonzero monopole magnetic field map through the
particle-vortex duality to confining solutions with nonzero
baryon charge and zero baryon magnetic field.
In order to complete the phase diagram we also construct

black hole solutions dual to a deconfined phase with
nonzero baryon chemical potential and zero baryon mag-
netic field. This can be done by starting with the black hole
solutions found in [46] and tuning the monopole chemical
potential (which was set to be zero in the original setup)
until the monopole charge density vanishes at nonzero
monopole magnetic field. We emphasize that all the

solutions we consider are regular solutions to ten-dimen-
sional type IIA supergravity.

A. Monopole-baryon duality

The ten-dimensional geometry dual to the three-
dimensional confining theory is of the form M4 × fCP3,
where M4 spans the field theory directions and the holo-
graphic radial coordinate, and fCP3 is an internal space
which is a deformation of CP3.
Branes wrapped on the internal space and ending at the

asymptotic boundary of M4 are dual to local operators.
These branes couple electrically to a Ramond-Ramond
form potential of rank equal to their dimension and
magnetically to a form obtained through Hodge duality,
see table below

RR-form Hodge dual Electric Magnetic

C1 C7 D0 D6
C3 C5 D2 D4

D0 and D2 branes are dual to monopole operators, while
D4 and D6 branes are dual to dibaryon and baryon
operators respectively. Boundary conditions for the form
potentials determine whether a brane can end at the
boundary, and therefore, whether the corresponding dual
local operator exists in the theory. A UðNÞ × UðN þMÞ
theory has gauge-invariant monopole operators, but the
would be baryonic symmetry is gauged so there are no
dibaryon or baryon operators in the physical spectrum. This
translates into Dirichlet boundary conditions for C1 and C3.
Conversely, a SUðNÞ × SUðN þMÞ theory contains
baryon operators but no monopoles, and this translates
into Dirichlet boundary conditions for C5 and C7.
Upon reduction to four-dimensional supergravity, the

relevant components of each form introduce a vector field.
More precisely, C1 and

R eCP3 C7 give rise to vectors a1 and
A1, respectively. These are massless and thus holograph-
ically dual to conserved global currents. In particular, a1 is
dual to the monopole charge and A1 to the baryon charge.
Which symmetry is present is determined by the boundary
conditions inherited from the forms in ten dimensions. We
will identify the components with unit coupling to the D0
and D6 branes as the gauge fields dual to the monopole and
baryon currents

a1 ¼ gsls
M2

N
AM; A1 ¼ 3 × 25π3gsl7

s
N2

M
AB; ð1Þ

with gs and ls the string coupling and length.
In [46] the reduction to four dimensions was made using

C1 and C3, which introduces naturally Dirichlet boundary
conditions for these forms, so the holographic dual contains
monopoles. We can implement the change in boundary
conditions that takes us to a theory with baryons by adding
a term to the four-dimensional supergravity action
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Sdual ¼
1

2κ24

Z
da1 ∧ dA1 ¼

NM
2π

Z
dAM ∧ dAB; ð2Þ

where κ24 ¼ 3 × 25π4g2sl8
s is the four-dimensional Newton’s

constant. Since the new term is a total derivative, it does not
affect the equations of motion or the solutions, but it
modifies the value of the on shell action.
We introduce a similar term for the reduction of C3 and

C5, so that D4 branes can end at the boundary and there are
dibaryon operators in the holographic dual. This term,
however, does not alter the value of the free energy because
the corresponding gauge fields are massive, so we omit its
explicit form here.

B. Baryon and dibaryon operators

The SUðNÞ × SUðN þMÞ theory is minimally super-
symmetric in three dimensions. It contains N ¼ 1 scalar
multiplets A1 and A2 in the bifundamental and B1 and B2 in
the antibifundamental representations of the gauge group.
They form doublets of the global flavor symmetry
USpð2Þ ⊂ SUð4Þ, which matches the isometry of the
internal space in the holographic dual. Ai and Bi also carry
opposite charge under the global Uð1ÞB symmetry.
Baryon and dibaryon operators are built in a way similar

to the Klebanov-Strassler dual [50,51]. A dibaryon operator
is (omitting flavor indices)

DβNþ1���βNþM ¼ ϵα1���αNþMϵβ1���βNA
β1
α1 � � �AβNþM

αNþM : ð3Þ

The dibaryon is thus in a completely antisymmetric
representation of the SUðNÞ group. The antidibaryon has
a similar form with Bs instead of As. The baryon operator is
a singlet of the gauge group. Its explicit form is

B ¼ ϵβ1���βM ���βN−Mþ1���βND
β1���βM � � �DβN−Mþ1���βN : ð4Þ

Therefore, a baryon is a singlet formed out of N=M
dibaryons, and an antibaryon is constructed in a similar
way from antidibaryons.
As we have mentioned, the dual of a dibaryon operator is

a D4 brane wrapping a CP2 cycle in the internal space. The
D4 Wess-Zumino action includes a term (see Appendix B
for details)

SD4 ⊃ M
Z

A; ð5Þ

where A is the gauge field on the brane and the M factor is
determined by the background F4 flux. This produces a
tadpole on the worldvolume that needs to be canceled by
attachingM strings to the D4 brane, analogously to [51]. The
counterpart in the field theory is that a dibaryon operator is
not gauge invariant but a gauge-invariant operator can be
formed by combining it with M Wilson lines.
The dual to the baryon operator, a D6 brane wrapping the

whole fCP3, does not have tadpoles in agreement with B
being a singlet. When the D6 brane is taken to the
asymptotic boundary, the background B2 field induces a
coupling (see Appendix B)1

SD6 ⊃
N
M

�
TD4

Z
C5

�
; ð6Þ

with TD4 the tension of a D4 brane. This implies that a D6
brane carries N=M units of D4 brane charge, consistently
with the expression in (4). As the D6 is taken to the interior
of the geometry, which corresponds to a flow from the UV
to the IR of the field theory, there is a duality cascade that
reduces the rank of the gauge groups, as described in [46].
The D4 charge carried by the D6 brane is also reduced
through the cascade, until it becomes one when the brane is
close to the origin, where the dual gauge group is just
SUðMÞ and the theory confines. At this stage, the baryon
and dibaryon operators are

Dβ1���βM ¼ A½β1 � � �AβM �; B ¼ ϵβ1���βMD
β1���βM : ð7Þ

Therefore, in the IR we have just aN ¼ 1 SQCD2þ1 theory
with two flavors and the D6 brane is dual to the usual
baryon.

-14 -12 -10 -8 -6 -4 -2 0

-1

-3

-5

-7

-9

FIG. 1. Density plot for the logarithm of the entropy density as
a function of the chemical potential μB and temperature T. The
confined and plasma phases are separated by a line of first-order
phase transitions, represented by a thick black curve on the plot.
Isentropic lines are shown in white.

1This statement depends on the gauge choice for B2. Through
large gauge transformations this coupling can be set to zero, in
which case the D6 develops a tadpole so that N strings have to be
attached to it. The baryon in this case is formed by adding N=M
D4 branes on which bundles of M strings end.
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III. THERMODYNAMICS
AND PHASE DIAGRAM

Following the established holographic dictionary, the
free energy equals the gravitational on shell action.
Expressions for thermodynamic quantities in the theory
with monopoles, computed in [46], are collected in
Appendix C. They are given in units of the characteristic
scale of confinement ΛQCD ¼ λðM=NÞ3, where λ is the
dimensionful ’t Hooft coupling of 2þ 1 super Yang-Mills.
The action of the theory with baryons differs only by the

term in (2), which allows to derive a relation between the
free energies of both theories. More precisely, if μM, μB are
the chemical potentials for monopoles and baryons and
QM, QB are the associated charges, the relation between
the free energies is

GB ¼ GM þ μMQM − μBQB: ð8Þ

The baryon chemical potential and charge are proportional
to the monopole magnetization and magnetic field

μB ¼ −
2π

NM
∂GM

∂BM
; QB ¼ −

NM
2π

BM: ð9Þ

There is a similar map between monopole charge and
baryon magnetic field

μM ¼ 2π

NM
∂GB

∂BB
; QM ¼ NM

2π
BB: ð10Þ

The equations and solutions for different values of the
monopole charges and magnetic field were described in
[46]. Here we can use those results together with the map
between the theories with monopoles and baryons to

describe the phase diagram of the latter. We will be
focusing on the case with BB ¼ QM ¼ 0. The results
are summarized in Figs. 1 and 2. We observe a line of
first-order phase transitions between a low-temperature and
chemical potential confined phase and a deconfined phase.
Interestingly, the baryon density in the confined phase is
nonzero. Thus, this corresponds to a genuine phase of
homogeneous baryonic matter in holography. At the
deconfining phase transition we observe that the entropy
changes significantly, especially at higher temperatures, but
the baryon density is quite insensitive. However, when the
temperature goes to zero, the entropy density vanishes. The
baryon density, though, still changes discontinuously
and thus the transition remains of first order. In the
following we will describe some of the properties of each
phase.

A. Deconfined phase: Baryon ferromagnet

In the deconfined phase there is a nonzero baryon
magnetization at zero magnetic field, signaling parity
breaking in the underlying theory. Since the baryon
magnetic field has been set to zero, this implies that this
phase is ferromagnetic. It should be noted that “ferromag-
netic” in this context does not involve spin, or spontaneous
breaking of a global symmetry.
The thermal equilibrium state can be thought of as a

relativistic fluid at rest. When parity is broken there are
additional transport coefficients contributing linearly in the
magnetic field to the pressure [52]. These can be extracted
from a term of the (Euclidean) effective action that takes the
simple form [53–55]

GB ¼ T
V2

Seff ⊃ −
T
V2

Z
d3xMBðT; μBÞBB; ð11Þ

where V2 is the spatial volume. Charge conjugation
symmetry forces the magnetization to be odd in the baryon
chemical potential, MB ¼ −μBν̄ðT; μ2BÞ=ð2πÞ, in such a
way that this term looks like an incomplete Chern-
Simons term with coefficient ν̄.
We plot the value of the coefficient ν̄ as a function of the

temperature for different chemical potentials in Fig. 3. The
coefficient shows a rather weak dependence on the baryon
chemical potential, for the values we have studied, and it
decreases from a finite value ν̄≲ ð3.6–3.8ÞNM as the
temperature increases to an asymptotic value ν̄ðT → ∞Þ ¼
3NM. This suggests that the UV theory has a parity
anomaly that generates a Chern-Simons term for a back-
ground baryon gauge field. It should be mentioned that the
supergravity flux dual to Chern-Simons terms for color
gauge fields is zero in these solutions, so parity breaking
should involve other fields, for instance through the
generation of an effective fermion mass term.
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1.25
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0.75

0.0 5.0 0.1 1.5

FIG. 2. Density plot of the baryon charge of the preferred phase
at every chemical potential and temperature. Remarkably, the
charge density is finite in the confining phase. Contours of
constant density are marked by thin black lines.
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B. Confined phase: Baryon superfluid

In [46] it was shown that the monopole charge vanishes
exactly in the confined phase. Following the particle-vortex
duality, this implies that it is not possible to introduce a
nonzero homogeneous magnetic field for baryons in the
low temperature phase, a distinct signature of a superfluid
baryon phase (which would be superconducting if the
baryon gauge field was made dynamical). Since the super-
conductor is a perfect diamagnet, the magnetization will
cancel exactly an applied magnetic field. Thus, the mag-
netization can take an arbitrary value as long as the
superconducting phase is not destroyed. The equivalent
statement in the dual, that the monopole chemical potential
is arbitrary in the confined phase, was already pointed out
in [46].
In this phase, the Uð1ÞB symmetry is spontaneously

broken, so we expect to have a Goldstone boson, massless
at zero μB. A similar situation was encountered in 3þ 1
dimensions in the Klebanov-Strassler solution, where the
supergravity mode dual to the Goldstone was identified in
[51,56,57]. In the case at hand we expect the Goldstone to
be a mode of the vector fields. Note that Mermin-Wagner’s
theorem, which forbids symmetry breaking at finite temper-
ature in 2þ 1 dimensions, is avoided by the holographic
model due to the large-N limit that suppresses fluctuations.

IV. CONCLUSIONS

We have presented the first string theory example of a
holographic dual to a strongly coupled confining theory
with nonzero baryon density that does not rely on probe
flavor branes and does not require considering multi-
instanton solutions or phenomenological approximations
to those.
In the realm of 2þ 1 dimensions, we have applied

particle-vortex duality to produce the phase diagram of a
N ¼ 1 supersymmetric theory with baryons, from the

original one studied in [46]. These are close to non-
supersymmetric theories in that there are no nonrenorm-
alization theorems based on holomorphycity, so that very
little is known about them. For instance, the phase diagram
has been studied previously only for theories with a single
group factor or nonzero Chern-Simons levels [58,59].
The theory exhibits rich dynamics, including a duality

cascade and superfluid and (baryon) magnetic phases.
Although this model is of no direct application to QCD,
we expect similar higher-dimensional holographic models
such as Klebanov-Strassler to have qualitatively similar
phase diagrams. It is thus interesting to discuss the impli-
cations for the holographic description of baryonic matter.
The ground state is different than QCD in that baryon

symmetry is spontaneously broken, as it also happens for
the Klebanov-Strassler model in the baryonic branch. Thus,
we do not expect these type of holographic models to be a
good description of QCD at low chemical potentials.
Remarkably, at large enough densities, the superfluid phase
is closer in nature to what has been observed for QCD
nuclear matter than what is usually found in large-N
models, although the precise state of matter at densities
above a few times the saturation density is unknown.
Assuming the qualitative properties of baryonic matter
do not change before the deconfinement transition, this
kind of holographic constructions could then provide a
good description at densities above the saturation density,
where conventional methods fail.
Thus, in spite of the gauge theory discussed being three-

dimensional, our paper provides a proof of principle that it
is possible to model confining states with homogeneous
baryon density more realistically in holographic theories,
evading some of the problems in describing baryons
inherent to the large-N limit.
Finally, it could also be interesting to explore similar

models for their possible application to condensed matter
systems of strongly correlated fermions and unconventional
superconductivity, see [60] for a recent review on related
topics.
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APPENDIX A: BACKGROUND

The metric describing the holographic dual geometry in
type IIA supergravity is, in the string frame,

ds2st ¼ h−
1
2ð−bdt2 þ dx21 þ dx22Þ

þ h
1
2

�
dr2

b
þ e2fdΩ2

4 þ e2g½ðE1Þ2 þ ðE2Þ2�
�
;

eΦ ¼ h
1
4eΛ; ðA1Þ

with f, g, h, b, and Λ depending only on the radial
coordinate r. Here, E1 and E2 are vielbein forms spanning a
two-cycle in the internal space. Together with the S4 metric
dΩ2

4 they form a squashed CP3 (for f ¼ g one recovers the
Fubini-Study metric and there is no squashing).
There are two types of solutions; confining, where

e2g → 0 at the origin (the two-cycle collapses smoothly)
and black branes, where b → 0 at the horizon.
In addition to the metric and dilaton, the following

background forms are turned on

Ffl
4 ¼ qcðJ2 ∧ J2 − X2 ∧ J2Þ;

B2 ¼ b2 þ bXX2 þ bJJ2;

C1 ¼ a1;

C3 ¼ a3 þ ã1 ∧ X2 þ â1 ∧ J2 þ aJJ3; ðA2Þ

where J2, X2, X3, and J3 are two and three-forms on the
internal space, see [46] for more details. The functions bX,
bJ and aJ are scalars from the four-dimensional point of
view and depend solely on the radial coordinate r in (A1).
The flux qc determines the offset in the groups’ ranks

qc ¼
3πl3

sgs
4

M: ðA3Þ

There are three vectors (one-forms) that we para-
metrize as

a1 ¼ atðrÞdtþ gsls
M2

N
BM

2
ðx1dx2 − x2dx1Þ;

ã1 ¼ ãtðrÞdt; â1 ¼ âtðrÞdt; ðA4Þ

for some constant BM. The prefactor has been chosen so
that it corresponds to the physical monopole magnetic field.
We also have three- and two-forms a3 and b2. The only
nontrivial components are

a3¼ at12ðrÞdt∧ dx1 ∧ dx2; b2¼ b12ðrÞdx1 ∧ dx2: ðA5Þ

Notice that the three-form lives in the external four-
dimensional space and therefore it is nondynamical.
Indeed, it can be dualized to a constantQc which regularity
at the origin fixes to zero Qc ¼ 0. Similarly b12 can be
dualized to an axion which gives mass to the combination
of vectors ã1 − â1, so it does not contain independent
degrees of freedom.
It is convenient to work with the radial coordinate

dr ¼ −
ρ0

ξ2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ4

p dξ; ðA6Þ

where the scale is determined by

ρ0 ¼ jb0j
l2
s

2
λ
M2

N2
; ðA7Þ

with b0 a dimensionless constant and λ the dimensionful
’t Hooft coupling of the dual theory. At vanishing magnetic
field in the confining solutions its value is b0ðBM ¼ 0Þ ¼
−3Kð−1Þ, with KðmÞ the complete elliptic integral of the
first kind. This is also the value for black brane solutions.
In this coordinate, the asymptotic boundary is at ξ → 0 and
the origin/horizon at ξ → 1 for the confining solutions and
at ξ ¼ ξh < 1 for the black brane solutions.

APPENDIX B: D4 AND D6 ACTIONS

The gauge theory is subject to a “cascade” that changes
the rank of the groups as it flows towards the IR. The
precise way in which the gravity dual captures this effect is
explained in [46]. At each step of the cascade the NS two-
form changes as

δB2 ¼ πl2
sðX2 − J2Þ; ðB1Þ

with ðX2 − J2Þ a closed but nonexact form—so that the
equations of motion are not altered—that describes the two-
cycle, with volume

R
CP1ðX2 − J2Þ ¼ 4π. This produces a

change in the Wess-Zumino action of a D6 brane wrapping
the internal space

δSD6 ¼ −TD6

Z
δB2 ∧ C5 ¼ −

�
TD4

Z
C5

�
; ðB2Þ

that is, at each step of the cascade the D6 brane looses one
unit of D4 charge. There areN=M steps in the cascade [46],
so one starts with N=M units of dibaryon charge at the
boundary and ends with vanishing charge at the bottom of
the cascade.
On the other hand, the tadpole on the wrapped branes is

measured by the corresponding Page charge. For a D4
brane it reads

TD4

Z
Ffl
4 ∧ ð2πl2

sAÞ ¼ M
Z

A; ðB3Þ
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where we have used the four-form flux in (A2) as well as
the quantization condition (A3). This means that each D4
brane comes with M strings attached in order to cancel the
tadpole.
Similarly, the tadpole for a D6 brane vanishes in the IR

but is N=M at the boundary due to the cascade (see the
computation of the Page charge in [46]). At every step of
the cascade this tadpole is canceled by the M strings
attached to each of the remaining D4 branes and ending on
the D6.
All of this is compatible with the interpretation of

a D4 and a D6 brane as a dibaryon which is not gauge
invariant—and a baryon—a gauge-invariant combination
of N=M dibaryons, respectively.

APPENDIX C: THERMODYNAMIC QUANTITIES

The boundary expansions of the metric and dilaton take
the form

e2f ≃
ρ20
2ξ2

ð1þ � � � þ f5ξ5Þ; e2g ≃
ρ20
4ξ2

;

h ≃
128q2c
15ρ60

jb0jξ5; b ≃ 1þ b5ξ5; eΛ ≃ 1; ðC1Þ

where we have showed only the leading terms and the
independent subleading coefficients appearing later in the
expressions for thermodynamic quantities. Similarly, for
the scalars the expansions are

bJ ≃
2qc
3ρ0

b0; bX ≃ −
2qc
3ρ0

b0; aJ ≃
qc
6
: ðC2Þ

Finally, the vector potentials are written as

at ≃
ρ30
qc

ðv0 þ v1ξÞ; ât ≃ ρ20
2b0v1
15

ξ; ãt ≃−ρ20
2b0v1
15

ξ:

ðC3Þ
The boundary expansion of the warp factor determines the
number N of D2-branes as follows:

h ≃
16

5

QD2

r5
; QD2 ¼ 3π2l5

sgsN: ðC4Þ

With N determining the rank of the gauge groups.
We will also use the expansions at the horizon in the

black brane solutions. The leading terms are

e2f ≃ ρ20fh; e2g ≃ ρ20gh; h ≃
128q2c
9ρ60

hh;

b ≃ bhðξ − ξhÞ; eΛ ≃ λh: ðC5Þ
It will be convenient to introduce the characteristic scale

of the confining phase

ΛQCD ¼ λ

�
M
N

�
3

: ðC6Þ

The map to thermodynamic quantities in the theory with
monopoles was derived in [46], here we present a summary
of the results. In the black brane solutions (plasma phase)
the temperature and entropy density are obtained from the
surface gravity and area of the horizon

splas ¼ NMΛ2
QCD

jb0j3
211π3

512
ffiffiffi
2

p
πf2hghh

1
2

h

3λ2h
;

Tplas ¼ ΛQCD
b20
3π

3jbhjξ2hð1 − ξ4hÞ
1
2

32
ffiffiffi
2

p
πh

1
2

h

: ðC7Þ

The entropy vanishes in the confining phase sconf ¼ 0,
while the temperature Tconf is arbitrary.
The chemical potential is fixed by the asymptotic value

of AMt. For the black brane solutions it is

μM ¼ ΛQCD
jb0j3
6π

v0: ðC8Þ

In the confining solutions μM is arbitrary. The monopole
charge density is

QM ¼ −NMΛ2
QCD

b40
2160π3

ð20b̄b0 þ 27v1Þ: ðC9Þ

The monopole charge density vanishes identically when
evaluated on confining solutions, but it is generically
nonzero in the plasma phase.
The energy density, pressure, and spatial components of

the energy momentum tensor are

EM ¼ NMΛ3
QCD

jb0j5
3 × 211π4

�
−
7b5
2

− f5

�
;

Tx
x ¼ PM − BMMM

¼ NMΛ3
QCD

jb0j5
3 × 211π4

�
−
3b5
2

þ f5

�
; ðC10Þ

were MM is the monopole magnetization.
Finally, the magnetization can be written as

MMconf ¼ NMΛQCD
3 × 5

210π2
b5
b̄
;

MMplas ¼ NMΛQCD
3 × 5

210π2

�
b5
b̄
−
256

135
b30v0

−
16

25

5bhf2hghξ
2
hð1 − ξ4hÞ

1
2 þ 4b20λ

2
hv0v1

b̄λ2h

�
; ðC11Þ

for the confined and plasma phases, respectively.
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