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We study the evolution of holographic subregion complexity (HSC) in a thermally and magnetically
quenched, strongly coupled, quantum field theory in 2þ 1 dimension. We illustrate two concepts of
complexity in this theory: (1) how much information it takes to specify a state by studying the behavior of
the final value of HSC in terms of the final temperature and magnetic field and (2) how long it takes to reach
the state, by considering the time it takes for HSC to relax as a function of the final temperature and
magnetic field. In the first concept, we observe that the effect of temperature and magnetic field on HSC
decreases until the energy of the probe is comparable to the final temperature and magnetic field. We
present an argument based on an ensemble of microstates corresponding to a given mixed macrostate. In
the second concept, we show that the time of relaxation of HSC decreases with the increase of temperature
and magnetic field for fixed values of the energy of the probe. We also compare the time evolution of HSC
for two quenches in the first concept. We observe that the absolute value of the ratio of the final value of
HSC for two kinds of quenches depends on the energy of the probe.
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I. INTRODUCTION

Studying the evolution of out-of-equilibrium systems as
they move towards equilibrium is a crucial aspect of
physics. When these systems are both far from equilibrium
and strongly coupled, they become considerably more
complex to investigate. To address such nonperturbative
problems, including far-from-equilibrium phenomena, one
of the tools that physicists have employed is the gauge-
gravity duality, or the holographic idea. This duality as a
useful framework maps strongly coupled field theories to
weakly coupled gravity in one more dimension [1]. A
noteworthy example of a strongly coupled and far-from-
equilibrium medium is the quark-gluon plasma (QGP)
generated during heavy ion collisions at the Relativistic
Heavy Ion Collider (RHIC). Experimental observations
have revealed that the timescale required for this plasma to
reach thermal equilibrium is significantly shorter than what
perturbative methods would predict [2].
Such thermalization processes are discussed in the

subject of holographic thermalization. One of the ways
that a far-from-equilibrium state is prepared is that a limited
duration source in time is activated in the boundary field

theory. Prior to activating the source, the system exists in its
ground sate. The external source performs work on the
system, causing it to reach an excited state. This excited
state undergoes temporal evolution and eventually, upon
deactivating the source, settles into a thermal equilibrium
state. The representation of this process on the gravity side
is encoded in the process of the formation of a black hole in
the bulk [3]. A thermal quench in the boundary theory
corresponds to the collapsing of a shell of uncharged matter
to anti–de Sitter (AdS) space-time and formation of a
Schwarzschild black hole. An electromagnetic quench can
be dual to the addition of a shell of charged matter to AdS
space-time and the formation of an extremal dyonic black
hole [4], as reviewed in this paper. Time evolution of this
far-from-equilibrium system can be probed by local and
nonlocal observations, and the HSC is the probe we are
interested in here.
The holographic concept establishes a connection

between quantum information theory quantities and spe-
cific geometric quantities in the bulk theory. For instance,
the Hubney-Rangamani-Takayanagi (HRT) proposal,
which utilizes entanglement entropy as a measure of
quantum correlation in a pure quantum state, serves as a
straightforward geometric approach [5] that has passed
numerous tests successfully [6–14]. Complexity, a funda-
mental concept in quantum information theory, is defined
as the minimum number of simple gates required to
generate a given state from a reference state [15]. This
quantity refers to the time and space resources needed to
perform a computation efficiently [16]. In the realm of
quantum field theory, complexity pertains to the minimum
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number of unitary operators needed to transform a reference
state into a target state [17]. Essentially, complexity can be
used to classify different quantum states based on the
difficulty of their preparation.Within the holographic frame-
work, two conjectures have been proposed to describe
complexity: the CV (complexity ¼ volume) conjecture
and the CA (complexity ¼ action) conjecture. The complex-
ity in the CA conjecture is determined by evaluating the bulk
action on the Wheeler–de Witt patch, which is anchored at a
specific boundary time. On the other hand, in the CV
conjecture, complexity is defined as the volume of a
codimensional-one hypersurface in the bulk that terminates
on a time slice of the boundary [18,19]. Initially introduced
for the complexity of pure states in the entire boundary
system, both conjectures can be extended to encompass the
complexity of mixed states in corresponding subregions
[20,21]. Inspired by the Hubney-Ryu-Takayanagi proposal,
the CV proposal extends to encompass subregions, corre-
sponding to the complexity of mixed states, and is referred to
as HSC, in which the complexity of a subsystem on the
boundary is determined by the volume of a codimensional-
one hypersurface enclosed by a Hubney-Ryu-Takayanagi
surface [21]. Numerous studies exploring the CV and CA
conjectures, as well as HSC for various gravity models, can
be found in the literature [22–34]. It is worth noting that in
quantumsystems several approaches have been introduced to
ensure that the definition of complexity for mixed states does
not depend on arbitrary degrees of freedom and can be
reduced to the definition of complexity for pure states
through purification, such as the spectrum, purification,
and ensemble approaches [35]. As a result, various inter-
pretations ofHSCalso emerge, and the best interpretationhas
not yet been provided. The description we are using here is
that HSC serves as a criterion for quantifying the amount of
information required to specify a particular mixed state. In
other words, it indicates how difficult it is to generate and
specify that mixed state.
In this paper we study the evolution of HSC on a far-

from-equilibrium state, under a thermal and an electro-
magnetic quench for a 2þ 1 strongly coupled quantum
field theory. The evolution of HSC under a thermal quench
was first studied in [36]. The new result here is the study of
this evolution at zero temperature under a magnetic quench.
We try to present the results with a newer perspective
compared to what has been done so far, and we compare the
results for two types of quench with each other. We
numerically calculate the final value of HSC and the
relaxation time, the time it takes for HSC to reach a
constant value, as the system moves towards equilibrium.
We focus on the effect of the energy of the probe, which is
characterized by the length of the subregion considered in
the boundary as the given mixed state, on the behavior of
HSC. Our idea is that in the study of quenched systems
holographically, we can highlight two distinct concepts of
complexity introduced in the quantum information

literature [16], that is, how much information it takes to
specify a state and how many operations are required to
reach the state. The final value of HSC as a function of
temperature and magnetic field can represent the first
concept, and the relaxation time may indicate the second
one. We start with a short review on the backgrounds in
Sec. II and then compute the HSC in Sec. III and discuss its
behavior with numerical results in Sec. IV.

II. REVIEW ON THE BACKGROUND

In this section we review the time-dependent asymp-
totically AdS4 geometries corresponding to a thermal
and electromagnetic quenched quantum field theory.
Holographically, a quench in a quantum field theory
can be represented as the collapse of a thin shell of null
dust falling from the AdS boundary to form a black hole.
This phenomenon can be effectively described using the
Vaidya-AdS metric. The metric of the Vaidya-AdS4 can be
written as follows [3],

ds2 ¼ 1

z2
ð−fðz; vÞdv2 − 2dzdvþ dx⃗2Þ: ð1Þ

The coordinate v labels the path of the ingoing null
trajectory and aligns with the time coordinate t on the
boundary as z approaches zero. Note that z is the radial
coordinate, x⃗≡ ðx1; x2Þ, and the AdS radius is set to be
one. For the thermal quench in which collapsing of an
uncharged source leads to the formation of an AdS4-
Schwarzschild black hole at late times, corresponding to a
thermal state in the dual boundary quantum field theory,
we have

fðz; vÞ ¼ 1 −
�

z
z0ðvÞ

�
3

; mðvÞ ¼ z0ðvÞ−3; ð2Þ

where mðvÞ is the mass function of the infalling shell. The
subsequent functional form is considered for z0ðvÞ [37],

z0ðvÞ ¼ z∞

�
1þ tanhðv=v0Þ

2

�
−1=3

; ð3Þ

in which v0 characterizes the thickness of the shell or the
duration of the quench. The parameter z∞ can be under-
stood as being connected to the final temperature of the
background in the late time regime [37],

T ¼ 3

4π
z−1∞ : ð4Þ

It is possible to study a completely different type of
quench in this system. This nonthermal quench is
achieved by introducing electric and magnetic sources
in the theory. To ensure a fully nonthermal system, we
approach the extremal (zero temperature) black hole
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solution at late times [37]. The electric components at late
times correspond to nonzero charge density and chemical
potential in the dual 2þ 1 dimensional boundary quantum
field theory [38], while the magnetic components corre-
spond to a background magnetic field [39]. Considering
the presence of the electric-magnetic duality invariance of
the four dimensional gravity system, different choices of
electric or magnetic sources can be interchanged, and for
convenience, it is often considered that the systems are
undergoing a purely magnetic quench. In this case, the
function f is taken to be [37]

fðz; vÞ ¼ 1 − 4

�
z

z0ðvÞ
�

3

þ 3

�
z

z0ðvÞ
�

4

: ð5Þ

The same quench profile for z0ðvÞ, Eq. (3), is chosen, and
this time the parameter z∞ determines the final strength of
the magnetic field [37],

B ¼
ffiffiffi
3

p
z−2∞ : ð6Þ

We use the metric (1) with (2) and (5) for the thermal and
electromagnetic quenches, respectively, to discuss time
evolution of the HSC. In order to further study these
backgrounds and examine holographic entanglement
entropy in them, we refer to Ref. [37].

III. HOLOGRAPHIC SUBREGION COMPLEXITY

The mixed state’s complexity, which corresponds to a
subregion A on the boundary, is linked to the volume
contained by the extremal surface γA that appears in the
computation of holographic entanglement entropy by the
HRT proposal [21], i.e.,

CA ¼ VγA

8πRGN
; ð7Þ

where R, GN , and CA are the AdS radius, Newton’s
constant, and the HSC for the subregion A, respectively.
To calculate γA at a given time, we take into account
subregion A, which has been defined as

A ≔ x1ð≡xÞ∈
�
−
l
2
;
l
2

�
; x2 ∈

�
−
L
2
;
L
2

�
; ð8Þ

describing a strip surface of finite length l and width
L → ∞ as shown in Fig. 1 for a static AdS background. In
general, γA does not live on a constant slice for a dynamical
background. Due to the symmetry of the strip, it is possible
to represent γA in the bulk using this parametrization,

v¼ vðxÞ; z¼ zðxÞ; v

�
� l
2

�
¼ t−ϵ; z

�
� l
2

�
¼ ϵ;

ð9Þ

where ϵ is a UV cutoff. Then, the area of the minimal
surface is obtained easily using Eq. (1),

S ¼ L
4GN

Z l
2

−l
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðz; vÞv02 − 2z0v0

p
z2

dx: ð10Þ

We treat the integrand in Eq. (10) as a Lagrangian, and the
symmetry of the strip causes the turning point of the
extremal surface, γA, located at x ¼ 0, in which

v0ð0Þ ¼ z0ð0Þ ¼ 0; vð0Þ ¼ v�; zð0Þ ¼ z�: ð11Þ

The equations of motion for zðxÞ and vðxÞ can be
determined; subsequently, by employing (11), they can
be solved numerically to obtain the profiles zðxÞ and vðxÞ.
The volume can be parametrized by v ¼ vðxÞ and z ¼ zðxÞ,
or equivalently z ¼ zðvÞ. According to [40], this x-
independent ansatz is, in general, a good approximation
just at early and late times. Furthermore, for a small
subregion length l ≪ 1=T, this ansatz provides a good
approximation at intermediate times, too. In the following
we discuss results in these regions. Therefore, the volume
for the background solution (1)—by choosing an appro-
priate function f [(2) and (5)] for the thermal and
electromagnetic quenches, respectively—becomes

V ¼ 2L
Z

vðl
2
Þ

v�

�
−fðzðvÞ; vÞ − 2

∂z
∂v

�1
2

zðvÞ−3xðvÞdv: ð12Þ

Since the HSC is divergent, it is convenient to consider
subtracted HSC (a normalized version of HSC) using (7), as
follows:

C≡ 8πRGNðC − CAdSÞ
L

¼ V − VAdS

L
; ð13Þ

where C and CAdS are the HSC for A in (1) and AdS
geometry, respectively. The volumes are defined with
respect to the same boundary region such that V in
Eq. (12) reduces to VAdS by setting f equal to one.
To determine the relaxation time for HSC, we introduce

the following function:

FIG. 1. Strip entangling surface of length l and width L → ∞ in
a static AdS geometry.
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ϵðtÞ ¼
����1 − CðtÞ

Cð∞Þ
����: ð14Þ

The relaxation time teq is the time at which ϵðtÞ < 10−3,
and it remains below this limit forever. We will perform
numerical calculation for this timescale later.

IV. NUMERICAL RESULTS

We present our results from a numerical calculation of
HSC with the metric (1), for both the thermal and
electromagnetic quenches. It seems that our holographic
calculation shows two distinct concepts of complexity: how
much information it takes to specify a state and how many
operations are required to reach the state or, in other words,
how long it takes to reach the state. A given state can be
simple or complex based on these two categories [41]. We
plot the final value of HSC, Ceq, meaning C at t → ∞, and
relaxation time teq, the time it takes for HSC to relax, in
terms of the final temperature and magnetic field to
illustrate the two concepts of complexity. On the one hand,
the increase or decrease of Ceq, due to the amount of
information needed to specify the final state by increasing
temperature or magnetic field, indicates the first category.
On the other hand, the increase or decrease of teq character-
izes the second concept.
In Fig. 2, we show the behavior of Ceq as a function of

the final temperature. In agreement with our previous
argument [42–44], we expect that Ceq decreases with the
increase of temperature because, with the rise of temper-
ature, the number of microstates corresponding to the
mixed macrostate we considered increases. At zero temper-
ature and entropy, a unique configuration corresponding to
one microstate requires more information to be specified,
but with the increase of the number of microstates, it is not
necessary to know the details of the underlying system to
specify the macrostate. Therefore, the higher the final
temperature, the less information required. However, we
notice that this observation depends on the size of the

probe, l. As shown in Fig. 2, Ceq starts to increase from the
temperature of T ∼ Elð≡ 1

lÞ, when the energy of the probe,
El, is comparable to the final temperature. In the limit of
T ≫ El, which means large values of T with fixed El or
small values of El with fixed T, we expect that the degrees
of freedom at widely separated scales are largely decoupled
from each other. As a result, the HSC practically probes the
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FIG. 2. Plot of Ceq as a function of T for v0 ¼ 0.01 and l ¼ 1.4.
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FIG. 3. Plot of Ceq in terms of B for v0 ¼ 0.01 and l ¼ 1.4.
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FIG. 4. Plot of teq as a function of T for v0 ¼ 0.01 and l ¼ 1.4.
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FIG. 5. Plot of teq as a function of B for v0 ¼ 0.01 and l ¼ 1.4.
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zero temperature limit of the field theory, and thus Ceq

increases, by decreasing El or increasing T.
When a magnetic field is applied, the magnetic moments

can lower their entropy by becoming magnetized, and thus
with the increase of the magnetic field, the entropy tends to
decrease. However, in some cases, such as in a QGP
plasma, thermodynamic variables like entropy increase
with the magnetic field (see Ref. [45] and references
therein). Considering that we are also examining QGP-
like systems, we expect that Ceq would decrease with the
increase of the magnetic field since entropy or the number
of microstates corresponding to the mixed macrostate

increases. This behavior is shown in Fig. 3. However,
similar to the thermal case, there is a stage where Ceq

increases because El is comparable to
ffiffiffiffi
B

p
. In fact, whenffiffiffiffi

B
p

≫ El, our probe realizes the B → 0 limit correspond-
ing to a unique configuration or zero entropy and hence
leads to higher complexity.
We plot teq as a function of the final temperature, Fig. 4,

and in terms of the final magnetic field, Fig. 5. In both
cases, teq decreases with the increase of temperature and
magnetic field. When T ≥ El (

ffiffiffiffi
B

p
≥ El) our probe inves-

tigates the state with a length scale l, associated with El,
which is larger than the intrinsic length of the theory, lT ≡ 1

T
(lB ≡ 1ffiffiffi

B
p ). Thus, the precision of the probe is not enough to

study scales smaller than lT (lB). Therefore, the probe, in
the limit of Tð ffiffiffiffi

B
p Þ → ∞ ≫ El, reports that the temperature

(magnetic field) is equal to TðB), and thus, in this limit in
which the scales of T (

ffiffiffiffi
B

p
) and El are widely separated,

teq → 0. As a result, by increasing the temperature (mag-
netic field) for a fixed value of El, teq decreases. To check
our argument, we consider the opposite limit. In the limit of
Tð ffiffiffiffi

B
p Þ → 0 ≪ El or equivalently l ≪ lTðlBÞ, as the probe
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FIG. 6. Plot of C as a function of t for B < T (top), B ¼ T
(middle), and B > T (bottom). Red curves and blue curves show
the behavior of C for thermal and electromagnetic quenches,
respectively. In the three panels, l ¼ 0.5 and v0 ¼ 0.01.
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FIG. 7. Top: C as a function of t for B ≫ T, l ¼ 0.5, and
v0 ¼ 0.01. The red curve indicates a thermal quench, and the blue
one is for an electromagnetic quench. Bottom: Ceq in terms of l
for a thermal quench (red) and an electromagnetic quench (blue),
for B ≫ T and v0 ¼ 0.01.
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examines the system with more precision, teq increases in
agreement with our argument.
In order to compare two different kinds of quenches, we

plot C as a function of time for a thermal quench (red
curves) and an electromagnetic quench (blue curves) in
Fig. 6. By introducing CT and CB as Ceq in thermal and
electromagnetic quenches, respectively, we list the results
as follows:

(i) B ¼ T: The final temperature in a thermal quench is
chosen to be equal to the final magnetic field in an
electromagnetic quench. In the middle panel of
Fig. 6, we observe that CB < CT .

(ii) B < T: The final magnetic field is chosen to be
smaller than the final temperature. In the top panel of
Fig. 6, we observe that CB < CT and jCB − CT j are
smaller than in the case of B ¼ T.

(iii) B > T: The final magnetic field is chosen to be
larger than the final temperature. In the bottom panel
of Fig. 6, we observe that CB < CT and jCB − CT j
are larger than in the case of B ¼ T.

In the second and third categories, the temperature and
magnetic field differences have been chosen to be the same,
and in all categories, we observe that CB < CT . As we
explained earlier, both an increase in temperature in the
thermal system and an increase in the magnetic field in the

electromagnetic system at zero temperature increase the
entropy or, equivalently, increase the number of microstates
and thus reduce the complexity. The reason why CB < CT
might be intuitively related to the fact that a thermal system
has statistical fluctuations and is a statistical system,
whereas an electromagnetic system at zero temperature
is deterministic and predictable. Note that the reliability of
this statement depends on El. We can highlight it by
considering B ≫ T or T ≫ B limits, as we discuss next.
In the top panel of Fig. 7, we plot C in terms of time for

B ≫ T. In this case, as shown in the bottom panel of Fig. 7,
whether CB is smaller or larger than CT depends on the
length of the subregion, l. For small enough values of l,
CB < CT . However, for large enough l or, in other words,
small enough energy of the probe, El, CB > CT . This
behavior is consistent with the results shown in Fig. 3,
where CB starts to increase for large B or small El, as we
explained before. Note that CT also starts to increase with
the increase of l, but it happens at larger l values than in the
electromagnetic case because B ≫ T. According to this
explanation, we can predict the case of T ≫ B as well, in
which, for small enough values of l, CT < CB, and then for
large values of l, CB < CT . However, due to the limitations
of numerical calculations, we have not plotted it here.
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FIG. 8. Plot of C as a function of t at l ¼ 0.5 and T ¼ 0.238 for
three values of v0 in the range of fast quenches (top) and slow
quenches (bottom).

v0=0.01
v0=0.05
v0=0.1

0.0 0.2 0.4 0.6 0.8 1.0

–0.0004

–0.0002

0.0000

0.0002

0.0004

0.0006

t

C

v0=4
v0=3
v0=2

2 4 6 8 10 12

–0.00045

–0.00040

–0.00035

–0.00030

–0.00025

–0.00020

–0.00015

t

C

FIG. 9. Plot of C as a function of t at l ¼ 0.5 and B ¼ 0.045 for
three values of v0 in the range of fast quenches (top) and slow
quenches (bottom).
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We would like to mention that these results for the zero
temperature case under a magnetic quench can be com-
pared to the result for holographic complexity for the pure
thermofield state in the zero temperature limit. In that case,
unlike the results of HSC here, the complexity rate vanishes
in this limit [46]. Therefore, it could be said that HSC
seems to probe rather different physics compared to the
complexity of the whole system [47].
To study the effect of the parameter v0 (which is

considered as the speed of the quench in the boundary
field theory) on the evolution of the HSC, we plot C in
terms of time for three values of v0 in both fast and slow
quenches, for a thermal quench in Fig. 8 and the electro-
magnetic case in Fig. 9. In a fast quench, the system rapidly
changes, while in a slow quench, the system undergoes an
adiabatic transition and has enough time to equilibrate
during the evolution. In a fast quench, the HSC experiences
an increase at the early stage, reaches a maximum value,
and then decreases to Ceq at late times. As can be seen in
both figures, different manners of energy injection into the
system result in different responses during early time
intervals. Hence, by knowing only about T or B in the
boundary field theory, the HSC can distinguish between
fast and slow quenches. We have seen this behavior before
for a different model [42]. Furthermore, the faster the

energy injection, the earlier the system reaches HSC
equilibrium. Therefore, in a fast quench, the system reaches
equilibrium earlier than a slow quench for both thermal and
electromagnetic quenches. The top panels of Figs. 8 and 9
show that for thermal and electromagnetic quenches,
respectively, with the increase of v0 in the range of fast
quenches, the maximum value of HSC becomes smaller
and is reached sooner, and the system achieves HSC
equilibrium later. The bottom panels of Figs. 8 and 9 show
that for thermal and electromagnetic quenches, respec-
tively, with the increase of v0 in the range of slow quenches,
the system reaches HSC equilibrium later.
Finally, it is worth noting that in [48], the evolution of the

circuit complexity for a subsystem in harmonic lattices after
a global quantum quench of the mass parameter has been
calculated. Interestingly, this evolution depicts a local
maximum before the saturation regime, which is a feature
that has been observed for HSC in Vaidya gravitational
backgrounds, like in this work.
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