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In an odd-dimensional spacetime, gravity can be formulated as a proper gauge theory based on the
Chern-Simons action for a suitable gauge group. Performing dimensional reduction, one obtains, as an
effective theory, Chamseddine’s even-dimensional topological gravity with the reduced gauge symmetry.
This theory involves a multiplet of scalar fields that appear as a result of the dimensional reduction,
and it is topological in the sense that its action does not depend on the metric. Focusing primarily on the
four-dimensional case, we use the holographic dictionary to compute one-point correlation functions of
the relevant boundary operators and find that the spin-current can have a nonzero expectation value in the
dual quantum field theory. We also consider the generalized holographic Weyl anomaly and find that it
vanishes. Finally, we propose a way of computing two-point correlation functions using the gravitational
Wilson lines.

DOI: 10.1103/PhysRevD.108.086022

I. INTRODUCTION

Holographic duality is one of the tenets of modern
quantum gravity research, the most prominent example
being the AdS=CFT correspondence [1]—a conjectured
duality between a theory of quantum gravity in (Dþ 1)-
dimensional asymptotically anti–de Sitter (AdS) space-
time (the bulk) and a conformal field theory (CFT) that
resides on the D-dimensional asymptotic boundary. The
standard version of this duality works in a regime where
the gravity is well approximated by a semiclassical theory
while the dual CFT is strongly coupled. In particular, the
holographic dictionary [2] states that bulk fields are
associated with dual CFT operators, and this matching
is usually done by using the most “divergent” component
of the bulk field as the source for the CFT operator.
Moreover, the gravitational partition function in the saddle
point approximation corresponds to the partition function
of the dual CFT (if the appropriate boundary conditions
are imposed). In the context of string theory, initial
considerations established an equivalence between super-
string (supergravity) theory on AdS5 × S5 and N ¼ 4
supersymmetric Yang-Mills theory in D ¼ 4. Soon after
this pioneering work, the holographic duality was suc-
cessfully applied to various models of gravity and opened
a new way of studying condensed matter systems. One

notable example is the holographic relation between
Jackiw-Teitelboim (JT) gravity [3] and the Sachdev–
Ye-Kitaev (SYK) model [4,5]. The correspondence was
also generalized to the case of non-Riemannian geom-
etries, where nonzero torsion plays an important role in
sourcing the boundary spin current [6]. Based on these
previous considerations, in this paper, we focus on even-
dimensional gauge theories of gravity in the bulk and their
holographic description in terms of boundary correlation
functions.
Unlike the Standard Model of particle physics, general

relativity (GR) is not formulated as a proper gauge theory.
There are, however, gravity theories that are of this type;
those were formulated by Chamseddine [7,8] in any number
of spacetime dimensions. In an odd-dimensional spacetime,
they coincide (up to a boundary term) with the Chern-
Simons (CS) action for a suitable gauge group. The holo-
graphic description of five-dimensional CS gravity was
studied in [6,9,10], and the role of torsion in the context of
AdS=CFT was addressed in [11]. It was argued that torsion
could be used to introduce spin-current degrees of freedom
at the boundary useful for describing the hydrodynamics of
spin systems—in the case of [11], the resulting theory was
defined on a four-dimensional boundary. On the other hand,
in an even-dimensional spacetime, besides a gauge con-
nection, a multiplet of scalar fields has to be introduced.
However, all those theories have a common property that
their action can be written only using differential forms and
wedge products without the Hodge dual, and in that sense,
we regard them as topological (though they can have local
propagating degrees of freedom [12]). For future reference,
we will dub the even-dimensional ones—Chamseddin’s
topological gravity (CTG) theories.
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Furthermore, it was demonstrated in [8] that five-
dimensional CS gravity action with conformal SOð4; 2Þ
gauge symmetry can be dimensionally reduced by Kaluza-
Klein compactification to four-dimensional CTG action with
SOð3; 2Þ gauge symmetry. In this paper, we will use this
fact to derive the holographic dual of four-dimensional
CTG theory with a nontrivial spin tensor defined on a
three-dimensional boundary (and, in addition, on any odd-
dimensional manifold with a dimension greater than 3). We
stress the role of the bulk scalars and show that nonvanishing
torsion in the bulk is not a necessary condition for having a
spin current on the boundary. One could also take a different
point of view and look at the four-dimensional CTG action
as a straightforward generalization of the two-dimensional
BF theory that produces the equations of motion of JT
gravity (Sec. IV). The two-dimensional BF gravity can also
be obtained from the three-dimensional CS gravity via
dimensional reduction, a fact that has been used previously
in the literature on holography [13]. As explained in [13],
in order to get an interesting boundary theory, one has to
deform the original action by introducing appropriate
boundary terms. As a more technical part of this paper,
we perform this kind of deformation of the CTG theory so
that the holographically motivated boundary conditions are
satisfied.
The plan of this paper is the following. In Sec. II, we

use the relation between five-dimensional CS gravity and
four-dimensional CTG to identify the Fefferman-Graham
expansion of the bulk fields. In Sec. III, we calculate the
holographic currents and analyze the obtained results.
Moreover, we analyze some solutions of the bulk equations
of motion and discuss some of their properties in the context
of holography. In Sec. IV, as a way of confirmation,
we apply our procedure to the case of two-dimensional
BF theory, whose equations of motion yield JT gravity.
Section V is devoted to the study of line defects in the bulk,
interpreted as heavy particles. Finally, Sec. VI contains our
conclusions and outlook. The summary of notation, con-
ventions and the algebraic setup is presented in Appendix A.
Derivation of the Fefferman-Graham gauge is given in
Appendix B, and the generalization of the results obtained
for the four-dimensional CTG to any even number of
spacetime dimensions can be found in Appendix C.

II. DIMENSIONAL REDUCTION
AND THE HOLOGRAPHIC ANSATZ

Here we give a short account of the five-dimensional CS
gravity and its dimensional reduction, see [8,14] for more
details. Throughout, we use the first-order formalism where
the vielbein, Ê, and the spin connection, Ω̂, are treated as
independent fields. The notation, conventions and some
background algebra can be found in Appendix A.
Suppressing the wedge product, the action for the five-
dimensional CS gravity is given by

Sð5DÞCS ¼ k
8

Z
M5

εABCDE

�
1

l
R̂ABR̂CDÊE þ 2

3l3
R̂ABÊCÊDÊE

þ 1

5l5
ÊAÊBÊCÊDÊE

�
; ð2:1Þ

where R̂ ¼ dΩ̂þ Ω̂2 is the curvature 2-form, k is a
dimensionless constant (the CS level), and l is the appro-
priate length scale; henceforth, we set l ¼ 1. Up to a
boundary term, the action (2.1) is invariant under the
conformal gauge group SOð4; 2Þ. The equations of motion
for the independent fields ÊA and Ω̂AB are

εABCDEðR̂AB þ ÊAÊBÞðR̂CD þ ÊCÊDÞ ¼ 0; ð2:2Þ

εABCDET̂
AðR̂BC þ ÊBÊCÞ ¼ 0: ð2:3Þ

Note that the torsion 2-form T̂ ¼ dÊþ Ω̂ Ê does not
necessarily vanish on shell.
As demonstrated in [8], by compactifying one spatial

dimension (the one corresponding to the spacetime index 4)
into a circle, the five-dimensional CS gravity action (2.1)
reduces, up to a boundary term (which will be important
later on), to the following four-dimensional CTG action
with SOð3; 2Þ gauge symmetry,

SCTG ¼ κ

Z
M4

εÂ B̂ Ĉ D̂ ÊΦ̂
ÂF̂B̂ ĈF̂D̂ Ê; ð2:4Þ

where F̂ stands for the SOð3; 2Þ field strength 2-form and Φ̂
is a multiplet of spacetime scalars that appear after dimen-
sional reduction. The parameter κ is defined in terms of
the CS level k and the compactification radius; the radius
has to be small enough so that we can ignore the higher
Kaluza-Klein modes. The effective four-dimensional CTG
action (2.4) describes our bulk theory of gravity and it will
be our starting point for the holographic analysis; all bulk
fields are denoted by a hat symbol.
The equations of motion obtained by varying action (2.4)

with respect to Φ̂Â and the full SOð3; 2Þ connection Ω̂Â B̂

are given by

εÂ B̂ Ĉ D̂ ÊF̂
Â B̂F̂Ĉ D̂ ¼ 0; ð2:5Þ

εÂ B̂ Ĉ D̂ ÊF̂
Â B̂DΦ̂Ĉ ¼ 0; ð2:6Þ

where D stands for the SOð3; 2Þ covariant derivative. The
SOð3; 2Þ gauge group index is decomposed as Â ¼ ðA; 5Þ
where again A ¼ 0, 1, 2, 3 is the standard Lorentz index.
Using the field strength components, F̂AB ¼ R̂AB þ êAêB

and F̂A5 ¼ T̂A, the previous two equations can be cast [12]
in a more explicit form,

εABCDðR̂AB þ êAêBÞðR̂CD þ êCêDÞ ¼ 0; ð2:7Þ
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εABCDT̂
AðR̂BC þ êBêCÞ ¼ 0; ð2:8Þ

εABCDðR̂BC þ êBêCÞðDϕ̂A − φ̂êAÞ ¼ 0; ð2:9Þ

εABCDð2T̂BðDϕ̂A − φ̂êAÞ
þ ðR̂AB þ êAêBÞðdφ̂ − ϕ̂EêEÞÞ ¼ 0; ð2:10Þ

where R̂AB ¼ dω̂AB þ ω̂A
Cω̂

CB is the bulk curvature and
T̂A ¼ dêA þ ω̂ABêB is the bulk torsion.
Since boundary terms may play an essential role in

holography, we will start from the action (2.4) instead of
making a direct dimensional reduction of all the results
pertaining to the original five-dimensional CS gravity
case. Nevertheless, those results that are independent of
the boundary terms can be obtained directly by using
the reduction prescription. In particular, this is true for the
Fefferman-Graham (FG) expansion of the bulk fields—an
expansion of the bulk fields organized in powers of the
radial coordinate ρ. For CS gravity, the FG expansion is
found in [6]. The fact that on-shell action for this theory is
IR divergent means that appropriate regularization and
renormalization procedures have to be imposed. The FG
expansion is finite, as opposed to more generic situations.
Actually, the CS gravity has to be considered separately
from other generic Lovelock gravity theories, as the
equations of motion are degenerate, and the theory is (in
a sense that has already been explained) topological [15]. In
general, the structure of the FG expansion is based on the
diffeomorphism invariance, gauge invariance and the equa-
tions of motion of the bulk theory. Since the dimensional
reduction of the five-dimensional CS gravity action to four-
dimensional CTG action consistently extends to the equa-
tions of motion and the symmetry structure of the two
theories, we can directly reduce the FG expansions from the
five-dimensional CS gravity [6] and write down the asymp-
totic FG expansion of the fields appearing in our four-
dimensional CTG theory.
The asymptotic boundary is located at ρ ¼ 0. Boundary

fields (written without the hat symbol) are finite and do not
have a dρ component. The index 1 corresponds to the radial
coordinate ρ, and the Lorentz index is decomposed as
A ¼ ða; 1Þ, with a ¼ 0, 2, 3 being the boundary index. The
asymptotic expansions (they are finite as for the five-
dimensional CS gravity from which they are derived) of the
bulk fields are given by

ê1 ¼ −
dρ
2ρ

; êa ¼ 1ffiffiffi
ρ

p ðea þ ρkaÞ; ð2:11Þ

ω̂a1 ¼ 1ffiffiffi
ρ

p ðea − ρkaÞ; ω̂ab ¼ ωab; ð2:12Þ

ϕ̂1 ¼ 1ffiffiffi
ρ

p ðφ − ρψÞ; ϕ̂a ¼ ϕa; ð2:13Þ

φ̂ ¼ 1ffiffiffi
ρ

p ðφþ ρψÞ: ð2:14Þ

This holographic ansatz has to satisfy the four-dimensional
bulk equations of motion (2.7)–(2.10), yielding a set of
constraints on the boundary fields (see Sec. III A).

III. HOLOGRAPHIC CURRENTS

The typical situation with gravity in asymptotically AdS
spacetimes is the following. Integration of the Lagrangian
density down to ρ ¼ 0 introduces divergences in the on-
shell action. In order to be able to interpret the on-shell
bulk gravity action as the generating function for the dual
CFT, one has to perform holographic renormalization. This
is not surprising, as renormalization plays an important
role in quantum field theory (QFT), the only difference
being that QFT has to be renormalized in the UV regime,
while the bulk gravity is IR divergent. An important aspect
of the AdS=CFT correspondence is that it relates the IR
scales of gravity in the bulk and the UV scales of the
corresponding CFT at the boundary. The renormalization
is achieved by putting an IR cutoff on the gravitational side
and adding appropriate boundary counterterms that do not
influence classical equations of motion but lead to a finite
expression for the boundary correlation functions. Another
important aspect of the boundary terms is their connection
to the variation principle. In order to talk about dynamics,
one has to define a set of boundary conditions and, in some
cases, deform the theory by adding appropriate boundary
terms. Note that action (2.4) vanishes on shell, and therefore
we have to be careful when setting up the variational
principle in order to get an interesting boundary QFT.
This is analogous to the situation with the BF formulation of
JT gravity [13,16] (see also Sec. IV).
We follow the procedure developed in [6]. The variation

of the four-dimensional CTG action (2.4) is given by

κ

Z
M4

εÂ B̂ Ĉ D̂ Ê

�
δΦ̂ÂF̂B̂ ĈF̂D̂ Ê þ 2Φ̂ÂδF̂B̂ ĈF̂D̂ Ê

�
: ð3:1Þ

Decomposing indices, we get

κ

Z
M4

εABCD
�
δφ̂F̂BCF̂DE þ 2δϕ̂AT̂BF̂CD

þ 2φ̂δF̂ABF̂CD þ 4ϕ̂AδT̂BF̂CD þ 4ϕ̂AT̂BδF̂CD
�
: ð3:2Þ

After some partial integration, putting the variation on shell
yields

δSjon-shell ¼ κ

Z
∂M4

εABCD
�
2φ̂δω̂ABF̂CD

þ 4ϕ̂AδêBF̂CD þ 4ϕ̂AT̂Bδω̂CD
�
: ð3:3Þ
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There is no variation of the fields φ̂ and ϕ̂A field since there are no derivatives of these fields in the action. We now use the
asymptotic expansions (2.11)–(2.14) to organize the action in powers of ρ. In general, we should care only about those
terms that are of order ρ0. This is because the renormalization theorem [10] claims that we can rewrite terms that contain
nonzero powers of ρ as δð� � �Þ and thus those terms can always be compensated by adding counterterms to the original
action. However, in our case, we can even check that terms that contain nonzero powers of ρ actually vanish, which leaves
us only with finite terms. To illustrate this, we write

δSjon-shell ¼ 4κ

Z
∂M4

εabc

�
1

ρ
ðφþ ρψÞðδea − ρδkaÞðRbc þ 4ebkcÞ þ 1

ρ
ðφþ ρψÞδωabðTc − ρDkcÞ

−
1

ρ
ðφ − ρψÞðδea þ ρδkaÞðRbc þ 4ebkcÞ þ 2

ρ
ϕaðδeb þ ρδkbÞðTc − ρDkcÞ − 1

ρ
ðφ − ρψÞðTa þ ρDkaÞδωbc

þ ϕað−2edkdÞδωbc þ 2

ρ
ϕaðTb þ ρDkbÞðδec − ρδkcÞ

�
; ð3:4Þ

where D is now the Lorentz covariant derivative. Focusing
only on those terms that contain ρ−1, we get

4κ

ρ

Z
∂M4

εabc
�
φδeaðRbc þ 4ebkcÞ

− φδeaðRbc þ 4ebkcÞ þ φδωabTc þ 2ϕaδebTc

− φTaδωbc þ 2ϕaTbδec
�
¼ 0: ð3:5Þ

This feature of the CTG theory can be traced back to the
renormalization theorem and the fact that the on-shell value
of the action (2.4) is zero (note that the standard Einstein-
Hilbert action without the cosmological constant also
vanishes on shell).
Finite terms are given by

δSjon-shell ¼ 4κ

Z
∂M4

εabc
�
δkað−2φðRbc þ 4ebkcÞ− 4ϕbTcÞ

þ δeað2ψðRbc þ 4ebkcÞ þ 4ϕbDkcÞ
þ δωabð−2φDkc þ 2ψTc − 2ϕcedkdÞ

�
: ð3:6Þ

Boundary fields ea and ωab couple to the field theory
stress-energy tensor τa and the spin-tensor σab, respec-
tively, while fields φ and ϕa, if their variation would be
present in the above expression, would couple to certain
operators, oφ and oa, in the boundary QFT. Yet, the
variations of φ and ϕa do not appear in the last expression.
Moreover, there is no obvious choice for what ka should
couple with. This motivates us to define the boundary
conditions such that only fields ea, ωab, φ and ϕa are fixed
at the boundary, as they are interpreted as boundary sources
in AdS=CFT. This is different from the standard choice of
boundary conditions where one fixes the full gauge con-
nection at the boundary. Note also that in the case of
asymptotically AdS spacetimes, due to divergences present
in the asymptotic expansions at ρ ¼ 0, it is hard to give a
physical meaning to the standard boundary conditions.

This ka is not determined by the bulk equations of
motion, and we can therefore add appropriate boundary
terms to move the variation from ka to other fields, thus
deforming the original theory. New, deformed theory, has
nonzero on-shell action. We illustrate this for one of the
terms, namely,

Z
∂M4

εabcδkaφRbc ¼
Z
∂M4

εabcðδðkaφRbcÞ − δφkaRbc

− DðkaφÞδωbcÞ: ð3:7Þ

The boundary term dðεabcφkaωbcÞ is discarded as
∂
2M4 ¼ =0. In total, the boundary term that we have
to add in order to respect the holographic boundary
conditions is

SGHY ¼ 8κ

Z
∂M4

εabcðφkaRbc þ 2φkakbec þ 2kaϕbTcÞ:

ð3:8Þ

This term is finite and can be thought of as a generalized
on-shell Gibbons-Hawking-York (GHY) term, as explained
in [17]. For convenience, we should relate the constant κ to
Newton’s constant G. Since the CTG action is not the
standard Einstein-Hilbert action, it is not possible to directly
see the relation. However, motivated by the fact that CTG
action contains the Einstein-Hilbert term, multiplied by the
field φ̂, we will introduce the constantG using the following
relation:

4κ ¼ 1

16πG
: ð3:9Þ

Note that this fact is also used in the MacDowell-
Mansouri-Chamseddine-Stelle-West (MMCSW) approach
to four-dimensional gravity with negative cosmological
constant [18,19], although this formalism is incompatible
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with our analysis that relies heavily on the local SOð3; 2Þ
symmetry, which is broken in the MMCSW.
The final expression for the variation of the modified

CTG action is, therefore, given by

δSmod ¼
1

16πG

Z
∂M4

εabc
�
δeað2ψðRbc þ 4ebkcÞ

− 4kbDϕc þ 4kbkcφÞ
þ δφð2kaRbc þ 4kakbecÞ þ δϕað−4kbTcÞ
þ δωabðεabcð2ψTc − 2ϕcedkd − 2kcdφÞ
− 4εacdkcϕdebÞ

�
: ð3:10Þ

On-shell, modified action is different from zero, and using
the holographic dictionary, we have

δSmod ¼ δW ¼
Z
∂M4

�
δeaτa þ

1

2
δωabσab

þ δφoφ þ δϕaoa

�
; ð3:11Þ

where W is the generating functional of connected Green’s
functions in the dual QFT. From this, we can read out the
following one-point correlation functions:

τa ¼ hT aiQFT ¼ 1

16πG
εabcð2ψðRbc þ 4ebkcÞ

− 4kbDϕc þ 4kbkcφÞ; ð3:12Þ

σab ¼ hSabiQFT ¼ 1

16πG
εabcð2ψTc − 2ϕcedkd

− 2kcdφÞ − 4εacdkcϕdeb; ð3:13Þ

oφ ¼ hOφiQFT ¼ 1

8πG
εabcðkaRbc þ 2kakbecÞ; ð3:14Þ

oa ¼ hOaiQFT ¼ −
1

4πG
εabckbTc: ð3:15Þ

Fields ka and ψ have to satisfy certain constraints that we
present in Sec. III A, but are not fixed by the boundary
sources. These constraints are given either by obtaining
the equations of motion for the bulk action in the radial
direction or by dimensionally reducing the constraints
found in [6]. They will be helpful in the discussion
concerning the holographic Weyl anomaly.
Alternatively, we can deform the boundary theory by

adding the boundary term originating from the dimensional
reduction of five-dimensional CS gravity, namely,

1

64πG

Z
∂M4

εABCD

�
4

3
êAêBêCϕ̂D þ 4êAR̂BCϕ̂D

�
: ð3:16Þ

On shell, this term is divergent, and therefore holographic
renormalization is necessary. This means that the boundary
is first moved to some finite ρ ¼ ε, and counterterms are
added to cancel the divergences. As we are not interested in
the nature of those terms, they will not be presented here.
Additionally, we have to make sure that the variational
principle is satisfied. This is again done by adding a
suitable GHY-like boundary term. If the finite boundary
term originating from the five-dimensional CS gravity
contains some of the fields ka or ψ, adding it would not
change the one-point functions of the dual operators, given
that the suitable GHY-like term is also included. As all
terms in (3.16), upon unpacking, involve one of those
fields, we conclude that the structure of the one-point
correlation functions remains the same. The full GHY-like
term is now

SGHY ¼ 1

16πG

Z
∂M4

εabc
�
−4kakbecφþ kaðRbc þ 2kbecÞφ

þ eaðRbc þ 2kbecÞψ − 2eakbDϕc
�
: ð3:17Þ

Let us again emphasize the difference between boundary
terms (3.8) and (3.17). Namely, the former is relevant if we
start from the four-dimensional CTG action (2.4) alone. On
the other hand, the latter should be used if we start from
five-dimensional CS gravity and perform a dimensional
reduction, which gives us the CTG action (2.4) plus the
boundary term (3.16) that modifies the pure CTG theory.
Starting from the pure CTG action adheres to the principle
by which one must first define the boundary conditions
(in our case, motivated by holography) and then add the
appropriate boundary term, rather than the other way
around. Our procedure could thus be extended to a broader
range of boundary conditions.

A. Semiclassical bulk geometries

Having computed the general form of the one-point
correlation functions, we will provide some examples of
solutions of the bulk equations of motion, thus identifying
some semiclassical geometries that one could use to learn
more about the dual QFT. Inserting the asymptotic FG
expansions (2.11)–(2.14) into the equations of motion
(2.7)–(2.10) we obtain the constraints that have to be
satisfied by the boundary fields. Note that the first two
equations [(2.7) and (2.8)] are identically satisfied, while
the remaining two yield

εabcðDϕa − 2kaϕ − 2kaÞðRbc þ 4ebkcÞ ¼ 0; ð3:18Þ

εabc½ðdφ − edϕdÞDkc − ðdψ − kdϕdÞTc

þ ðDϕc − 2ecψ − 2kcφÞedkd� ¼ 0; ð3:19Þ
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εabc½ðdφ − edϕdÞðRbc þ 4ebkcÞ
þ 2ðDϕb − 2kbφ − 2ebψÞTc� ¼ 0; ð3:20Þ

εabc½ðdψ − kdϕdÞðRbc þ 4ebkcÞ
þ 2ðDϕb − 2kbφ − 2ebψÞDkc� ¼ 0: ð3:21Þ

The most obvious solution to the bulk equations of motion is
the AdS4 spacetime with R̂AB þ êAêB ¼ 0 and vanishing
torsion. However, this case is peculiar due to the fact that the
scalar fields are completely arbitrary. In particular, this is
an example of a bulk geometry with vanishing torsion for
which the one-point function of the spin current in the dual
QFT can be nonvanishing due to the presence of bulk
scalars. If we set the scalars to zero, we are left with the pure
AdS4 that corresponds to the vacuum state j0i in the
boundary theory and has a vanishing spin current at the
boundary.
In order to relate the discussed model to the physics of

spin systems [11], one should place the boundary field
theory at a finite temperature. This is usually done by
placing a black hole in the bulk. We will analyze the black
hole with a flat horizon discussed in [20,21]. In the
Schwarzschild form, the five-dimensional metric for this
black hole is given by

ds2 ¼ −ðr2 − μÞdt2 þ 1

ðr2 − μÞ dr
2 þ r2ðdx2 þ dy2 þ dz2Þ:

Analogous to the three-dimensional case discussed in [22],
we can rewrite this metric in the FG form as

ds2 ¼ dρ2

4ρ2
þ 1

ρ

��
1þ μ

2
ρþ μ2

16
ρ2
�
ðdx2 þ dy2 þ dz2Þ

−
�
1 −

μ

2
ρþ μ2

16
ρ2
�
dt2
�
: ð3:22Þ

This black hole can have a nonvanishing torsion. The
corresponding solution of the action (2.4) is obtained by
performing dimensional reduction. The resulting black
hole has a similar metric but necessarily vanishing torsion
(see Appendix B for the discussion on why it is legitimate
to apply our formalism to this black hole). We get

ea ¼ δaμdxμ; ωab ¼ 0; ð3:23Þ

ka ¼ ϵ
μ

4
δaμdxμ; φ ¼ 1; ð3:24Þ

ψ ¼ μ

4
; ϕa ¼ 0; ð3:25Þ

where ϵ ¼ �1, depending on the value of a; for a ¼ 0 we
have ϵ ¼ −1, and otherwise for a ¼ 2, 3. From (3.23), it is
clear that the boundary is flat. This is appealing, considering

the possible condensed matter applications. Also, it is clear
that fields ea and ka are independent, as only one of them is
proportional to the parameter μ of the black hole solution.
The Hawking temperature of this black hole solution, which

corresponds to the temperature of the dual QFT, is
ffiffi
μ

p
2π . One

can readily check that the constraint equations (3.18)–(3.21)
are satisfied. It is also easy to see that this solution has a
vanishing one-point function for the spin current and
therefore is not useful when dealing with spin systems.
The spacetime components of the one-point function of the
stress-energy tensor are given by

hT 0iQFT ¼ 3μ2

32πG
dx2dx3; ð3:26Þ

hT 2iQFT ¼ μ2

32πG
dx0dx3; ð3:27Þ

hT 3iQFT ¼ −
μ2

32πG
dx0dx2; ð3:28Þ

and the one-point functions for operators Oφ and Oa are

hOφiQFT ¼ −
μ2

32πG
dx0dx2dx3; ð3:29Þ

hOaiQFT ¼ 0: ð3:30Þ

Holographic considerations of dilaton gravity theories,
with an emphasis on hydrodynamics, can also be found
in [23,24].
Having in mind our goal to study holographic properties

of CTG, one can further introduce a scalar field f that is
coupled with this background, neglecting backreaction. If
the scalar is minimally coupled, this means that the action is
given by

1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
gμν∂μf∂νf: ð3:31Þ

By solving the Klein-Gordon equation for the field f, we
can obtain the spectrum of quasinormal modes of a given
black hole. Quasinormal modes are in holographic relation
to relaxation times in the thermal state of the dual field
theory. This was done in [25], and it is important to note
that this spectrum can be found exactly without relying
on some approximate methods. However, in the spirit of
dilaton gravity, one may consider a more general action
describing a scalar field in the form of

1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
φ̂Ngμν∂μf∂νf; ð3:32Þ

where N is some positive number. The case of N ¼ 1
corresponds to the dimensional reduction of the minimally
coupled scalar field in five dimensions. The modified
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Klein-Gordon equation, in this case, is given by (we can
safely use partial integration with covariant derivatives as
the torsion for this geometry is zero)

□f −m2f þ Nð∂μ ln φ̂Þ∂μf ¼ 0: ð3:33Þ

Using the FG expansion for the scalar field φ̂ ¼
1ffiffi
ρ

p ð1þ μ
4
ρÞ, it is not hard to check that Eq. (3.33),

for N ∈N, corresponds to the equation of a (4þ N)-
dimensional black hole discussed in [25], and therefore
shares the same spectrum of quasinormal modes. It is also
interesting to note that Eq. (3.33) can be solved for
noninteger values; for example, when N ¼ 1

2
the solution

is given in terms of hypergeometric functions.
Finally, there is a solution to the equations of motion

with nonvanishing torsion but vanishing scalar fields. The
vielbeins match those in the black hole solution (3.22),
but the spin connection is modified by the presence of the
contorsion tensor K23 ¼ KðrÞdr. It is interesting to note
that the exact profile of the function KðrÞ is not determined
by the equations of motion.

B. Generalized holographic Weyl anomaly

A CFT has a vanishing trace of the stress-energy tensor.
However, when coupled to a curved background, an
anomaly may appear, and the expectation value of the
trace of the stress-energy tensor can be nonzero. Note,
however, that in the present case, the scalar fields ruin the
conformal symmetry in the usual sense, similar to the case
of AdS=CFT with nonconformal branes [26]. Our theory
has a generalized conformal structure (for this reason we
insisted on calling the boundary theory QFT and not CFT),
and the holographic Weyl anomaly vanishes,

eahT aiQFT þ φhOφiQFT ¼ A ¼ 0; ð3:34Þ

where A is the anomaly. Note that the form of the
conformal Ward identity (3.34) follows from the fact that
the scaling dimensions of the operators dual to ea and φ are
the same, while bulk fields ωab and ϕa have no divergent
parts, as can be seen from their asymptotic expansions. To
derive (3.34), we use the constraints (3.18)–(3.21) follow-
ing from the bulk equations of motion. We have neglected
the total derivative dð4κεabcϕaRbcÞ, as it can be removed
by a suitable redefinition of the current. This is consistent
with the fact that in three dimensions, for CFT, there
should be no Weyl anomaly [27]. Our result is similar to
the considerations in [28]. It is interesting to note that, in
the case of five-dimensional CS gravity, the nature of the
holographic Weyl anomaly led authors to conclude that the
boundary theory is a nonunitary CFT [29]. We have no
reason to claim anything similar based on the derived
result (3.34), as it is consistent with the expectations.

IV. DEFORMED 2D BF MODEL
AND STRESS-ENERGY TENSOR

The previous procedure can be applied in the case of two
spacetime dimensions. The action is given by [30,31]

κ

Z
M2

εÂ B̂ ĈΦ̂
ÂF̂B̂ Ĉ: ð4:1Þ

For the SOð2; 1Þ gauge group, and the usual decomposition
of the connection components, equations of motion imply
vanishing torsion. Therefore, on shell, this action is
equivalent to the JT gravity,

1

16πG

Z
M2

d2xφðR − 2ΛÞ: ð4:2Þ

In the second-order formalism, this action has to be
accompanied by a GHY term, given by 1

8πG

R
∂M2

φK, where
K is the trace of the extrinsic curvature. Through holog-
raphy, JT gravity is closely related to the SYK model [4,5].
On-shell variation of the action (4.2) is given by

κ

Z
∂M2

εABðφ̂δω̂AB þ 2ϕ̂AδêBÞ: ð4:3Þ

We can now plug in the expansions (2.11)–(2.14), and
extract the finite piece (part of the variation that does not
contain ρ). As anticipated, terms that do contain powers of
ρ cancel exactly. The result is

4κ

Z
∂M2

ð−φδkþ ψδeÞ: ð4:4Þ

At this point, we will follow the same logic as in the four-
dimensional theory and add a boundary that will move the
variation from the k field to the scalar field φ. The boundary
term is 4κ

R
∂M2

φk (it clearly resembles the GHY term for
JT gravity), and thus we obtain the following variation:

δW ¼ 4κ

Z
∂M2

ðkδφþ ψδeÞ: ð4:5Þ

Note that our choice of boundary conditions is in the spirit
of the “JT-like” boundary conditions from [13], and there-
fore, does not give rise to the boundary Schwartzian
dynamics—a low-energy limit of the SYK model. Our
boundary conditions, on the other hand, are in perfect
analogy with the type of boundary conditions discussed
in [6,10], which are useful for holographic considerations.
The one-point functions are

hT i ¼ 4κψ ; ð4:6Þ

hOφi ¼ 4κk: ð4:7Þ
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Constraints that have to be satisfied due to the bulk
equations of motion are

dφ ¼ eϕ; dψ ¼ kϕ; ð4:8Þ

dϕ ¼ 2kφþ 2eψ : ð4:9Þ

Note that ehT i þ φhOφi ¼ 0, up to boundary terms,
confirming there is no Weyl anomaly. Boundary theory
is one-dimensional QFT, which is just ordinary quantum
mechanics. The one-point function hT i, therefore, corre-
sponds to the expectation value of the Hamiltonian.
This theory has a black hole solution similar to the one

discussed in Sec. III A, obtained by dimensional reduction
of a spinless BTZ black hole,

ds2 ¼ −ðr2 − μÞdt2 þ 1

r2 − μ
dr2; φ̂ ¼ r: ð4:10Þ

In the FG gauge, we have the following expressions:
e ¼ dt, k ¼ − μ

4
dt, φ ¼ 1, ψ ¼ μ

4
and ϕ ¼ 0. It is easy to

check that Eqs. (4.8) and (4.9) are indeed satisfied.
Moreover, we can use the one-point function (4.6) to
obtain the thermodynamics of this black hole solution.
In the case of three dimensions and Einstein-Hilbert
gravity, this was done in [22], and for JT gravity, entropy
was computed in [32]. We first note that avoiding conical
singularity in the Euclidean signature results in the temper-

ature T ¼
ffiffi
μ

p
2π , as before. Furthermore, we have

δW
δett

¼ δW
δgtt

∂ðettettÞ
∂ett

¼ −2
δW
δgtt

¼ hT i ¼ E; ð4:11Þ

and thus from (4.6) follows that the energy of the black hole
is κμ. If we write κ ¼ 1

16πG, we get

E ¼ μ

16πG
: ð4:12Þ

Using the relation TdS ¼ dE, together with the fact that
entropy is zero for zero temperature, we obtain

S ¼
ffiffiffi
μ

p
4G

: ð4:13Þ

This result coincides with the black hole entropy calculated
in the metric formulation of JT gravity [33,34].
Finally, we can deform the theory by adding a boundary

term originating from the CS gravity action in three
dimensions,

2κ

Z
∂M2

εABϕ
AeB: ð4:14Þ

Total action is now on-shell divergent, and the machinery of
holographic renormalization has to be used. Putting the
boundary at some finite ρ ¼ ε, we add a counterterm

2

ε
κ

Z
M2

φe; ð4:15Þ

which removes the divergences. In addition, we have to
modify the previously added GHY term, so that we still
have well-defined boundary conditions. It is easy to check
that, upon adding the relevant GHY term, the one-point
functions in the dual theory remain the same. The total
GHY term, in this case, is given by

2κ

Z
∂M2

ðψeþ φkÞ: ð4:16Þ

V. GRAVITATIONAL WILSON LINES

It was argued in a series of papers that in the case of
three-dimensional CS gravity, the bulk Wilson line observ-
able corresponds to a bilocal operator in the dual QFT. The
same is expected to be true in the two-dimensional model
of topological gravity (see, for example, [13,16,35–37]). In
the context of gauge theories of gravity, Wilson lines are
closely related to heavy particles moving in the gravita-
tional field [38]. We would like to understand the impor-
tance of Wilson lines in the holographic setting. Through
this section, we will not treat dilaton fields and therefore
our analysis is applicable (and possibly better suited) for
other gauge theories of gravity. We are not a priori claiming
that this object will be a two-point correlation function in
the boundary QFT, but as we will see, in some cases, this
might be true. We start with the particle action,

Spar ¼ −
Z

TrðKAh
τ Þdτ; ð5:1Þ

where the trace is given in the explicit representation
of the SOð3; 2Þ algebra using gamma matrices. K is a
fixed algebra element, given by K ¼ mP0 þ 1

2
sJ23. Field h

is a Lorentz-algebra-valued one-form, and is used as a
gauge parameter to gauge transform field Aτ ¼ Aμ

dxμ
dτ . As

explained in [38], this can be interpreted as a gravitational
Wilson line insertion in the bulk, as illustrated in Fig. 1.
The Wilson line depends on the choice of representation.
We work in an infinite dimensional irreducible represen-
tation labeled by two numbers ðm; sÞ, representing the
particle’s mass and spin.
The (Euclidean) path integral is given byZ

DPDKDhe−
R

dτð−TrðKAh
τ ÞþL:M:Þ: ð5:2Þ

The action terms denoted by L:M: are the constraint terms
fixing the two Casimirs of the SOð3; 2Þ algebra,
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L:M: ¼ λ1

�
1

2
JÂ B̂JÂ B̂ − c2

�

þ λ2

�
1

16
εÂ B̂ Ĉ D̂ε

Ê F̂ Ĝ ĤJÂ B̂JĈ D̂JÊ F̂JĜ F̂ − c4

�
;

ð5:3Þ

where λ1 and λ2 stand for the Lagrange multipliers, and
generators JÂ B̂ are defined in [38].
To obtain the two-point function on the boundary, it was

necessary to include the integration over paths (P) con-
necting the two given boundary points because the bulk
gauge curvature is not zero. If we were to consider the
topological BF action, then there would be no need to
include this integration and one could assume that the field
h is valued in the whole SOð3; 2Þ algebra, not only in the
Lorentz subalgebra. In the latter case, the interpretation of
particles as Wilson lines is exact, as explained in [38].
In [37], it was important to restrict to a concrete

representation of a gauge group in order to make the
connection with the entanglement entropy. In four space-
time dimensions, it is not expected that Wilson lines
should be able to reproduce boundary entanglement
entropy, but it is nevertheless possible to study extended
operators in the dual field theory. One can formulate
surface defects (strings) in the bulk, which anchor the
boundary along a given curve [39], which might be related
to the entanglement entropy, but we will not pursue this
question here. What we are discussing in this section is
similar to the construction of the two-point function
from [40].
Quadratic Casimir c2 ∼m2 should be assumed large so

that we can safely use the saddle point approximation of the
path integral (5.2). Using the standard holographic dic-
tionary, a scalar bulk field of mass m is dual to the primary

operator of scaling dimension Δ ¼ D
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

4
þm2

q
. In the

limit of a large mass, the scaling dimension coincides
with the m ∼ ffiffiffiffiffi

c2
p

. We will also assume that the spin of
the particle is either zero, or large, in order to apply the

semiclassical approximation safely. However, we will
work in a regime where s ≪ m, so that the Casimir
operators of the SOð3; 2Þ group, c2 and c4, reproduce
the well-known Casimir operators in the Minkowski
spacetime (where the concept of a particle is well defined).
Of course, the difference between the entanglement
entropy and our two-point correlation function is that
the entanglement entropy is UV divergent in field theory,
while the two-point function has to be renormalized. The
saddle point approximation yields

hOðx1ÞOðx2Þi ¼ lim
ε→0

ε2me−Sparjon-shell: ð5:4Þ

One can then calculate, using the described prescription,
the two-point function in different states with semiclassical
bulk. For example, let us discuss the case of AdS4 bulk
spacetime and a spinless particle. The equation of motion
obtained by varying h is [38]

dzμ

dτ
pν ¼ dzν

dτ
pμ; ð5:5Þ

which is solved by pμ ¼ m dzμ
dτ (τ being the affine parameter

of a geodesic). The equation following the variation with
respect to the path P then reproduces the standard geodesic
equation. For simplicity, we use coordinate z ¼ ffiffiffi

ρ
p

, such
that the metric of AdS4 reads

ds2 ¼ dz2 − dt2 þ dx2 þ dy2

z2
: ð5:6Þ

Focusing on constant time correlation functions between
two boundary points at distance L (this distance is defined
with respect to the flat boundary metric), geodesics are
given by semicircles, connecting two boundary points [41].
We can then calculate the on-shell action and obtain the final
result for the two-point correlation function. The result is
given by

hOðx1ÞOðx2Þi ∼
1

L2m : ð5:7Þ

Finally, consider a pair of QFT states, jψg1i and jψg2i, which
are dual to a pair of very distinct semiclassical bulk
geometries, g1 and g2, respectively. One could ask what
should be the dual description of a superposition of these
two QFT states, e.g. 1ffiffi

2
p ðjψg1i þ jψg2iÞ. Based on the

considerations of the entanglement entropy in [42,43] we
believe that the answer to this question would be that it is a
weighted sum of correlation functions corresponding to the
states jψg1i and jψg2i.

FIG. 1. Probe particle world line, interpreted as a gravitational
Wilson line in the bulk.
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VI. CONCLUSION AND OUTLOOK

The holographic analysis of the Chamseddine’s even-
dimensional topological gravity is presented for all even
dimensions. One-point correlation functions of the dual
QFT are obtained and the generalized holographic Weyl
anomaly is discussed. A method of computing two-point
correlation functions in terms of gravitational Wilson lines
is also proposed. We emphasized the role of boundary
GHY-like terms in defining the bulk action with appropriate
holographic interpretation. In that respect, our results
contribute to a better understanding of holography for
Riemann-Cartan spaces [44]. We should also point out the
similarity of the CTG action (2.4) to that of Brans-Dicke
theory (scalar-tensor modified gravity theory) [45]. This
theory can be considered as a particular frame change of
fðRÞ models. Some (but not complete) progress has been
made to understand holography in fðRÞ models, especially
in three dimensions [46].
Although we started from a concrete gravity theory in the

bulk and aimed at finding its holographic features, our
motivation largely came from the considerations regarding
the holographic description of four-dimensional hydro-
dynamics of spin systems [11] (see also [47]). The even-
dimensional topological theory of gravity that we focused
on also predicts the possibility of obtaining the nonzero
spin current for the boundary QFT, but now an odd-
dimensional one. This is due to the first-order treatment
of our gravity theory. In particular, it would be impossible
to formulate the CTG action (2.4) with SOð3; 2Þ gauge
symmetry, assuming zero torsion. However, it is interesting
to note that the boundary spin current is nonvanishing even
for some torsion-free bulk geometries, which can be
relevant for the physics of spin systems. A potential further
investigation could involve suitable modeling of the bulk
scalar fields to capture some interesting features of the dual
spin systems.
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APPENDIX A: SOME BASIC ALGEBRA BEHIND
THE CHERN-SIMONS THEORY OF GRAVITY

We start with an observation that, up to a boundary term,
five-dimensional CS gravity action (2.1) is equivalent to the
CS gauge theory action,

−
ik
3

Z
M5

Tr

�
F̂ 2Â −

1

2
F̂ Â3 þ 1

10
Â5

�
; ðA1Þ

for the conformal gauge group SOð4; 2Þ. The correspond-
ing gauge connection and field strength are

Â ¼ 1

2
Ω̂ABJAB þ ÊAJA5;

F̂ ¼ 1

2
ðR̂AB þ ÊAÊBÞJAB þ T̂AJA5; ðA2Þ

where JAB and JA5 are SOð4; 2Þ generators. The gauge
group indexA takes values from 0 to 4; we decompose it as
A ¼ ðA; 4Þ where A ¼ 0, 1, 2, 3 is the standard SOð3; 1Þ
Lorentz index. Group SOð4; 2Þ acts in the six-dimensional
flat space with signature ð−þþþþ−Þ as the isometry
group of AdS5. The generators of SOð4; 2Þ satisfy the
following commutation relations:

½JAB; JCD� ¼ GADJBC þGBCJAD − ðA ↔ BÞ; ðA3Þ

½JAB; JC5� ¼ GBCJA5 −GACJB5; ðA4Þ

½JA5; JC5� ¼ JAC; ðA5Þ

where GAB ¼ ð−þþþþÞ. A representation of the alge-
bra is provided by five-dimensional gamma matrices ΓA
satisfying the Clifford algebra fΓA;ΓBg ¼ 2GAB14×4,

JAB ¼ 1

2
ΓAB ¼ 1

4
½ΓA;ΓB�; ðA6Þ

JA5 ¼
1

2
ΓA: ðA7Þ

Finally, we can use ordinary four-dimensional gamma
matrices, satisfying fγA; γBg ¼ −2GAB14×4 with GAB ¼
ð−þþþÞ, to define the five-dimensional ones as
ΓA ¼ ð−iγA; γ5Þ. Also, Γ4 ¼ γ5 ¼ −iγ0γ1γ2γ3 and
γ25 ¼ 14×4. Furthermore, we have ΓAB ¼ − 1

2
½γA; γB� ¼

iσAB and ΓA4 ¼ 1
2
½ΓA;Γ4� ¼ − i

2
½γA; γ5� ¼ −iγAγ5. In this

representation, we have the following trace identities for
the generators:

TrðJABJCDJE5Þ ¼
i
2
εABCDE;

TrðJABJC5JD5Þ ¼
1

2
ðGABGCD −GACGBD þ GBCGADÞ;

TrðJA5JC5JD5Þ ¼ 0: ðA8Þ

The generators can be further decomposed into JAB, JA4,
JA5, and J45. The subgroup SOð3; 2Þ (the isometry group
of AdS4) is generated by JAB and JA5, and the correspond-
ing gauge connection and field strength are
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Ω̂ ¼ 1

2
Ω̂Â B̂JÂ B̂ ¼ 1

2
ω̂ABJAB þ êAJA5; ðA9Þ

F̂ ¼ dΩ̂þ Ω̂2 ¼ 1

2
F̂ABJAB þ T̂AJA5: ðA10Þ

The SOð3; 2Þ gauge group index Â is decomposed as
Â ¼ ðA; 5Þ where again A ¼ 0, 1, 2, 3.
The starting point of the dimensional reduction is to

decompose the five-dimensional vielbein ÊA and spin-
connection Ω̂AB into components and make the following
identification: ÊA

μ ¼ êAμ , Ω̂AB
μ ¼ ω̂AB

μ , Ω̂4A
4 ¼ ϕ̂A and Ê4

4 ¼ φ̂.
The spacetime indices μ, ν take values from 0 to 3. All other
components are truncated, which is consistent with the
residual SOð3; 2Þ gauge symmetry. The scalar fields can be
combined into a single object,

Φ̂ ¼ Φ̂ÂJ4Â ¼ Φ̂AJ4A þ Φ̂5J45

≡ ϕ̂AJ4A þ φ̂J45 ¼
i
2
ϕ̂AγAγ5 þ

1

2
φ̂γ5: ðA11Þ

Performing dimensional reduction of the five-dimensional
CS gravity action (2.1), one obtains, up to a boundary
term, the four-dimensional CTG action (2.4) that can be
compactly written as

SCTG ∝
Z
M4

TrðΦ̂ F̂ F̂Þ; ðA12Þ

which is manifestly invariant under SOð3; 2Þ gauge trans-
formations because both Φ̂ and F̂ change by a commutator,
e.g. δϵΦ̂ ¼ ½ϵ; Φ̂�, where ϵ is an SOð3; 2Þ gauge parameter.
We define ε0123 ¼ þ1 and ε0123 ¼ −1. Also, we have

εABCDεABEF ¼ −2!ðδCEδDF − δCFδ
D
E Þ ðA13Þ

εABCDεABCE ¼ −3!δDE ðA14Þ

εABCDεABCD ¼ −4! ðA15Þ

APPENDIX B: FEFFERMAN-GRAHAM GAUGE

The fact that we can choose the FG gauge can also be
shown directly, without relying on dimensional reduction.
First, we note that in the general AdS gauge invariant
gravity theory, we can use the AdS gauge symmetry to
set ω̂AB

ρ ¼ 0, and êρ ¼ − dρ
2ρ [10]. Further, we can use the

diffeomorphism invariance. Note that there are only D − 1
independent diffeomorphisms, in accordance with the CS
case. To do so, it is important to note that the generic
solution of Eq. (2.5) satisfies [12]

0
@ F̂Â B̂

iρ

DρΦ̂Ĉ

1
A ¼ N j

0
@ F̂Â B̂

ji

DjΦ̂Ĉ

1
A;

where parametersN j are connected with diffeomorphism,
and we can use the diffeomorphism symmetry to put
N i ¼ 0 [6,12]. Condition F̂ρi ¼ 0 is the same one as in the
CS case, and therefore we get the same expansion of
the vielbein and the spin connection. In order to deal with
the scalar fields, for convenience, we will use a faithful
representation of the SOð2; 3Þ algebra, given by gamma
matrices. In this case, we can write the scalar field
as Φ̂ ¼ iϕ̂A γAγ5

2
þ φ̂ γ5

2
. Gauge transformations of the field

Φ̂, in this representation, are generated by a commutator,
and the commutator enters the definition of the covariant
derivative. Therefore, we can solve

DρΦ̂Ĉ ¼ 0;

in a similar way one solves the equation F̂ρi ¼ 0, and derive
the form of the FG expansion. This result is the same as the
one obtained from the dimensional reduction. It is important
to note that our holographic ansatz works for a generic
solution of the bulk equations, but cannot be used for an
arbitrary solution. We therefore take the philosophy that we
care only about those spacetimes with the given asymptotic
form of bulk fields, similar to [48], hoping that this form
will incorporate all the interesting holographic properties of
our model. As we have shown in the paper, the black hole
solution, although not of a generic type, can be put in the
desired FG gauge. Even if the full consideration would
introduce a more general FG expansion, we see that all other
terms, in this case, must be zero, and we can safely use the
computed one-point functions. Also, note that in analogy
with the consideration in [11], one can choose a more
general gauge choice in order to describe more general
black holes. Dimensionally reducing those solutions found
in [11], one may hope to acquire a better understanding of
spin systems three-dimensional spacetime.

APPENDIX C: GENERALIZATION TO D= 2n
DIMENSIONAL BULK

The previous discussion can be straightforwardly lifted
to an arbitrary even-dimensional spacetime. First, the FG
gauge can be obtained in the same manner as before,
resulting in the same form of the vielbein, spin connection
and scalar fields. It is interesting that the FG gauge has the
same form in different dimensions. Note, however, that the
form of the CTG action is technically different in different
dimensions, and this is in contrast with the Einstein-Hilbert
case where the action is linear in curvature in any number of
dimensions. The 2n-dimensional CTG action is given by
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Z
M2n

εCA1B1…AnBn
Φ̂CF̂A1B1…F̂AnBn ≡

Z
M2n

εΦ̂F̂n; ðC1Þ

where we have suppressed indices for simplicity. The on-shell variation of this action reads

δSð2nÞCTGjon-shell ¼ κ

Z
M2n

ε½δeð4nψðRþ 4ekÞn−1 þ 8nðn − 1ÞεϕDkðRþ 4ekÞn−2Þ

þ δkð−4nφðRþ 4ekÞn−1 − 8nðn − 1ÞϕTðRþ 4ekÞn−2Þ
þ δωð−4nðn − 1ÞφDkðRþ 4ekÞn−2 þ 4nðn − 1ÞψTðRþ 4ekÞn−2
− 4nðn − 1ÞϕeakaðRþ 4ekÞn−2 þ 8nðn − 1Þðn − 2ÞϕDkTðRþ 4ekÞn−3Þ�: ðC2Þ

We used the FG expansion and focused on the finite terms, as before. A well-defined variation principle is obtained by
adding a boundary GHY-like term,

Sð2nÞGHY ¼ 4κ

Z
M2n

n
Xn−1
j¼0

1

n − j
εkφ

�
n − 1

j

�
Rjð4ekÞn−1−j þ 2nðn − 1Þ

Xn−2
j¼0

1

n − 1 − j
kϕT

�
n − 2

j

�
Rjð4ekÞn−2−j: ðC3Þ

Variation of the total action (including the boundary term Sð2nÞGHY), gives us the following one-point correlation functions:

oφ ¼ hOφiQFT

¼ κε

�
4n
Xn−1
j¼0

1

n − j

�
n − 1

j

�
kRið4ekÞn−1−j

�
; ðC4Þ

oa ¼ hOaiQFT

¼ κε

 
−8nðn − 1Þ

Xn−2
j¼0

1

n − 1 − j

�
n − 2

j

�
kTRj4ekn−2−j

!
; ðC5Þ

τa ¼ hT aiQFT ¼ κεð4nψðRþ 4ekÞn−1 þ 8nðn − 1ÞϕDkðRþ 4ekÞn−2

þ
Xn−1
j¼0

4n
n − j

kφ

�
n − 1

j

�
ðn − 1 − jÞRjen−2−jð4kÞn−1−j þ

Xn−2
j¼0

8nðn − 1Þ
n − 1 − j

�
n − 2

j

�
DðkϕRjð4ekÞn−2−jÞ

−
Xn−2
j¼0

ϕT
n − 2 − j
n − 1 − j

�
n − 2

j

�
Rjð4kÞn−2−jen−3−j; ðC6Þ

σab ¼ hSabiQFT ¼ κ

�
ε

�
−4nðn− 1ÞφDkðRþ 4ekÞn−2 þ 4nðn− 1ÞψTðRþ 4ekÞn−2

− 4nðn− 1ÞϕeakaðRþ 4ekÞn−2 þ 8nðn− 1Þðn− 2ÞϕDkTðRþ 4ekÞn−34n
Xn−1
j¼0

1

n− j

�
n− 1

j

�
jDðkφRj−1ð4ekÞn−1−jÞ

þ 8nðn− 1Þ
Xn−2
j¼0

1

n− 1− j

�
n− 2

j

�
jDðkϕTð4ekÞn−2−jÞ

�
− 8nðn− 1Þε

Xn−2
j¼0

1

n− 1− j

�
n− 2

j

�
kϕeRjð4ekÞn−2−j

�
:

ðC7Þ
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