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We classify the allowed structures of the discrete 1-form gauge sector in six-dimensional
supergravity theories realized as F-theory compactifications. This provides upper bounds on the
1-form gauge factors Zm and in particular demands each cyclic factor obey m ≤ 6. Our bounds
correspond to the universal geometric constraints on the torsion subgroup of the Mordell-Weil group
of elliptic Calabi-Yau threefolds. For any F-theory vacua with at least one tensor multiplet, we derive
the constraints from the P1 fibration structure of the base twofold and identify their physical origin in
terms of the worldsheet symmetry of the associated effective heterotic string. The bounds are also
extended to the F-theory vacua with no tensor multiplets via a specific deformation of the theory
followed by a small instanton transition, along which the 1-form gauge sector is not reduced. We
envision that our geometric bounds can be promoted to a swampland constraint on any six-
dimensional gravitational theories with minimal supersymmetry and also extend them to four-
dimensional F-theory vacua.
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I. INTRODUCTION AND SUMMARY

The notion of symmetries has been significantly
generalized in recent years. In particular, ordinary
symmetries acting on local operators have been gener-
alized to p-form symmetries with p ≥ 1, under which
nonlocal operators extended along p spatial dimensions
are charged [1]. As various interesting field-theoretic
constructions involve gauging of symmetries, it is of
utmost importance to understand the gauging of gener-
alized symmetries to reveal the full symmetry structure
of a theory.
Perhaps the simplest such generalization is the 1-form

gauge symmetries. A prototypical example arises from the
discrete 1-form symmetry,

Γ ⊆ ZðĜÞ; ð1Þ

of a simply-connected non-Abelian1 0-form gauge group
Ĝ, where ZðĜÞ denotes the center of Ĝ. Gauging of this
1-form symmetry Γ is responsible for the global structure
of the 0-form gauge sector, resulting in the nonsimply-
connected quotient,

G ¼ Ĝ=Γ; ð2Þ

for the actual gauge group.
If the gauge theory in scrutiny is coupled to gravity, such

gauging of the 1-form symmetry Γ, or equivalently, taking
the quotient (2) by Γ of the 0-form gauge sector, is not an
option but a must unless the symmetry is broken. This
follows from the absence of global symmetries [2,3], which
is one of the conjectured properties that any consistent
quantum theories of gravity are subject to. In the swamp-
land program initiated in [4], many general criteria of this
kind have been proposed as universal features of quantum
gravity, dubbed swampland constraints, leading to invalu-
able inspirations as well as explicit guiding principles for a
variety of recent research activities in high energy physics.
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1In this paper we focus on the part of the center symmetry
originating purely from the non-Abelian 0-form gauge sector if Ĝ
acquires Uð1Þ factors. In the presence of the latter, the quotient
action Γ may receive additional contributions from mixing of the
center Uð1Þs, which we hope to address in future work.
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The aim of this paper is to propose general bounds on the
discrete 1-form gauge symmetry Γ of the form (2) in six-
dimensional gravitational theories with minimal supersym-
metry, going beyond the necessity for its gauging. Mostly
focusing for concreteness on F-theory vacua, we will
constrain the structure of the 1-form gauge sector in 6d
N ¼ ð1; 0Þ supergravity theories as

Γ ¼ Zn × Zm; ð3Þ
where the allowed values of ðn;mÞ with n ≤ m are
restricted as

n 1 2 3

m 1;…; 6 2; 4 3
: ð4Þ

This in particular imposes a definite upper bound,

m ≤ 6; ð5Þ

on every cyclic factor Zm.
As will be reviewed in Sec. II, similar constraints were

studied in [5] for the 8d N ¼ 1 supergravity theories with
0-form gauge sector of rank 18, where a few more cases
with the following values of ðn;mÞ are also allowed:

n 1 2 4

m 7; 8 6 4
; ð6Þ

in addition to those in (4). This restriction can be under-
stood in F-theory as an immediate consequence of the
classification results on the elliptic K3 surfaces, whose
field-theoretic derivation can also be given from the
anomaly consideration alone.2 It is thus intriguing to note
that the constraints persist, even in an enhanced form, in
lower dimensional theories with less supersymmetry. Also
from the geometric point of view, the set of elliptic Calabi-
Yau threefolds available for 6d F-theory vacua is much
wilder than that of the elliptic K3 surfaces for 8d vacua, and
hence, the extension of the geometric constraints on
surfaces to those on threefolds naively looks surprising.
In this regard, the connection between the 6d and the 8d

vacua will be clarified in Sec. III, where we will constrain
the 1-form gauge sector of 6d N ¼ ð1; 0Þ supergravity
theories in the framework of geometric F-theory compac-
tifications to six dimensions. We will find that the generic
P1 fibration structure of the base twofold will play a pivotal
role. The only exceptional base lacking such a fibration is
P2, which leads to F-theory vacua with T ¼ 0 tensor
multiplets. However, we will be able to deform those

models and to make a transition to the models with
T > 0 tensor multiplets, without reducing the 1-form gauge
sector along the way, thereby validating the derivation of
the generic constraints even to the theories without tensor
multiplets.
In principle, it still remains a logical possibility that the

geometric bounds derived as such may not serve as a
general swampland constraint. However, the validity of our
proposal is bolstered as follows. First, in Sec. IV we will
provide a rationale behind the bound (5) from the dual
heterotic perspective. Our main message is that the Γ
quotient (2) must act nontrivially on the perturbative
0-form gauge sector of the dual heterotic string, whether
or not it affects the nonperturbative sector.3 One can already
infer from this perturbative nature of Γ that the definite
upper bound of 6 arises for each 1-form factor, which
follows from the simple group theoretical fact that Z6 is the
maximal cyclic subgroup of E8.

4 Such a perturbative nature
of the 1-form gauge sector is reminiscent of that of the
Uð1Þ 0-form gauge sector [8]; we will emphasize this
resemblance in Sec. IV. Furthermore, inspired by how the
F-theoretic geometry and the heterotic physics constrain
the 1-form gauge sector, we will be naturally led in Sec. V
to envision a concrete route for extending the bounds to
general effective theories via decompactification to eight
dimensions.
In Sec. V we will in fact provide a number of applications

and extensions of our findings. Upon addressing the afore-
mentioned possibility of enhancing our string-theoretic
bounds to swampland ones, we will connect the putative
6d F-theory vacua violating the bounds to certain infinite
distance limits in the moduli space, which will also be
argued to result in decompactification. Another natural
extension to be discussed concerns the discrete 0-form
gauge sector. We will argue that a cyclic 0-form gauge
factor with order beyond 6 cannot arise in 6d F-theory
models with T ≥ 1 tensor multiplets. We will then also
conjecture that no matter states in those models can have a
Uð1Þ charge larger than 6. Moreover, our derivation of the
six-dimensional bounds will also be extended to the geo-
metric part of the 1-form gauge sector in 4d F-theory models,
with a systematic analysis of the flux-induced sector left for
future work.

II. BACKGROUND AND REVIEW

A most versatile tool to date for classifying supergravity
theories in D ¼ 12 − 2d is F-theory compactifications
on elliptically fibered Calabi-Yau d-folds. In D ≥ 6

2The one-to-one correspondence between the elliptic K3
surfaces and the fully consistent supergravity theories can be
further sharpened by considering the worldvolume theories of
probe 3-branes [6].

3The nonperturbative sector will also be affected in general by
the quotient; see Ref. [7].

4To be precise, this intuition is valid under the assumption that
the perturbative sector in six dimension is embeddable into the
worldsheet symmetry of the 10d heterotic string, as will be
emphasized later.
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dimensions, i.e., with d ≤ 3, this allows us to define the
effective theories in terms of algebraic properties of the
fibration alone, which can always be brought into a
Weierstrass form,

y2 ¼ x3 þ fxz4 þ gz6: ð7Þ

Here, z, x, y are the coordinates of the weighted projective
space P2

½1∶2∶3� and ðf; gÞ a pair of sections,

f∈H0ðBd−1; K̄
⊗4
Bd−1

Þ; g∈H0ðBd−1; K̄
⊗6
Bd−1

Þ; ð8Þ

with K̄Bd−1
denoting the anticanonical bundle of the F-theory

base Bd−1.
As is well known, the ½p; q� 7-brane stacks are located in

the codimension-one loci in the base where the discrimi-
nant Δ ≔ 4f3 þ 27g2 vanishes, and the worldvolume
gauge algebra gi carried by each brane stack is read off
from the vanishing orders of f, g and Δ via the classi-
fication of singular fibers by Kodaira and Néron. On the
other hand, the refined information as to which gauge
group Gi arises from each stack is encoded in the torsional
sections that generate the finite subgroup MWðYdÞTors of
the Mordell-Weil group. In particular, it is known that the
global structure of the total gauge group,

G ¼
Y

i

Gi; ð9Þ

is determined as [9,10]

π1ðGÞ ¼ MWðYdÞTors; ð10Þ

which embeds into the total center of the simply-connected
cover Ĝ,

ZðĜÞ ¼
Y

i

Zni ; ð11Þ

via the embedding factors

ki ∈Zni : ð12Þ

Geometrically, the allowed torsional structures, as well
as the generic forms of the associated Weierstrass modes,
have been systematically studied in [9], leading to the
realization of

MWðYdÞTors ¼ Zn × Zm; ð13Þ

with the possibilities given in (4). Furthermore, it is known
[11] that there are additional outliers with the values of
ðn;mÞ given in (6), which only apply to the cases with
d ¼ 2, i.e., to K3 surfaces.

One of the goals of this paper is to derive these geometric
constraints for Calabi-Yau threefolds in an explicit and
constructive manner, and to understand them physically
from the perspective of the dual heterotic string. In
particular we will see, under a certain simplifying
assumption, that the global gauge group structure must
always embed into the perturbative E8 × E8 [or SOð32Þ]
current of the heterotic worldsheet, from which the con-
straints immediately follow.
This is to be contrasted with the following independent,

but less constructive, route to the geometric bounds
[11,12]: In type IIB string theory the axiodilaton τ in
general takes any values in the upper half-plane H modulo
SLð2;ZÞ. Upon adding the point at infinity, the moduli
space of τ is represented by the modular curve,

Xð1Þ ¼ H�=SLð2;ZÞ: ð14Þ

The full SLð2;ZÞ group, however, does not preserve the
Zn × Zm torsion points but only the congruence subgroup5

ΓðnÞ ∩ Γ1ðmÞ ⊂ SLð2;ZÞ does. The associated moduli
space of τ, i.e., its respective compactified modular curve,
is given as

Xðn;mÞ ¼ H�=ΓðnÞ ∩ Γ1ðmÞ: ð17Þ

Those curves admit an intricate structure of cusps, of which
τ values correspond to the singular fibers of Kodaira type
Is, in perfect match with those found in the generic
Weierstrass models [9]. This structure is not unlike that
of the gauging of an SLð2;ZÞ subgroup, i.e., taking an
orbifold which leads to additional fixed points. Those fixed
points are loci where D7 brane stacks reside as required by
the discrete 1-form gauge symmetry [12]. For the torsion
with large orders ðn;mÞ, the modular curve Xðn;mÞ is
sufficient to fix the full gauge group of the 8d F-theory
vacuum.
While it was not claimed in [9] that (4) is the full list, the

proof of its completeness has later been provided in [11].
In this paper, we will find another, more constructive route
to this classification result, manifesting the connection in
geometry between elliptic K3 surfaces and elliptic Calabi-
Yau threefolds.

5The relevant congruence subgroups are defined as

Γ1ðnÞ ¼
�
γ ∈SLð2;ZÞ∶ γ ≡

�
1 �
0 1

�
mod n

�
; ð15Þ

ΓðnÞ ¼
�
γ ∈SLð2;ZÞ∶ γ ≡

�
1 0

0 1

�
mod n

�
: ð16Þ
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A. 8d EFTs

8d N ¼ 1 supergravity theories with rkðGÞ ¼ 18 have
been characterized via F-theory in terms of elliptic K3
surfaces Y2 over the base onefold B1 ¼ P1. In particular,
the inequivalent fiber structures of Y2, including the torsion
subgroups of the Mordell-Weil groups, have been classified
[13]. Moreover, as pointed out in [14], MWTorsðY2Þ is
equally well understood in terms of the nonprimitive
embedding of the ADE singularities into the Λ2;18 lattice
of the elliptic K3 surfaces.
All in all, the torsion subgroup, and hence, the 1-form

gauge sector, takes the form

Γ ¼ Zn × Zm; ð18Þ

with the allowed values of ðn;mÞ given by (4) and (6). As
emphasized in [11], the outliers (6) do not apply to higher-
dimensional fibrations Yd>2, and the K3 surfaces realizing
them are necessarily rigid, i.e., extremal, as the associated
F-theory compactifications turn out to have the non-
Abelian groups of ranks rkðGÞ ¼ 18.
In the meantime, as pointed out in [5] via a purely field-

theoretic consideration, the 1-form symmetry might in
general lead to a global anomaly (see also [15]).
Absence of such an anomaly for the 1-form gauge sector
thus imposes field-theoretic constraints on the embedding
factors ki (12) in terms of the cyclic orders ni of the center
(11), leading in turn to constraints on the 1-form gauge
sector Γ. In particular, for each of the extremal outliers (6),
the 0-form gauge sector, including its global structure, turns
out to be uniquely determined by such constraints: e.g.,
for the 1-form gauge sector Γ ¼ Z7 with ðn;mÞ ¼ ð1; 7Þ
in (6), the unique consistent 0-form gauge group is
G ¼ SUð7Þ3=Z7, where the global structure is realized
by the embedding factors,

ðk1; k2; k3Þ ¼ ð1; 2; 3Þ; ð19Þ

into the total center ZðĜÞ ¼ Z3
7.

Given such a concrete classification of consistent gauge
groups, a natural question arises as to what would go wrong
e.g. if Γ acquired a cyclic factorZm withm ≥ 9. One way to
address this is to invoke the orbifold picture of the
fundamental domain of the axiodilaton discussed before.
The modular curve Xð1; mÞ for m ≥ 9 introduces cusps
corresponding to the singular fibers of Kodaira type Isi ,
which must thus be included in the geometry, leading to
gauge groups with

rkðGÞ ¼
X

i

ðsi − 1Þ ≥ 24; ð20Þ

where the inequality saturates for m ¼ 9. However, this
exceeds the geometric upper bound of 18, which follows

from the Tate-Shioda-Wazir thoerem [16–18], and hence,
m ≥ 9 cannot be realized in 8d F-theory vacua.

B. 6d EFTs

F-theory has proven to be an invaluable geometric tool6

also for systematically exploring 6d N ¼ ð1; 0Þ super-
gravity theories in terms of elliptic Calabi-Yau threefolds
Y3 over a base twofold B2. Compactness of the base B2 is
crucial as its finite volume relates to the Planck mass,

M4
Pl ∝ VolðB2Þ; ð21Þ

keeping the effective theory gravitational. Moreover, the
gravitational and the gauge anomalies are beautifully
reflected in the topological intersection structure of the
base [19]. To begin with, the anomaly coefficient of each
gauge algebra factor gi is identified with the respective
curve class bi of the discriminantal component, with gauge
coupling given as

g−2i ∝ VolðbiÞ: ð22Þ

Furthermore, the anomaly cancellation via the Green-
Schwarz-Sagnotti-West mechanism [20,21] follows from
the geometry of the elliptic fibration Y3: for instance, the
matter spectrum of the fields charged under gi ¼ suðNÞ
carried by the curve of class bi with self-intersection n and
genus g is fixed purely in terms of these topological data as7

½ð8 − NÞnþ 16ð1 − gÞ�Fþ ðnþ 1 − gÞΛþ gAdj; ð23Þ

whose contribution to the anomalies can be shown to cancel
with the intersection pairings between the anomaly
coefficients.
As it turns out, not every six-dimensional supergravity

theory fulfilling the anomaly criteria has an F-theoretic
realization. This can be easily inferred from the fact that
the set of distinct elliptic Calabi-Yau threefolds is finite
[23,24], while infinite classes of such apparently consistent
supergravity theories arise (see, e.g., [25]). It has recently
been found [26,27], however, that some of those infinite
classes can be ruled out by the consistency requirement on
certain Bogomol’nyi-Prasad-Sommerfield (BPS) strings,
whose existence is addressed by one of the swampland
constraints known as the completeness hypothesis (see
Ref. [3] for a recent account).
In much the same way, the analog of the field-theoretic

8d global anomalies by itself does not lead to as strong
constraints on the 1-form gauge sector as the geometric

6In this paper we focus on the geometric, i.e., unfrozen, phase
of F-theory.

7Symmetric representations can be obtained through singular
divisors [22]: an adjoint representation there is anomaly equiv-
alent to a symmetric and an antisymmetric representation.
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ones (4). The latter was first addressed in [11] in terms of
the torsion subgroup of the Mordell-Weil group of Y3 via
modular curves. The precise argument there was based on
the structure of the modular curves Xðn;mÞ: the latter
indicated that the generic Weierstrass models with
MWðY3ÞTors ¼ Zn × Zm involve collisions of singularities
which effectively result in nonminimal codimension-one
fibers with vanishing orders,

ðordðfÞ; ordðgÞÞ ≥ ð4; 6Þ; ð24Þ

and hence, should be ruled out. In the ensuing section, a
constructive derivation will be given of the same geometric
constraints. Furthermore, we will also provide in Sec. IV a
heterotic worldsheet perspective on those geometric con-
straints, thereby interpreting them physically, still in a
string-theoretic context. In fact, as will be envisioned in
Sec. V, it is our belief that the purely effective-field-
theoretic constraints will eventually enhance, possibly to
the geometric ones, once again by applying appropriate
swampland constraints if necessary.

III. GEOMETRIC BOUNDS FROM F-THEORY

Let us consider 6d N ¼ ð1; 0Þ supergravity theories
realized as F-theory compactification on an elliptic Calabi-
Yau threefold,

π∶ Y3 → B2: ð25Þ

Upon requiring the absence of nonminimal fibers for Y3 to
admit a Calabi-Yau resolution, the base twofolds B2

allowed by F-theory are restricted [23,24] to be either8

B2 ¼ P2 ð26Þ

or

B2 ¼ BlkðFaÞ; ð27Þ

a k-fold blowup of Hirzebruch surface Fa. The F-theory
vacua of these two types, respectively, have T ¼ 0 and T ¼
1þ k ≥ 1 tensor multiplets. In this section we will derive
geometric bounds on the 1-form gauge sector, starting from
the theories of the latter type with T ≥ 1.

A. F-theory vacua with T ≥ 1

We start by noting that every base twofold B2 of the form
(27) admits a rational fibration,

ρ∶ B2 → P1; ð28Þ

whose generic fiber f is a rational curve.9 Restricting the
fibration (25) to this rational fiber, we then obtain an elliptic
surface Y2 ≔ π−1ðB1Þ for B1 ¼ f ≃ P1,

p∶ Y2 → B1: ð29Þ

The adjunction formula can then be exploited as follows to
show that Y2 is a K3 surface:

c1ðK̄Y2
Þ ¼ c1ðK̄Y3

jY2
Þ − c1ðNY2=Y3

Þ
¼ −p�c1ðNB1=B2

Þ
¼ 0; ð30Þ

where we have used in the second line that Y3 has a trivial
first Chern class and that the fibration (29) is a restriction of
(25), and in the third line that B1 is a fiber of (28).
Furthermore, it follows by construction that the Mordell-

Weil groups of Y3 and Y2 satisfy the obvious inclusion
relation,

MWðY3Þ ⊆ MWðY2Þ: ð31Þ

This can be seen by observing that a given section
σ ∈MWðY3Þ restricts to s∈MWðY2Þ under the embedding
of the two fibrations (25) and (29) as

ð32Þ

where the restricted section s is holomorphic even when σ
is not since B1 ¼ f is a generic fiber of (28), hence evading
potential nongeneric points in B2 where the section σ wraps
a fibral curve.
From the fact that B1 is a generic fiber of B2, it

immediately follows that such a section restriction is
one-to-one and, importantly, upon restriction a torsional
section remains torsional with the same order. In other
words, the inclusion (31) of the Mordell-Weil groups
leads to

MWðY3ÞTors ⊆ MWðY2ÞTors; ð33Þ

so that the torsional subgroup MWðY3ÞTors of MWðY3Þ
must take the form

MWðY3ÞTors ¼ Zn0 × Zm0 ⊆ Zn × Zm; ð34Þ

where ðn;mÞ take values from (4) and (6) that are realizable
for an elliptic K3 surface. We therefore conclude that the

8While the Enrique surfaces provide yet another viable base
topology, we do not discuss them as they only lead to a trivial
fibration.

9The base B2 is a Hirzebruch surface if k ¼ 0 in (27), in which
case even the general fiber f is rational.
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bounds on the 1-form gauge sector of 8d supergravity
theories persist in 6d F-theory vacua with T ≥ 1.
However, all 1-form gauge symmetries viable in eight

dimensions are not necessarily realizable also in six
dimensions. Indeed the 6d bounds turn out to be stronger
due to the outliers (6) that are known not to be realized as
the structure of the Mordell-Weil torsion of Y3 [11]. In
particular, Z7 and Z8 are not a viable 1-form gauge sector,
which we will also support by switching to the dual
heterotic frame in Sec. IV.10

One may also attempt to rule out those outliers by
combining field-theoretic and geometric constraints, inde-
pendently of the rationale based on modular curves. In the
following we will illustrate how this works with the
example Z7; only the key ideas will be presented here,
with the full details relegated to Appendix A.
As reviewed in Sec. II A, the anomaly consideration

leaves

G ¼ SUð7Þ3=Z7 ð35Þ

as a viable gauge group configuration in 8d supergravity
theories. This still survives the analogous constraints in the
dimensionally reduced 6d theories.11 However, additional
constraints arise in six dimensions: In order for the 1-form
symmetry Γ ¼ Z7 to be gauged, the matter spectrum
should lack certain representations that transform under
the Γ action. To be concrete, the fundamental, the anti-
symmetric and the adjoint representations under each
SUðNÞ factor naturally appear in the spectrum as (23)
and, respectively, have the center charges,

qZN
ðRrÞ ¼

1

N
;
2

N
; 0 ðmod 1Þ: ð36Þ

One thus requires that the following Γ charge of the
representation R ¼ ðRriÞ3i¼1 under G,

X

i

qZni
ðRriÞ · ki; ð37Þ

should vanish modulo 1, if matter states in R are to be
present in the spectrum at all. Here, the embedding factors
ki are fixed as (19) either via the same anomaly consid-
eration as in eight dimensions [5] or via the geometric
classification results on the K3 surface fiber Y2 [13]. Note
that ri can take the values 0 through 3, where the trivial
representation R0 ¼ 1 with vanishing center charge is
included to systematically express the Γ charge of R.
The vanishing of (37) turns out to restrict the topology of
the curve classes bi severely; one can in particular show
that the genus gi of each 7-brane locus is strictly positive,

gi ≥ 1; ð38Þ

which in the end leads to the violation of the Calabi-Yau
condition, in that the residual discriminant Δ0 turns out to
have its class,

½Δ0� ¼ ½Δ� − 7ðb1 þ b2 þ b3Þ ¼ K̄⊗12
B2

− 7ðb1 þ b2 þ b3Þ;
ð39Þ

lie outside of the Mori cone (see Appendix A for the proof).
We therefore conclude that Z7 is ruled out as a 1-form
gauge sector.
As it turns out, we can use the arguments along precisely

the same line to also rule out Z8, thereby establishing in
particular the definite upper bound of 6 for every cyclic
1-form gauge factor as in (5).
The geometric classification results on K3 surfaces [13]

also fix the embedding factors for the two double-factor
outliers in (6), eventually ruling the latter out in a similar
fashion. See Appendix B for the details.

B. F-theory vacua with T = 0

What remains to be analyzed is the geometry of the
F-theory background Y3 with base B2 ¼ P2, for which no
tensor multiplets arise. In case the effective supergravity
theories contained a strongly coupled conformal matter
sector [29], one could blow up the geometry at the location
of the conformal matter in the base as

π∶ Y3 → B2

↑ ↑

π̂∶ Ŷ3 → B̂2

ð40Þ

which brings in a tensor multiplet to the theory. The
Mordell-Weil torsion MWðŶ3ÞTors of the blown-up geom-
etry Ŷ3 would then be subject to the same constraints as
those derived earlier in Sec. III A. Crucially, the Mordell-
Weil group is a birational invariant and hence the pair of
birationally equivalent fibrations Y3 and Ŷ3 in (40) satisfy

MWðŶ3Þ ≃MWðY3Þ: ð41Þ

10In view of the explicit description for the fibration Y3, as
explained in Sec. II A, its elliptic K3 fiber with the torsional
orders (6) is extremal and hence rigid, rendering the elliptic
fibration within the K3 almost trivial in that τ is constant. One
might naively think that extremal K3 surfaces can only be fibered
over T2. It is known [28], however, that nontrivial smooth
fibrations with suð3Þ holonomy are realizable in certain rigid
threefolds, where the K3 fibers may become reducible over points
in the P1 base.

11Unlike in eight dimensions, field-theoretic consideration in
six dimensions does not by itself guarantee that G of the form
(35) is the only allowed 0-form gauge symmetry with a Z7

quotient. However, thanks to the geometric constraints [13] for
the generic K3 fiber Y2, we know that the Z7 quotient leads
precisely to (35) for the perturbative 0-form gauge sector even in
six dimensions. It thus suffices to rule this unique choice out to
show that Z7 is not a viable 6d 1-form gauge factor.
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In particular, we have

MWðŶ3ÞTors ≃MWðY3ÞTors; ð42Þ

indicating that the 1-form gauge sector of the effective
theories with no tensor multiplets should also be subject to
the constraints that apply to the theories with tensor
multiplets, as long as conformal matter is present.
In the rest of this section we will thus focus on the

theories without conformal matter. Let us suppose that
the fibration (25) has a nontrivial Mordell-Weil torsion
MWðY3ÞTors with an m-torsional generator. The generic
Weierstrass models for such a torsional geometry have the
sections f∈H0ðP2;OP2ð12ÞÞ and g∈H0ðP2;OP2ð18ÞÞ
naturally constrained to take a particular polynomial form
in terms of a collection of sections,

ai;αi ∈H0ðB2; K̄
⊗i
B2
Þ

¼ H0ðP2;OP2ð3iÞÞ; i ¼ 1; 2;…; 6; ð43Þ
as worked out in [9] for a list of torsion subgroups.12 Here,
the second index αi for each i runs from 1 to Pi ∈Z≥0 with
Pi representing the number of degree-3i sections, which
can be 0, 1 or beyond. As an illustration, the ansatz derived
for MWðY3ÞTors ¼ Z2 takes the following form:

f ¼ a4;1 −
1

3
a22;1;

g ¼ 1

27
a2;1ð2a22;1 − 9a4;1Þ;

Δ ¼ a24;1ð4a4;1 − a22;1Þ; ð44Þ
where the discriminant Δ follows from the expressions for
f and g. In our notation, the values of Pi in this example are

Pi ¼
�
1 if i ¼ 2 or 4

0 otherwise;
ð45Þ

and the generic Weierstrass models (44) are described by a
total of two sections a2;1 and a4;1 of the line bundles K̄

⊗2
B2

and K̄⊗4
B2
, respectively.

Let us denote by Pð≥ 1Þ the total number of sections (43)
that appear in the polynomial ansatz for f and g, i.e.,

P ≔
X6

i¼1

Pi: ð46Þ

If P ≥ 2, we can split the set of ai;αi into a pair of
complementary proper subsets and tune the sections by
demanding common linear factors, e.g., zI¼0;1, raised to
appropriate powers as

ai;αi ¼ ziIbi;αi for I ¼ 0; 1; ð47Þ

depending on which of the two subsets they belong to.
Here, zI¼0;1 are part of the homogeneous coordinates
½z0∶ z1∶z2� of P2 and bi;αi ∈H0ðP2;OP2ð2iÞÞ are generic
sections.13 It then follows that the Weierstrass sections f
and g have vanishing orders

ðordðfÞ; ordðgÞÞ ¼ ð4; 6Þ ð48Þ

at the point ½0∶0∶1�, while along each of the two individual
loci zI¼0;1 ¼ 0 at least one of the two orders is reduced. For
instance, in the above example (44), we have P ¼ 2 so that
the tuning (47) goes as

a2;1 ¼ z20b2;1; ð49Þ

a4;1 ¼ z41b4;1; ð50Þ

which in turn leads to

f ¼ z41b4;1 −
1

3
z40b

2
2;1; ð51Þ

g ¼ 1

27
z20ð2z40b22;1 − 9z41b4;1Þ; ð52Þ

exhibiting the codimension-two nonminimality at ½0∶0∶1�
as expected by (48).
If P ¼ 1 on the other hand, f and g are expressible as a

power of a unique section,

ai0 ∈H0ðP2;OP2ð3i0ÞÞ; ð53Þ

where i0 divides gcdð4; 6Þ ¼ 2, implying that i0 ¼ 1 or 2.
In the former case we have

f ∝ a41 and g ∝ a61; ð54Þ

leading to codimension-one nonminimal fibers along the
cubic locus a1 ¼ 0, which we may thus discard. In the latter
case we do not have such nonminimal singularities as

f ∝ a22 and g ∝ a32: ð55Þ

We may then tune the section a2 to take the form

a2 ¼ z0z1b2; b2 ∈H0ðP2;OP2ð4ÞÞ; ð56Þ

12Similar constraints arise even when MWðY3ÞTors has two
generators, as also exemplified in the same reference.

13Note that the generic choice of bi;αi in (47) could in principle
result in a partial Higgsing of the non-Abelian 0-form symmetries
in case the sections ai;αi had not been generic to begin with before
the tuning. However, this does not affect our discussions about
the bounds on the 1-form gauge sector.

GEOMETRIC BOUNDS ON THE 1-FORM GAUGE SECTOR PHYS. REV. D 108, 086021 (2023)

086021-7



so that the theory develops a conformal matter sector at the
point ½0∶0∶1�.
Therefore, whether P ≥ 2 or P ¼ 1, the geometry can be

tuned within the given m-torsional ansatz to develop an
isolated codimension-two nonminimal fiber, allowing us to
blow it up in the same fashion as in (40). The resulting
effective theory thus acquires a tensor multiplet while the
1-form gauge sector remains intact under the blowup
operation at least. Even though the prerequisite tuning
operation might possibly have enhanced the 1-form gauge
sector, the upper bounds obtained for theories with T ≥ 1
would still apply to those with T ¼ 0.

IV. HETEROTIC VIEWS ON THE BOUNDS

The F-theoretic bounds obtained in the previous section
hinge on the special geometric role played by the rational
fiber f, which is a 0-curve in B2.

14 From the perspective of
the effective theory as well, such a rational fiber f in B2

plays a distinguished physical role since the D3 brane
wrapped on it leads to an effective heterotic string. In fact
such a realization of the heterotic string in F-theory has
already played an important role in studying various
swampland constraints such as the weak gravity conjec-
tures [30–33] and the swampland distance conjecture
[33–35], and also in constraining the Uð1Þ 0-form gauge
sector [8]. In this section we will provide a clean physical
intuition for the derived geometric bounds on the 1-form
gauge sector in view of this heterotic string.
The gauge sector of the 6d supergravity theory then

naturally splits into the perturbative sector that is “visible”
to the heterotic string, hence leading to worldsheet global
symmetries, and the nonperturbative sector that is invisible
on the string worldsheet. Geometrically, the former arises
from the 7-brane loci that intersect with f and the latter
from the loci that do not, i.e., they are either a fibral or an
exceptional P1 in B2. The inclusion relation (33) of the
Mordell-Weil torsion then implies the effective theory
cannot have (a proper subset of) the center 1-form sym-
metry of such a nonperturbative sector gauged by itself. In
other words, every center gauging must involve the
perturbative sector.
The perturbative nature of the 1-form gauge symmetries

is reminiscent of what is known about the Uð1Þ 0-form
gauge symmetries. It was addressed in [8] that the latter
should embed into the current algebra of the perturbative
heterotic string, based on which the number of Uð1Þ gauge
factors was bounded. In geometric terms, this led to the
bold proposal for a definite upper bound of 16 for
rankðMWðY3ÞÞ, which concerns the free part of the
MWðY3Þ. The current proposal about the 1-form gauge
symmetries on the other hand concerns the torsion part of

MWðY3Þ and demands in particular that each cyclic factor
of MWðY3ÞTors be a finite cyclic subgroup of E8 × E8 or
SOð32Þ. Interestingly, the maximal such cyclic subgroup
occurs for E8 and is known to be Z6 (see, e.g., [36]),
agreeing with the constraints derived in III.
At this point one may wonder how Z7 and Z8 could be

realized as a 1-form gauge factor in 8d supergravity
theories even if they are not a subgroup of E8. This naively
seems to contradict the developed heterotic perspective.
However, a simple explanation comes from the fact that the
internal space for the 8d heterotic string theory is simply a
two-torus T2. The latter leads to a pair of Kaluza-Klein
Uð1Þ s that can in principle enhance to a non-Abelian
gauge group in a nongeometric background and also mix
with the 10d-induced perturbative sector of maximal rank
16. The perturbative 0-form gauge sector may thus enhance
in eight dimensions to a rank-18 non-Abelian group.
Motivated by this eight-dimensional phenomenon, we

must thus revisit the potential intricate enhancement of
the 10d-induced perturbative sector to the 6d N ¼ ð1; 0Þ
supergravity theories. While imposing only the minimal
supersymmetry sets the heterotic internal space as a K3
surface, there may still arise a pair of Kaluza-Klein Uð1Þ s,
e.g., for a singular geometry. Nevertheless, the indirect
observation in [11] via modular curves that Z7 and Z8

cannot serve as a Mordell-Weil torsion informs us that such
an enhanced 0-form sector cannot be quotiented by those
cyclic groups. We are currently not aware of a simple
reasoning based on heterotic worldsheet symmetry that can
rule out Z≥7 even when the mixing of the 10d-induced
perturbative sector mixes with Kaluza-Klein Uð1Þ s. In
Sec. V, however, we will envision the possibility of having
the 6d bulk supergravity theory decompactify to an 8d one
at an appropriate limiting regime in the moduli space,
where the field-theoretic consideration in [5] would even-
tually rule those high-order cyclic 1-form sector.
Going back to the simple situation where no such

intricate mixing arises in the perturbative sector, the derived
bound of 6 for each cyclic 1-form gauge factor is also
consistent with the worldsheet current generated by the
small instanton transitions. We exploited the latter in
Sec. III B to address the geometric bounds for F-theory
vacua with T ¼ 0. The codimension-two nonminimal
singularities with vanishing orders (48) are well known
to correspond to the tensionless E-string, which exhibits an
E8 flavor symmetry. Depending on the way this string
couples to the bulk gravitational theory, parts of the flavor
symmetry are typically gauged. This gauging naturally
constrains the representations, Uð1Þ charges and the
dimension of the residual Higgs branch (see Ref. [37]).
Thus, when performing such an E-string transition, we
expect the string to couple to the global 1-form gauge group
Γ as well. However, such a (partial) gauging is only
possible if Γ is a subgroup of E8, and hence jΓj cannot
exceed 6 in the same vein as the heterotic case.

14Recall that for B2 ¼ P2, we have even enforced a codimen-
sion-two nonminimal fiber to be able to blow B2 up so that a
0-curve f may be present in the blown-up base.
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V. DISCUSSION AND APPLICATIONS

In this paper, the general upper bounds on the 1-form
gauge sector of 8d supergravity theories have proven to
apply also to F-theory compactifications to six dimensions.
By focusing on the 6d F-theory vacua conserving precisely
eight real supercharges, we have in fact ruled out some of
the high-order symmetries that are realizable in 8d super-
gravity, thereby proposing the following reduced set of
viable 1-form gauge symmetries for 6d F-theory vacua:

Zm for 2 ≤ m ≤ 6 ð57Þ

Zn × Zm for ðn;mÞ ¼ ð2; 2Þ; ð2; 4Þ; ð3; 3Þ: ð58Þ

The geometric derivation of this result has hinged upon
the distinguished role played by the ubiquitous rational
fibration within the base twofold B2 other than P2. As a key
step we have identified the elliptic K3 surface Y2 with the
following property:

MWðY3ÞTors ⊆ MWðY2ÞTors; ð59Þ

by restricting the elliptic fibration Y3 over B2 to the generic
rational fiber of B2. For F-theory vacua with T ≥ 1 tensor
multiplets, definite upper bounds on the 6d 1-form gauge
sector have thus been established as the known geometric
bounds onMWðY2ÞTors. Of the allowed set of Mordell-Weil
torsions for K3 surfaces, the following four,

Zm for m ¼ 7; 8; ð60Þ

Zn × Zm for ðn;mÞ ¼ ð2; 6Þ; ð4; 4Þ; ð61Þ

have been argued not to be viable for MWðY3ÞTors by also
requiring absence of field-theoretic anomaly, while it is still
possible to fiber the relevant rigid K3 surfaces nontrivially
over P1.
With the 1-form gauge sector of the 6d F-theory vacua

identified as MWðY3ÞTors, this leads to the candidates (57)
and (58) for 1-form gauge symmetries. On the other hand,
for F-theory on elliptic Y3 over B2 ¼ P2, it has been shown
that the theory can be deformed to develop a conformal
matter without reducing the 1-form gauge sector; since the
tensor transition keeps the latter intact, the same upper
bounds apply also to F-theory vacua without tensor
multiplets.
While the bounds (57) and (58) originate from the

geometric constraints on the internal space of F-theory,
we have also provided a worldsheet interpretation of this
result. That a central role is played by the rational fiber
within B2 strongly suggests that the physical object
governing the geometric bounds must be the effective
heterotic string; the latter can be identified, e.g., as in
[8,30–33], as a solitonic string arising from the D3 brane
wrapped on the rational fiber. Indeed, we have been able to

rederive the upper bound 6 for the cyclic orders in (57) and
(58) from the fact that Z6 is the maximal cyclic Abelian
subgroup of E8, at least when the perturbative sector of the
six-dimensional bulk theory does not acquire any intricate
mixing with the Kaluza-Klein Uð1Þ s. In such a simple
situation, the validity of this heterotic interpretation has
been addressed by showing that every discrete quotient
action on the 0-form gauge sector necessarily invokes the
perturbative sector. Interestingly, such a desired perturba-
tive nature of the 1-form gauge sector has immediately
followed from the inclusion relation (59) derived in
F-theory. We have also observed as an aside that the upper
bound of 6 is also consistent with the E-string transitions,
where the relevant Γ quotient needs to embed into the E8

flavor group.
To some extent the advocated perturbative nature of the

1-form gauge sector nicely parallels that of theUð1Þ 0-form
gauge sector of 6d F-theory vacua with T ≥ 1. It was
proven in [8] that every Uð1Þ gauge factor, if present in the
0-form gauge sector of such theories, must embed into the
perturbative current algebra of the effective heterotic string.
Interestingly, the geometric origins of the Uð1Þ 0-form and
the 1-form gauge sectors are, respectively, the free and the
torsional sectors of the Mordell-Weil group. The heterotic
interpretation of the Abelian 0-form gauge sector led in [8]
to the geometric conjecture that

rankðMWðY3ÞÞ ≤ 16; ð62Þ

for an elliptic Calabi-Yau threefold. In fact, already from
the purely geometric perspective, the inclusion (59) leads to
a milder bound of 18 since any elliptic K3 surface Y2 obeys

rankðMWðY2ÞÞ ≤ 18; ð63Þ

which follows from the Tate-Shioda-Wazir thoerem, so that

rankðMWðY3ÞÞ ≤ rankðMWðY2ÞÞ ≤ 18: ð64Þ

There is a chance that the bound (62) might possibly be
violated since the rank-16 current algebra of the 10d
heterotic string can in principle enhance in a compactified
theory, for instance, by mixing with a pair of Kaluza-Klein
Uð1Þ s. Whether the milder upper bound (64) could indeed
be realized in an explicit 6d F-theory vacuum is yet to be
clarified.
While both the 1-form and the Uð1Þ 0-form gauge

sectors are perturbatively realized from the heterotic
perspective, the addressed extension of the constraints
(57) and (58) on the former to F-theory models with
T ¼ 0 does not have a natural counterpart on the latter.
Those T ¼ 0 models can always be deformed to develop a
conformal matter sector, which then lead to T ≥ 1 models
through a tensor transition. It was thus crucial that the
deformation of our choice does not reduce the 1-form
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gauge sector, in arguing that the upper bounds on the
1-form sector of the latter models also bound that of the
former. However, without generic ansatz available for Uð1Þ
models in F-theory for a given positive rank, it is not clear
how to find a systematic way to deform the models in a
similar fashion, not reducing the Uð1Þ 0-form sector along
the way. The rank bound (64) thus remains conjectural for
T ¼ 0 models.
Let us end with several extensions and applications of

the current work, organized by the dimension D of the
spacetime in which the physics phenomena of interest
take place.

A. Decompactification (D= 8)

1. Beyond the geometric bounds

Our geometric bounds on the 1-form gauge sector in 6d
F-theory have been built upon the analogous 8d bounds.
However, there is a notable difference between the 6d and
the 8d constraints: the latter can be derived by the absence
of gauge anomalies, which provides a purely effective field
theoretic perspective. One may then naturally attempt to
also promote the geometric bounds in 6d to a general
swampland constraint. The geometric arguments in this
paper suggest that one could achieve this by decompactify-
ing the starting 6d N ¼ ð1; 0Þ supergravity theory to an
8d supergravity endowed with the defect sector of a
particular kind. Such a decompactification, if viewed as an
F-theoretic deformation, corresponds to taking an infinite-
distance limit in the Kähler moduli space, where the base
P1 of (28) expands while the fibral P1 remains finite. One
could thus analyze the obvious counterpart limit in super-
gravity to show that the resulting theory indeed decom-
pactifies to begin with. Since this supergravity limit itself
lies at infinite distance, it is natural to expect decompacti-
fication to occur, in line with the emergent string conjecture
[38]. Importantly, the 1-form gauge sector needs to be in
good control along the way, as is the case for the prescribed
8d decompactification in F-theory. We leave it to future
work to develop a general effective-theoretic picture for the
desired, controlled decompactification.

2. Beyond the minimal fibers

While the aforementioned decompactification would
occur in F-theory at infinite distance in the Kähler moduli
space, F-theory also provides a qualitatively distinct route
to decompactification via complex structure limits, as
initially analyzed for 8d F-theory vacua in [34,35] and
generalized to 6d vacua in [39]. In these infinite-distance
complex structure limits, several 7-brane stacks each
carrying a 0-form Lie-type gauge algebra collide to
enhance the symmetry to an emergent affine algebra.
Geometrically, such an affine enhancement of the 0-form
gauge algebra is realized by the nonminimal singularities in
codimension-one fibers of the elliptic Calabi-Yau manifold.

In view of this, it is intriguing that the geometric bounds (4)
and (6) for elliptic Calabi-Yau manifolds were understood
in [11] as the orders of the cyclic groups beyond which
codimension-two nonminimal singularities at infinite dis-
tance arise. In other words, demanding that the 1-form
gauge sector violate the bounds enforces the brane moduli
to sit at infinite distance, resulting in a decompactification
[39]. We leave a thorough investigation of this intriguing
connection with infinite distance limits to future work.

B. Mirror (D= 6)

1. Bounds on discrete 0-form gauge factors

An elliptically fibered Calabi-Yau threefold Y3 with an
n-torsional section is conjectured15 to be paired with a
genus-one fibered mirror dual threefold Z3 with an n
section. In view of the torsional bounds (5), it is therefore
conjectured that the n-section geometry Z3 should also
obey

n ≤ 6: ð65Þ

Explicit geometric constructions known to date of the
multisection geometry are consistent with the bound
(65). The highest n that has so far been achieved is 5,
which is realized via non-Abelian gauged linear sigma
models [45] and attempts are made to construct explicit
examples with a 6-section.
While the bound (65) for multisection geometry arises

from the mirror conjecture, which is purely geometric and
construction dependent in nature, the heterotic interpreta-
tion in Sec. IV leads to an interesting string-theoretic
intuition as follows. We first recall that compactifications
of F-theory on Y3 and Z3 result in effective theories withZn
1-form and 0-form gauge symmetries, respectively. In
particular, the constraint (65) is understood as the upper
bound for the discrete 0-form gauge symmetry Zn. From
the heterotic perspective, one can naturally obtain the latter
by embedding16 into E8 a gauge bundle with structure
group G of the form

G ¼ Ĝ=Zn ⊂ E8; ð66Þ

15The mirror conjecture for fibrations is based on the mirror
duality established for the elliptic curves and their generic
structures. Strong evidence of the conjecture arises from explicit
toric constructions [40,41] and more generally in the context of
gauged linear sigma models [42]. Also see Refs. [43,44] for the
heterotic/F-theory duality perspective.

16To be most general, we should consider embeddings of a
gauge bundle into the full 10d heterotic current algebra poten-
tially mixed with a pair of Kaluza-Klein U(1)s and rearranged
afterwards. Here, we assume embeddings into E8 only for
simplicity of presentation; the physical intuition behind the
mirror conjecture works in full generality.
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where Ĝ is a simply-connected Lie group (or a product of
such factors). This results in the 0-form gauge symmetry
with a discrete Zn factor,

H ¼ Zn × Ĥ ⊂ E8; ð67Þ

where Ĥ is the commutant of Ĝ in E8. To turn the tables
around, one can consider a gauge bundle with structure
group Ĥ endowed with an Zn-holonomy instanton to
obtain G as the effective gauge group, so that a discrete
Zn 1-form symmetry is realized instead.
The heterotic string thus provides us with the physical

intuition behind the geometric mirror conjecture, pairing an
elliptic Calabi-Yau threefold Y3 with a genus-one fibered
Z3. In particular, we conclude from this dual heterotic
perspective that the upper bound 6 must apply not only to
the 1-form but also to the 0-form factors, conforming with
the geometric conjecture (65).
Strictly speaking, however, the physical argument above

is clear only for F-theory models with T ≥ 1. It would be
worth clarifying if this heterotic perspective extends to the
models with T ¼ 0.

2. Bounds on Uð1Þ charges
We emphasize that the aforementioned heterotic intuition

behind the mirror conjecture relies heavily on the pertur-
bative nature of the 1-form gauge sector as addressed in
Sec. IV, as well as that of the discrete 0-form gauge sector.
The latter follows from the observation in [8] that Uð1Þ
0-form gauge factors of 6d F-theory vacua should lie
entirely in the perturbative sector. Presuming that a Zn
0-form gauge factor arises from the Higgsing of Uð1Þ, the
former should also be perturbative in nature.
In view of this Higgsing phenomenon, we are naturally

lead to the closely related conjecture that the Uð1Þ charges
q of the matter states must be subject to

q ≤ 6; ð68Þ

for any F-theory models with T ≥ 1. This conjecture is
particularly interesting in view of recent attempts of
classifying possible Uð1Þ charges in 6d F-theory (see
e.g. [46–51]).
While the conjectured charge bound (68) does not

necessarily apply to the models on B2 ¼ P2, it is particu-
larly interesting to note that models on Hirzebruch surfaces
were proposed in [50] to have matter states with a Uð1Þ
charge as large as 21. The apparent conflict between the
conjectured bound (68) and the proposed models with
such a large Uð1Þ charge would in principle be resolved
by carefully analyzing the specific Higgsing processes
assumed. On the one hand, particular chains of
Higgsings are required in [50], both for non-Abelian and
for (intermediate) multiple-Uð1Þ gauge theories; if any of
them fail to be realized in F-theory the proposed models

will not exist. On the other hand, our bound (68) assumes
that any matter state with a Uð1Þ charge q could acquire a
vacuum expectation value (VEV) to break Uð1Þ to a Zq

0-form gauge factor. It will be interesting to clarify which
Higgsing assumptions are invalid and also find the rationale
behind such an obstruction, from the perspectives of both
the geometry and the effective theory.17

C. Compactification (D= 4)

As already emphasized, the key to our geometric
derivation of the bounds (4) is the presence of a P1

fibration within the F-theory base B2, with the exception
of B2 ¼ P2, which, nevertheless, can be blown up without
reducing the 1-form gauge sector. In order to extend our
results to 4d F-theory models, we must argue that B3 also
admits a P1 fibration. Interestingly, a birational characteri-
zation of the F-theory base threefolds has recently been
accomplished in terms of the so-called Fano towers of
fibrations [53,54]. This suggests that the following two
exceptions to a P1 fibration should be analyzed:
(1) B3 ¼ P3.
(2) B3 ¼ a P2 fibration over P1.
In the former case, the same tuning used for B2 ¼ P2 in

Sec. III B enables us to develop codimension-two non-
minimal fibers along a line, which, once blown up, will turn
B3 ¼ P3 into a P2 fibration over P1, which falls into the
latter type. Similarly, the base B3 of this latter type can be
tuned within the torsional ansatz in a similar fashion, this
time by choosing two toric coordinates of theP2 fiber as the
analog of the linear factors in (47). The common zero locus
of these two toric divisors is a section of the P2 fibration.
Blowing up the threefold B3 along this section results in B̂3,
which is a fibration of the Hirzebruch surfaces F1, which
may as well be interpreted as a P1 fibration over yet another
Hirzebruch surface. This assures that the torsional con-
straints (4) persist in the elliptic Calabi-Yau fourfolds
Y4 → B3, thereby establishing the same bounds also on
the 1-form gauge sector of 4d N ¼ 1 F-theory vacua.
Note, however, that this only constrains the 1-form gauge

sector realized by the geometry alone. Unlike in 6d
F-theory models, the 0-form gauge group of a 7-brane stack
may be broken by gauge fluxes, which may in principle
serve as an independent source of a 1-form gauge sym-
metry even for the nonperturbative sector, to which our
heterotic argument based on E8 embedding does not apply.

17For instance, for the Uð1Þ Higgsing to be realizable in the
effective theory, it is necessary that more than one Higgs field
exists and acquires a VEV, so that D-flatness is satisfied. From
this effective theory consideration alone, our conjectured bound
(65) on discrete 0-form gauge factor does not rule out any
potential models in which precisely one massless field is charged
under Uð1Þ with a large charge q > 6. It is not clear, however, if
such models can exist at all to begin with (see, e.g., [52]).
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Relatedly, it has recently been proposed [55] that flux
breaking of a non-Abelian group may possibly lead to the
Cartan Uð1Þ s, a particular linear combination of which
may admit a charged matter with charge as large as 657, far
beyond the torsional bound of 6. Unless the matter fields
with such a large Uð1Þ charge q ≫ 6 face a fundamental
obstruction in acquiring a VEV, the Uð1Þ 0-form symmetry
of the theory can be Higgsed to Zq. In view of the mirror
conjecture, this may serve as an indication for the existence
of a 4d F-theory model with a Zq 1-form gauge factor,
where q violates the torsional bound.
It would be interesting to extend our constraints on the

perturbative 1-form gauge symmetry to such a nonpertur-
bative sector.

D. Decomposition (D= 2)

Another interesting direction worth pursuing further
arises from the worldsheet theories of the BPS noncritical
strings that couple to bulk tensor fields. As was briefly
mentioned in Sec. II, many of the seemingly consistent
configurations for the 0-form gauge sector can be success-
fully ruled out [26] by requiring the unitarity of the 2d
superconformal field theories (SCFTs), to which the
worldsheet theories of such BPS strings flow in the infra-
red. However, this approach has not been strong enough to
rule out all configurations known so far, which are believed
to eventually be ruled out. Also, the consistency of the
exceptional configurations such as G ¼ SUð7Þ3=Z7, which
arise from the choices of the 1-form gauge sector with
ðn;mÞ from (6), remain agnostic from the unitarity con-
sideration of such string probes alone.
On the other hand, one might expect that the 1-form

gauge sector descends to the 2d SCFTs as a global
symmetry, as is the case for the 0-form sector [56]. It is
therefore worth questioning if any other world-sheet-
theoretic notions, e.g., that of decomposition [57], which
addresses the equivalence between two-dimensional quan-
tum field theories with 1-form global symmetries and
disjoint unions of other theories, might possibly lead us
to novel consistency constraints on the 6d bulk supergravity
theories. It would be very interesting to clarify if and
how the string worldsheet theories reflect the nonsimply-
connected nature of the 1-form global symmetry in a
nontrivial fashion.
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APPENDIX A: INCONSISTENCY OF Z7 AND Z8
1-FORM GAUGE FACTORS

In this Appendix we provide the detailed explanation on
the inconsistency in geometry arising from demanding the
1-form gauge sector to take the form

Γ ¼ Z7; ðA1Þ

in an F-theory compactification to six dimensions. Let us
first recall from Sec. III A that the choice (A1) made for
the 1-form gauge sector uniquely fixes the 0-form gauge
group G as

G ¼ SUð7Þ3=Z7; ðA2Þ

which follows from the geometric classification of elliptic
K3 surfaces [13]. Here, each simply-connected factor, Ĝi ¼
SUð7Þ for i ¼ 1, 2, 3, arises, in the language of the Calabi-
Yau threefold Y3, from the singular fibers of Kodaira type
I7 along the curve in B2 of class bi. We denote the genus
and self-intersection number of each such curve by gi and
ni, respectively. As explained around (37), the embedding
factors ki are given as

ðk1; k2; k3Þ ¼ ð1; 2; 3Þ; ðA3Þ

so that the four representations ðRrÞ4r¼0 under each SUð7Þi
contribute to the Γ charge, qΓðRÞ, of R ¼ ðRriÞ3i¼1 as

qZn1
ðRrÞ · k1 ¼ 0;

1

7
;
2

7
; 0;

qZn2
ðRrÞ · k2 ¼ 0;

2

7
;
4

7
; 0;

qZn3
ðRrÞ · k3 ¼ 0;

3

7
;
6

7
; 0; ðA4Þ

if they occur in R. Here, Rr for r ¼ 0, 1, 2, 3 are,
respectively, 1, F, Λ and Adj with the multiplicities,
μr¼1;2;3, of the charged ones given as (23).
Suppose now that a given representationR appears in the

spectrum. Then, its Γ charge qΓðRÞ in (37) necessarily
vanishes modulo 1. In view of (A4), we thus observe for a
fixed ith simple factor that if R transforms as R1 under Gi
then it should transform as R2 under some other Gi0. In
other words, if ri ¼ 1, then ri0 ¼ 2 for some i0 ≠ i.
Similarly, it also follows that if ri ¼ 2, then ri0 ¼ 1 for
some i0 ≠ i. This simple observation then leads to the
following constraints on the total multiplicities μ1 and μ2
for the given ith sector:

μ1 ¼ ni þ 16ð1 − giÞ¼! 21m1; ðA5Þ

μ2 ¼ ni þ 1 − gi¼! 7m2; ðA6Þ
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for m1; m2 ∈Z≥0, where we have used (23) for the
multiplicities. Upon subtracting (A6) from (A5), however,
we obtain

15ð1 − giÞ ¼ 7ð3m1 −m2Þ; ðA7Þ
indicating that

gi ≡ 1 ðmod 7Þ; ðA8Þ
and, hence, in particular that

gi ≥ 1: ðA9Þ
Note that analogous calculations can be performed when

the 1-form gauge sector takes the form

Γ ¼ Z8; ðA10Þ
which results in the same conclusion (A9) again via the
divisibility argument. In this case, the 0-form gauge group
is uniquely fixed via the K3 geometry [13] as

G ¼ ðSUð2Þ × SUð4Þ × SUð8Þ2Þ=Z8; ðA11Þ
and the embedding factors as

ðk1; k2; k3; k4Þ ¼ ð1; 1; 1; 5Þ: ðA12Þ
Let us now proceed to show that (A9), which should

work for any choice of i0, implies violation of the Calabi-
Yau condition, in the sense that the class (39) of the residual
discriminant Δ0 is calculated not to be effective. This way,
we will have concluded that Z7 cannot be realized as a
1-form gauge sector. In the rest of this Appendix, we thus
prove this inconsistency by considering in turn the follow-
ing three types of the base twofold:

B2 ¼ P2; Fa and BlkFa with k > 0: ðA13Þ

1. Type 1: B2 =P2

The genus constraint (A9) implies that the curve class bi
is not too small, i.e.,

bi ¼ liH; with li ≥ 3; ðA14Þ

where H is the hyperplane class. Since the ith discrim-
inantal component supports a singular fibers of Kodaira
type I7, the class ½Δ0� obeys

½Δ0� ¼ K̄⊗12
B2

− 7ðb1 þ b2 þ b3Þ ðA15Þ

¼ð36 − 7ðl1 þ l2 þ l3ÞÞH ðA16Þ

≤ −27H; ðA17Þ

in contradiction with the required effectiveness of ½Δ0�.

2. Type 2: B2 = Fa

Let us denote the (irreducible) curve class bi as

bi ¼ siSþ fiF; si; fi ≥ 0; ðA18Þ

where S and F are the class of the exceptional section with
self-intersection −a and that of the fiber, respectively. We
need to have the residual discriminant effective, whose
class is computed as

½Δ0� ¼ K̄⊗12
B2

− 7ðb1 þ b2 þ b3Þ ðA19Þ

¼ð24 − 7sÞSþ ð24þ 12a − 7fÞF; ðA20Þ

where

s ≔ s1 þ s2 þ s3; f ≔ f1 þ f2 þ f3: ðA21Þ

Since S and F generate the Mori cone of B2, it follows in
particular that

24 − 7s > 0; ðA22Þ

and hence,

0 ≤ si ≤ 3; ∀ i: ðA23Þ

In the meantime, one can calculate the genus gi via the
Hirzebruch-Riemann-Roch theorem as

2gi − 2 ¼ bi · ðbi − K̄B2
Þ; ðA24Þ

which leads to gi ¼ 0 for si ¼ 0 and 1. The genus
constraint (A9), together with (A23) thus leave only two
possibilities left: si ¼ 2 or 3. In particular, we thus have

si ≥ 2; ∀ i; ðA25Þ

which, however, contradicts (A22).

3. Type 3: B2 =BlkFa (k > 0)

We can immediately deduce the inconsistency of this
most general case from that of the Hirzebruch case. To this
end, let us consider the morphism,

ν∶ B2 → Fa; ðA26Þ

which blows down the exceptional divisors El on B2. The
anticanonical classes of B2 and Fa are naturally related by

K̄B2
¼ ν�ðK̄FaÞ þ

X

l

clEl; ðA27Þ

for the coefficients cl ¼ −1.

GEOMETRIC BOUNDS ON THE 1-FORM GAUGE SECTOR PHYS. REV. D 108, 086021 (2023)

086021-13



Let us now denote the curve class bi as

bi ¼ siSþ fiF þ
X

l

ei;lEl; ðA28Þ

where by abuse of notation we do not distinguish the
classes S and F of the section and the fiber on Fa from their
pullbacks under ν. Then, ½Δ0� is computed as

½Δ0� ¼ K̄⊗12
B2

− 7ðb1 þ b2 þ b3Þ
¼ ð24 − 7sÞSþ ð24þ 12a − 7fÞF ðA29Þ

þ
X

l

ð12cl − 7elÞEl; ðA30Þ

where el ≔ e1;l þ e2;l þ e3;l and s and f are again defined
as (A21). Effectiveness of ½Δ0� implies that of its push
forward,

ν�ð½Δ0�Þ ¼ ð24 − 7sÞSþ ð24þ 12a − 7fÞF; ðA31Þ

so that we are still subject to (A22) and, hence, also to
(A23). Here, we have used si ≥ 0, which follows from the
requirement that ν�ðbiÞ ¼ siSþ fiF is effective on Fa.
Invoking the Hirzebruch-Riemann-Roch theorem (A24),
we once again learn that gi ¼ 0 for si ¼ 0 and 1, and hence
that si ≥ 2, contradicting (A22).

APPENDIX B: INCONSISTENCY OF Z4 × Z4 AND
Z2 × Z6 1-FORM GAUGE GROUPS

In this Appendix we show that the 1-form gauge sector
of the form

Γ ¼ Z4 × Z4 or Z2 × Z6 ðB1Þ

leads to inconsistency in geometry. The arguments will
largely parallel those in Appendix Awhere the Γ ¼ Z7 case
was analyzed in detail. As in the latter case, demanding the
1-form gauge sector to take either of the two cases (B1)
highly constrains the geometry of K3 surfaces so that the
0-form gauge group G, as well as the embedding factors of
the Γ action on its simply-connected cover Ĝ, is uniquely
fixed. Specifically, for Γ ¼ Z4 × Z4, the global gauge
group is determined as

G ¼ SUð4Þ6=ðZ4 × Z4Þ ðB2Þ

with the embedding factors of the order-4 generators given
by [58]

kð4;1Þ ¼ ð0; 2; 1; 1; 1; 1Þ; kð4;2Þ ¼ð1; 1; 0; 2; 3; 1Þ: ðB3Þ

On the other hand, for Γ ¼ Z2 × Z6 we have the gauge
group

G ¼ ðSUð2Þ3 × SUð6Þ3Þ=ðZ2 × Z6Þ; ðB4Þ

where the Z2 and Z6 quotients act with the embedding
factors,

kð2Þ ¼ ð0; 1; 1; 0; 3; 3Þ;
kð6Þ ¼ ð1; 1; 0; 5; 5; 2Þ: ðB5Þ

Similarly to the Γ ¼ Z7 case in Appendix A, the
embedding structures (B3) and (B5) for the double-factor
Γ do not allow for Γ-neutral representations, except
possibly for high-rank tensor representations, unless the
adjoint representations are involved.18 Then, a contradic-
tion arises once again as the six nonrational discriminantal
components result in a noneffective residual discriminant
Δ0. We will close this Appendix by sketching the latter.
First, for the base twofold B2 ¼ P2, the six simple

factors of both gauge groups, (B2) and (B4), are associated
with the curve classes,

bi ¼ liH; i ¼ 1;…; 6; ðB6Þ

of the non-Abelian loci, each supporting singular fibers of
Kodaira type Ini with ni ¼ 2, 4, or 6. Here, H is the
hyperplane class and the individual degrees li must obey
li ≥ 3 so that the genus of each curve may be strictly
positive. Therefore, for each 1-form gauge group Γ in (B1),
the combined class,

b ≔
X6

i¼1

nibi; ðB7Þ

of the collective locus of the Ini loci, weighted with the
individual vanishing orders ni, is subject to

Γ ¼ Z4 × Z4∶ b ¼ 4

�X6

i¼1

li

�
H ≥ 72H; ðB8Þ

Γ ¼ Z2 × Z6∶ b ¼ 2

�X3

i¼1

li

�
H þ 6

�X6

i¼4

li

�
H ≥ 72H:

ðB9Þ

The residual discriminant thus receives an upper bound,

½Δ0� ¼ K̄⊗12

P2 − b ≤ −36H; ðB10Þ

which contradicts its effectiveness.

18In the Γ ¼ Z2 × Z6 case, given the embedding factors (B5),
lower-rank tensors of SUð6Þ3, e.g., ð6; 6; 6Þ, can be used to form
Γ-neutral representations. However, we believe that no brane
configurations can realize such neutral representations at finite
distance.
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Essentially the same line of arguments can be applied to
the base twofolds B2 ¼ Fa or their blowups; we will
present the analysis of the former type, which straightfor-
wardly generalizes to the latter as in Appendix A. Denoting
the curve classes of the Ini loci as

bi ¼ siSþ fiF; i ¼ 1;…; 6; ðB11Þ

in terms of the section and the fiber classes, S and F, of Fa,
we require that the sectional degrees si obey si ≥ 2 so that
each curve may have a strictly positive genus. Next we turn
to the combined class,

b ≔
X6

i¼1

nibi; ðB12Þ

of the collective locus, especially to its sectional degree,

s ≔
X6

i¼1

nisi: ðB13Þ

For each 1-form gauge group Γ in (B1), the aforementioned
constraints si ≥ 2 on the individual degrees lead to

Γ ¼ Z4 × Z4∶ s ¼ 4
X6

i¼1

si ≥ 48; ðB14Þ

Γ ¼ Z2 × Z6∶ s ¼ 2
X3

i¼1

si þ 6
X6

i¼4

si ≥ 48: ðB15Þ

Accordingly, the residual discriminant,

½Δ0� ¼ K̄⊗12
P2 − b; ðB16Þ

receives an upper bound on its sectional degree,

24 − s ≤ −24; ðB17Þ

contradicting the effectiveness of ½Δ0�.
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