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In holographic duality an eternal Anti-de Sitter black hole is described by two copies of the boundary
Conformal Field Theory in the thermal field double state. In this paper we provide explicit constructions in
the boundary theory of infalling time evolutions which can take bulk observers behind the horizon. The
constructions also help to illuminate the boundary emergence of the black hole horizons, the interiors, and
the associated causal structure. A key element is the emergence, in the large N limit of the boundary theory,
of a type III; von Neumann algebraic structure from the type I boundary operator algebra and the half-sided

modular translation structure associated with it.
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I. INTRODUCTION

Time is a baffling concept in quantum gravity. While it
plays an absolute role in the formulation of quantum
mechanics, in gravity it can be arbitrarily reparametrized
by gauge diffeomorphisms and hence lacks a definite
meaning. In an asymptotic anti-de Sitter (AdS) spacetime,
a sensible notion of boundary time can be established in the
asymptotic region as gauge transformations generating
time reparametrizations are required to vanish at spatial
infinities. For static spacetimes with a global timelike
Killing vector, the asymptotic time can be extended to
the interior with the help of the symmetry. But for space-
times without such a symmetry, whether it is possible to
describe time flows in the interior in a diffeomorphism
invariant way is a subtle question whose understanding is
important in many contexts.

For this purpose an eternal black hole in AdS, which is
dual to two copies of the boundary Conformal Field Theory
(CFT) in the thermal field double state [1] (see Fig. 1),
offers perhaps a simplest nontrivial example. The black
hole spacetime possesses a timelike Killing vector in the
exterior R and L regions. The associated time #, which can
be considered as the extension of the boundary time,
however, ends at the event horizon, with no timelike
Killing vector inside the horizon. A natural question is
whether the boundary theory can describe an “infalling”
time evolution, which we define as any evolution which can
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take the Cauchy slice at + = 0 to Cauchy slices which go
inside the horizon. Such a time, if it exists, must be
emergent, as the evolutions of the usual boundary times
do not probe the interior; see Fig. 2.

There have been many different ways that boundary
observables can probe regions behind the horizon (see e.g.
[2-13]), but in these discussions neither an infalling time
evolution nor the casual structure of the horizon was visible
from the boundary, except in systems with symmetries
[14,15]. Similarly, ER = EPR type arguments [16,17] are
largely concerned with a single time slice. While it is
possible to express bulk operators in the black hole interior
regions in terms of boundary operators [18-22], such “bulk
reconstructions” require either evolving bulk equations of
motion or analytic continuation around the horizon, and
thus are not intrinsically boundary constructions. See also
[23,24] for an interesting recent discussion of keeping track
of the proper time of an in-falling observer using modular
flows and [25-29] for a description of the black hole
interior from the perspective of coarse graining.

In this paper we provide an explicit construction of in-
falling time evolutions from the boundary theory.1 It should
be emphasized that our goal is not to describe in-falling
geodesic motion of some localized bulk observers, which in
general cannot be formulated in a diffeomorphism invariant
way. The goal is to construct “global” evolutions of a Cauchy
slice as in Fig 2(c). Understanding such emergent evolutions
also helps to illuminate the emergence in the boundary theory
of the bulk horizon and the associated causal structure.

The key to our discussion is the emergence, in the large
N limit of the boundary theory, of a type III; von Neumann

'A summary of the main idea and results has appeared earlier
in [30].
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FIG.1. The Penrose diagram of an eternal black hole. The dashed
lines are event horizons, and the wavy lines are the singularities.

FIG. 2. Left: evolution of the t = 0 bulk slice under H — H;,
where Hpy; denote the Hamiltonians of the boundary theories.
Center: evolution of the = 0 slice under Hz + H/, the action of
which is singular at the horizon. In fact any linear combination of
Hpy and H; other than Hp — H; is expected to have a singular
action at the horizon. Right: a smooth Kruskal-like evolution. If
such an evolution can be described in a diffeomorphism invariant
way, it must be emergent in the boundary theory.

algebraic structure® from the type I boundary operator
algebra and the half-sided modular translation structure
associated with it. A distinctive property of the “evolution
operators” U(s) = e¢~'05, s €R, resulting from this con-
struction is that the Hermitian generator G has a spectrum
that is bounded from below,

G=>0. (1.1)
The spectrum property is natural from the following
perspectives: (i) It distinguishes G, as a generator of “time”
flow, from an operator generating other unitary trans-
formations, e.g. spacelike displacements or internal sym-
metries, whose spectrum is not bounded from below. (ii) If
we interpret the eigenvalues of G as energies associated
with the “global” in-falling time s, they should be bounded
from below to ensure stability. The existence of the
singularity means that such evolution may only have a
finite “lifetime,” but there should nevertheless exist a well-
defined quantum mechanical description before hitting the
singularity. Also by construction G involves degrees of
freedom from both CFTy and CFTL.3

“For reviews on the classification of von Neumann algebras
see chapter II1.2 of [31] or Sec. 6 of [32].

The necessity of left/right couplings has previously been
discussed. For example, see [33].

Our discussion will be restricted to leading order in the
1/N expansion, but we expect the structure uncovered
should be present to any finite order in the expansion. New
structure from incorporating 1/N corrections to all orders is
discussed in [34].

The plan for this paper is as follows. In Sec. I we discuss
the emergence of a type III; vN algebra in the boundary
theory at finite temperature. In Sec. III we discuss the
emergence of a new type III; structure for local boundary
algebras in the large N limit. In Sec. IV we suggest several
physical implications of these emergent type III; algebras.
In Sec. V we review half-sided modular inclusion/
translation. In Sec. VI we show that half-sided translations
can be uniquely extended to all values of the parameter and
that the description of these evolution operators is com-
pletely fixed, up to a phase, for algebras generated by
generalized free fields. In Sec. VII we illustrate our con-
struction of evolution operators in the simple case of gene-
ralized free fields on Rindler spacetime. In Sec. VIII we
review bulk reconstruction in the AdS-Rindler and
Banados-Teitelboim—Zanelli (BTZ) spacetimes and then
provide new results on the boundary support of such bulk
reconstructions. In Sec. IX we show how to cross the AdS-
Rindler horizon and reconstruct the bulk Poincaré time
from Rindler patches of the boundary theory. In Sec. X we
discuss boundary descriptions of Kruskal-like time evolu-
tion in the BTZ geometry and sharp signatures of the black
hole horizons and causal structure in the boundary theory.
In Sec. XI we show that the emergent bulk evolution
becomes a pointwise transformation in the limit with the
bulk field having a very large mass. We then conclude in
Sec. XII with a discussion of our results, and we point out
many future directions to be explored.

A. Conventions and notations

In this paper we use N ~ - to denote the number of
degrees of freedom of the bouncﬁlry theory, where Gy is the
bulk Newton constant. For two-dimensional CFTs, N2
should be understood as the central charge ¢. The 1/N
perturbative expansion of the CFT is dual to the perturbative
Gy expansion around the corresponding classical geometry.
In this regime, the bulk gravity theory can be described by a
weakly coupled quantum field theory in a curved spacetime.

All operator algebras discussed in this paper should be
understood as those of bounded operators.4

We will consider the boundary theory to be on R x §~!
or R'¥~1and the discussion generalizes straightforwardly
to other boundary spatial manifolds such as hyperbolic
space. A boundary point is denoted by x = (z,X) with X
denoting points on either R4~! or §9~!. The corresponding
Fourier space will be denoted as k = (w,q) with ¢

“This is for mathematical convenience, but this constraint does
not sacrifice physical significance as essentially all observables can
be made to be bounded by putting restrictions on their spectra.
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collectively denoting momentum on R?! or spherical
harmonic labels on S%'. A bulk point is denoted by
X = (r,x) with r the bulk radial direction (later in the
paper we use w as the radial variable).

A’ denotes the commutant of an algebra A, i.e. the
algebra of operators commuting with the algebra A. By
type III; algebras we mean a von Neumann (vN) algebra
which contains type III; factor(s).

We use ¢ to denote the boundary time whose translation
is generated by the Hamiltonian H, 7 to denote the
boundary time in units where the inverse temperature is
p=2mie.n= 2ﬁ—” t, and ¢ to denote the modular time. For a

detailed description of the notational conventions used in
the paper, see Appendix H.

II. EMERGENT TYPE I1I; ALGEBRAS
AT FINITE TEMPERATURE

In this section we consider two copies of the boundary
CFT in the thermal field double state, which is dual to an
eternal black hole in AdS. We argue that there are emergent
type III; vN algebras in the large N limit. We start with a
quick review of the bulk theory to set up the notation.

A. Small excitations around the eternal
black hole geometry

Consider an eternal black hole in AdS,, |, whose metric

can be written in a form
1

ds®> = —fdt* + ?dr2 +r}d¥3 |, (2.1)

where del_] is the metric for the boundary spatial manifold

¥ which we will take to be the unit sphere $¢~! or R¢~!, and

f is a function with a first order zero at event horizon

r = ry. A bulk point is denoted by X = (¢, r,X) where X

denotes a point on . The Schwarzschild coordinates (¢, r)

can be used to cover any of the four regions of the fully

U Vv

® b4

FIG. 3. Kruskal diagram for an eternal black hole. The dashed
lines are event horizons, the solid red lines are the singularities,
and the solid black lines are the boundaries.

extended black hole geometry of Fig. 3, while the Kruskal
coordinates U, V cover all the regions.

Small perturbations around the black hole geometry can
be described using the standard formalism of quantum field
theory in a curved spacetime. Their quantization results in a
Fock space Hi™. We will use a real scalar field ¢ of mass
m as an illustration. The restriction ¢ of ¢ to the R region
of the black hole geometry can be expanded in terms of a
complete set of properly normalized modes Uﬁ,’? (X) in the
R region as

400 = 3 [ 000 + @00) @,
(2.2)

where ¢ collectively denotes quantum numbers associ-
ated with 2,5 and

[als), (aff;,)T] =276(w — )5

(2.3)

99’

Below for notational simplicity we will write (2.2) as

Pe(X) =Y o 0al. k= (0.q).
k

(2.4)

There is a similar expansion for the restriction of ¢ to the L
region,

(2.5)

In the case of a Schwarzschild black hole, the R and L
regions are related by spacetime reflection symmetry
(U,V,X) to (=U,-V,=X). It is convenient to choose

v,((m to be

(R)x

v,(CL) (t,r,X) = v ®)

(t,r.X) =0 (t,r,X), (2.6)

and the antiunitary spacetime reflection operator J then
acts as

Jop(t,r.3) = ¢(1,r,3),  JaPi=al. (27

Altogether

>The sum over g and 044 should be understood as integrals and
Dirac delta functions if there are continuous quantum numbers.
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(a/(ca)y = a<_02, [a/(ca)’ aﬁff)] = e(w)5k+k’,05a/)"
a»ﬂ:RaL' (2.8)

The behavior of ¢ in the F and P regions can be
determined from that in the R and L regions by causal
evolution or analytic continuation.

The Hartle-Hawking vacuum can be defined using the
standard Unruh procedure by first introducing modes wy,
which are analytic in the lower U and V planes for @ > 0,
L=R R=L

W;(a) _ B+’l)l(<a) 4 b_’l)(_(_lk), (29)

Denoting the oscillators corresponding to the modes w,(f) as

c,(ca) we then have on a Cauchy slice

¢= Z”k ai’ Zwk e,

(2.11)

(@) (@)

which implies the oscillators ¢, and a; "~ are related by
6 bl -6 =40 ()
e, e = e(@)5papobapr JA0T =P, (2.13)

The Hartle-Hawking vacuum |HH) is defined to satisfy

“IHH) =0 for @ > 0. (2.14)

(a)

The Fock space Hgﬁmk) is built by acting c;

|HH). Note that

with @ < 0 on

aV|\HH) = e%a'")|HH),

(HH|a\® = % (HH|a"). (2.15)

We will denote the operator algebra generated by ¢ and
other matter fields (including metric perturbations) in the R
region as yR and s1mllarly those generated by fields in the
L region as ;. Vg and ), are commutants of each other,
and are expected to be type III; von Neumann algebras
[35-37]. Reflections of the type III; structure include the
nonexistence of the Schwarzschild vacuum state [0); ®

|0), (which is defined to be annihilated by a\") with > 0)

in HBFI({)Ck and the entanglement entropy between R and L

regions being not well defined in the continuum limit.

B. Small excitations around thermal field
double state on the boundary

We always consider the boundary CFT at a large but
finite N and work to leading order in the 1/N expansion.
We denote the Hilbert space of the boundary CFT as H, its
Hamiltonian as H, the algebra of bounded operators as B,
and the vector space of all finite products of single-trace
operators by A We use O to denote the single-trace
operator dual to the bulk field ¢p. Now consider two copies
of the boundary theory, to which we refer respectively as
CFTy, and CFT;,. Operators or states with subscripts R, L
refer to those in the respective systems. The doubled system
has Hilbert space H = Hr ® H,, operator algebra B=
Br ® B, and single-trace operators A= Ar @ A, . Inthe
large N limit, A can be endowed with an algebraic structure
defined with respect to the thermal field double state
(see [38] for details). We denote the resulting algebra

by ./AélTpD. The vector space of products of single-trace
operators associated to either side of thermal field double
are then also endowed with an algebraic structure and
become subalgebras of .,leFD, which we denote by Ag trp
and Ap gp. Generic operators in ATFD will be denoted as
a,b,---, those in B as U, v,
Ag,Bg, -

The thermal field double state is defined as

-, and those in Ap as

|¥p) = Ze PEii), [n) g (2.16)
) =0ln),  (@lA) = (n|m) =6, Zy=) e,
(2.17)

where |n) denotes the full set of energy eigenstates of the
CFT, with eigenvalues E,. m, n here collectively denoting
all quantum numbers including spatial momenta for the
boundary theory on R'¥~! or angular quantum numbers for
the theory on R x $9~!. @ is an antiunitary operator and will
be taken to be the CP7T operator of the CFT. When tracing
over degrees of freedom of one of the CFTs, we get the

thermal density operator at inverse temperature § = % for
the remaining one:
Pp = Le‘ﬂH. (2.18)
s Zy

Perturbatively in the 1/N expansion, excitations around
|¥s) can be obtamed by acting single-trace boundary
operators on it® In fact, the collection of excitations
obtained this way has the structure of a Hilbert space,

bSee also [39] for a review of the definition of the thermal field
double state in the infinite volume and large N limits.

086020-4
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which can be made precise mathematically using the
Gelfand-Naimark-Segal (GNS) construction. More explic-
itly, for each operator a € ATFD we associate a state |a) and
define the inner product among them as

a, be "leFD'

(a|b) = ]Jiqn;oc}'ﬁmfbryﬁx (2.19)

In particular, for Ag, Bg € Agrp, We have
(Ag|Bg) = lim (W4|ARBg|¥;) = lim Tr(psATB).  (2.20)
N—oo N—oo

Equation (2.19) does define a Hilbert

space as there can be operators y EATFD satisfying
limy_, o, (Ws|y"y|¥5) = 0, and the corresponding |y) should
be set to zero. Denote the set of such operators as J. The
GNS Hilbert space is the completion of the set of
equivalence classes [a] which are defined by the equiv-
alence relations

not yet

a~a+y, Cle./leFD, yeJ. (2.21)
The set J is nonempty, as from (2.16), for a Hermitian

operator We B

Wl 5)95) = W, <t - i§,2> ),

W, (£ %)W) = Wy (r + z%};) ), (2.22)

where for simplicity we have assumed that 6TW(0)0 =
W(0), and we have chosen the space and time orientations
of CFT,, to be the opposite of those of CFTR.7 From (2.22)
it can be shown that A gp or A; 1rp alone can be used to
generate the full GNS Hilbert space, which we will denote

as Hﬁ;s). See Appendix A for details. In other words, any
state in H(T?;Igs> can be written as |Ag) with Ag € Ag gp or

as a limit of such states. The state in H%‘;ES) corresponding
to the identity operator is denoted as |Q;), which we
sometimes refer to as the GNS vacuum.

H(TGFISS) also provides a representation space for Arpp.
The representation z(a) of an operator a € Arpp acting on

H(T?JES) can be defined as

m(a)[b] =[ab],  a.be€ A, (2.23)

and as a result the inner product (2.19) can also be written as

"That is, Wg(t.X) =1, @ W(1,X) while W, (1,X) =
W(—t,—X) ® 15. We take the single-trace operators W(z,X) to
be analytically continued to Imre [Og} Thus Wg(t,X) are
defined for Imz € [0,%] while W/ (z, %) for Imt e [-£,0].

(alb) = (Q|(n(a)) n(D)|Q0). (2.24)

We denote the representations of Agtrp and A; gp in

H(T?:II\)IS) respectively as Vg and ), . Given that H(T(;II\)IS) can

be generated by Ag rpp or Ay 1rp alone, the GNS vacuum

|Qq) is cyclic and separating under both YV and ), , and we

have Y, = );. We denote the operator algebra on H(T?;NDS)

as ).

It can also be shown that H%ig& is isomorphic to H,(,SNS>,
the GNS Hilbert space corresponding to the thermal density
operator p; over the algebra .Ap ; obtained from the single-
trace operators of one copy of the CFT and the thermal
state.”

To leading order in the 1/N expansion, the inner
products (2.19) and thus (2.24) can be written as sums
of products of two-point functions of single-trace operators.
We can thus represent single-trace operators by generalized

free fields acting on H(T%BS), and the algebras Vg, )V, are
generated by generalized free fields. More explicitly, for a
single-trace scalar operator O, we can expand its repre-
sentations in terms of a complete set of functions on the
boundary manifold

2(Or() = uP)a”. 2(0,(x)=>"u" x)al”,
k k

(2.25)

) (x0) = Nee @y (7). ul” (x) = u) (x) = (W® (x))",
x=(1,%), (2.26)

where N is some function of k = (w,q), and h,(X)
denotes the complete set of functions on the boundary

(R.L)

spatial manifold X, and a, are operators acting on

GNS .
'H(TFD ), normalized as’

a,f=R,L.
(2.27)

(@) =a".  [a?.a))|=e(@)5ip 084

Using (2.20) and (2.24), N, can be deduced from the
condition

]\%i_{r(}on(PﬁO(xl)O(xz)) = (Qo|(m(Og(x1))m(Og (x2)) Q)
(2.28)

Furthermore, applying (2.22) to z(Op) and z(O; ) we have

8For the construction of the latter see Sec. V.1.4 of [31]
and [40].

’Note that this is purely a P(gundary discussion. Even though
we use the same notation, aka as in (2.4), at this stage these
operators do not have anything to do with each other.
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v (L) s

a1y =eFa")|Qg), (Qplal® =F(Qyla).  (2.29)

We can introduce an antiunitary “swap” operator J which
acts as

JIQ) = Q). Jald=a,

Jn(O4(x))J = 7(O4(x)), JP=1 (2.30)

Equations (2.29) motivate the introduction of [b, were
introduced in (2.10)]

c,(c“) = E+a§€a> — b_a<_‘_'k), a,((a) = B+c,({a) + b_c(_[_lk), L=R
(2.31)
which satisfy
cDNQ) =0 for >0, () =)
[c,(ca), cl((‘,ﬂ)] = €(@)y 1 00up- (2.32)

To conclude this subsection, we make some further
general remarks:

(1) The algebras Ag trp, A trp are defined only in the

1/N expansion. The algebras Vg, V; act on H(TGFI;S>,

and are von Neumann algebras.
(2) 7(0O) is not the same as O. The former is defined

only on H(T?;gs) and is state dependent (i.e. it depends
on the state we use to build the GNS representation),
while O acts on the full CFT Hilbert space and is
state independent. The algebras )y, ); are thus also
state dependent. For example, they depend on f.

(3) The operator algebras By, B; are type I von
Neumann algebras, and |¥4) is cyclic and separating
with respect to them. The corresponding modular
operator A is given by —log A = f(Hg — H; ). Note
that the modular time ¢ defined by modular flow with
A~ is related to the usual CFT time ¢ bylo

p t
p

(4) Since |Qq) is cyclic and separating for Vg, there
exists a modular operator A, which leaves |Q))
invariant and generates automorphisms of Vg, V;.
The modular flows generated by A, again coincide
with the time evolution of the respective boundaries.
More explicitly, combining with the previous item,
we have

(2.33)

m(Ag(t = Br)) = n(ATARAY) = Agitz(Ag) AL,
Ap € Aptep. (2.34)

""Recall that we take the time of CFT;, to run in the opposite
direction from that CFTy.

C. Complete spectrum and emergent
type 111, structure

For the boundary theory on R x S9~!, we conjecture that
the algebras Vg, ), are type I below the Hawking-Page
temperature 7' p, but become type III; above T p. Recall
that Typ is the temperature at which the boundary system
exhibits a first-order phase transition in the large N limit,
with log Zs ~ O(N?) for T < Typ but log Zs ~ O(N?) for
T > Typ. Below Typ thermal averages are dominated by
contributions from states with energies of O(N") while
above Typ they are dominated by states with energies of
O(N?). This change of dominance leads to dramatically
different behavior for thermal correlation functions. Since

the inner products (2.19)—(2.20) of H(T?%S) are determined
by thermal two-point functions of single-trace operators,
the representations of elements of Ag 1p, Ay 1rp, and thus
the structure of the algebras )y, ), are sensitive to the
behavior of these two-point functions.

Consider thermal Wightman functions of a Hermitian
scalar operator O of dimension A

G (x1 = x2) = Tr(psO(x,)O(x2))
= (Y| Or(x1)Op(x2)[¥p).

Its Fourier transform has the Lehmann representation

G+ (a)’ q> = Z<2ﬂ)5(a} _Enm)e_ﬁE'"pmn

m,n

(2.35)

1

=T P\W, 5
— P (@:4)

1 (2.36)

Ew =E,—En.  ppn=|(mlO0)n)?,  (2.37)

nm

where p(w, q) is the (finite temperature) spectral function.
In the large N limit and at strong coupling, G and p can be
computed using the standard procedure from gravity.
Below Typ, the finite temperature Euclidean correlation
function, G, of O is determined by the Euclidean function
Gpp at zero temperature via summation over images in the
Euclidean time

Gp(.%) = Grolr +np.%). (2.38)

When analytically continued back to the Lorentzian sig-
nature, this implies that

plw.q) = 0(w)py(. q) - 0(-w)py(-w.q),  (2.39)
where py(®, ) is the spectral function at zero temperature“
and has the following form:

"This can be defined by taking # — oo in (2.36) and can be
found from the zero temperature momentum space Wightman
function as Gy, (w, q) = py(w, q).

086020-6
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—N edlw-A-20).  (240)
=0

In this case, p is supported only at discrete points on the real
® axis.

In contrast, for T > Typ, p(w,q) is smooth and sup-
ported on the full real w axis. For d =2, i.e. CFT on a
circle, from the BTZ black hole [41] it can be found that'?

Csinhral'(q,)1(7,)0(q)T(G ).  (2.41)

plw.q) =
We will refer to such a p, a smooth function supported on
the full real @ axis for any ¢, as having a complete
spectrum. For general d, the explicit analytic expressions
of p(w, q) at strong coupling are not known, but p can be
shown to always have a complete spectrum due to the
presence of the horizon in the black hole geometry (see
e.g. [4].

It is known that for a generalized free field theory in a
thermal field double state if the spectral function has a
continuous spectrum, then the corresponding subalgebra
for a single copy of the theory is type III; [42,43]. This has
also been emphasized recently from a different perspective
in [44]." Here the gravity calculation indicates that p(w, ¢)
has a complete spectrum, which implies that Vg, ), are
type IIl;. We thus conjecture that in the large N limit, at
T > Typ, Vg, Y become type III;. Note also that when

there is a continuous spectrum, the “vacuum” |0); & |0)x

for a;{a, which is defined to be annihilated by a,(;l) with

@ > 0, does not ex1st in HTFD , and thus HTFD cannot be
tensor factorized."

We will discuss in the next subsection that the type III,
structure of Vg, YV, is also requlred by the duality of Vg,
Y, with the bulk algebras Vg, V.

The complete spectrum of p(w, g) is stronger than the
continuous spectrum required to have a type III; algebraic
structure for Vg, V. We believe the complete spectrum is
necessary for the half-sided modular inclusion/translation
structure to be discussed in Sec. VI (which will play an
important role in later parts of the paper), but we will not
attempt a rigorous proof here.

We emphasize that a continuous spectrum is possible
only in the large N limit. CFT on S%~! has a discrete energy
spectrum, i.e. the sums m, n in (2.36) are literally discrete.
As a result, at finite N, the spectral function p is supported
on only discrete values of @ = E,,,,. In the large N limit

Now g is the momentum on the circle, and ¢, =
IH(A+i(w£q)).q- =3(A—i(w=+q)). Cis a normalization
constant In (2.41) we have chosen units such that f = 2x.
PWe thank Eliott Gesteau, Nima Lashkari, and Mudassir
Moosa for discussions on these references.
"*From (2.31), the normalization of |0) ® |0); is proportional
to T[], (1 — e72*), which is not well defined.

(for T > Typ), the dominant contributions to the sums
in (2.36) come from states with energies of O(N?), where
the density of states is ¢®™”). If O has nonzero matrix
elements between generic states with energy differences
E,,, ~ O(NY), a continuous spectrum results in the large N
limit. In contrast, for 7 < Ty p, the dominant contributions
to the sums in (2.36) come from states with energies of
O(NY), where the density of states is O(N°), which leads to
a discrete spectrum for p. It is interesting to understand
what is responsible for the emergence of the complete
spectrum on the gravity side. From the bulk perspective, the
complete spectrum can be attributed to the existence of an
event horizon which results in a continuum of modes for
both signs of @. The emergent complete spectrum in the
large N limit for T > Typ was emphasized before in [4] as
a possible reason for the emergence of a bulk horizon and
singularity in holography.

The complete spectrum of finite temperature spectral
functions responsible for the emergent type III; structure
may not be restricted to strong coupling. In [45] it was
argued that a complete spectrum may arise generically for a
matrix-type theory in the large N limit even at weak
coupling (see also [46,47]). A complete spectrum may
also arise in the Sachdev—Ye—Kitaev (SYK) model yielding
an emergent type III; algebra in the large N limit.

Our discussion of the emergent type III; structure is at
the generalized free field theory level, which applies at
leading order in the large N limit. See [34] for a discussion
on the deformation of this algebra when including 1/N
corrections.

D. Duality between the bulk and boundary
from the algebraic perspective

Given that single-trace operators are dual to fundamental
fields on the gravity side, we can identify the Hilbert spaces
of small excitations on both sides and the corresponding
operator algebras, i.e.

(GNS) (Fock)
HTFD HBQC ) |Qo> =

yR = yR’ yL = 5)L-

|HH),
(2.42)

More explicitly, for a bulk scalar field ¢ dual to a
boundary single-trace operator O, the last two equations
of (2.42) imply that we should identify oscillators, a,ia),
constructed from the generalized free field description of
the boundary theory operators (2.25) with those in the
bulk mode expansions (2.4)—(2.5), which is the reason we
have been using the same notation for them. This identi-
fication is also reflected in the standard extrapolate dic-
tionary for the bulk and boundary operators (C is a
normalization constant)
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Ly B
P | | TFD) P |

FIG. 4. Below Typ the bulk theory is two separate global AdS
spacetimes whose small excitations are entangled in the thermal
field double state.

7(Ok(x)) = Clim 4y (r, ),

H(O4(3)) = Clim =245, (7. ) 2.4)
u,(cm (x) = C,ILTOF_AvgcR) (r,x),
Wl (x) = Climr 20" (r, x). (2.44)

r—00

We emphasize that it is the representations z(Og), 7(O; )
of O, O in the GNS Hilbert space that appear in the
extrapolation formulas (2.43). This makes sense as the
mode expansions of ¢p, ¢p; depend on the bulk geometry,
which is reflected in the state dependence of 7(Og), 7(Op).
The identification of |©)) with |HH) then follows from
(2.15) and (2.29).

With the identifications of a,ia) in the boundary and bulk
mode expansions, ¢, ¢; of equations (2.4)—(2.5) can now
be directly interpreted as boundary operators, which is
the statement of bulk reconstruction for the R and L regions
of the black hole [18-20]. We emphasize that the
reconstruction formula is in terms of operators in the
GNS Hilbert space.

Since the algebras 5)R, j/L of bulk fields restricted to the
R and L regions of the black hole are believed to be type
III; von Neumann algebras, the duality can only hold if Vg,
Y, are also type III;.

For the boundary theory on R x S%!, the above dis-
cussion applies to 7' = 5> Tpp. For T < Typ, the bulk

dual for (2.16) is given by two disconnected copies of
global AdS whose small excitations are in the thermal field
double state; see Fig. 4. In this case )y and ), are each
dual respectively to the algebra of bulk fields in the global
AdS geometry and should be type I.

III. EMERGENT TYPE 111, ALGEBRAS
IN BOUNDARY LOCAL REGIONS

The emergent type III; structure discussed in the
previous section concerned the algebras generated by
single-trace operators over the entire boundary spacetime.
We now would like to argue this phenomenon is more

A1

FIG.5. The single-trace algebras A, and .4, associated with the
two different Cauchy slices shown are inequivalent, even though
they share a causal diamond, since single-trace operators do not
obey any equation of motion among themselves (standard
Heisenberg evolution takes a single-trace operator outside of
the algebra). The same statements apply to algebras generated by
generalized free fields (e.g. subalgebras of ))) which do not obey
any equations of motion.

general, applying to spacetime subregions, although in a
more subtle way. The operator algebra of a boundary CFT
restricted to a subregion should be type III; [35-37]. We
argue that there is a further emergent type III; structure in
the large N limit, and discuss its manifestation in the bulk
gravity dual.

Our discussion in this section will be for a single copy of
the boundary CFT at zero temperature. We again consider a
finite but large N. For definiteness, we will take the
boundary spacetime to be R'“~!. Recall that the Hilbert
space of the boundary CFT is H, with its full operator
algebra B. The algebra generated by single-trace operators
with respect to the vacuum is .4,, which is only defined
perturbatively in 1/N expansion. While B can be defined
on a single time slice, A, is defined on the whole spacetime
as single-trace operators do not obey any equations of
motion among themselves; see Fig. 5.

A. GNS Hilbert space and bulk reconstruction

For our discussion of the emergent type III; structure for
local boundary subregions, it is again important to intro-
duce the GNS Hilbert space of small excitations, now
around the vacuum state of the CFT. The procedure is
similar to our discussion of the GNS Hilbert space around
the thermal field double state in Sec. II B, so we will not
discuss it in detail.

Consider the GNS Hilbert space M\ built from the
CFT vacuum state |0) over the single-trace operator algebra

Ay. HE)GNS) offers a representation 7y(A) for an operator

A€ Ay, and we denote the algebra z,(.Ay) as ). As the

(GNS)

entire operator algebra on H, offers a representation
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7o(A) for an operator A € Ay; the algebra Y = 7y(Ay), as

the entire operator algebra on ’HéGNS), is a type I vN
algebra. We will denote the vector corresponding to the

identity operator in H(()GNS) as |Qp)gns- The definition of )
is again only sensible perturbatively in the 1/N expansion.

To leading order in the 1 /N expansion, the algebra ) is
again generated by generalized free fields, with a mode
expansion determined by vacuum two-point functions of
single-trace operators.

The boundary theory in the vacuum state |0) is dual to
the bulk gravity theory in the empty AdS geometry (in our
case the Poincaré patch as we consider the boundary theory
on R"4~1). We can use the standard procedure to build a
Hilbert space of small excitations around the Poincare

vacuum |0),,x» Which we will denote as HéFOCm. The

algebra of bulk fields is denoted as Y. In terms of the
algebraic language we are using, the usual holographic
dictionary can be written as

Fock GNS g
HE) : :H(() )’ 0)buic = [Q0)ens: V=D (3.1)
In particular, the last equation in (3.1) identifies the bulk
and boundary creation/annihilation operators, and is equiv-

alent to the statement of global reconstruction.

B. Boundary theory in a Rindler region
and AdS Rindler duality

Now consider the boundary spacetime separated into
Rindler regions, as on the left of Fig. 6. We denote the
algebra of operators restricted to the Rindler R region (or L
region) as By (or B;). These are type III; vN algebras. The
single-trace operator algebras restricted to the R and L
regions are denoted by Ay o and A; . The restrictions of )
to the R and L regions are denoted by )V and ); . They are
von Neumann algebras, and we have y; =Y.

Our proposal is that YV and ), are type III;. This new
type III; structure is only possible perturbatively in 1/N
expansion, and is mathematically and physically distinct
from the type III; nature of By and 53; . The support for our
proposal again comes from the complete spectrum of the
spectral function of single-trace operators restricted to a
Rindler region and the half-sided modular translation
structure which we will study in detail in Sec. VI and
Sec. VIL. It is also required by the duality with bulk gravity,
which we now elaborate upon.

The Poincaré patch of AdS can also be separated into
four AdS Rindler regions as on the right of Fig. 6. The
standard procedures of the holographic correspondence can
be applied to an AdS Rindler region, leading to a duality
between the bulk gravity theory in the AdS Rindler R (£)
region and the CFT in the boundary R (L) region [48-50].

>The HKLL global reconstruction [48] is a coordinate space
version of the statement.

FIG. 6. Left: Rindler regions of Minkowski spacetime. Right:
AdS Rindler regions of the bulk spacetime. The vertical lines
denote the boundary, and the dashed lines are Rindler horizons.
Each AdS Rindler region has the corresponding Minkowski
Rindler region as its boundary.

Denoting the algebras of bulk fields in the AdS R and £
regions as j)R and j/E, we have the identification

yR:j)R’ Y 257[;. (3.2)

As local operator algebras of the bulk low energy effective
theory restricted to a spacetime subregion, Y and )/, are
type III; vN algebras, thus so are Vg, ), due to the
identifications (3.2).

The CFT vacuum |0) is cyclic and separating for Bg, and
the corresponding modular Hamiltonian is —logA = K,
where K is the boost operator. Similarly, |Qq)sns is cyclic
and separating for Vg, and the flows generated by the
corresponding modular operator A, should again coincide
with boosts. We thus have

mo(Ap(n = 2mt)) = mo(AT"ARA™)

= Ay'my(AR)AL,  Ag€Agg. (3.3)

where 7 is the (dimensionless) Rindler time.

With By and Y, being type II1;, neither A nor A, can be
factorized into a product of operators from the R and L
regions, but their nonfactorizations are reflected very
differently in the bulk. The nonfactorization of A implies
that the entanglement entropy Sp between the R and L
regions in the full CFT can only be defined with a short-
distance cutoff €, in the boundary, which corresponds to a
bulk IR cutoff near the intersection of the corresponding
Ryu-Takayanagi (RT) surface with the asymptotic boun-
dary. The nonfactorization of A, is reflected in the non-
factorization of the bulk field theory across the AdS Rindler
horizon, which implies that a bulk UV cutoff ey must be
introduced in order to define the bulk entanglement entropy
Sr between the AdS Rindler R and L regions. See Fig. 6.
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The above discussion of a boundary Rindler region can
be straightforwardly generalized to ball-shaped regions in
the boundary which also have geometric modular flow.

C. General boundary regions

We now generalize the above discussion of emergent
type III; algebras for Rindler regions to general local
boundary subregions. The story is similar, so we will only
emphasize those elements which are different.

We now use R to denote a general spatial subregion in
the boundary. Its causal completion is denoted by R. The
restriction of B to R, B, is the same as B, and is a type III;
vN algebra. Now consider the restriction of ) to R, Vg, in

the GNS Hilbert space HSGNS). Note that Vi # Vj as YV is
generated by generalized free fields, which do not obey any
equations of motion (see Fig. 5). We now introduce
Je= )" (3.4)
From the definition, we have jiR 2 V. For a half-space
(Rindler) or a ball-shaped region, Vp = jiR, as the modular
flows are geometric, but for general R it may be that )V is a
proper subset of jJR. We propose that j)R is type III;.
We denote the modular operator of B with respect to the
CFT vacuum state |0) as A and the modular operator of Jg
with respect to [Qg)gns as Ag. It is tempting to postulate
that modular flows (with A7) of elements of Ay, also
have a sensible N — oo limit, in which case A, may be

viewed as the representation of A in ’H(()GNS>, i.e. we should
have

2\

)

FIG. 7. RT surface, y, for a boundary spatial region R. Ep
denotes the entanglement wedge. Here we only draw a spatial
section of the bulk. The bulk IR divergence of the area of yg
comes from the part near the boundary (circled red regions) and
reflects the type III; nature of boundary algebra 5. The type III;
nature of Yy is reflected in the UV divergences of S £,» Which
comes from UV degrees of freedom near y, in the bulk (high-
lighted by orange wavy lines).

mo(ATSAAS) = AGSzo(A)A), A€ A, (3.5)
which is the statement of the equivalence of bulk and
boundary modular flows [51,52] expressed in our language.
Unlike those in (2.34) and (3.3), the modular flow parameter
s in (3.5) does not have any geometric interpretation.

The type III; nature of By and )y is again reflected
differently in the bulk, with the IR divergence of the area of
the RT surface [53] reflecting the type III; nature of By,
while the divergence in the bulk entanglement entropy Sg,

for Eg reflects the type III; nature of Y; see Fig. 7.

IV. PHYSICAL IMPLICATIONS

The emergent type III; algebras potentially have many
physical implications. One such implication, which will be
extensively explored in the rest of the paper, is the emergent
half-sided modular inclusion and translation structure,
which can be used to generate emergent in-falling flows
in the bulk. Here we discuss some other possible impli-
cations. Our discussion is somewhat vague, but hopefully
offers some pointers for future explorations.

A. Role of the bifurcating horizon and RT surfaces

Consider first the case of the system in the thermal
field double state. The doubled system has a tensor
product structure with H= Hr @ Hy, B=DBz ® B;,
and A= Ar ® A;. The emergent type III; nature of

Vg, Y implies that the GNS Hilbert space H&‘éﬁ“ does
not have a tensor product structure, i.e. it cannot be
factorized into Hilbert spaces associated with the R and
L theories, and its operator algebra ) also lacks a tensor
product structure in terms of )Yy, Y. This can have
important implications for describing the dynamics of
low energy excitations around the thermal field double
state, including nonfactorization of certain objects on the
gravity side. An immediate bulk example of such non-
factorization comes from operators inserted at the bifurcat-
ing horizon (suitably smeared); see the left of Fig. 8. The
existence of conserved charges such as energy implies
that YV and ), have a nontrivial center at the leading order
in the 1/N expansion [34], i.e. they are not factors. The
presence of diffeomorphisms and other possible gauge
symmetries on the gravity side could also lead to a
nontrivial center [54-56] for j)R, 57L and thus for Vg, V;.
The system can be factorized once we go beyond the
1/N expansion. From the bulk perspective this requires
going beyond the low energy approximation. Interestingly,
there are objects, which naively may be factorized only in
the full theory but turn out to be factorizable within the
low energy description, with the “help” of the bifurcating
horizon. Here we will briefly comment on two simple
examples:
(1) Vg is type III;, so its modular operator A, with
respect to the GNS vacuum |Q,) cannot be
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factorized, which translates to the bulk as the lack
of a well-defined entanglement entropy Sy between
the R and L regions in the continuum limit. Going
beyond the 1/N expansion, the full theory can be
factorized, and there exists a well defined entangle-
ment entropy Sy between the R and L systems. Itis a
familiar fact that S can nevertheless be found using
the low energy description on the gravity side by the
generalized entropy

+ Sg(euv) (4.1)

where Ay, is the horizon area and Gy(eyy) is the
(bare) Newton constant at some bulk short-distance
cutoff eyy. The left-hand side is well defined
mathematically, but Sg(eyy) cannot be defined in
the eyy — 0 limit, and thus the two terms on the
right-hand side cannot be individually defined in the
continuum limit.

This emergent type III; structure also provides a
new perspective on the bulk UV divergences and
renormalization of the Newton constant Gy. Recall
that in the usual AdS/CFT dictionary, the bulk UV
divergence is understood from the boundary theory
as coming from a truncation of operators dual to
stringy modes in the bulk. In particular, it is
generally expected that the string theory description
of a physical quantity should be devoid of UV
divergences at each genus order. Here, however, the
bulk UV divergences may be understood from the
boundary theory as arising from nonfactorization of
algebra ). For this reason, even in string theory we
expect that the two terms in (4.1) which should come
respectively from genus zero (the area term) and
from higher genera contributions cannot be indi-
vidually finite.

(2) Another example was discussed by [57], as indicated
in the right of Fig. 8, which is a Wilson line W of a
bulk gauge field going from the left to the right

(WA VAV VVVV VYV VAV VV VAV VAV V¥

" o

(//\//V\I\/VVVVVVWVWW\/\NWVWWV\\\/‘

FIG. 8. Left: operators inserted at the bifurcating horizon do not
appear to be factorizable. Right: a Wilson line in the eternal black
hole geometry and its factorization into left and right operators
via the bifurcation surface.

boundary. To factorize the Wilson line into a product
of left and right operators requires breaking it up
somewhere in the middle of the black hole geometry,
which cannot be done without introducing additional
structure. But there is an additional structure in the
bulk: the bifurcating horizon. We can break up the
Wilson line in the low energy theory by taking
advantage of it, as indicated in Fig. 8, with

ro

W=wr—ypL, ViR = / A(rL’md”’ (4.2)

[Se]

where r, is the location of the horizon. From
discussions in [58-60], wg, w; can be identified
respectively as effective fields describing diffusion
in the right and left theories at a finite temperature.
These are collective dynamical variables and cannot
be expressed simply in terms of fundamental degrees
of freedom of the boundary theory. The bifurcating
horizon can be described in a diffeomorphism
invariant way, and thus yy and y; are also diffeo-
morphism invariant, and the factorization is well
defined.

For both examples above, we see that the horizon plays
the role of restoring the factorization in the low energy
description.

The above discussion can be generalized to the algebra
jJR associated with a local boundary region R. We expect

that j)R and (j)R)’ should share a center whose “size” is
characterized by the area of the RT surface. Similarly, the
RT surface can be used to restore factorization in the low
energy description. More explicitly, the entanglement
entropy Sr of a region R in the full boundary theory
can be obtained from the bulk by [61]

SR A TR

~ 4x(ew) 4

+ Sgr(euy),

where A, is the area of the RT surface yg. Recall that in
this case S is only defined with a UV cutoff in the
boundary which translates to a bulk IR cutoff. As remarked
earlier, due to the type III; nature of Y, Sk (eyy) cannot be
defined in the continuum limit, and thus the two terms on
the right-hand side cannot be defined separately in the limit
eyy — 0 as was the case in (4.1).

The parallel with (4.1) and the thermal field double case
can be made even closer if we put the boundary theory on a
lattice. In this regularized theory, at finite N we have a
tensor product decomposition of the Hilbert space
between the spatial subregion R and its complement R,
Hrcel‘(firw) = Hr ® Hpy, analogous to the tensor product of

left and right CFT Hilbert spaces for the thermal field
double at finite N. In the regulated finite N theory, the
entanglement entropy of the subregion R is finite, and we
can treat the modular operator A as being factorizable.
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FIG.9. Slightly separated Rindler regions on a spatial slice. The
split property implies that there is a tensor factorization of the
Hilbert space with respect to an operator algebra N contained in
the union of the green and red regions above, even though no such
tensor factorization exists for the red and blue regions alone
when ¢, = 0.

In the strict N — oo limit, even the Hilbert space of the
boundary theory defined on the lattice will fail to factorize,
and the entanglement entropy will diverge. However, the
RT formula computes the entropy of the boundary spatial
subregion R which is finite in the lattice boundary theory at
finite N, and thus, just as with the horizon of the black hole
in (4.1), the RT surface restores factorization in the low
energy bulk description.

An alternative perspective on factorization in the boun-
dary theory can be obtained if we assume that the boundary
theory has the split property, which is believed to be
satisfied by general quantum field theories [62-64].
Consider the situation in Fig. 9, where we separate the
two regions R and L by an infinitesimal distance e¢,.
The split property says that there exists a tensor product
decomposition of the global Hilbert space H = Hy ® Hy,
giving rise to a type-I factor N} corresponding to operators
acting on H,, which satisfies

Br CNCBj. (4.4)
The entanglement entropy associated with Hy is well
defined, and in the limit ¢, - 0 it can be used as a
regularization of § #-'¢ Under this regularization, the type
11, algebra Y'x can now be viewed as arising from the type
I factor N|. In other words, in Eq. (3.5) we can treat the
modular operator A in the full theory as being factorizable.
Similar to the role played by the event horizon in (4.1),

%Such a regularization was discussed earlier, for example,
in [65].

in (4.3) the RT surface restores the factorization structure of
‘H = Hy ® Hy in the low energy description.

These discussions also imply that the bifurcating horizon
of an eternal black hole can be viewed as a special example
of an RT surface from an algebraic perspective. For a more
general entangled state |¥) between the CFT, and CFT,
the RT surface which provides a signal of the factorization
of the full system in the low energy theory no longer
coincides with the horizon.

The role of the area terms in (4.1) and (4.3) in restoring
the tensor product of A and H also provides a new
perspective on their physical origin and their universality.
There are other ways to understand the appearance of the
area terms from the perspective of quantum error correction
[66,67] and superselection sectors [68]. We believe that all
these perspectives can be understood in a unified way,
which will be discussed elsewhere.

1. More general dual relations

The bulk dual of a boundary subregion R can be defined
to be the maximal bulk subregion Ep whose operator
algebra can be reconstructed from that of R. In the static
situation and with a spatial region R which we are
considering, the bulk dual E for R has been formulated
using the RT surface. It is the bulk causal completion of the
region between the RT surface yz and R. This definition
assumes that the relevant operator algebra in the boundary
for R is By which is equivalent to Bj.

Our discussion in the previous sections suggests that
bulk duals and subregion duality can be formulated more
generally, with the definition associated to RT surfaces as a
special case. As we emphasized, bulk reconstruction should
be more precisely formulated in terms of operators in the
GNS Hilbert space, which are built from single-trace CFT
operators. For single-trace operators or their representations
in the GNS Hilbert space, the algebras associated with
different Cauchy slices are inequivalent. This leads to new
ways of associating algebras with spacetime regions, which
in turn leads to new examples of bulk duals that are not
related to RT surfaces. We will discuss such examples in
Sec. X. RT surfaces appear in special situations where the
operator algebra is associated with the causal completion of
a spatial (or null) region. In the more general case, these
new notions of bulk duals also raise the interesting question
of whether we can define more general notions of entropies
that are associated with these bulk subregions. From our
discussion of the close connections between bulk area
terms and emergent type III; von Neumann algebras we
expect the answer to be yes. We leave this to future
investigations.

2. Emergent symmetries

There can be emergent symmetries associated with the
emergent type III; structure. In the example of two copies
of CFT in the thermal field double state, it can be shown
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that there are emergent null translation symmetries along
the past and future event horizons of the eternal black hole,
which will be discussed in detail in Sec. X B.

There are likely many other examples where symmetries
in the low energy effective theory of gravity can be
understood as being associated with emergent type III4
algebras. Here we mention some possible candidates:

(1) In[69] it has been argued that the compactification to

(1 4+ 1)-dimensional Rindler spacetime cannot existin
a quantum gravity, due to incompatibility of an exact
SL(2, R) symmetry with a finite number of states. It
may be possible to understand the Rindler spacetime
and associated uncompact symmetries from an emer-
gent type III; algebra in the Gy — O limit.

(2) An SL(2,R) algebra in Jackiw-Teitelboim gravity
was discussed in [14,15] (see also [70]), which
implements AdS, isometries on the matter fields.
These symmetries may be understood from emer-
gent type III; algebras in the SYK model.

(3) In [71] local Poincare symmetry about a RT surface
was discussed, including its relevance for the modu-
lar properties of the boundary theory. As with the
near-horizon symmetries discussed in item 1 for a
black hole, these symmetries should be a conse-
quence of the emergent type III; structure discussed
in Sec. III C.

V. REVIEW OF HALF-SIDED
MODULAR TRANSLATIONS

In this section we discuss how to generate new times in
the boundary theory. Our main tool is half-sided modular
inclusion/translation [72,73], and an extension of it. This
structure has played a role in proofs of the CPT theorem
[72] and the construction of the Poincaré group from wedge
algebras [74]. There have also been important applications
of the half-sided modular inclusion structure to under-
standing modular Hamiltonians of regions with boundaries
on a null plane for a quantum field theory in the vacuum,
including average null energy conditions [75,76]. See also
[77] for a discussion concerning black hole interiors.

A. Review of half-sided modular translations

Suppose M is a von Neumann algebra and the vector
|Q) is cyclic and separating for M. The associated
modular and conjugate operators are A, and J,,. The
commutant of M is denoted as M’. A, leaves |Q))
invariant and can be used to generate flows within M
or M/,

AAAL = eKmAe~Kul e M,
AeM, Ky = —log Ay, (5.1)

while the antiunitary operator J ,, takes M to M’ and vice
versa,

Ay, acts on both M and M’, and in general cannot be
factorized into operators which act only on M or M’
Now suppose there exists a von Neumann subalgebra N
of M with the following half-sided modular inclusion
properties:
(1) |€g) is cyclic for N (it is automatically separating
for NV as N' ¢ M).
(2) The half-sided modular flow of A" under A, lies
within NV, i.e.
AFINAL C N,

1 <0. (5.3)

We will denote the modular operator of A/ with respect to
|Qq) as Ay with Ky = —log Ay

With these assumptions there are the following theorems
[72,73,78,79].

Theorem 1.—There exists a unitary group U(s), s €R
with the following properties:

(1) U(s) has a positive generator, i.e.

U(s) = e 65, G>0. (5.4)
(2) It leaves |Qq) invariant
U(5)|Qo) =19Q¢), VseR. (5.5)
(3) Half-sided inclusion
U'(s)yMU(s) CM, Vs<0. (56)

(4) N can be obtained from M with an action of U

N = U (-1)MU(-1). (5.7)

Theorem 2.—Suppose U(s) = ¢™“* is a continuous
unitary group satisfying (5.6); then any of the two con-
ditions below imply the third:

1.G > 0. (5.8)

2.U(5)|Q) = |Q).  seR. (5.9)

3.AJU(s)A = U(e™s), and JU(s)J 0= U(-s).

(5.10)
Theorem 3.—Introducing

N, = AFN AL (5.11)

we then have
(1) The family of algebras A/, with t €R is nested, i.e.
N, c N, fort; < tp,with NV, = Mand Ny = N.
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(2) The half-sided modular flow of any member of this
family gives another algebra in the family. In
particular,

A/_\}SNI«A}?/:N]’O(S‘,),
1
fols.r)= =7 log(1+e7 (e —1)) (5.12)
T

is valid for all s, ¢ such that the argument of the

logarithm is positive. Note the following:

(a) For t <0, which means N, C N/, we always
have fy < O for any s and f, < ¢ for s < 0. f,
increases as s increases, and f, — 0 as s — oco.

(b) For t> 0, which means that N'C N, the
logarithm is defined only for s >s,=
s-log(1 —e™) < 0, and f < 1 for s > 0. As
s = 8, fo = +oo, while as s - +o0, f( — 0.
This can be intuitively understood as that the part
of N, which is outside A\ is pushed further away
from (closer to) N for s < 0 (s > 0).

(3) The action of U(s) on N, has the structure

eiGsNte—iGs — Nfl(s,t)’

Fi(s.0) = —Llog(e —5)  (5.13)
2z
valid for all s, ¢ such that the argument of the
logarithm 1is positive. Note that f; - —oco as
s — —oo and f; — +oco as s — e 2",
(4) Modular operators of M and N satisfy the algebra

(K Kyl = =270 (K — Ky, (5.14)

(5) U(s) can also be expressed in terms of modular flow
operators of M and N as
ATGAY = U(D),

Af) = e —1.  (5.15)

Expanding both sides to linear order in ¢ we have

Ky — Ky =21G, (5.16)

which gives the explicit form of G in terms of
modular Hamiltonians of M and N."

Theorem 4.—Suppose we have (i) nested von Neumann
algebras NV ,,aeR,N, c N, for a < b with common
cyclic and separating vector |Qg); (i) a one-parameter uni-
tary group 7'(a) with a positive generator and T'(a)|Q) =
|Qq); and (iii) T'(a) translating the algebras [80]

N, =T(a)NT(-a). (5.17)
Then T (a) is unique. Theorem 4 then says that given M,
and |Qq), U(s) is unique.

"Note that the positivity of G is manifest in this expression
since Ky — Ky =log Ay —log Ay, > 0.

The above structure is called a half-sided modular
translation and exists only if M is a type I; von
Neumann algebra [79].

Similarly, we can define half-sided modular inclusion
(5.3) for t > 0 with the corresponding half-sided modular
translation for s > 0. All the statements are parallel except
with the following sign changes for equations (5.10),
(5.12), (5.13), and (5.15):

ATHU(s) AL, = U(e2s), (5.18)

Fols ) = zl—ﬂlog(l b (e _ 1)), (5.19)

fi(s.t) = %log(ez’” + ), (5.20)

A1) = e — 1. (5.21)

B. Example I: Null translations
in Rindler spacetime

Consider a quantum field theory in (1 4 1)-dimensional
Minkowski spacetime R'! with coordinates x# = (x°, x!)
and momentum operators P* = (P°, P). Suppose the
system is in the vacuum state |0) with respect to the
Minkowski time x.

Consider the half space A given by

A={xeRMx"=0,x"> 0}, (5.22)

whose domain of dependence is the Rindler R region (see
Fig. 6, left). We take M to be the operator algebra in the R
region, so |0) is cyclic and separating under M. The
corresponding modular Hamiltonian K, in this case is
proportional to the boost operator K

Ky =—logA,, =22k, AR = Kt (5.23)
and J, is the CP7T operator.
It is convenient to use light-cone coordinates
1
xt=x0£x!, Pizi(HiP):—P]F, H=P°, (524)

where the translation operator by a vector a* is given by

emiPitt — giHa'=iPal _ GiP~a*+iPTa™ (5935)
Note that
[K,Pi] _ :l:l-Pi, eiKMxPi-e—iKMx — e:FZﬂA‘Pi’ (526)
s (x)~ s = (eH(s)),
x/;t(s) _ eiZ;rsxi7 (527)

where ¢(x*) is a scalar operator.
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- 0 +
A

X~ x° x*

\

FIG. 10. Left: the algebra of the subregion A that leads to the half-sided modular inclusion structure for x~ translation. Right: the
algebra of the subregion N that leads to the half-sided modular inclusion structure for x™ translation.

M is the operator algebra in the region x* > 0,x~ < 0.
Below for simplicity we will simply use the spacetime
region to denote the operator algebra in that region. We take
N to be the region {x* > 0,x~ < —1} (see Fig 10, left),
and then

N, = M NemiKmt = [x+ > 0, x7 < —e™ 27},

with N, Cc N for t <0. We thus have the half-sided
modular inclusion structure (5.3). In this case the modular
operator of A/ can be found explicitly, and existence of
the positive generator G can be directly verified. More
explicitly, flows generated by the modular operator
of N correspond to boosts which leave the point a# =
(a*,a”) = (0,—1) invariant. Thus K+ should be given by

(5.28)

QKN — i@ Py itk u i@ P, _ =P ,itK u piPT (5.29)
which gives
Ky =Ky —27P". (5.30)

From (5.16) we conclude that the corresponding G is
given by

G=P", (5.31)
and thus

U(s) = e, (5.32)

We can now verify explicitly the statements of various
theorems of the last subsection. For example,

U'(s)MU(s) ={x">0,x" <s}cM, s<0, (533)
N =U'(-1)MU(-1),
N, = U (—e " )MU(—e2"), (5.34)

ATRU(5)AR | = elKmtemiPTse=iKut = (e=2"5).  (5.35)
By taking A to be the operator algebra associated with
the region in Fig. 10(b), there is a half-sided modular
inclusion structure with ¢# >0, and the corresponding
modular translation operator is given by G = P~.

C. Example II: Two copies of a large N theory
in the thermal field double state

Now consider two CFTs in the thermal field double state
in the large N limit, as discussed in Sec. II B. We now take
M = Vg, which is the representation of the single-trace

algebra Agtrp in the GNS Hilbert space H%S). The
associated modular operator is A ,, = A, with correspond-
t

ing modular time 7 related to the usual time 7 by 7 = 5

By choosing different subalgebras N we can construct
different generators G whose spectra are bounded from
below and thus generate new “times.” As the simplest
possibility we take N to be the representation of the single-
trace operator algebra associated with the region indicated
in the left plot of Fig. 11. Since generalized free fields do
not satisfy any Heisenberg equations, A\ is inequivalent to
M (recall Fig. 5).

The GNS vacuum |Q) is separating with respect to A.
While we do not have a rigorous mathematical proof, we
will assume that it is also cyclic with respect to . Since
Ag't generates a time translation, clearly

N, =ANASC N, fort<O. (5.36)
We thus have the half-sided modular inclusion structure of
(5.3). In this case Ay and G are not explicitly known. The
theorems in Sec. V A can be used to anticipate the action of
U(s) = e7'65, for example as in (5.13). In Sec. X we will
give the explicit action of U(s) by proposing the gravity
description of it, which can be explicitly worked out.
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FIG. 11. Left: NV denotes the spacetime subregion with ¢ < 0.
The vertical axis is time, and for simplicity we have taken the
spatial manifold to be a circle (vertical boundaries in the figure are
identified). Right: N denotes the spacetime subregion with ¢ > 0.

FIG. 12. For both plots in Fig. 11 instead of letting the region
describing N be bounded by the 7 = 0 slice, we can choose a
slice t = f(y) where y is the boundary spatial coordinate and f an
arbitrary periodic function.

Equation (5.13) then provides a nontrivial check of the
proposal.

We can also consider choosing N to be associated with
the region in the right plot of Fig. 11, which gives a half-
sided modular inclusion structure for ¢ > 0.

For both plots in Fig. 11, instead of letting the region
describing N be bounded by the ¢ = 0 slice, we can choose
an arbitrary Cauchy slice (not necessarily with constant ¢);
see Fig. 12. There is still a half-sided modular inclusion
structure and the associated modular translations. Thus
there are an infinite number of emergent “times” in the
large N limit.

VI. POSITIVE EXTENSION OF HALF-SIDED
TRANSLATIONS FOR GENERALIZED
FREE FIELDS

We now consider the general structure of half-sided
modular translations for a generalized free field theory. We
will show that in this context it is possible to determine the

general structure of the action of U(s) for all values of s
without the need of specifying N or A .

As an illustration, we will use two CFTSs in the thermal
field double state in the large N limit, as discussed in
Sec. B and Sec. VC, with M = Y, M’ =Y,, and
Ay = Ay. The generalized free fields that generate the
algebras are defined by (2.25)-(2.27). Below and for the
rest of the paper for notational simplicity we will write
7(Og(x)) simply as Og(x), but it should be kept in mind
that they are operators in the GNS Hilbert space. Also for
convenience for the rest of the paper we will rescale the
CFT time such that f = 2z. The rescaled time will be
denoted as n. From (2.33) we thus have the relation
between modular time ¢ and #:

(6.1)

From now on @ will be conjugate to 7.

The discussion in this section also applies to YV for a
local subregion. For a Rindler region, 5 is simply the
Rindler time.

A. Unitary automorphism of the algebra

For convenience we first copy here some relevant
equations of Sec. II B. In the GNS Hilbert space HT%ES ,
single-trace operators O;, Op can be represented by

generalized free fields with mode expansions

= Zu,(ca) (x)a

a=R,L,

(@) _ Z(b+” (a) ( )—f—b u( c(“))’

k
R=1L, (6.2)
where k = (w, g) denotes all quantum numbers including
® € (—00,00) with >, = [42 The R and L systems are
assumed to be symmetric with

R R)x L
ufl () = 1" () = (). (6.3)

The various oscillators satisfy the equations

(@) =al. (")) = ()i 08,
0’ 1Q0) = a7 |Q). (64)

N a a

() = e ) = e(@)drin .00,
A1Qy) =0 for w > 0, (6.5)
c,(ca) = b+a,((a) - B_a(_&k), a,((a) = B+c§(a) + B_c(_é;(),

ol
[ S — (6.6)

/2 sinh 7| @]
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The antiunitary modular conjugation operator J takes Op to
O, and vice versa, i.e.
— 0. (@7 _ (@ (@) y _ (@)
JO(x)J=04(x), Ja,'J=a;’, Jc ' J=c; . (6.7)
Now suppose there is a one-parameter unitary auto-
morphism group U(s), s €R,

Op(x:5) = U(s)' O (x)U(s). (6.8)
which we require to satisfy the following properties:
(1) Half-sided inclusion, i.e.
Or(x;5)€Yr, fors <O0. (6.9)
(2) It leaves the state |€) invariant
U(s)|Q0) = |Q0), V. (6.10)
(3) J acts on U as
JU(s)J = U(-s) (6.11)

Acting on both sides of the first equation of (6.8) by
J we find

JOg(x;8)J = JU(s) JJOg(x)JJU(s)J

= Op(x;-s). (6.12)
(4) Under modular flow we require
AU (s)AL = U(es). (6.13)
(5) U(1) group property
U(s)! =U(=s).  Ul(s))U(s2) = U(sy + 52).
s,51,8 ER. (6.14)

From Theorem 2 of Sec. VA, U(s) satisfying the above
conditions is generated by a Hermitian operator G that is
bounded from below.

We will now use the above properties to deduce the
explicit transformations of the oscillators under U(s). For
this purpose we denote

o,(a) = UT(5)al U(s) = A% (s >a§al
() U(s) = 2 (s)e

In the above equations and also subsequent discussions,
repeated indices k' and B should be understood as being
summed. The transformation matrices ¥ and A can be

h
—
QA
T
S~—
Il
<

(6.15)

related to each other using the basis changes (6.6). More
explicitly, we have (b, denotes the corresponding expres-
sion as in (6.6) for @')

AP (s) =0, T8 ()0, +b_27 ()b, — b, =7 (5)b"
—b6_3"_ (5)BL, (6.16)

SH(5) = B AL (9)E, b A% (5)B) + B, AT (5)0.

— A (5)B. (6.17)
Introducing

(aﬂ)( ;8) = u,(j) (x)AZ,/f{(s)
w,(;lﬁ)(x, )= B;uk, () ( )+b. (a)( )ZZ’ﬂ (), (6.18)

(a 1s not summed) we have

Oy(x;8) = u,(fﬁ) (xs s)a,(f) = w,(fﬂ) (x; s)cg), (6.19)

w,i"ﬁ) (x;5) = u,i"m (x;5)b, 4+ u U;{ﬁ) (x;s)b_.  (6.20)
We now work out the conditions on =% e and A , that are
implied by (6.9)—(6.14)
ARE(s) =0, fors <0, (6.21)
and we denote
Afg(s <0) = Cr(s). (6.22)

We take the Hermitian conjugate of (6.15)

) N Za/} ( )C( k), 72(1ﬁ

ab @ (s)c? . (6.23)

(o,(c})) =0, (c"

which requires that

T (s) =2 _u(s). (6.24)
Similarly we have
a aff *
AR (s) =A% _u(s).  Cip(s) = Copop(s).  (6.25)
Acting J on (6.15) we have
Joy(e™)d = U () U(s)] = o_y(c”)
af p ap p
— 3% (5)cP) = 37 (5) W), (6.26)
which implies that
af ap
Zki’(s) = Zklf:(_s)’ (6.27)
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and similarly

A (s) = Al (=) (6.28)
From (6.10) and (6.4) we have
(c,£”>)|9 ) =0 forw >0,
Qo ( ) =0 forw <0, (6.29)

i.e. the action of o, does not mix c-type creation and
annihilation operators, which implies that X should have
the structure

I (5) =0()0(a ) AT (5) +0(=w)0(=' B (s). (6.30)
Equations (6.27) and (6.24) imply that

A,ﬁ‘;f’>*<s> ,;,:ﬁ (~5) =B ",{” V().

kk’ (S) kk’ ( 5) = k k/(S) (6.31)

We will now show that (6.30) further implies that the full
A% (s) and T (s) can be expressed in terms of Cp(s)
with s < 0. From (6.18) and (6.19) we have for s < 0

W™ (x:5)6, = B, uld) (x)ZRR + 0L u®) ()R (6.32)

W (56 = 0,1l () RE 46 ") ()ZEE. (6.33)
From (6.30) we then have
) (x) Cure ()6, = B,y (x)(0() (ALK (5)
+ 0(-w)0(-a') BEE(5))
+ L1, (x) (0(@)0(—a ) ALR, (5)
+ 0(=w)8(a/)BLE, (s)) (6.34)
ul) () Cp_i(s)b_ = b;u,if” (x) (0()0(a )ABL (5)
+0(-w)0(~a')BEL(s))
+ 6l (x) (0(0)0(—' )AL, (s)
+0(-w)0()BL (). (6.35)

Considering respectively w > 0 and @ < 0 on both sides
we find that

ABE(s) = 9(w>9<w’>§—,ick1k<s>,
ALE(s) = 0(@)0(0) £ Coins). (6.36)

ABL(s) = e<w>e<w'>§fck«_k<s>,
A () = 0()0(@) £ C_oi(s) (637)
RR / b+

Bk’k( ) 6(_w>9(_a)>b_+/ck’k(s)a

BI(s) = 0(-)0(=0/) £ C_pn), (6.38)

b_
BY(5) = 0-0)0(-) 15 Cia (),
Bl () = 0(-)0(~0/) £ C_oi(s) (6.39)

The above equations can be written more compactly as

AL = L0006 Cat5),

B (s) = LO(~w)0(~w

o (6.40)

/) Cak’/}k(s) ’

where in subscripts for b and C it should be understood that

R =+ and L = —. From the above we also have the
relations

Q) Q) B:l [e] B:X a,
AP (5) =B (s), LUAT(s) = “BT i (s), (6.41)

by

where the first relation follows from the second equa-
tion of (6.25). The above expressions apply to s < 0.
We can now find the expressions for A and B for s > 0
from (6.27)

ALY (5) = AL (=s) = 7 0(@)0(0) Carpu(—s). (6:42)
B (s) = By (=)
B_

= 4 0(@)0(=)Cappp(=5).  (643)

Collecting everything together we thus have

b ,

7 0@ )Coppr(=s), >0
s(s) =4 (6.44)

i 0(@0)Coppr(s), s <0

and more explicitly
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RR /sinhz|o/| [ [&90(0)0(0) + e 2~ )(—w)0(~)|Cpi(s) s <0
T () === oo ; (6.45)
V/sinhzlw| | [e5~)0(0)0(a') + 5~ 9(—w)0(—)|Cp(=s) s >0
SRL(5) — \/si-nh z|a| { [e”—%(“”r/aJ’)Q(a))H o)+ ef(“’“’:)@(—w)g(—w')]Ck/_k(S) s < O’ (6.46)
V/sinhz|w| | [ @T)9(0)0(0) 4 e 5+ 0(—0)0(~a)|C_i(=s) s >0
and similarly for % and X**. From (6.16) we then have
Con(s) 5 <0 0 5<0
ARR(5) = { , ARL(s5) = {Sin i , 6.47
A0 V() 5500 M T Qs g 50 o
sinh 7o' C_, <0 sinh'n(a}+a)’) ,
ALL( ) { sinh 7w K= ( ) § , Aé/l]g(s) — { sinh 7w C—k k(s) s <0 . (648)
C_v_i(—s) s>0 0 s>0
|
B. Determining the structure of Cy (s) Cre (8) & (=s)7He@=o), (6.55)

We first collect the conditions Cy (s) should satisfy and
then show that under certain assumptions it can be
completely determined up to a phase.

The U(1) property implies that for s, s, < 0

Crw (51)Crpr(52) = Crr (51 + 52). (6.49)

Since the modular operator A, generates a translation in

time ¢, it acts on a,(ca) as'®

A—1t (a )Alt —2niaa)zal((‘1)’ (650)
which also implies
A—lt (a )Alt —Zﬂiawtcl({“)' (651)
Acting Aa“ on (6.15) we find from (6.13) that
A—IIU( ) (a )U( )Al[ —2ni(1wtzzfl(e—2ﬂts)cif)
Q) B) ,—2mifal
— 3% (5)c W) g2, (6.52)
which implies that
“2riqwryaf ( ,=2xtg) _ v —2zifa't 6.53
e w(e7s) w(s)e . (6.53)

The above equation implies that the s dependence of X
must have the form

27 (s) o silaopel), (6.54)

which in turn implies that

"Recall that 1 = 5 and  is the frequency for 7.

We will make a further assumption that Cy is diagonal in
other quantum numbers, i.e.

Cur(s) = (=)@ gk, K )3, . (6.56)
From (6.25) g should satisfy
g (k, k") = g(—k,=k'). (6.57)
Equation (6.49) requires
[ S (s gk (52) g0 )
= (=51 = 52) 7™ g(k, K"). (6.58)

Without loss of generality, we take |s,| > |s;|. The above
equation can then be written as

/da)’ B
27rZ

i(w—w’)g(k, k/)g(k/, k//) _ (1 4 Z)—i(u)—u}”)g(k’ k”),

z:m<1.

|S2|

(6.59)

To compare with the lhs, let us expand the rhs in powers
of z,

—w")+n),  (6.60)

and Eq. (6.59) can follow if the integral on the lhs can be
evaluated using Cauchy’s theorem with poles with
® — @' = in. This motivates us to consider the function
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Ly (x) = x7@T(i(@ — @) + €)

odp . )
:/ —pp’(“’_“’>+€e_p", x>0, (6.61)
o P
which satisfies
do’
/Elwm’ (xl)Iw’m” (Xz) = Iwm” (xl =+ x2)’
Ia)w'(o) = 27[5(60 - a)/) = 5(1)(1)" (662)

Equation (6.58) can then be satisfied if g(k, k) has the
form

A(k)
AR .
gk, k') = 200) [i(w—o') +¢), (6.63)
which gives C of the form
A(k)

Ckk’(s) = /l(k/) Iww’(_s)éqq/ (664)

Equation (6.57) requires
*(k —k
Ak _ A=k . (6.65)

7(K)  A(=K)

We still need to consider the full consequences of (6.10).
The invariance of |Qg) under U(s) requires that

(Qulo (cf,)o, (¢4)|Q0) = Z7, ()5 _,, (5)0(@})  (6.66)

is independent of s, which leads to"?

= () (5)0(@)) = SupBy, 1,0(w1).  (6.68)

The above equations are in turn equivalent to

Copp ()Copie () (62 0(a) + 620(~0))

= (b1, 0(w;) + b1_0(=w1))d), s, (6.69)

which can be written more explicitly as
eirw’

2 sinh z|@'|

> Crie(5)Crypr(s)
k/
= (b],0(w)) 4+ 67_0(=w1))8k, —1,-  (6.70)

Inserting (6.64) into (6.70) leads to

“Note

(Q0|c¥ Q) = 8,501 _1O(w). (6.67)

Aky) A(ky) e
Zla)]w’(s) —511 q’Iu) —w’(s) 9,—q' .
= A(K) g A(=k") 71 2sinh z|@'|
PR
= .- 6.71
2sinh x|, | 7R (6.71)
It can be checked that
> oot (-t ()€™ =8, _pye™, (6.72)
and thus (6.71) is satisfied if
ARVA(=K) = — . (6.73)
2 sinh 7| @'|
From (6.65) we then have
(k) e (6.74)
2 sinh 7| ok =TT '
and
sinhz|o'| . .
Ckk’(s) = me Vet Iww/(s)éqq/. (675)

With the above form Cyy has the following “transpose”
property:

sinh 77|e/|

Cue(5) = Cy () (6.76)

sinhz|w|

With (6.76), (6.70) can be rewritten as
chlk/(s)ck/_k2 (s)e”“’/ = e”‘”lékl’_kz. (677)
k!

From (6.14) we have

(@) (@)

651(0'52 (ak )) = O, +s, (ak )’ (678)
which implies that
AD (s))AT L (52) = A, (s +55). (6.79)

For sy, s, with the same sign, it can be shown that the group
properties (6.79) follow from (6.49). For s, s, of opposite
signs, (6.49) is not enough, but (6.79) can be shown to
follow from the more explicit form (6.75). See Appendix B
for details.

To conclude, Egs. (6.75), (6.47), and (6.48) give the
explicit transformation of a,(;l) and thus O(x) under U(s)
(for all s €R), which satisfies all the desired properties
(6.9)-(6.14) for half-sided modular translations. Without
needing any explicit information about A we have
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determined the action of U(s) up to a phase factor e*.
Information about different choices of A as well as the
nature of emergent time s is encoded in this phase factor.

VII. AN EXAMPLE: GENERALIZED FREE
FIELDS IN RINDLER SPACETIME

In this section we use a simple example to illustrate the
formalism developed in Sec. VI. Consider a generalized
free field O(x) in Minkowski spacetime and the following
question: given the restrictions O, O; of O to the R and L
Rindler regions (see Fig. 6, left), is it possible to recover the
behavior of the field in the full spacetime (i.e. also in the F
and P regions)? Intuitively the answer is no, since a
generalized free field does not satisfy any equation of
motion, so we cannot obtain the behavior of O in the F and
P regions by evolving Oy and O, from a Cauchy slice as in
a standard quantum field theory. Here we show that by
using the procedure of Sec. VI we in fact can express O in
the F" and P regions in terms of those in R and L regions.

A. The transformation

Consider (1 + 1)-dimensional Minkowski spacetime

ds* = —(dx")? + (dx")? = —dxtdx™ = e (—dy* + dy?)
— —eXdEtdeE, (7.1)

x¥ = e¥ sinh7, x! = e¥ coshy,
xF =0 4 x! = e, E=nty, (72

where the coordinates & cover the R patch. There is a
similar description for the L patch.

For simplicity and also for the later connection with the
AdS Rindler discussion we take O to be given by an
operator of dimension A in a CFT. The expression for the
two-point function of O is fixed by conformal symmetry
including the restriction to the R region. Accordingly the
mode expansion for Ok (&) in the R region can be written as
(see Appendix E)

0ule) = [ i @al = Y 013)
ulP) = N B8 gmivntiar — N, o8:6=0-¢"
= ) (7.4
k=(0.a). K =30%a). q=38+iwkq),
1. =2 (A-iwEq)) 75)

There is an analogous mode expansion for O; with
NORNL)

Taking M to be the algebra generated by O and N the
subalgebra associated with the region £~ < 0 (Fig. 10, left),
as discussed in Sec. VB the generator G for half-sided
modular translation simply corresponds to a null translation

X~ = x~ + s, or in terms of &F,

s <0.
(7.6)

5_45;25_—10g(1—se§_)’ §+_)§S+:€+7

We now show how to use the formalism developed in
Sec. VI to extend the action of U(s) to positive s and
thereby extend O, O, to the F and P regions.

For s < 0, we have

Or(&:5) = U (s)Or(£)U(s) = Or(&y).  (7.7)
which implies that
) = @Culs).  s<0. (718)
We then find that
Crrls) = x}’: / oK ErikEHAE-E)
= %;\\f]/]:' O k- ;EZIS Lyo(=9) (7.9)

_ 1, VsmhalelDg)I D@,
27 sinhalo||N(g! )| T(@) 0

(7.10)

where function / was introduced previously in (6.61) and
the last expression has the form of (6.75) with

. I'(g
ein — L0x) (7.11)
|F(‘1+)‘
B. Crossing the Rindler horizon
We now consider Og(&;s) with s > 0,
Zuk o (af) Zu (g 5)a
Rp
u”(&5) = u,i, (GLVATE (7.12)

From (6.47) we have
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& —d &

(&) = Ny g I,

g'.) sinh(zaw')
PR

(RL) [ ¢.
/ s — S 5 7.1
e (85) = Ny s1nh(7ra)’)l“(q’+)‘]2 (7.13)

d o
J, = /wsinhﬂ(a} + @' )e~iw(E Hogs)
2

x I(iw + e)l(—iw + g, ), (7.14)

d .
Jy = /Z—we"“’<‘f HogS )M (—iw + ¢, )T'(iw + €) sinh 7.
n

(7.15)

The integrals (7.14)—(7.15) can be evaluated using contour
integration. We have the following situations:
(1) & +1logs <0, ie. s <sy=e*. In this case we
can close the contour in the upper-half complex-@
plane picking up poles at

w=in+e), n=01,.. (7.16)
which results in
J,=0(g,)sinhze (1 —ses )"0, J,=0 (7.17)

and

Or(&:s) = Op(&5,&7).
(7.18)

This is the situation where the transformation (7.6) is
still well defined and Og(&;s) remains in the R
region.

(2) & +1logs > 0,i.e. s> sy or equivalently se® > 1.
In this case we can close the contour in the
lower-half complex-w plane picking up poles for
(7.14)—(7.15) respectively at

n=0,1,...
(7.19)

w=-i(n+q}). w=-iln+q,)

which results in

Jy = (=i)sinzg T(q, ) (ses” —1)7%,  (7.20)
Jy = (=i)sinzg . T(q' ) (se5 —1)~%, (7.21)

and

RR) (g, oy, SIMTG o
——j———"1= N 7 q
uk (5’ s) lSinh(ﬂ'a)) k('xs) ('x ) ’
Xy =x +s, (7.22)
(RL), . \ . Sinmq, o -
= —]— "N 9+ q-
uk (é’ S) sinh(zm)) k(xs) (.X,' )
(7.23)

In this range of s, (7.6) becomes complex and is no
longer well-defined. But the action of U(s) leads to a
well-defined new transformation described by
(7.22)—(7.23) if we use Minkowski x* coordinates
of the initial point. Note x; = x~ + s > 0, i.e. we
are now in the future region. It can be checked that
the expressions (7.22)—(7.23) precisely agree with
behavior of the CFT in the F' region; see the second
line of (E4) and (ES5).

Thus we see that s, is the “critical” value for the
half-sided modular translation to take O (&) beyond
the Rindler horizon and into the F region. Crossing

the Rindler is signaled by the appearance of a,((L)

in Og(&;s).
By taking \ to be given by the region indicated on the right
of Fig. 10, we can take O beyond the past Rindler horizon
and into the P region.

VIII. BULK RECONSTRUCTION FOR AdS
RINDLER AND BTZ REVISITED

We will now use the formalism developed in earlier
sections to study emergent in-falling times in a black
hole geometry. In particular, we will give an explicit
construction in the boundary theory of an evolution
operator for a family of bulk in-falling observers, making
manifest the boundary emergence of the black hole
horizons, the interiors, and the associated causal structure.
As an illustration, we will work with the BTZ black hole in
AdS;. For contrast, it is also instructive to see how the AdS-
Rindler horizon emerges in the boundary theory in this
framework.

In this section we first review the metrics of the BTZ
black hole and an AdS; Rindler region, as well as the mode
expansions of a bulk scalar field in these geometries. We
then discuss the boundary support of a bulk field in the
BTZ black hole or AdS-Rindler spacetime. This part is new
and will provide an important preparation for our discus-
sion in Sec. X.

We will set the AdS radius to be unity throughout
the paper.
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A. AdS Rindler and BTZ geometries
Consider the Poincaré patch of AdS;,

ds? = — (—(dx°)* + (dx')* + dz?)

xt =10+ x!,

NN' — Nl\)l _-

(=dx*dx™ + dz?), (8.1)

which can be separated into four different AdS Rindler
regions, labeled by R, £, F, P on the right of Fig. 6,
corresponding respectively to regions with (x™, x™) having
signs (4+,—), (=, +), (+.+), (=, —). They have respec-
tively R, L, F, P Rindler regions of Minkowski spacetime
R!! (depicted on the left of Fig. 6) as their boundaries (i.e.
as z — 0). It is also convenient to introduce the so-called
BTZ coordinates (1, w, ), which for the R region have
the form

(8.2)

and in terms of which the metric has a “black hole” form,

ds* = % [—(1 =w?)dp? + (1 —=w?)ldw? + dy?]. (8.3)
The AdS Rindler horizon is at w = 1, and the boundary is at
w = 0. Whenw > 1, the metric (8.3) covers the part of the F
or P regions with z2 — xTx~ > 0. w = oo is a coordinate
singularity beyond which we have z> — x*x~ < 0, and the
BTZ coordinates (17, w, y) no longer apply. We will refer to
the parts of F with z2 —x"x~ >0 and 2> —xTx~ <0
respectively as the F;| and JF, regions. Similarly the P
region is split into P; and P;.

The BTZ black hole can be obtained by making y
compact [41], in which case w = oo becomes a genuine
singularity where the spacetime ends, and w = 1 becomes
an event horizon. The black hole has inverse temperature
p = 2z corresponding to the time 5. For compact y, the
Poincaré coordinates (8.2) can no longer be used to connect
different regions. Instead, we can introduce the Kruskal
coordinates in the R region:

1—w 1—w
o Vmetti= e (8.4
T+w ¢ ARG

where { is the tortoise coordinate

U=—et1=—

1—w

dw 1
=— =—log——.
¢ /l—w2 2Og1—|—w

The event horizons lie at U, V = 0, and the boundary lies at
UV = —1. See Fig. 3.

(8.5)

Note that the Kruskal coordinates U, V can also be used
for AdS-Rindler, with U,V =0 corresponding to the
AdS-Rindler horizons and UV =1 now a coordinate
singularity.20

For a more extensive discussion of the AdS-Rindler and
BTZ spacetimes, see Appendix C.

B. Mode expansion in AdS-Rindler and BTZ

Consider a bulk scalar field ¢ dual to a boundary
operator O of dimension A. The restriction ¢z (X) of ¢
to the AdS Rindler R region (with X = (1, w, y)) or to the
R region of the BTZ black hole has the same mode
expansion except that the momentum ¢ along the y
direction is continuous for AdS-Rindler and discrete for
BTZ. Below we will use the same notation for both cases.

¢r can be expanded in modes as

$p()=> v (0)a, o X)=Nifilw)e  (8.6)
k
k=(w.q), k-x=-on+qy
1 ) _ 1 .
g =5(A+i(oEq), Gi=5(A-il0*q) (87)
\/sinh z|w|
=~——1r I'(g_)l,
Few) = wh(1=w?) 7%, F (G-, g MW7), (8.8)
The a,ﬁR) are creation (for w < 0) and annihilation (for

@ > 0) operators of the boundary generalized free field
theory in the R region, and thus ¢, (X) can be interpreted as
an operator in the boundary theory. There is a similar “bulk

reconstruction” equation for ¢; in terms of a,iL). Note that
frx(w) is normalizable at infinity

ylviE})fk(w) =wh 4+, (8.9)
and satisfies
Frw)=fiw) =fow) =f-0gW) =fo4(w).  (8.10)
Near the horizon, w — 1, we have
UIER) (X) = 1 eik»x(e—imeri(Sk + eiwf—iﬁ,\,% (8.11)

V2ol

where the phase shift §; is given by

2Note that in terms of the range of Kruskal coordinates U, V,
the AdS-Rindler R and L regions coincide respectively with the
R and L regions of the BTZ black hole, but the F and P regions
of the BTZ black hole only cover the F; and P, regions of
AdS-Rindler.
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iS5 _ F(lw)|F(LI—)F(q+)| e—iwlog2
IC(io)[T(q-)T(q.) '

We also note the asymptotic behavior for |w| — oo

(8.12)

2F1(Q—7 Z]+;A;W2)
r(A) { (1—w)e(=@)=2 Ime >0
2VE (14 w)(igys

1
oA

~

(8.13)
Imw < 0,

which can be obtained from the discussion of Appendix F.
As |g| — oo we have [50]

1

fk(W) — |L]|7_AW%<1 _W)—%(eq arcsin w + e—qarcsin w)’ (814)

1-2d
N = RISE sinh(z|w|)|g[*@~De~"14 (1 4+ O(|¢| 7)),
(8.15)
Nkfk(w) ~ (e—|q\(’§‘—a.rcsin w) + e—\q\(%’#»arcsin w))7 (816)

and similarly for ¢;. The expressions in the F and P
regions of BTZ, and in the F and P regions of Poincare
AdS can be obtained from analytic continuation which we
discuss in Appendix D.

The corresponding boundary operators are obtained by
the extrapolate dictionary, i.e. removing w® and taking
w — 0. We find

Op(0) = > ¥ @a®,  w(x) = Ner, (8.17)
k

and similarly for Oy (x) with u,(f) (x) = (u,(cm(x))*. For the
AdS Rindler the boundary limit is taken by removing z*, so
the corresponding boundary operator in the Rindler patch
has an extra factor e=® as in (7.4).

C. Boundary support of a bulk operator

The identification of bulk and boundary oscillators a,@

implies that ¢ of (8.6) can be regarded as a boundary
operator. This is the statement of bulk reconstruction. We
will now examine the support of ¢5(X) on the boundary.
We will use the notation for the BTZ spacetime, and exactly
the same conclusion applies to AdS-Rindler.

v [T
Fulw) = w5 728 (s

Consider the smearing function K(X,y) defined by
[18,19]

BeX) = SNt Fuwa = [ YK )0n0)
k

(8.18)

Or(x) =Y Nietal®, K(X.y) =Y et f (w),
k

k
(8.19)

where Og(x) is obtained by taking the boundary limit of
¢r(X) [see (8.17) or Appendix E]. From the large ¢
behavior of f;(w) [see (8.14)], the ¢ integral in (8.19) is
divergent, and thus K (X, y) cannot be consistently defined
as a function [50]. The origin of the divergence can be
traced to the complete spectrum feature emphasized in
Sec. II C: for any w, O has nonzero support for arbitrary
large values of |g/|, but this support decays exponentially at
large |q|.21 The same statements apply to all AdS-Rindler
and black hole systems in all dimensions (see [81] for other
arguments from the bulk).

The divergences can be avoided if we smear ¢h (X ) in the
y direction by a function with sufficiently soft large ¢
behavior [50]. Alternatively, instead of ¢z(X), we can

consider ng,R) (n,w) with a fixed momentum ¢ in the y
direction. This gives

R dw —iw R
¢SI )(va) :/271que r’qu(w)ac(m)

- / dn K (. winf)O) () (8.20)
OB () = / dye % Og(n.)
d )
- Z—:que—twﬂaﬁf;, (8.21)

dw . /
K,(n,win') = / Ze"ww) fogw).  (8.22)

The kernel K, (n,w;n') is now well-defined, and we can
study its support in 7.
From (8.13), we have the asymptotic behavior

Imw > 0

(8.23)

Imw < 0,

| - 0.

1

(22)% — je(w)eme@)(8=) (Lw)$)(_io)-2 g = 0

]

“'we expect that the amplitude for creating a mode of large ¢ with a finite @ should be proportional to e=°#14| with ¢ an O(1) number.
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This behavior implies that we can close the contour of
(8.22) in the upper-half @ plane for

1—w
14+w
- U ,w=0)>U(n,w)

1. 1-w 1
—n —=1 '>p——1
n—n 20g1—|—w<0_”1 >n—7log

(8.24)
and can close the contour in the lower-half @ plane for

+w , 1 14w
>0—7' <n—3log
-w 2 11—

= V(r.w=0)<V(n.w).

11
/

—y =1

n—1n'—log

(8.25)

where in the last equations of (8.24)—(8.25) we have
expressed the conditions in terms of the Kruskal coordi-
nates (8.4).

Since f;(w) is an entire function in the complex w plane,
when we can close the contour either in the upper-half or
the lower-half planes, K, (i, w;#’) is zero, and thus it is
only supported in the region

1 1-

2
2 %8

1
>11 >n—=log

NMmax =1 — 1 +w ) 1 —

(8.26)

= Nmin-

Using the last expressions of (8.24)—(8.25), the above
equation corresponds to the region on the boundary which
is spacelike connected to the bulk point (7,w) on the
Penrose diagram; see Fig. 13. Since the range (8.26) is ¢
independent, we conclude that any bulk field smeared in the
y direction is also supported in the same window of
boundary time.

A bulk field operator in the F' region must be supported
on both the R and L boundaries. Using the expression of ¢
in the F region it can be shown that it is supported on the
right boundary for V(3',w = 0) > V(,w) and on the left
boundary U(/,w = 0) > U(n,w). See Fig. 13.

AN MANNANNNNNNNNANNNN NN Y

FIG. 13.  Left: support of a bulk field operator ¢z (X) in the right
region on the boundary in the Penrose diagram. The supported
region is highlighted with blue color. Right: boundary support of
a bulk field operator ¢y in the future region.

IX. EMERGENCE OF AdS
RINDLER HORIZONS

As a warm-up for the black hole story we consider the
emergence of the bulk AdS-Rindler horizon from the
boundary system using the unitary group U(s) constructed

in Sec. VII. Recall that under the duality, aia) for the bulk
mode expansion in the AdS-Rindler regions are identified
with those of the generalized free theory in the correspond-
ing boundary Rindler regions. We show that the same
transformation on a,(f) that took a boundary CFT operator
across the boundary Rindler horizon also takes a bulk field
operator in the R region of AdS-Rindler across the bulk
horizon. In this case going beyond the AdS-Rindler horizon
is dictated by symmetries22 as the null shifts discussed in
Sec. VII become part of the AdS isometry group. This
approach does not apply to a general black hole for which
such isometries do not exist. In Sec. X we will consider an
alternative approach which also applies to black holes.
The discussion is parallel to that of Sec. VII except that
the wave functions in the AdS-Rindler case are more
complicated than the Rindler case. Consider the evolution

of a bulk field operator initially at a point X = (,w,y) =
(xT,x7,2) ER,
D(X;s) = Pr(X)U(s)
K wp n
—Z/(zﬂ W x:s)a?. (9.1)
(p) Pk (®) 3y RS
vy (X5s) = 22 5V (X)Ap (s)
de ik-x Rﬂ
= [ G et N, 02)

where Ay are given by (6.47) with Cy given by (7.10).
We then have

(RR) Nye'" WA i )2 i s <0
vy (s) = (1=w?)~ | ;
F<q+) sinh ' Jy s> 0
(9.3)
RL Nype ¢ w0 5<0
ot (s) = <K A (1 - )2 :
sinh zw'T(q,.) J; s>0
(9.4)
with

2See [40] for a discussion. Going behind the horizon of a black
hole in Jackiw-Teitelboim gravity [14,15] is also similar to the
AdS-Rindler case, as it can be done using a symmetry operator.
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d .
J, = /Z_we—twmp(q’_,—iw + ' A w?)
T

x (—iw + ¢ )l (io +¢), (9.5)

d .
J, = /2—a)e‘"‘”7s sinhz(w + @' )F(q_, —iw + @' A;w?)
7

X I'(—iw + @', )T'(iw + €), (9.6)
dw —i : / . / 2
Jy = Z—e s sinh rwF (g, —iw + q',; Ayw*)
T
x I'(—iw+ ¢/ )T'(iw + €), (9.7)
- 1 2
=& +log|s| —|—§log(1 —we). (9.8)

We can evaluate the above integrals by closing the
contours in the upper or lower-half planes. For this purpose
we need to know the asymptotic behavior (as |w| — o) of
the hypergeometric functions that appear in the integrands.
It is convenient to use the identity

F(G-.—io+q; A w?)
_ (Ao + 16.0’) F3..7, -
[(qL)I(¢) + iw)
TA(—ie —iw)
FET (@, — i)
X F(q_,q, +iw;1 + io + iw;1 —w?).

iw;1 —iw' —iw;1 —w?)

+ (1 _ WZ)ia)’+ia)

(9.9)

From Eq. (F1) of Appendix F, the hypergeometric functions
in the above equations are of order O(1) as |w| — oo for
1 —w? > —1 (as is the case for all possible initial points
in R). Each integral in J| ; 5 can then be separated into two
terms,

Ji=Jiu+Jy, =123, (9.10)
where J;, and J;;, are obtained by respectively inserting the
first and second term of (9.9) into the expression for J;.
Denoting the corresponding integrands as j;, and j;;,, we
have®
Jia~eT @, ~eT s (1—w?)ie @ —dico. (9.11)

We then conclude that for J;, we can close the contour in
the upper-half plane for 7, < 0 and in the lower-half plane
for n, > 0, while for J;, we can close the contour in the
upper-half plane for 7, — log(1 — w?) < 0 and in the lower-
half plane for 5, — log(1 — w?) > 0. Denoting the values of
s for n, = 0 and 5, —log(1 —w?) = 0 respectively as s,
and s;, we then have

@ being pure imaginary gives the most stringent conditions.

IS vy =a

ia ib |S’ < 8o

=S 1) so<l|s| <s5  (9.12)
Ty =07 Isl > s

where J ) denotes the expression for J;, obtained by

closing the contour in the upper (lower) half plane. Note
that, for s > 0, using (8.2) we have

1
s =S —>§‘—|—logs—ilog(l -w?) =0

= so=V1-we? =—x", (9.13)
S0 § = s is the coordinate distance from X to the horizon

along the x~ direction. Also note

1
5= —>§‘+logs+§log(1—w2):0
1 I
e e )

s; is then the coordinate distance along the x~ direction
from X to the hypersurface separating the F| and F,
regions.

Consider first J; which applies to s < 0. For |s| < s
from (9.12) we can close the contour of (9.5) in the upper-
half plane which gives

n=3 1
n=0
=T1(7,)F2(7:q- 1A, Liw?, =)

n

e F(gl,n+ g’ Asw)D(g +n)

W2

1+’
(9.15)

D@ )(1+e) T F(G g awi). wi=

where F, is the second Appell hypergeometric function,
and we have used (F24) and (F25). We then find

vp ™ (Xss) = NpeWwd (1 = wd) ™' F (gL, g3 A wd)
— oM (x,), (9.16)
where X, = (wy, &F, &7) is given by
W, = \/lvi—a a,=seésV1-w?,  (9.17)
. e V1—w?
ess —= R
I—a\/1—a,—w?
ef::ey”‘wzvl‘“s (9.18)
1—a, —w?
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Comparing (9.17)—(9.18) with (C11) we conclude that

O(X;s)=pr(Xy), X;=@x",x"+s,2)€R. (9.19)
It can be checked that the expression (9.16) is in fact valid
for all s < 0.

Now consider s > 0 and J,, J5. For s < s, we can close
the contours of (9.6) and (9.7) in the upper-half plane. Since
the integrand for J5 has no poles in the upper-half plane,
Jz = 0, while J, can be evaluated in a similar manner to
(9.15), giving

J, = sinh za'T(g.) (1 — €")"9 F(g_, 3; A; w3)
2
w

1—e’

w2 = (9.20)
We then find that for s € (0, s), vi, ®) (X s) is still given by

(9.16) while v\*"(X;s) = 0, and (9.19) resuls.
For s € (s, sl) from (9.12), we find**

(A (i0")I(7)
I'(q" )l (q-)
X F(g-, g1 —ia'; 1 —w3) (9.21)

J,, = sinh new’ (1- em)—c?;

while J,;, = 0 since the integrand has no poles in the lower-
half plane (the potential poles of I'(—iw — iw') are canceled
by sinhz(w + @’)). We then have

vk, B (X:s) = Npelksawd (w? — 1)"""//2F

X F(gl, g ;1 —iw'; 1 —w?) (9.22)

V1 —w?
CVT=aa,— 1+
£ = V1w /T=a,
Va,—1+w?

We can similarly evaluate J5:

where w, is given by (9.17) but & are now given by
o5 =

(9.23)

/

(A (i)
I'(qL)

g1 —ia';1—w3),

J; = sinh ze’ (1- em)—ifi (e — 1+ w?)"i@

x F(g,. (9.24)

which results in

*The evaluation is again similar to (9.15). The poles of the
integrand in the upper-half @ plane are at @ = i(n + ¢), and we
have used (F26).

_ 1yinfj2 DA (i)
D I'(¢")T(q-)
(9.25)

( (X s) = Npe KEwd (w?

X F(gl,g; 1 — i1 —w?),

where £F are given by (9.23). Collecting (9.22) and (9.25),
and comparing them with the expressions for the wave
functions in the F region (D7)—(D8) [note (9.23) is exactly
(C13)] we conclude

D(Xss) =r(X,).

X,=@x"x" +s,20€F;. (9.26)

From the boundary perspective s, is the “critical” value of
U(s) evolution after which ®(X; s) now also involves a,((L).
This is the signature of the emergence of the AdS-Rindler
horizon from the boundary perspective.

For s > s, the integrals J, and J5 can be closed in the

lower-half plane. We find

2
Jo =sinhz(-ig )I'(g,)(e" — 1)~ ng<51/—"7+;A?1:Vem>’

(9.27)

. . / Wz
J3 =sinhz(—ig' )I'(¢,)(e" — 1)_q*F<q,—7 q’p&m) ’

(9.28)
leading to
¢ -Gy _iaf 2 S 7(=ig")
(X Ny swh (1
e (X55) = Ny (1w o) sinh e’
X F(qL.: A =w3) (9.29)
., h
7)/<(/>(X S) Nk/e_lk"fl‘w?(l —|—w )’m/zw

sinh 7@’

X F(q-, 4 A =w3), (9.30)

where now w,, &F are given by (for this range of s, a; > 1)

w . e V1 —w?

WY: S ess —= ,

S Wag—1 Va, —1/a, — 1 +w?
£ V1 —wa, — 1
e = .

Va,—1+w?

Comparing with (C14) and (D7)-(D8) we then find that

(9.31)

O(X;5) =pp(X,), Xy=(x"x" +5.2)€F,.

(9.32)

We have demonstrated that the transformation U(s),
determined from half-sided modular translations in the
boundary theory in Sec. VII, implements a null shift
isometry in AdS, and can be used to generate the full
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Poincaré AdS from its R and £ AdS-Rindler regions. The
transformation is well-defined and pointwise for all real
values of s and for any choice of initial location of the bulk
operator.

X. BOUNDARY EMERGENCE OF AN IN-FALLING
TIME IN A BLACK HOLE GEOMETRY

We now consider the generation of an in-falling time in a
black hole geometry from the boundary. Our goal is to
identify U(s) in the boundary theory which can “globally
evolve” a Cauchy slice of a black hole geometry across the
horizon. We will show that the half-sided modular trans-
lations discussed in Sec. V C can be used for this purpose.

That is, here we take M = Yy and N to be the algebra of

single-trace operators in the GNS Hilbert space HTC;I;S

associated with the subregion < 0 in CFTy (see Fig. 11).
Recall the identifications (2.42) and that the modular
operator for M is Ay with modular time ¢t = 2z.

A. Expressions for the transformations

As discussed in Sec. V C, finding the explicit modular
operator and the associated half-sided modular translation
generator G for the subalgebra N indicated in Fig. 11
directly in the boundary theory appears to be difficult. Here
we will find it by proposing the bulk dual for N.

Consider a boundary subregion defined by 7 < 7, and

the corresponding algebra X, of single-trace operators in

the GNS Hilbert space HT%ISS We denote the algebra of

bulk fields in the bulk subregion defined by U < U, =
—e™ ' (see Fig. 14), as 21’,70. We propose that

Xy = Xy (10.1)
In other words, the bulk dual of the boundary subregion
A&, 1s given by the bulk region X 4, This proposal is natural
from various perspectives. Firstly, from our discussion of
Sec. VIIIC, a bulk field operator in 5(,,0 has boundary
support only in the region X, . Secondly, under modular
flow of Aj, &),
No -+ 2xt. Under such a flow, the bulk region X o

= Aj'X, A} is the region n<n =
is taken

NV VYV VV VIV VIV VIV V V.V V.V

Xo | X0

AAAAAAAAAAAAAAANANANANNAAANNA

FIG. 14. The respective proposed bulk duals for the boundary
subregions indicated in Fig. 11.

to 5(,71 defined with U < U; = —e™". So the identification
is consistent with this flow. In Sec. X D below we will show
that (5.13) is recovered from this identification, providing
further nontrivial support. Under this identification we then
have N = X, = X,.

Near the horizon, the black hole spacetime is approx-
imately given by Rindler. In the bulk field theory, the half-
sided modular flows associated with M = Y and its
subalgebra N = X, should then act on near-horizon
operators in the same way as the half-sided flow for the
Rindler spacetime with M and A as depicted in the left
panel of Fig. 10. From the discussion of Sec. V B, G should
then correspond to a null shift in the Kruskal coordinate U.
We can thus determine the matrix Cyy from the trans-

formation of a\”)

the full A‘,ff, The discussion in this section applies to a
general black hole, not restricted to the BTZ. We will use
the more general notation of Sec. II except that the
boundary time is now taken to be # in whose units
f = 2x. That is, a bulk point is X = (n, r,X) with r the
radial direction. We will switch to the BTZ coordinates
when restricting to that case.

Consider a bulk operator in the R region

R R
=> 0P (x)a,
k

(X) = e f(r)h, (%),

where k = (. q) and h,(X) denotes the wave function in
the boundary spatial directions. Near the horizon, the bulk
wave function can be written as

near the horizon, from which we obtain

v

——
=
=

(10.2)

h,(X . oo o
’l)](CR)(X) — q(x) e—twn(e—ththék + eth—ték)
2|w|
h,(X . . ) .
— q(x) (elﬁkv—lw +e—16k(_U)zw) (103)
V2|w|
U=—-e¢, V=e, E=n+xl (104)

where { is the tortoise coordinate.
Consider the evolution with s < O:

U)X U(s) =S o0 (x:)al® . (10.5)
k

Z’Uk, Ck’

Note that Cp, is independent of X. Now consider X
to be close to the past horizon, i.e. V — 0, where, as

D(X;s)=

(10.6)

discussed above, we expect 1)5C )(X s) = v,({R) (X,) with
X, = (U +s5,V,X). Then (10.6) can be written as
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hq(X)
V20el
Z\/Z\a)

By equating U-dependent terms on both sides of (10.7),
we find

(eiﬁk V—iw +e—i§k(_U_s>iw)

lék/ V—i(l)/_i_e_iék/(—U)iw/)Ck'k(s)' (107)

Ve + i€))
C. =5 ,— 16/16,{1—1, _
ex(s) 4 \/7 ‘ [(—i(w + i€)) o'o(=5)
sinhz|lw| . .
= 6, | SN ying, (—s), 10.8
qq sinhzr|a)’|e k (uw( S) ( )
where e+ is defined by
. = |T(iw)]
e = pi%% |7 10.
e e I (i) (10.9)

We still need to check that V-dependent terms (10.7) are
also equal when we use (10.8). More explicitly, the
V-dependent term on the right-hand side can be written as
h,(X)e™ %

~ 2ol (=iw)

R, F(V), (10.10)

where
d /
F(V) - / 2 ZZ{SL/ V_lw F( (a) + le))lw’w( S)
T

= (o [ 52

X e—i(u’ log(—sV)

2T (=i + ) (—i(w — & + ic))
(10.11)

In the near-horizon limit V — 0, we can close the contour
in the upper-half ' plane.25 Any pole in the upper-half
plane (include those coming from e%%) that is a finite
distance away from the real axis will lead to a contribution
that vanishes as V — 0. Thus the only relevant contribution
comes from the pole at @’ = w + ie,”® leading to
F(V) = o v=ioT(—iw), (10.12)
which reproduces the V-dependent term on the left-hand
side of (10.7).
For the case of a BTZ black hole we have from (8.12)

Jide — [(io)T(q_)T(q.)] o-iwlog2
(i) T (g-)T(q.) ’

(10.13)

»Since log V — —oo this statement is independent of possible
e~™7 (with y a constant)-type dependence in €.
'We do not expect the phase shift e to have poles on the real
axis.

which then leads to

Crr (s) = 5qq’

(10.14)

With Cy, in hand, we can write down the transformation
for general s,

O(X;s5) = U(s) pp(X)U(s) = > (10.15)
%
1)5{, )(X s)agf),vk, ka kk, (s), (10.16)

with Akk, given by (6.47). Using the explicit expression
(10.14) for the BTZ black hole we have

v;cRR) (X;5) = whelx _NikeiwlogZ { (._S)WJ] $<0 ,
[(q)0(q-) Us™ g s> 0
(10.17)
—iwlog?2
(RL) (7. A i Nie ~iw
X;s)= 9w — J3, >0,
v (Xis) =wle 51nh7ra)1"(q+)l"(q_)s } g
(10.18)
do/ _ . .
h= [ ST @@ - o - ie)
a @ F(g, . g Aw?), (10.19)

Jr = “;ismhm’r(z];)r(z;/_)r(i(w/ —w—ie))
T

x a” ™ F(q,,q"; A;w?), (10.20)

Jy = /(;—a;/sinh (0 + o)T(g )T ()T (i(0 + @ — i€))

x a” ' F(g,,q.; A;w?), (10.21)

a=2[sle"V1—w

We can evaluate J4, J,, and J; by contour integration.
The discussion is very similar to that of Sec. IX, except in
this case the integrals J;,3 can no longer be evaluated
explicitly. Here we mention some general features, and in
the rest of this section we discuss more specifically various
aspects of the transformation.

Recall that the Gauss hypergeometric function F is an
entire function of its first two parameters, and the

(10.22)
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asymptotic behavior of the hypergeometric functions in
Ji23 for |@'| > 0o was given by (8.13). Note that the
integrand of J; decays exponentially at large |@’| for real
@', while the integrands of J, and J; (denoted by j,, j3
respectively) have power law decay in |@'| times a Fourier
phase factor:

. 1—w\%
i = A /|—1—iw
o= Al ((152)

_ ie(w/)e—iﬂe(a)’)(A—]) <1 + W> 2>

1—w
x (1+0(|e'[™)), (10.23)
) 1—w\%
.= A /| —1+iw
h= e (152)
. 1 .2
— ie(a)/)e—me(m)(A—l) <] t::) 2 >
x (14 0(|o'|1)), (10.24)
1 Lol ! ] n
A= 5w%-Ar(A).ezS(w Jo gie log(lsle") (10.25)

For all J; 53, we can close the o' integral in the upper-
half plane for

= sy i =By,
2(1—=w) l—w s
I-w
=e 'l ——=-U, 10.26
So=¢ T+w ( )
while for
a l—w |s]
T gleny ] — ="l
2(14+w) Isle I+w s2> '
I1+w 1
=e" =—, 10.27
52 I—w vV ( )

we can close the contour in the lower-half @’ plane. Note that
U and V are the values of Kruskal coordinates for the initial
point X. Also notice that J3; = 0 for s < sg, i.e. @(X;s) only
involves a,((R) for s < so. Thus s, can be interpreted as the
“critical value” for crossing the future event horizon.

For s € (s¢.5,) as in the discussion of Sec. IX we can
split the integrals by using the transformation on the
hypergeometric function in J ; 3:

(A (i)
I'(q".)r(q)

+ (1= w2)i

F(@,,q ;0w%) = F(g.,q ;1 —io';1—w?)

(A (i)
I'(q,)r-)

X F(q',q ;1 +iw';1—w?).  (10.28)

Then one of the terms can be evaluated by closing the
contour in the lower-half plane and the other in the upper-
half plane.

B. Near horizon transformation

We now examine (10.15) near the horizon (V — 0) for
s > 0, which we will show to be

Pr(X)s <so=-U

, X, =(U+s,V,X),
¢F(Xs)s > 8o

D(X;s) = {
(10.29)

with ¢z(X) the expression in the F region described by
(D14)—~(D16). s is the critical value for crossing the future
event horizon. Thus the action of U(s) reveals an emergent
translational symmetry near the horizon. The discussion
applies to a general black hole without knowledge of the
details of the phase shift /.

More explicitly, for s > 0, we have

(RR) (. 5) — h,(X) [ do'sinhze’
k U sinhre | 27\ /2]
X (ei‘sk’ V—ia)’ 4 e_iék/(—U)iw,)Ckrk(—S),
(10.30)
U(RL)( )= h,(X) /d_a)’sinhzr(a)’ + o)
k ' sinhzw | 27 /2|0

% (eiék/ y—ie + e_iﬁk’(—U)iw,)Ck/_k(—s).

(10.31)
From Cyy given in (10.8),
e(w)h, (X)e 1
”liRR)(XQS) :—( ) q.( ) (A; +A,),
\/ 2z sinh z|w|
(RL) /+. e(w)h_g(X)e's
v X;§) =——— (B +B 10.32
v (Xss) Y sinh o] (Bi + Bs) (10.32)
) do’ .
A= s’“’/zisinhﬂa)’emk’l“(i(a)’ + ie))
n
x T(=i(w — @' + i€))e~ @' loelsV) | (10.33)
. do'
A, = 5t / Y Ginh 7' T(=i(a + ic))
2n
x T(=i(w — o' + i€))e'@ 10e(=U/s) (10.34)

. do' .
B, = s‘”"/zﬂsinhﬂ(a}' + )T (i(a + i€))
n

xT(i(w + o — i€))e™'loelsV) (10.35)

086020-30



EMERGENT TIMES IN HOLOGRAPHIC DUALITY

PHYS. REV. D 108, 086020 (2023)

o [do . . .
B, = s7'@ 2—s1nh (0 + o)'(—i(0 + ic€))
/5

x T(i(w + o — ie))e'® 1oe(=U/s), (10.36)
The evaluation of A; and Bj is similar to (10.11): with

V — 0 we can always close the integration contour in the

upper-half @' plane to find

A, =e*" V=T (iw)sinhzw+- -,

By =0+, (10.37)

where - - - denotes contributions that vanish as V — 0. For
A,, B,, we can close the contour in the upper (lower) half
plane for s < 5o = —U (s > s7), leading to
sinh 7ol (—iw)(=U — 5)® s < -=U
) = { (=iw)( ) , (10.38)
0 s>-=U
0 s<-=U
B, =14 . ) . . (10.39)
sinhzol (iw)(U +5)7 s> =U

where for A, (B,) there is no pole in the lower (upper)
half plane for s > —U (s < —U). Putting these results all
together we find

hq(f) (ei(‘ikv—iw+e—i5k (_U_s)im) s<—-U

R)(X's) ) V20l
Y h® s v—ie ’
—L etk s>-U
V2o
(10.40)
(RL) 0 s < =U
Uy (X,S) = h,qz(‘ )‘ lék(U—f— S) —iw s> U’ (1041)

which indeed give (10.29) by comparing with (D14)—(D16).

Since the above discussion fixes s and assumes V — 0,
the valid range of s is for |s| < s, =, which is infinite in
this limit.

C. Left-right commutators and causal structure

For the action of U(s) on a bulk field at a generic point
in the R region, the details of the phase shift e will
matter, and from now on we will specialize to the BTZ
black hole with the corresponding expressions given by
(10.15)—(10.22). The transformation is complicated and is
nonlocal. Below (10.22) we already commented that

v,({RL)(X ;5) # 0 only for s > 50, which can be interpreted
as the boundary emergence of the event horizon. This is
further confirmed by the near-horizon analysis of the last
subsection. Here we show that despite the transformation
being nonlocal it respects sharp causal structure.
Consider the commutator of an evolved bulk field from
the right exterior and a bulk field operator at some fixed

location in the left exterior (i.e. set X; €R, X,, €L and
U, =U(s)):

C(s) = [@(Xy:5). ¢ (X5)]

= [Uigr(X))U, ¢ (X)) (10.42)
Now multiply both sides of the above equation by U 7 and
U,. Since we are working at the level of free field, C(s) is a
c-number and thus is unchanged by this conjugation. Using
unitarity and the group property of Uy, we find

C(s) =

Recall that ®(X; s) has support on left operators only for
s > 5o(X) = —U(X). From J conjugation Ul¢,(X,)U,
should take ¢; closer to the past horizon for v < 0, but it
will not have any dependence on the right operators for
v > —so(X,) = =U(X,); see Fig. 15. Now take v =
—s0(X;) + € where € >0 is an infinitesimal number.
With such a v, U, (X,)U, still lies in the L region.
To have a nonzero commutator we need ®(X;;s + v) to
have support on the left, which requires

[Ul+v¢R<X1)Us+va UI(bL (X2)UL] (1043)

s+v>50(X1) = 5> 50(X1) +50(X2) =-U(X,)+ U(X>).

(10.44)

Since ®(X; s) must enter the light cone of ¢; (X,) in order
for the commutator to become nonzero, the above equation

U vV U Vv
\\\ ///' /// \\ /’/

¢L(X2). \

J\ ¢R<x1) 8RO

FIG. 15. Left: when a bulk field ¢x(X,) with X, €R is
transported by a null Kruskal coordinate distance —U; + U,
(since U, < 0), it enters the light cone of ¢, (X,). The shaded
region is a cartoon for the spread of ®(X; s). The orange dashed
lines are event horizons, and the purple dashed lines give the light
cones of X,. Right: the commutator between the evolved right
operator and fixed left bulk field is equal to the commutator of the
evolved left and right fields with the same difference of evolution
parameters. We use this to evolve the left operator almost all the
way to the past horizon. The commutator can only be nonzero
then if the evolved right operator remains supported on left
oscillators after now also applying the evolution that brought the
left field to the horizon. The blue shaded region is a cartoon for
the spread of ®(X,;s + v), and the purple shaded region is a
cartoon for the spread of ®(X,;v). The boundaries and singu-
larities are suppressed in each figure.
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implies that the support of ®(X;s) must lie in the region
U < U, +s; see Fig. 15.

D. Transformation of a boundary operator

We now consider the evolution under U(s) of a boundary
operator Op(x),

Or(x;5)=U(5)TOg(x) Zu D) (x;5) a,({/,} ., (10.45)
Or(@) =Y Wa. u(x) = Nemontior,
k
ug? (i 5) = S ()AL (), (10.46)

k

uffﬂ) (x; ) can be obtained from (10.17)— (10 18) by taking
w— 0 and stripping off the factor of w”. J,,3 then
simplify to

) do' _ [ io ~ i
Ji = (20)_ZW/EF<Q+ —7>F<Q— - 7)

x [(io' + €)(2¢)™™ (10.47)
o [do . , _ e
Jy = (2¢)7 2—smh7r(a) + )| g, -5
b3
i -
x I <q_ - 7) F(la)/ + 6) (20)—1(11 (1048)

- [do . i i
= (2(:)""/ o sinh 7@'T’ (q_ — T)F(cu - 7)

x [(io' + €)(2¢)~™ (10.49)
alw=0)=2c,c=|s|e". (10.50)
From (10.26)—(10.27) we now have sy, = s, = ¢ as on

the boundary UV = —1. For ¢ < 1 (¢ > 1) we can close the
contours of the above integrals in the upper (lower) half
plane.

Consider first J; which is relevant for s < 0. For any
value of ¢, we find that J; can be expressed as another
hypergeometric function, and (see Appendix F2 for a
derivation)

" (x;5)

= Nyemiontiar ] (s) = ul® ()T (s)  (10.51)

T(g. +) (G- +3)
VaL(A - io +1)
1 1+ se

Fl2q..2g_;A—i ——

Ji(s) =

). (10.52)

Clearly the transformation is not pointwise. For s > 0, the
evolution is described by J,, J5. For ¢ < 1 (i.e. s < s9) we

have J; =0, and J, is such that we again recover
(10.51)—(10.52).

The argument of the hypergeometric function in (10.52)
becomes 1 for s =55 =¢"" (c =1). The behavior of
hypergeometric function F(a, b;c;z) at z = 1 depends on
Re(c — a — b): itis divergent for Re(c — a — b) < 0.’ Now
Re(A—iw+1-2g, -2 )=-A+1 thus (10.51)
becomes singular for any operator with A > % In other
words, Ok (x; s) becomes singular for s = s,. Recall that s is
precisely the Kruskal U distance between initial point
and n = +o0.

To understand the action (10.51)—(10.52) of U(s) on a
boundary operator Og(x) a bit further, now consider its
support in the position space. For this purpose it is convenient
to introduce an evolution function G(x, x’; s) defined by

Og(x;9) :/afzx’G(x,x’;s)OR(x’), (10.53)

where

e~ioln=n)+iale=), (10.54)

X.XS

-3t

To understand the support in #, consider the @ integral in
(10.54),

do .,
G,(n.1'ss) = / Z—”e—twwmk(s). (10.55)
T

Notice that J () has no pole in the upper-half @ plane, and
has the asymptotic behavior

Ji(s)=(1=se 201+ 0(|lw™1)), |w|—=c0. (10.56)

Given that J;(s) « O(1) forreal @ — +o0, (10.55) has to be
treated with a bit of care. By adding and subtracting

(1 — se)rA%i@ in the integrand we can rewrite it as

Gy(n.n'5) = (1 = 5€")"25(2) + G,

G, = / czl: =1, (s), (10.57)
where
A=n—n —log(l—se),
Ti(s) = Ji(s)(1 = sem)=i@ — (1 —sem)r2.  (10.58)

Now J,(s) = 0 along the real axis as @ — =co, and it only
has poles in the lower-half @ plane.

We can close the contour for @ integration in G
(10.57) in the upper-half @ plane if

qof

“'This can be seen by the transformation F(a,b;c;z) =
(1=2)"%bF(c—a,c—b;c;z).
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n—n"—log(l —se”) <0, (10.59)
for which the integral gives zero. We conclude that
G,(n.n';s) only has support for

W <n—log(l—se") - U <U+s,

U =—e, U=—e™, (10.60)
where U’, U are respectively the boundary Kruskal coor-
dinates for 77’ and . We note that Eq. (10.60) agrees precisely
with (5.13) with the identification of # = 2zt, providing a
nontrivial further consistency check of our identification of
the bulk region 5(0 as the bulk dual of N' = X,

As s — sy = e7", the support of G, and thus G(x,x'; 5)
covers the full #/ axis, and G(x, x'; s) is singular at s = s as
aresult of the singular behavior of J;(s). This indicates that
we cannot extend the action of U(s) beyond s,.**

Plugging (10.57) into (10.53) we find that

Or(x;5) = (1 — 52O (x,) + Og(x;5)  (10.61)
@R(x;s) = /dzx’G(x,x';s)OR(x’),
G(x,x'ss) Ze"’(l ) s s), (10.62)

where the first term is a pointlike transformation with

x;=(n5.x), ny=n—log(l—se") or U;=U+s. (10.63)

From (10.57), G,(n.7; s) can be written in a form

_ _lz Z oot

= (2n 41+ A) + g,

G,(n.n';s) =) (g),

o (q) (10.64)

(+)

where —iw, ' are the poles of J;(s) in the lower-half @
plane and cs,ﬂ are the corresponding residues. Thus Gq
only has a small exponential tail away from #,. We are not
able to evaluate the ¢ sum in (10.62) explicitly, but from
(10.64) we expect that

G(x, x5 5) ~ e~ (AN oo (10.65)
where - - - denotes higher exponential suppressions in 77, — 7.
We thus find that the support of G(x,x';s) is localized
around 7, with a small exponential tail away from it.

28Integlrals for J, and J; appear to be well defined for s > s,
(i.e. ¢ > 1). J5 is now nonzero, i.e. Og(x;s) now involves also

g( ). But due to the singular behavior as s — s, from below,

Or (x s) for s > 57 may not be meaningful.

E. Summary

For a general bulk point Xy = (19, wp,x0) =
(U, Vo, x0) the transformation (10.17)-(10.22). is not
pointwise and rather complicated. As outlined there we
can evaluate the integrals J;,5; for any s using residues
which results in an infinite sum of hypergeometric func-
tions (some of which can be summed to Appell functions).
The analyses of these infinite sums (or Appell functions)
appear intricate and will not be treated here. From the last
few subsections we have found the following.

(1) For X, close to the past horizon V; — 0, we have
D(Xy;s) = p(X,) where X, = (Uy+ 5, Vo, xp) is
obtained by X, by a null shift. We can view this as an
indication of an emergent horizon symmetry.

(2) While for a general point the action of Uf(s) is
nonlocal, the support of ®(X; s) respects the sharp
causal structure implied by the event horizon:
(1) There exists a critical value s, = —U, after
which ®(X,;s) develops dependence on a,(cm,
which signals crossing the horizon; (ii) it starts
having nontrivial commutators with ¢, (X;) for
s > —=Uy+ U(X,). Both imply that the support of
®(Xy; s) lies in the region U < U, + s, consistent
with the proposal of the bulk dual of Fig. 14.

(3) For aboundary operator Og(x) (i.e. wg — 0 limit of
a bulk field) with xy = (19, x0), the evolved operator
remains on the boundary, and we can show explicitly
that the support of Og(xg; s) lies in the region U <
Uy + s where now U = —e™ and Uy = —e ™. In
particular, Og(xq; s) contains a local piece propor-
tional to Og(x,) with x, = (Uy + s, o) and a non-
local piece which is stlll mostly supported near the
time slice 1, =5y —log(1 — se™). The action of
U(s) becomes singular at s = 55 = —U,.

In next section we will show that the transformation of a

bulk field becomes much simpler in the large A limit, and in
fact becomes a pointwise transformation.

XI. A POINTWISE TRANSFORMATION
IN THE LARGE MASS LIMIT

In this section we consider the evolution of bulk fields
under U(s) in the large mass limit (or large dimension A
limit). Interestingly we find that in this limit the evolution
becomes pointwise when we average over the spatial
manifold of the boundary theory.

A. General setup and summary of results

Evolution of a bulk field, initially at a point X,=
(l’]o,Wo,){()) = (Uo, Vo,}(()) GR, is giVen by (10 15)—(1016)
which we copy here for convenience:

D(Xos5) = "'(S)fﬁR(Xo) ()

= Z” (X058

ak, . (11.1)
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Uk/ (Xo, Z’Uk XO Afﬁ

o (Xors) = Y 0l (Xo) ARE(s). (11.2)
k

Recall that the mass m of ¢ is related to the dimension A of
the corresponding boundary operator O by

d2
—+m?.

d
A:§—|—1/, V= 1

(11.3)

ZA (Xp)et A X0 (1 4 O(v)),

Ul(<R> (Xo) =4 7=

AV (Xg)e A %) (1 + o)),

ARE(5) = 84 B ()™ (1 0(71)),

We will consider the large v limit and expand various
quantities in (11.1) and (11.2) in 1/v.*° To define the
limit, we will also scale frequency and spatial momenta
as [4]

(u,p) fixed, v—oo. (11.4)

w=vu, q=vp, k=

In the limit (11.4) the various quantities in (11.2) have
the form

(1-w3)(1+p°w3)

lu| > u,, = m

(11.5)

ul < u,

(11.6)

where the first (second) line of (11.5) is the wave function in the classically allowed (forbidden) region. Explicit expressions

for these quantities are given in (G5)-(G8). We then find

(RR RR
Uk' Xo, =Vv Bkk/
\u|>u, —

where

G = 240k + WEE5).

G =2 (Xo) = IWEE(s). (11.8)
A similar expression applies for 115{, )(XO, ). Equation (11.7)
can be evaluated using the saddle-point (steepest descent)
approximation.

Since we are mainly interested in how ®(Xj; s) evolves
with s in the (w,7) (or (U, V)) plane, it is convenient to
average it over the boundary spatial direction y, i.e.
restricting to ¢ = 0 in all equations. In this case we find
that the transformation is pointwise

1—sey/1-wj, (11.9)

with X given in terms of Kruskal coordinates as

D(Xo;5) =Axp(X,), Ax=

Vo
l—SVO.

U =Uj+s. V,= (11.10)

Here are remarks on the transformation
(11.9)—(11.10):
(1) At the horizon, V) =0, we have V, =0 and

US = U0+S.

some

% wd :
(5)eiCi +/ 2“A ") BRR (5)¢=+Gi (11.7)
|
(2) At the boundary we have V,= —Uio giving

VS =~ U01+s = _ULS’
boundary remains on the boundary.

(3) Given that a boundary operator can be found
by Og(x) =lim,_ow 2¢pg(X), we have from
(11.9)-(11.34)

so a point initially on the

Og(x0;5) = (1 = se™)2Op(x;) (11.11)

precisely giving the first term of (10.61) including
the prefactor. Thus the second term of (10.61) must
be suppressed in the large v limit, which is consistent
with the expectation (10.65).

(4) For a generic initial point with —1 < UV, < 0, the

_UO = \/;;—Xge_”o.
(5) For s <0, the boundary is reached in the limit
s — —00. i.e.

horizon is reached for s = 55 =

U,V V

§ — —00.

(11.12)

Puis always O(NO) Equivalently we can expand i m Lor 1/A.
At leading order, i.e. O(v) all these expansions agree But for
higher orders, including the calculation of O(°) prefactors,
expanding in 1/v is the most natural and convenient.
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(6) Notice that the prefactor 1y in (11.9) becomes
zero for

s =85 =—F—=e N,

(11.13)

at which value we have U V= 1, i.e. the location
of the black hole singularity. For s > s, ¢(X) is no
longer defined, but the left-hand side of (11.9)

appears still to be well defined. Note that
s' = o +w < 1, where s, was introduced in (10.27).
(7) Ats—s2 - we have V| — oo.

(8) Equation (11. 10) does not appear to correspond to

any geodesic motion.

(9) Equation (11.10) also applies if the initial point X,

lies in the L region.
The trajectories following from (11.10) are shown in
Fig. 16.

By choosing N to be the algebra associated with region
in the right plot of Fig. 11, we can similarly construct
unitary evolutions as above but with the roles of Kruskal U

|

|ul

(' —u)log(i(u —u')) -

and V swapped. See Fig. 17 for the corresponding flow
trajectories.
We will now describe the calculation of (11.7) in detail.

B. Saddle-point equations

It is useful to first notice that the Hermitian conjugation

property of our transformation, Affk)(_k,)( s) = (ARs(s))",

and ' (Xp) = (v (X)) imply
ka XO AR(I —¥) ( )
= ZU(—]‘) (XO)AF_ak)(_k/)(S>
k

= (05 (Xg35))".

Thus (11.14) implies that the results for ' <0 can be
immediately obtained from those with &’ > 0, so we restrict
to u’ > 0 for the calculations of this section From the

in (11.7) can be

U k/ XO’

(11.14)

expressions of Appendix G we find GR
written as

%ﬂe(s)|u| —ilog(1 — iu)

— |u|log <|u| +wo/u? — uw) +ilog ( F iwgy/ u? — ufv) — O(—u)ulog(1 + u?)

G = —ulog|c| +710g(1 -w3) -
i 1+iu u
"1 ——1 —1
+ u'log |s| 3 0g<1—iu’> + 5 log
It will turn out that GE{ ) does not lead to any saddle point

and the contribution from the second term in (11.7) is

always suppressed compared with that from the first term.

We will thus not give the explicit expression of G;f ) here,

leaving it to Appendix G. For our discussion below it is
convenient to introduce

FIG. 16. The left plot gives trajectories of (11.10). The right
plot gives constant s surfaces evolved from the # = O slice. The
orange dashed lines are the event horizons and black solid lines
are the boundaries, while the red solid lines are the singularities.

(14 u?) +Z

> e(s)|u'| — ilogwy. (11.15)
Mo
bEL, c = se. (11.16)
1 —wj

The saddle-point equation of (11.15) can be written as

—log|b| + log(i(u — u')) — log <|u| + e(u)wor/u® — ufv)
_%”e(s)e(u) —o. (11.17)

FIG. 17. The counterparts of Fig. 16 when using A/ as in the
right plot of Fig. 11.
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which leads to

(1 =b)u—u' = tbwy/u> —u, (11.18)
whose solutions are given by
) (I —b)u’ £ bw, - ”ﬁ;(s)
u(,‘ = k)
1-2b+¢?
) = (1 =2b+c?). (11.19)

The solution is real for ¥’ > u w(s)- We can also check that

both roots (11.19) satisfy the requirement u’ > uE ) > u,,

(+) ()

fors<0anduc > u,uc’ > u,fors > 0.Fors < s, the

root u'") above satisfies e((1— b)ugﬂ —u') =e(s),soitis

only a proper solution for (11.18) with the plus sign on the
right side. Thus this is a saddle solution for G(CH
u£_> is a saddle for GE._). For these real roots we have the

()

following behavior as functions of s. We have u,

all s < s9. As 5 = 53, ut”) = oo while ul”

we have uE.H <0, ug._)
)

S = 85, Ue

. Similarly,

> 0 for
is finite, and

>0 for sy < s < s,. Finally, as
()

— oo while u,; "’ is finite, and for s > s, we

have ugi) < 0.

Fors < spand s > s,,u? , > 0,so0the solutions (11 19)
are not real for all real . In particular, for u? < u? ( ) the
For such small values of «, the
steepest descent contour should only pass through uE-_), SO
there is only one contribution to the saddle-point evaluation
of the integral for u?> < u (s)° Note that for sq < s < 55,

|

solutions are complex.30

G(Li> = —ulog|c| +—

log(l —wg) + (' + u) log(i(u + u')) —%(2|M + [ = ful =

ufvm < 0, so both roots are always real, independent of the

value of «', in this region of s.

We will now argue that we need only consider the roots

uﬁi) when they are positive. Even when u(ci> <0is a

genuine saddle point, its contribution will be subleading.
The magnitude of the result of saddle point integration in

(11.7) is controlled by ImGR For s < 0 we always

-

have u§><u,s0
T + +
mGy | = 3 (™| = | + e =)
=0, s5<0, (11.20)

while for s > 0 we either have ugﬂ

giving

>u’>00ru§i><0

T + +
MGy =3 (1] = ™| + e = ])

(£) /
0. ul 0
- { e = =2 (11.21)

', uC <0

We then see that the contributions of ugﬂ

ut” for s > s, are suppressed by exp(—zvu'), which are
subdominant. Thus, for s < s, we have leading order
(=)

and u,

for s > s, and of

contributions from both u'" , for s < s < s,

we have a leading order contribution from ug_), and for
s > s, both contributions are exponentially small.
Now we turn to UEC )(XO, ), where there is only a

nontrivial calculation for s > 0O:

lu'|) — ilog(1 — iu)

— |u|log (|u| +wor/u? —u ) +ilog (1 F iwgy/u? — u,zv) — O(—u)ulog(1 + u?)

: Lt i ,
—u/log|s|+%log< +fu,> —u—log(l—l—u’z)—ilogwo.
—iu

1 2

It can be shown that G(Li) has no real saddle point with

min{—u,,, —u'} < u < u,, and the saddle-point equation
outside this region can be written as

—log|b| + log( (u+u')) —log (Ju| £ e(u)wor/u* — u,zv)
—l—ﬂe(u) =0,

5 (11.23)

**Note that u,(s) is exactly the critical frequency separating
classically allowed and classically forbidden frequencies u’ when
w = w, as in (11.34).

(11.22)
[
which leads to
(1 =b)u+u' = tbwor/u? —u?,  (11.24)
with solutions
/ n” 2
o _ (1 =b)u’ F bwo, /u" —uy @
d 1-2b+¢? o
uf/m =u2(1-2b+c?). (11.25)
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Recall that here b > 0. Again we have real saddle points for

u'? > uz( j» whose behavior we now discuss. For s < s,

we have ug

and ”fz ) <o0. Finally, for s > s, we have uEi > 0.

From (11.29) we see that the magnitude of the contribu-

tions of the saddle points are controlled by ImG<Li>

< 0, while for sy < s < s, we have ud '>0

|k{(1i), SO
we will again find that the contributions from saddle points

uE,i> < 0 are exponentially small. We have

()
0, u,’ >0
ImGy | ) = { ji) . (11.26)
4 o', uy; <O0.
Thus the contributions of saddle points with ufj ) <0 are

suppressed by exp(—zvu). Thus, for s < sy both contribu-

tions are exponentially small, for s, < s < s, we have an

O(1) contribution from uﬁf), and for s > s, there are O(1)

contributions from both uif) and ”51_)-
C. Transformed wave functions

Evaluating (11.7) at the saddle point we find

/w (7)—L
”k’ (XO, Z BRlye)k,(s)KRy ’

wG |(

X e ‘(14 0@w™)). (11.27)

where

K =GP 0. (11.28)

and k¥ = (u”,0) with 1 the saddle point for G}/ and
note that there is no saddle point for |u| < u,,. Similarly
we have

1 (Xo; ) Zﬁ

BRL (S)K(L}')—z

u/G \ v
xe N1+ 00w, (11.29)
G(V) :Z(J’) WRL K(?’) :aZG(7> 11.30
L k ( )+ kk’(> L u L‘u;ﬂ» ( . )

where kg/) = (ug),O) with ufiy) the saddle point for G/,
Explicit expressions for the quantities appearing in (11.27)
and (11.29) at general values of k and k' are given in (G8),
(G10), (G11), and (G15).

We now show that our transformation in the large
mass limit, as described by (11.27)-(11.29) with saddle
points (11.19) and (11.19), is exactly the pointwise trans-
formation (11.9).

1. Outside the horizon

Here we consider s < s3. We first restrict to the case
of u' > Upy(s)-

We begin with the calculation of v,iRR) (Xo; s). Explicitly
evaluating the quantities in (11.27) at the respective saddle
points for Gg) and G;e_)

using that ugi) solves the saddle-point equation in the form

(11.18) and recalling that we only need to consider

is quite complicated. Repeatedly

) > 0, G can be brought to the form

G = —u'log(e(s) (ut™ —u'))

+ilog (1 T iwo\/ ul? - u%) —ilog(1— iu)

. L i
+u’log|s—%log< +fu,>

1—iu

/!
+%log(1+u/2)—ilogw0. (11.31)

Comparing (11.31) with (G10) we see that GR will

equal to Zf(, (X') for X' =

e
(n'.w'.x') only if

log [b/] + log (' & w'\/u = 12,) = log(e(s) (ul™) — u')),

(11.32)

W 1 —iu 1 F iwgy/ul™? =2
log— =log +log
w

1—iul® L in/y Ju? =12,

The above equations mean that u’' and uE»i)

(11.33)

should play

symmetrical roles, with uﬁi) being the saddle point for the
transformation with parameter s from (1, wy) at frequency
', and u’ being the saddle point for the transformation by

—s from the point (7/,w') at frequency ut). That such
(7',w') exist (as they cannot depend on u’) is highly
nontrivial.

Now it can be checked that for ' = n,,w = w,, with

29
o — ¢ n :#’ (11.34)
1 —b(1 —wyp)

which in terms of Kruskal coordinates gives (11.10),
Egs. (11.32) and (11.33) are satisfied. To see this we
note that
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1-2b+c?
1— 2 _ 1= 2
E ey
—>e2”I]_W/2:€2'71_W(2)
2 W(2)
, 1—b(1—w3)
22 0,2 _ 0
—elus, =elus,, b = m, (11.35)
and the inverse transformation is given by
w' . e
W0—1+b/(1_w/2)’ et = /1—|—2b/—|—C/2’
, se' c
— = 11.36
V1i-w? V1- ( )
Also note that
1 +b/(1-w?) :;
1-b(1-wj)’
1
1+ 2b I 11.37
R g (11.37)

From the above relations and (11.19) we then have

= bi1 = b(l = wp) (u’ +w'y/u? - ufv,)

uc' —u
1—2b+c?
_ b’(u’ + 'y Ju? — ufv,), (11.38)
which gives (11.32). We note by passing
S —b(u’j:w uz—u2>
:b< ) £ wor/ul®? ua) (11.39)
Similarly we have
1- iu’ . (£)2 2
?'ugi) <1 F itwg\/ Uc¢ - MW)
—(1=b(1 - wg))(l F iw'y Ju? — ui,)
:%(1 T iw u/2—u§,), (11.40)
which gives (11.33). We have then shown
+
e =277 (x,). (11.41)

Now let us look at the prefactor of (11.27). Computing
the second derivative at the saddle point we have

14+ 1w,
ke - P
(+)
ue —u ugﬂ 44/ ul? u’,
+bw, uz( )

— (ugi) —u)((1 - b)ugi) - , (11.42)

where we used (11.18) twice to replace all terms with

square roots involving ugi) and then the explicit form of the

root (11.19). From (G8) we have

27
RR _
B, = /iu(u£i>—u')' (11.43)
From (G11) we have
et 1\
A (x,) = M0¢ < )
k£.>< 0) Vo -2
1 in
_ Wt oo (144

(1- b)ugi) —u

where we use (11.18). Putting all the prefactor contribu-
tions together we obtain

(11.45)

so the final result of the saddle-point calculation is

XO? \/ —se,/1 — WOZAk/ S lI./Z >’

(11.46)

giving (11.9).

The story for v’ < Uy(s) 1s rather similar, except that as
mentioned earlier the saddle point is now complex.
Through rather parallel calculations we again find (11.9).

For vlf (Xo;s) as noted earlier G(i) only has saddle

points with “51 ) <0 for 0<s< so which give rise to

contributions which are exponentially suppressed. Thus, at
the order we are working with, for s < s, the saddle-point
calculation gives

v (X4;5) = 0, (11.47)

as required by (11.9) for an operator in the right exterior
region.
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2. Inside the horizon

Now consider s > s,. Since ¢(X,) ceases to make sense
[and so does equation (11.9)] beyond the singularity, which
is at s = sy, we will first consider s < s.

We begin with the calculation of ”Ec )(XO, s). The saddle

point ut™ is now negative and gives a subdominant

contribution which can be dropped. The only contribution

is then from u!”. Explicitly evaluating the quantities in

(11.7) at the saddle point for G;_)
(G13) and (G14) we find

and comparing with

|k = 727 (x,) (11.48)
and
L )
=) RR o(o)—b  [2mwheTs 1 b
A (Xo)B'E Kp' 2 =1 —
()( 0) k£_>k R iV \/27 u/z_uzm
2wy (F)
= —As (X)), 11.49
DAl X, (1149)
where X, is given by
29
em=—— =M (1150)
1-2b+c 1 =b(1 —wp)

Equation (11.50) gives (11.10) with X, € F.
The final result of the saddle-point calculation is then

R>(XO’ \/_seﬂo,/ W(Z)Ak’ S wZ (%, )’

(11.51)

giving (11.9), now with X; € F.
For v, (X,; s) we now have the saddle point u! Y )

of G(L+> giving a leading order contribution. Explicitly
evaluating the quantities in (11.29) at the saddle point and
comparing with (G10) we find

_

|k K (X\) + 21’“13‘ (1152)

and

1
+) (-5 _ /2” W%) e’ 1 :
Ak+ (XO)BRL K, = u? — 2
w(s)
277.' Wo
kl S .

—

(11.53)

Thus, for sy < s < sy, the saddle-point calculation gives

. T
1—seMy/1— W(Z)Al(f) (X,)e2nstivey (%),

(11.54)

o (Xgss) =

Note that the left and right mode functions, v,ﬁ”(x) and

v,((R) (X), are identical in the F region except that the former

involves e/®1~/4% and the latter e~*1+4 which are exactly
reproduced by (11.51) and (11.54). For more details, see
(D13) and (G12).

For s; < s < s,, the expressions for the exponents and
prefactors are the same except that we can no longer
compare them with ¢(X,).

D. Comments on initial operators localized in y

We now quickly comment on the computation of
®(X,;s) which is no longer averaged in the y direction.
Unlike the g = 0 case, we cannot explicitly verify that the
transformation is pointwise in the large mass limit as the
transformation can now involve a change of the y coor-
dinate as well. Moreover, the saddle points are now
solutions of a quartic equation and thus are very compli-
cated functions of the parameters of the evolution. We will
leave such analysis to the future.

XII. CONCLUSIONS AND DISCUSSIONS

In this paper we discussed in detail how to construct
emergent bulk “in-falling” times in the boundary theory.
Their construction is a consequence of emergent type III;
algebras and an associated half-sided modular inclusion/
translation structure. We discussed explicitly two choices of
such times which at the horizon correspond to uniform (in
the transverse spatial directions) null U or V translations.
There is an infinite number of others. For example, we can
choose the subalgebra A to be either of those depicted
in Fig. 12, which should give rise to bulk in-falling
evolutions which are nonuniform in the transverse spatial
directions. Alternatively, instead of taking the cyclic and
separating vector to be the GNS vacuum |Q)), we can
choose other vectors. The simplest possibilities are
obtained by acting unitaries from )Yy and ); on |Q),
ie. Vi Wgl|Qy),V, €Y, WrEYr which results in a
U(s) = V,WgU(s)WyV} with U(s) the evolution oper-
ator corresponding to |Qg).

Our discussion can also be generalized to other
entangled states of CFT, and CFT;. A simple variant is to
act on |¥4) by a left unitary U, which does not change the
reduced density matrix p; of the CFTg, i.e. |[¥) = U, [¥y).
The story depends on whether |¥) lies in the image of the
GNS Hilbert space built from |¥y). If [¥) lies in the image
of the GNS Hilbert space, the bulk geometry is still
described by the eternal black hole, now with some small
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excitations on the left due to the insertion of U;. The
construction of U(s) is the same as that for |¥ ). When |'¥)
does not lie in the GNS Hilbert space, which happens when
U, changes the energy of the system by an amount which
scales with N, the story is different. We need to work with
the GNS space HGN® associated with |¥, which does not
overlap with that associated with [¥;. The corresponding
representations, ); p, of single-trace operator algebras in
the GNS Hilbert space built from |¥ will then also be
different from those associated with |‘I’/,w.31 In this case there
is no simple relation between U(s) for |¥) with those for
|¥5) as they act on different GNS Hilbert spaces.

There are many future questions to explore. We already

mentioned some in Sec. IV. Here we highlight a few more:

(1) From a generic bulk point X € R, the flow (11.10)
reaches the future singularity for a finite value of s.
We have not seen a sharp signature of the singularity
either from (10.16)—(10.22) or the leading expres-
sions in the large mass limit except that the prefactor
Ax in (11.9) goes to zero at the singularity. It is
possible that the signature of the singularity is
weakened by the nonlocal nature of the U(s)
evolution and is more subtle to detect. The singu-
larity should signal the breakdown of the U(s)
evolution, which is the way gravity tells us of its
emergent nature. It is clearly of great interest to
understand the emergence of the singularity better
and its possible resolution using our approach.

(2) Our discussions have been restricted to the leading
order in the 1/N expansion: in the bulk we have a
free field in a curved spacetime while on the
boundary we have a generalized free field theory.
We expect the general structure we uncovered
should persist to any finite order in the 1/N
expansion. Including higher order corrections cor-
responds to including gravitational physics in the
bulk, which could lead to a much richer structure, in
particular when including 1/N corrections to all
orders [34].

(3) It is of great interest to understand better how the
type III; structure emerges in the large N limit.
Systems like the SYK model or matrix quantum
mechanics should provide laboratories. In fact, a
better understanding of the continuum limit of local
operator algebras of a quantum field theory should
be very instructive.

(4) The discussion here should also be generalizable to
single-sided black holes including evaporating ones.
We expect such constructions can shed new light on
the information loss problem.

' The appearance of a different representation in this case is
also required by the duality since the bulk geometry is also
modified.

(5) We also expect that the manner in which an in-
falling time emerges from the boundary theory here
should teach us valuable lessons about holography
for asymptotically flat and cosmological spacetimes.
This should be especially helpful for understanding
time in cosmological spacetimes including de Sitter.
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APPENDIX A: DETAILS OF THE
GNS CONSTRUCTION

In this Appendix we discuss some details of the GNS
construction of Sec. II B,

For each operator a € Argp We associate a state |a), with
the inner products among them given by (2.19). The set of

operators y € Arpp such that (yly) = 0is denoted by J. J
is a left ideal, as aye J for V a € Arpp.yE€ J, and is
called the Gelfand ideal. The GNS Hilbert space H\on") is

the completion of Appp/J.
Equation (2.22) implies that for each equivalence class in

,leFD /J we may choose a representative in the subalgebra

Ag 1ED, 1.€. for any a € Aqgp there exists A € Ag 1pp such
that

[a] = [Ag]. (A1)
To see this, consider an a € .,lepD of the form
a = BrCp, CL= H OL(ti, x;). (A2)
i=1
From (2.22)

J’i:OL<ti7xi)_OR (t,-—l—?,x,-)ej, izl,...,l’l. (A3)

We can then write
i
Op(ti.x;) = Ol t; +?7xi + Yis (A4)

and C; can be written as
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n—1 .
CL = H OL(I[, xi) <OR (tn +%’xn> + yn>
i=1

. n—1
l
:OR<tn +?/)77xn>l]__ll:oL(thxi)+Cyn (AS)

for some ce,leFD. Note cy,€J as J is a left ideal.
Continuing this process repeatedly we reach at the end

CL - OR<tn +§’xn>OR<tn—l +§’xn—l>

I
XOR<II+§7XI>+)~77 yeJ,

(A6)
which gives (A1). The discussion immediately generalizes
to sums of operators of the form (A2). Note that the
representative Ay in (A1) is unique, as if there is another A}
also satisfying [a] = [A%]; we then have Ap — Ay € 7, but
this cannot be the case since |¥y) is separating for Ag ep.

We thus conclude that H(TCFHBS) can be generated by
Ag 1rp alone.

APPENDIX B: VERIFICATION
OF U(1) PROPERTIES

In this Appendix we show that the group property of

A% (s) is satisfied, i.e.

sinhz(w + ')

sinh ]'[a)/ C—kk’(sl)ck/ku(sz) +

sinh 7w

sinh 7o’

AZf/(Sl)Aflyku(Sz) = AZZ”(SI + 52). (B])
Recall A (s) are given in terms of Cye(s) by (6.47)
and (6.48).

1. s; and s, of the same sign

We first show that (B1) follows from (6.49) when s; and
s, are of the same sign.

For s; and s, both negative, (6.79) trivially follows from
(6.49) for @ = R and either choice of . For « = L we need

ALE(s) AR, (52) + ALE(s1)ARE (52)
= Affi(s1 + 52), (B2)
ALR (5, )ABR, (5) + ALL (51) ALK, (s5,)
= AL (51 + 52). (B3)
For (B2) we have

sinh 7w sinh 7o’

Sinh 7 C_j—r(51) i (52)
sinh 7w

~ sinh 7o’ k(914 52),

sinh 7"

(B4)

which is automatically satisfied. For (B3), the left-hand side
has the form

sinh z(@' + @)

sinh 7" Coprr(52)

—k—k(51)

B <sinh n(@ + ) sinhze sinhz(e” — @)

sinh 7'’ sinh 7o’
sinh z(® + @)

sinh 7"

sinh 7"

C_par(s1+ 52) = g (51 + 52).

) C_w(51)Crpr(52)

(BS)

For s, s, > 0 we have the same story due to the symmetry between L and R in changing s < 0 to s > 0.

2. Opposite signs

For s, and s, of opposite sign the situation is more complicated, as we know that it must be since there must be some kind
of transition when s; + s, changes sign. For ¢ = R, we need

Afk@ (S] )Afrllf//(SZ) + Af]f; (S] )Aé’l/f”(SZ) = Aflf//(sl + Sz), (B6)
ARE(s1)ARE, (52) + ARE(s1)ALL (52) = ARE (51 + 52). (B7)
For s, <0, s, > 0, (B6) can be written more explicitly as
sinh 7@’ Crr(s1 +52) 51+ <0
Ckk’(ﬁ)ﬁck’k”(_&) = { sinh 7o ’ (B8)
sinh 7w e Crger (—=S1 — 82) 1 +5,>0

086020-41



SAM LEUTHEUSSER and HONG LIU PHYS. REV. D 108, 086020 (2023)

while for s; > 0, s, <0

sinh 7@ sinhz(w + o) sinhz(w' + ")
7(? I\ — C 1.0 —C |\ — —C 11
sinh 70 i (—51)Crw (52) + sinh o) k- (=51) sinh 7e” —ww (52)
sinhz(w + " — @)
= C(=51) pE— Crw(s2)
C n\ S +S N +S < 0
= { sirllcl’:ﬂi)l 2) l ’ : (Bg)
anhar Cror (=51 —82) s +5,>0
For s; <0, s, > 0 (B7) can be written more explicitly as
Cue (1) sinh 2(@' + &) Cpyo (=52 {0 s1+8, <0 (B10)
(sq) sinhz(@' + @")Cp_yr(—s,) = ,
A Ko sinhz(w + @”)Crpr (=51 — 82) 51+ 5,>0
while for s; >0, s, <0
sinhz(w + ') sinh 7o' sinhz(w — o)
ch—k’(_sl)mc—k’—k”(sz) = Ckk’(s/l)WCk’—k”(_slz)
0 s +s5>0 / /
=19 " , s =—s51 <0, sy, =—5, > 0. B11
{—““gﬁﬁ“gff’ >Ckk~(s’1 +s5) s)+5,<0 : ! 2 : (BL1)
From the “transpose” property (6.76) Eqs. (B11) and (B10) are equivalent. Equation (B9) becomes
sinh zwCppr (51 + 8 s+ 85, <0
Cue (52) sinh (@ + @ — @) Cppr(—s) = { , w51+ 52) b (B12)
sinh 7@ Cppr (=51 — 55)  s1+5, >0
while (B8) has the form
sinh 7" Cyyr (51 + s s1+85, <0
Cuw(51) sinh 70 Cppr (—s,) = { , w(sits2) st <0 (B13)
sinh 7w Cppr(—s; — 52) s1+ 85, >0

The independent equations are then (B12), (B13), and (B10), respectively. These relations readily follow from (6.75) and
the following identity:

d
/ 20) 10 (s1)sinh (@' 4 @)l 10y (52) = Loy (|1 — $2]) sinhz(@ + a), §120>0 (B14)
n

where @ = w, ®” for s, > s; and s, < 5,. To see the identity, note

do' do’ —i(w—a' —i(0 —a . .
/%Iwm’(sl) sinhrc(a)’ + a)la}’w”(SZ) - /ZESI ( >F(l< ) + 6) ! )F(l(wl - CO”) + €) sinh ﬂ<w, + (1)
T /3

Sl

=T(i(lw—w ) + e)(sa — 53,) @) sinh 7(@ + a), (B15)

53 —i(w—w )F(z(w _ a)//> + n) Siﬂhﬂ'(w + a) Sy > 8y

T (i@ - @) + n)sinhz(o +a) sy < sy

where for s, < s, (s, > 5,) we can close the contour in the upper (lower) half complex @’ plane. In the above we have
s, = max(sy, s,), s, = min(sy, s,) and @ as defined earlier.
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APPENDIX C: REVIEW OF ADS RINDLER
AND BTZ BLACK HOLE

In this section we elaborate more on the geometries of
AdS-Rindler in (2 4 1) dimensions and the BTZ black hole
reviewed in Sec. VIII A. We will set the AdS radius to be
unity throughout.

1. AdS Rindler in (2 +1) dimension
The Poincaré patch of AdS;,

ds?* = — (=(dx°)? + (dx')? + dz?)
Z
1
2

= — (=dxTdx™ + d7?), xF=x0+xl, (C1)

N

can be separated into four different AdS Rindler regions,
labeled by R, L, F, P corresponding respectively to
regions with (x*,x7) having signs (+,-), (=, +),
(+,4), (=,—). They have respectively R, L, F, P
Rindler regions of Minkowski spacetime R!! as their
boundaries (z — 0). See Fig. 6. In the BTZ coordinates
(n,w, y), which for R region has the form

7= we?, xt=e V1 =w?,
X =—-eVI1-w? E=nty, (C2)
+
X
M= e =z —xtx,
X
2 o
z —xtx
Wz:ﬁ, 1—W2:27+_7 (C3)
22 —xtx 22 —xtx

the metric has the form
1
ds* = v [—(1 =w?)dp? + (1 —=w?)~'dw? + dy?]. (C4)

The AdS Rindler horizon is at w = 1, and the boundary is
at w = 0. The metric (C4) can be used to cover the other
AdS Rindler regions with the transformation (C2) suitably
modified for each region. For example, for the F region we
can introduce

7= we, xtT=e"Vnt -1, X =e < Vwt—1,
(C5)
+ 2
X z
e ="—, e =72 —xtx, W= ————.
X 22 —xtx
(Co)

Notice that the last three equations of (C6) remain the same
as those in (C3) except that now w > 1. Equations (C5) and
(C6), however, only cover the part of the F region with

72 — x*x~ > 0 (to which we will refer as F, region), with
w = oo corresponding to z> = xTx~. For z> — x*x~ < 0 (to
which we will refer as F, region) the second equation of
(C6) no longer makes sense. For the F, region we can
analogously introduce

7= we*, xt=e V1 +n? x =e V1 +w?
(C7)
+ 2
m_ X U by 2 0_ %
e x_, e X X 5, w _X'+_)C_—Z2’
(C8)
but the corresponding metric now has the form
1
ds*> = 2 (1 +w)dn? + (1 +w?)~ldw? — dy?), (C9)

and similarly for the P region. Note that the F, P, regions
do not contain any points near the asymptotic boundary,
while the boundaries of the F, and P, regions are
respectively the F and P regions of Minkowski spacetime
R

Now consider a point X = (x~,x",z) in the R region

(with x~ <0,x" >0) and a null shift X - X, =
(xy, x5, z;) with
Xy =x" +, x5 =xT, 7, = 2. (C10)

For x; < 0, X, remains in the R region. The corresponding
transformation can be written in terms of the BTZ coor-
dinates as

w . S V1 —w?
WS = S ecss —= ,
V1I—ag VI=agn/1—a; —w?
o EVI-wr/T—a,
& =¢ V4 (C11)
1 —a; —w?
where
a,=ses V1 —-w? (C12)

and a; < 1—w? for this range of s. For s>s)=

e ¥v1—w?, the AdS Rindler horizon is crossed,
and we have x; >0. For zZ—xfx; >0, we have
1>a,>1-w? and X, lies in the F, region. The
corresponding transformation becomes
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w . e V1 —w?
w, = , et = ,
V1—as VI=a,\/a,—1+w?
V1 —wi /T —a,

e§+ f—

(C13)

Vag, —1+w?

Finally, for x; > 0,22 — x7x; < 0, wehave a, > 1, and X
lies in the F, region. The corresponding transformation
becomes

w - e V1—w?
WS‘ = ’ e~ = N
S Vag—1 Va, =1\ a,—1+w?
1 = w? —
o — e V1I—-w/a;,—1 ' (C14)

Vas—1+w?

2. BTZ geometry

The BTZ black hole can be obtained from the AdS
Rindler metric (C4) by making y compact [41]. Now
w = oo is a genuine singularity where the spacetime ends,
and w = 1 becomes an event horizon. The black hole has
inverse temperature f = 2z. As usual the black hole
spacetime can be extended to four regions by using the
Kruskal coordinates (see Fig. 3), which for R and F regions
have the form

1= =
RiU=——Yen  y= Yer, (C15)
14+w 14+w
~1 —1
FiU=/2" e v=y/Y "1 (Cl6)
14+w 14+w

In terms of the Kruskal coordinates the metric has the form

1-— 2
dUdV—I—ﬂ

d? = ——
YT T Urovy (1+U0V)?

dy?.  (C17)

The event horizons lie at U,V = 0, the boundary lies at
UV = —1, and the singularity at UV = 1.

Consider a shift of a point X = (U,V,y)ER to X, =
(Uy, Vg, xs) with

Vv

US:U+S, V‘Y:m,

xs=x (CI8)

For X, €R, this can be expressed in BTZ coordinates as

2n

w7 - Y (19
= TTwmra T ioeaowy Y
se'
b= ﬁ, c =sel. (C20)
— W

1-wy
14+wyq

1 —2b+ ¢ =0. For s > s, i.e. X; € F, the first equation
in (C19) has an extra minus sign.

X, crosses the horizon at s =5y = e~ where

APPENDIX D: ANALYTIC CONTINUATIONS
OF BULK MODE FUNCTIONS

In this Appendix we give analytic continuations of
(i) mode functions in the R and L regions to the F region
for the AdS Rindler; (i) mode functions in the R and L
regions to the F region of the BTZ geometry.

1. AdS-Rindler mode functions
The AdS-Rindler mode functions in the right/left
AdS-Rindler regions are given by

o (X) = Nyem@rtiarwd (1 = w?) 4 F(q,. g A w?)

— Nk(er)—iw(ZZ _ x+x—)—‘I+

2
Z
XF|\g,,qg_ ;A ———— Dl
) o1)
o (X) = Neetriangd (1 = w?)8F (g, q_: A w?)
= Ny )(& — )
Z2
x F g A, ———F7—), D2
(¢raia2=r) (02)

where we have also expressed them in terms of Poincare
coordinates.

From the usual Unruh procedure, we can obtain mode
functions ka'L corresponding to the Poincare vacuum

|0)pu by analytically continuing v,((R'L) in the complex
planes’:
1 o Ao
) = ————— (0 + ). (D3)
\/2 sinh 7| |
1 TT|® |
Wi = e (T + ) (DY)
\/2sinh ||
and the inverse are given by
1 P ||
1) = e (T - ). (D3)
/2 sinh 7| |
1 Ao alo
. — e%w,(f) e (_l?). (D6)

v =
¢ /2 sinh 7| |

32w§(R'L) with @ > 0 (o < 0) are obtained from continuing in

the lower (upper) complex x~, x™ planes.
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By construction w,(CR'L) are analytic in x* and are thus defined for all x*. We can then use (D5)—(D6) to “continue” v,((R’”
to the F and P regions. Note that thus constructed U,iR'L) are not analytic at the Rindler horizons. We then find that

l:llr[:lizgw(w +1) % (q—&-vq—;A;_Wz), fz
(AT (iw _iw _ _ .
%(Wz—l) FF(qy. gz 1 —ioi 1 —w?), F
v<R)<X) = N wheiontiar . (1=w?)"TF(q . q-; Ay w?), R (D7)
k k 0 p
(AT (—iw i .
R (W2 — 1)#F (g, g5 1 + w5 1 —w?), Py
i (W2 + 1)3F (g, 43 A; —n?), P,
and
~i Gt W+ 1) 7FF(q1.g 3 A=), 7
(A (i e )
Mo 0 = DEF(@.. g L —io L =), Ty
0 R
(L) A ion—i ’
(X)) = N,wheion—iax . . ‘ DS
cm (1 =w?)3F(qy. g3 Asw?), c (D8)
[(A) (=i i )
%ﬁ%ﬁ%wﬂ—lPFM%q4l+uml—w%, P,
IS W+ DTF(q4. g3 Ai=w?), P,

2. BTZ mode functions

The story is completely parallel for continuing mode functions in BTZ, except now we use the Kruskal coordinates, in
terms of which

. . . 14+ UV)\?2
o (X) = Ny (V) (1 + UV)A(1 - Uv>-A+le(q+, g_:A. (1 - UV) ) (D)
. . . 1+ UV\?2
v (X) = Nyemi(=2V)io (1 + UV)A(1 = UV)-A-ieF <q+, g A, < 1 i UV) > (D10)
Again by first constructing WE{R’L) in the R and L regions using (D3) and (D4), analytically continuing WE{R’L) to other

regions, we then use (D5) and (D6) to find the corresponding U,ER'L) in other regions. We find

o i T(A .. TAuvV
(2V) (1 - UV) ((qu) T(q_ <q+,q_,1 - la),m s F
—zw lw + UV
n(X) = Ny <1+UV> e F(C”’ - ’<1 —UV) ) o)
1-U0V
0, L
4 —4UV
(=20)7(1 = U)o 2] fF(q+, ;1~|—ia);), P

(1-UV)?

and
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| , —4UV
w1 _ (A (iw) - R
QU)T(1 = UV) q5m s F (q+’q—’1 "”’(1—UV)2)’
1+UV o )
() ~i
. " Uv D12
v (X) = Ny <1—UV> (=2v)*(1-UV) ’“’F<CI+’CI A, <1J_ruv)> o
—4UV
_ iw —io D(A)(—iw) ) . W, ————————
(=2V)“(1 = UV) " 5550 <q+’q— 1+M)’(1—UV)2>’ P

Note that (D11) and (D12) may be also expressed in terms of BTZ coordinates. For example, in the F region we have

Ul(cR) (X) — NkwAe—iwn-&-iqZ

(A (iw)

(L) A iwn—i.
X)=N n—iqy — )"\
v () = N S (e

Near the horizon, i.e. taking UV — 0 in (D11) and
(D12), we then have

ei5k V—i(u’ F
iqy eiﬁkv—iw +e—i(3k U ia)’ R
o) = O (g
V2w |0, L
e—iék(_U)i‘“’ P
and
eiﬁk U—ia)’ F
(n) G R
v, (X)) = . : : 4 . D15
k ( ) \/m l5k U-ie +€_l51" (_V)lm’ L ( )
—l(Sk( V)tu) P.
In each case the phase shift is given by
ei(Sk — F(lw)|r(q—)r(q+)| e—i(ulogz' (D16)
IM(iw)[T(q-)T(g-)

APPENDIX E: MODE EXPANSIONS
IN THE BOUNDARY

Here we discuss the mode expansions for the generalized
free field theories resulting from a two-dimensional CFT in
|

sinh e (—x~) "+ (x )74~

DRCIR

N, —isinzg_(x

(R) () —
e () sinhzw | 0,

isinzg, (—x~ )%+ (—xT)79-,

and

T(A) (i)
(g )T(q-)

w? — 1)‘[5_"F(E]+,c'1_;1 —iw; 1 —wz).

W2 = 1)"2F(q,, g1 — iw; 1 — w?)

(D13)

the large N limit for two cases: (i) in vacuum restricted to a
Rindler region; (ii) at finite temperature (dual to a BTZ
black hole). A convenient way to obtain both is to take the
boundary limit of the corresponding bulk mode expansions.

For the boundary CFTy ; dual to a BTZ black hole, the
boundary mode expansion for the dual operator O, can be
obtained by taking w — 0 limit of (8.6) and stripping off
the w2 factor, which gives

Olx) = limw2¢(@)(X)

w—0

:/(;lil;z u,((a)(x)a,((a) (E1)

u,(cR)(x) = Nyelk, u,((L) (x) = Nye ik,

In the AdS-Rindler case (with noncompact y), the
boundary limit should now be defined by using the
Poincaré radial coordinate z and stripping off a factor of
z%, which gives

(E2)

d’k (@)
u
(2”)2 k

Ou(x) = limz=¢(x) = [ (W)a.  (E3)

Now due to the difference between w and z we have an
additional e=2% factor compared with (E1). The behavior of

ug{@ in various Rindler regions can then be obtained from

(D7)~(D8):

(E4)
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07

sinh 7w

APPENDIX F: PROPERTIES OF
HYPERGEOMETRIC FUNCTIONS

Here we collect for convenience various properties of
hypergeometric functions used in the main text.

1. Asymptotic behavior of hypergeometric function

We first discuss the asymptotic behavior of the hyper-
geometric function F(a, b;c;z) when one or more of its
parameters a, b, ¢ are taken to be large.

Below 4 should be understood as a complex parameter
with |4] - oo.

a. Case I

From [82], for y/(y — 1) < and 4 not on the negative
imaginary axis,

F(a,b—idc—idyy)=(1 —y)‘“F(a,c—b;c—i/I;L)

y—1
=1 -y +004™). (F1)
Forl <y/(y—1) < I the leading term is the same as (F1),

although there are additional terms that are exponentially
suppressed at large |4|.

b. Case 11

When 1 is on the imaginary axis or in the right half plane
and for any real y € (1, o), we have [82]

1—
F(a—l—/l,a—/l;c;Ty)

_ F(C)F(F/l( :ij) a-c) (ao (g) T (&) + 0, )) :

(F2)

where (I, below is a modified Bessel function)
¢ =tog(y+ /32 =1).
ag =24 (y + 1)Fia(y — 1)1 (F3)
@) = [ ()] [EATL(CR)]. (F4)

For A in the upper-half complex plane, —il is in the right
half plane, while for 4 in the lower-half complex plane, iA.

N, —ising, (x7)7%+ (xt)74-, x~>0,x" > 0(F
sinh zew(x™) %+ (—x*)74-,

isinzg_(—x~) "% (—x")74-,

(ES)

[
Now consider with w € (0, 1),

F(a—id,b—il;c;w?)

. 1 -
=(1- Wz)_b+”F(b1 + iy, by — Ml;c;?y) (F5)

. 1-
=(1- wz)_“+”1F<b2 — il by + l'/11§C;Ty> (F6)

c—a-+b c—a—>
by =——, A =A- ,
1 3 1 l 3
c—b+a 1+ w?
by = —— = . F7
2 2 ’ y 1—W2 ( )

From (F2), we should use (F5) for A in the lower-half
complex plane and (F6) for A in the upper-half complex
plane. We thus find for Im4 > 0

F(a—ilb—ikc;w?)
I(e)Ma—id+1-c)

= (1 — w2)—atit
=) ['(a —ik)
é‘ 1-c e—ig/ll
Agl = R ES
) 0(2 N rien (F8)
2 1+w
Czlog(er y—1>:10g ’
l-w
Ag = 22He(y + 1) (y — Diiget, (F9)
and for Im4 < 0
F(a—id,b—il;c;w?)
:(l_wz)_b+iﬁF(C)r<_a+i%+I)AO ¢ 1—CL§/.11’
F(C_a+lﬂ) 2 \/m
(F10)
Ay =2He(y + i - L (R

In each case we have kept only the leading term and used
(F2) and the asymptotic expansion of the Bessel function
at large argument. Applying the above equations to
F(g_,g.;A;w?) we then find (8.13).
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2. A derivation

Here we give a derivation of (10.52). First consider ¢ =
|s|e™ < 1 for which we may close the contour in (10.47) in
the upper-half plane enclosing poles at o' = i(n + ¢),
which gives

= (2¢)"i [F(QQF(Z]_)F(EH,EI_%;CZ)

1 1 1 13
2cT’'l g — |l g —_\|Fl g _ 7 Z.Z.A2 .
c (q++2> <q_+2> <q++2,q_+2,2,c ﬂ

(F13)
— —iw > (_1)n<2c)n - n — n
i =(2¢) ; n! T\ @+ *3 I a- *3 For ¢ > 1, we may close the integral of (10.47) in the
a lower-half plane enclosing poles at @ = —2i(g. + n)
(F12) 10 find
!
& (1) (26) 2 - ) o )
1y = ey 3 2TV BT 020, - (2t + ) + (26) 20T (ig ~ m)T @l + 2.))

n=0
. , 1
= 2020 |20 TN (22 )F (4., + 551 - g™

(F14)

+(2¢)728-T(=iq)[(23_)F (q_, i+ % 1+ ig; c_2>] .

Finally for 0 < s < 53, we may close the integral for (10.48) in the upper-half plane enclosing poles at @' = i(n + ¢)
to find

- s~sinhz(w +in)(=1)"(2e)" ./~ n . n
Jy = (2¢)7 r — | = F15
) = (2¢) ; pr g +5 )02 +5 (F15)
o _ B 1
= (2¢)™" sinh 7w {F(qu)F(q_)F(qu, q-5: c2)
N N/ 1 13,
+20F<q++E>F<q_+§>F<q++§,q_+§,2,c)]. <F16)

Notice that the quantities in square brackets in (F13) and (F16) are identical as functions of s, since for (F13) s < 0 so
¢ = —se'l while for (F16) we have s > 0, so ¢ = se”.
Applying the following identities to (F13) and (F16),

1 C(a+H)T(b+1) 1 13
F o n2 2 2 2 F - )
(thC)+-ﬁ—FGﬁﬂ§——(a+rb+I2x>

1 1+¢

2a,2b; —— F17
a,ha+b+2,2 ) (F17)

1 Cla+H)T(b+1) 1 13 C(a+Hr(b+1) 1 1—-c
F o2 e 22V Y - ZDee2\ = 22 Y p(24.2b .- - F1
(“’b’z’c> T T(a)(b) <a+2’b+2’2’c> Vval(a+b+1) (“’ bratbtyiy ) (F18)

T(a+3)0(b+3)
B ﬁr<3+b+f>F<

we find for |s| < s

J>

— _ I'(g.)M(g)(g, +HT(@G_ +1)
sinh 7w

VAL (A —iw +1)

(2¢)"

Ji (F19)

114 se
F<2q+,2¢‘]_;A—iw+—' +se>,

272

where J; is for s < 0 and J, for s > 0.

We can now show that (F14) yields the exact same result (F19), so (F19) also applies for s < —s,. First notice that the
second term in square brackets in (F14) can be obtained from the first by taking ¢ — —¢. Since we have 0 < ¢™> < 1 when
(F14) applies, the hypergeometric function in the first term in square brackets in (F19) can be rewritten as follows using the
standard z — 1 —% identity of the hypergeometric function
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al'(1 —iq)

AUF(g g A—io+11-¢?)

1
F<é+,é+ +§;1—iq;c‘2> =

_< 1= C—Z)%—A+iw

sinz(l— A+ iw) [[(1-g_)F(} -3 )0(A-io+1)
A2 F(1-g.,1—q_sio—A +%; 1-c?)

NG00, + Do - A+3) (F20)

Using product formulas for the gamma function, the Legendre duplication formula and (F20) the first term in square

brackets in (F14) is

R _ o 1 .
(2c)—2q+F(zq)F(2q+)F<q+, q. —1—5; 1 —ig;c 2)

T(q)T(gG, +5)

F(g,.g:A—iw+%;1—¢?)

" 2/zsiningsin (i — A+ io)

_ (1 _ C—Z)%—A-&-iw

(1-g)rG =g )r(A —io+3)
UMt F(1 -G, 1 - g sio—A+3;1—c?)

Notice that, when we include the multiplication by the
overall factor, the second term in (F21) is an odd function
of g. Since J; is obtained by adding (F21) to an identical
expression with ¢ — —¢g as in (F14), this second term in
(F21) will cancel out of the full expression for J;. The result
from (F14) is then

n.Z

Vasinizgsinz(l — A+ io)['(A — iw + )
| { N(@I)r@s+3)  T(@)r@-+3) ]
r(1-g)rG-g-) r(1-g)rG-g,)

1
xF(c']Jr,q_;A—ia)—i-E;l—cz).

Ji=(2¢)7

(F22)

Using product formulas for gamma functions, the term
in square brackets in (F22) can be shown to be
72 (g)T(gq4 +5H)T(7-)1(g_+3)sinizgsinz(3— A+ iw),
while, since ¢ > 0 by definition, we have the quadratic
identity for the hypergeometric function

1
F<q+,q_;A—iw+§;1 —(32>
1 1-
= F(23,.24 50 —io+~—2 ). (F23)
27 2
Thus with these two observations, and recalling that J; only

applies for s <0 = ¢ = —se”, the result (F19) immedi-
ately follows, confirming that (F19) applies for all s < s.

0(q.)0(g. + )T (iw — A +3)

(F21)

3. Some summation formulas
for hypergeometric functions

In this subsection we quote some useful formulas
regarding hypergeometric functions. The fourth formula
from section 6.7.1 of [83] is

oo a), b )
;%t@“(a +n,b;c;x) = Fay(a,b,b'sc.csx, 1),

(F24)

valid for |7| + |x| < 1. Another useful formula is (35) from
[84] which gives

t
Fz(a,b,b’;b,c’;x,t):(l—x)‘“F<a,b’;c" )

1—x
(F25)
The eighth formula from section 6.7.1 of [83],
- -b
Zi(a)”(c ) "F(a+ n,b;c+ n;x)
c—  nl(c)
—t
=(1- t)‘“F<a, b; c;)lct), (F26)

valid for |x|, |¢| < 1, is also useful.

’

APPENDIX G: WAVE FUNCTIONS ON THE BTZ
GEOMETRY IN THE LARGE MASS LIMIT

In this appendix we collect the quantities describing the
evolution of a large mass bulk scalar field in the BTZ
geometry. We begin by considering finite transverse
momentum (¢ # 0) and then specialize to zero transverse
momentum where the expressions greatly simplify.
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1. General ¢

We first collect the quantities describing the large mass limit of the bulk mode function in (11.5)—(11.6), which, for
convenience we copy below:

ZA (X)ewz ( +0( )), |u| > uwzw

A&”(X)e-ﬂ“ (T+0w™),  |ul <u,

Af,ff( 5) = 5qq’31§13( s)e W) (1+0(v _1)) (G2)

where we have taken X = (,w, y) €R above. For X = (,w, y) €L, there is a similar expression,

o ZA ( Je iw(un-2py+7 (X ))(1 + O(U—l))’ |u| > MWEM
v (X) = ' (G3)

A e O 0.l <

At finite g, there are four classical turning points in the complex w plane. They are w = +a,, £ib,, with

aq:

p2_u2_1+\/p2_u2_1)2+4p2 p2_u2_1_\/(p2_u2_1)2+4p2
R . (G4)

2p2 2p2

The WKB phase is then given by

7 (X) = —un + pr +

,/w +b2 zb,/w —a w2 — a2 W2+ b2
IOg +|p|10g 2 b;l 2 bg
a \/w* + b2 + ib,\ /W — a ag + 04 ag + by
w2+ b2 1 —al+ /1 + bl /w? — al
10g<¢ Wi-a 18y )1
Wb 1-a =\ 18w - a
AYAL +b2+b \/aq—w w? + b2 az —w?
ZV(X) = iun - ipy + = 1og< )—i|p|log< 5 bg i\
g\ W+ b5 — b,y Jaz —w? ag + by ay
2 _ _ 2 _
l|u| <\/w +b \/1 aq l\/l-l-b \/aq w) G5)
\/w +b2\/1—a +1\/1+b2\/a —w?

The O(v~%) prefactor is given b
p g y

@ gy - M 1 ¢ i gy W 1 :
W= Gmaerm) . YO Eaoaem) @
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The large v limit of ARZ(s) is described by

WER(s) = =2 e(s) (Jul = |u]) + (o = w)log|s| = (' ~ ) og(i(u ~ )
+ PP+ (0 = p)) = Flog (14 (u+ pP) (1 + (= p)?)
WP\ _ P (1t )
( ,,)) 1g<1+<u—p'>2>
e (LI P T i =P L+i(u+p) 1+i(u-p')
1g<1—l(u —I—p) 1—i(u - ))4_41 <l—i(u+p/) l—i(u—p’))

Wi (s) = 3(2|u + | = [ul = [W]) = (" + u)log |s| + (" + u)log(i(u + u'))

/

= Slog ((1+ (0 4+ p2)(1 + (0 = p'))) = Hlog (1 -+ (w+ p))(1 + (= p'))

- %/log <1+((ZJ_FP//))§) B pz/l"g <M>

—l—ilog

o (i gy T ) i (i Ts) ©
and
BEE(s) = (0(=s) + F
BER() = 0()ewelu+ )y [o=ms (G8)
as in (11.6).

2. Expressions in the large mass limit at g=0

In this subsection we now specialize to the case ¢ = 0 (equivalently p = 0) where the expressions greatly simplify.
Taking the p — 0 limit of (G4) we find

1
= a4y = ——= b

\/1—|—u27 1

a, — o0, (G9)

so there are actually only two (real) turning points in the p — 0 limit.** The bulk wave function at a point X in the right
exterior is described in the large v limit by a WKB phase

25(X) = —up & Blog<m> <¢1 — a4 /W —aoﬂ

ap + i/w? — aj V1—ak—/w?
1 /a2 — 2 11— _
Zlg)(X)_iur/+—log(—a0+ % W>+M <\/ @ + v/ ag ) (G10)
2 ay— +/aj —w? V1 —a}—iy/ad—w?

and the O(v2) prefactor

33 All results in this subsection can be obtained from the finite p results by carefully taking p — O or instead working with the p =0
effective potential from the outset.
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1 22 1 1 1
(+) w2 Wag \' g W2 1 >4 +ix
A X — e 4 = e4
© () V2u <W2—a<2)> V2u <u2—ufv

1 2 2 1 1 1

) w2 woag \+ w2 1 3
A (X) = = , Gl1
() V2 (“3—W2> V2 (ui—bﬁz) (G1)

as in (G1).
Using the analytic continuation techniques discussed in Appendix D, one can “extend” the BTZ wave functions to the F
region of the BTZ black hole. The result is (with X = (y,w,y) €F)

vPx) = AP (X)e 201 4+ o))
o () = A7 (x)e 22700 (1 1 o)), (G12)

where this “extended” wave function in the large mass limit is described by a single WKB phase:

27100 =~ =t [1og (=2 Mg (% :Zfﬁ::sﬂ G13)

ap + iv/w —ag

and corresponding O(v™2) prefactor,

L 2.2 1 1 1
F) _owm wiag \* sy _ W 1 ey
X) = — W = —— [ sl Gl4
( ) /_21/ <W2 _ a(z)) e /—21/ W — ugv € ( )

The expressions (G12)—-(G14) apply for all real values of the frequency u since all frequencies become classically allowed
inside the horizon.
In (11.6), the large v limit of Af,j(s) (at ¢ = 0) is described by

Wi (s) = —%Te(S)(Iul —|w']) + (' — u) log|s| — (u — u) log(i(u — u'))

/

u u i 1+ i 1+ iu
| 1 2y 1 1 2y lo
+20g( +u'’”) 2og( +u’) 20g<1_ >+2 (1—iu>

WRE(s) = 0(s) —%I(Z|u+u’| —|u| = |d']) = (« + u)log|s| + (' + u)log(i(u + u'))

u' u i 1+ i i 1+ iu
——log(1 ) — ~log(1 2) + -1 —1 1
2og( + u'?) 2og( +u)+20g(1_m,>—|—20g(1_iu>], (G15)

and the O(v2) prefactors given in (G8).
With the expressions above and the help of (G18)—(G21) one may compute the exponential factor appearing in the regime
—u,, < u < u,, of the integral (11.7) to be

G = iutoglel + hog(1 ~w?) + i(u’ — ) logi(u ~ 1)) - Ze(s)|u] ~log(1 )

— i|u|log <|u| —iwy/uZ — u2> + log <1 +wy/u2 — uz) + i0(u)ulog(1l + u?)

1 1+lu
—iu'log|s| —flog
—iu

T
> —%mgu +u?) +ge(s)|u’| ~ logw, (G16)
and the analogous expression for the saddle-point evaluation of v,iRm(X ;8) is
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Gyh:mkgpy+%§mg1-w)—m + u) log(i(u + ') =5 (2lu + 1’| = |u| = [1']) ~ log(1 = )

—i|u|log <|u| —iwy/ul — uz) + log (1 +wy/ul — u2> +i0(u)ulog(1 + u?)

1+ i i
+ iu'log |s| + = log( )—l—

— 710g(1 +u'?) —logw, (G17)
iu

recalling ¢ = se”. There are never any genuine saddle points of (G16) or (G17).
To obtain the expressions (11.15) and (11.22) from (G10) and (G15) one must use the identities

1

N /2 _ .2

ag £ iy/w* —ag m(lilw u? u) (G18)
1
1 —al+\/w*—a (\u|iw u—uz) (G19)
V- = = s (£ y
21 2
1 £ iwy/u? —ul = W.( +g) > (G20)

1 Fiwv/u — uy,

(1=w?)(1+u?)

u| F wy/u? - us,

ul £ wy/u? —ud = G21
|ul i

APPENDIX H: TABLE OF NOTATION

In this Appendix we collect the notation used throughout the paper.

Symbol Meaning

d Boundary spacetime dimension (bulk spacetime = d + 1 dimensional)
Hg)p, Right/left boundary Hamiltonian

t Dimensionful Schwarzschild/boundary time

G Generator of in-falling time evolution

In-falling time parameter

(1,X) Boundary point, time and spatial coordinates
Boundary spatial manifold

Boundary momenta, frequency and spatial momenta
Bulk point, radial and boundary coordinates
“Emblackening factor” in black hole metric

SR ME @
I Il
=2F
SIS

ro Location of the event horizon (f(ry) = 0)

w AdS-Rindlet/BTZ radial coordinate

T Temperature with respect to ¢

p Inverse temperature (1/7") with respect to ¢

n= Z’T”t Dimensionless time with respect to which inverse temperature is 27

U,v Null Kruskal coordinates for the black hole

R/L/F/P Right/left/future/past regions of the eternal black hole (Section VII: Left/right/future/past regions
of Minkowski plane)

Hl(;;’ck) Bulk Hilbert space of small excitations on the eternal black hole geometry

P(X) Free bulk scalar field of mass m

Dr/LIFIP Restriction of bulk field to R/L/F/P bulk subregion

U;(R/L)(X) Bulk mode function for field in R/L subregion

a/(cR/ L) Bulk/boundary oscillators associated to R/L subregion

Ogq Momentum delta function (Kronecker delta for discrete, 226(g — ¢') for continuous)

J Bulk CP7 operator

(Table continued)
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(Continued)
Symbol Meaning
a, f Indices taking on values L, R
e(w) Sign function, e(w) =1 if w > 0, ¢(w) = -1 if @ <0
W]((”) Analytic continuation of exterior mode function Continuation in lower/upper half U, V planes
for positive/negative @
c,(f) Oscillator associated to analytically continued mode function
|HH) Hartle-Hawking state for bulk quantum fields
Ve /L Bulk subalgebra in right/left exterior region
[0) &/ Right Schwarzschild vacuum state
B Operator algebra defined in the finite N CFT
O(x) Single-trace CFT operator
H CFT Hilbert space
Ag/L1FD Algebra of single-trace operators in right/left CFT defined around the Thermal Field Double (TFD) state
[¥s) Thermal field double state of two CFTs at temperature 7 = 1/
E, n'™ energy in CFT spectrum (eigenvalue of Hg/;)
) n' energy eigenstate of CFT
0 CPT operation on the CFT
|72) = 0|n) CPT conjugation of n'" CFT energy eigenstate
Pp Thermal density operator on CFT at inverse temperature /3
J Gelfand ideal in GNS construction
Hggs) GNS Hilbert space built from single-trace operators and |¥4)
|Q0) GNS vacuum state
n(a) GNS representation of single-trace operator a on H(T%ISS)
Yr/L GNS representation of Ag/ tpp o0 Hrpp
u;(a) Local mode function for boundary generalized free field
A Modular operator for a finite N CFT algebra
t(=1/p) Modular time
Ay Modular operator for a single-trace subalgebra
A Scaling dimensional of single-trace operator dual to ¢
vr=A —%’ Scaling parameter for large mass limit in bulk
g, = A+f(£0iq) Combination of momenta relevant for calculations
Ay Single-trace algebra about the CFT vacuum
'HE,GNS) GNS Hilbert space of small excitations above the CFT vacuum
y Representation of A, on HéGNS)
Yy Algebras of bulk field about pure AdS
H(()Fock) Hilbert space of small excitations above pure AdS
R/LIF|P Right/left/future/past AdS-Rindler regions of the Poincare patch of AdS
Sk Entanglement entropy of boundary spatial subregion R in the CFT
R Boundary causal completion of boundary subregion R
Vi Restriction of single-trace algebra to boundary subregion R
Yr= (V)" Weak closure of single-trace algebra in boundary subregion R
YR Ryu-Takayanagi surface for boundary spatial subregion R
Eg Homology hypersurface associated to yz and boundary spatial subregion R
Sk, Entanglement entropy of bulk subregion E in bulk EFT
M Generic von Neumann algebra used in half-sided modular inclusions
It B ag, K g Modular conjugation, operator, and Hamiltonian associated to M
Subalgebra of M obeying half-sided modular inclusion property
U(s) = 08 Unitary operator implementing half-sided modular translation
oy(a) Adjoint action of U(s)" on operator a
AZf’ (s) Decomposition of o (a,”) in terms of a;(/,j )
EZ//:/( 5) Decomposition of US(C;C”)) in terms of c,(f )
Azf,( 5)( Bzf, (5)) Positive (negative) frequency part of E(k’f,(s)

(Table continued)
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(Continued)

Symbol Meaning

el Undetermined phase in the action of U(s) on GFFs

(n.x) Dimensionless Rindler/BTZ boundary coordinates

z Poincare AdS radial coordinate

¢ BTZ black hole tortoise coordinate

felw) AdS-Rindler/BTZ radial mode function

K(X,y) Smearing function to describe ¢(X) in terms of z(O(y))

¢S;R/ L)(n’ w) Bulk field of fixed angular momentum ¢ in right/left exterior of BTZ black hole
K,(n.wii') Smearing function for (/)flR) (n,w) in terms of z(O, (1)) .

D(X;s) = o,(p(X)) Evolution of a bulk field at X under adjoint action of U(s)"

X Boundary GFF algebra supported at 1 < 7,

j/m] Bulk field algebra supported for U < —e™0,V >0

et Phase shift of bulk mode function at the horizon

So Value of in-falling time at which the evolved operator crosses the horizon

k= (u,p)=(w,9)/v

Rescaled frequency and momentum for large v limit
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