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In holographic duality an eternal Anti-de Sitter black hole is described by two copies of the boundary
Conformal Field Theory in the thermal field double state. In this paper we provide explicit constructions in
the boundary theory of infalling time evolutions which can take bulk observers behind the horizon. The
constructions also help to illuminate the boundary emergence of the black hole horizons, the interiors, and
the associated causal structure. A key element is the emergence, in the largeN limit of the boundary theory,
of a type III1 von Neumann algebraic structure from the type I boundary operator algebra and the half-sided
modular translation structure associated with it.
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I. INTRODUCTION

Time is a baffling concept in quantum gravity. While it
plays an absolute role in the formulation of quantum
mechanics, in gravity it can be arbitrarily reparametrized
by gauge diffeomorphisms and hence lacks a definite
meaning. In an asymptotic anti-de Sitter (AdS) spacetime,
a sensible notion of boundary time can be established in the
asymptotic region as gauge transformations generating
time reparametrizations are required to vanish at spatial
infinities. For static spacetimes with a global timelike
Killing vector, the asymptotic time can be extended to
the interior with the help of the symmetry. But for space-
times without such a symmetry, whether it is possible to
describe time flows in the interior in a diffeomorphism
invariant way is a subtle question whose understanding is
important in many contexts.
For this purpose an eternal black hole in AdS, which is

dual to two copies of the boundary Conformal Field Theory
(CFT) in the thermal field double state [1] (see Fig. 1),
offers perhaps a simplest nontrivial example. The black
hole spacetime possesses a timelike Killing vector in the
exterior R and L regions. The associated time t, which can
be considered as the extension of the boundary time,
however, ends at the event horizon, with no timelike
Killing vector inside the horizon. A natural question is
whether the boundary theory can describe an “infalling”
time evolution, which we define as any evolution which can

take the Cauchy slice at t ¼ 0 to Cauchy slices which go
inside the horizon. Such a time, if it exists, must be
emergent, as the evolutions of the usual boundary times
do not probe the interior; see Fig. 2.
There have been many different ways that boundary

observables can probe regions behind the horizon (see e.g.
[2–13]), but in these discussions neither an infalling time
evolution nor the casual structure of the horizon was visible
from the boundary, except in systems with symmetries
[14,15]. Similarly, ER ¼ EPR type arguments [16,17] are
largely concerned with a single time slice. While it is
possible to express bulk operators in the black hole interior
regions in terms of boundary operators [18–22], such “bulk
reconstructions” require either evolving bulk equations of
motion or analytic continuation around the horizon, and
thus are not intrinsically boundary constructions. See also
[23,24] for an interesting recent discussion of keeping track
of the proper time of an in-falling observer using modular
flows and [25–29] for a description of the black hole
interior from the perspective of coarse graining.
In this paper we provide an explicit construction of in-

falling time evolutions from the boundary theory.1 It should
be emphasized that our goal is not to describe in-falling
geodesic motion of some localized bulk observers, which in
general cannot be formulated in a diffeomorphism invariant
way. The goal is to construct “global” evolutions of a Cauchy
slice as in Fig 2(c). Understanding such emergent evolutions
also helps to illuminate the emergence in the boundary theory
of the bulk horizon and the associated causal structure.
The key to our discussion is the emergence, in the large

N limit of the boundary theory, of a type III1 von NeumannPublished by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
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1A summary of the main idea and results has appeared earlier
in [30].
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algebraic structure2 from the type I boundary operator
algebra and the half-sided modular translation structure
associated with it. A distinctive property of the “evolution
operators” UðsÞ ¼ e−iGs; s∈R, resulting from this con-
struction is that the Hermitian generator G has a spectrum
that is bounded from below,

G ≥ 0: ð1:1Þ
The spectrum property is natural from the following
perspectives: (i) It distinguishes G, as a generator of “time”
flow, from an operator generating other unitary trans-
formations, e.g. spacelike displacements or internal sym-
metries, whose spectrum is not bounded from below. (ii) If
we interpret the eigenvalues of G as energies associated
with the “global” in-falling time s, they should be bounded
from below to ensure stability. The existence of the
singularity means that such evolution may only have a
finite “lifetime,” but there should nevertheless exist a well-
defined quantum mechanical description before hitting the
singularity. Also by construction G involves degrees of
freedom from both CFTR and CFTL.

3

Our discussion will be restricted to leading order in the
1=N expansion, but we expect the structure uncovered
should be present to any finite order in the expansion. New
structure from incorporating 1=N corrections to all orders is
discussed in [34].
The plan for this paper is as follows. In Sec. II we discuss

the emergence of a type III1 vN algebra in the boundary
theory at finite temperature. In Sec. III we discuss the
emergence of a new type III1 structure for local boundary
algebras in the large N limit. In Sec. IV we suggest several
physical implications of these emergent type III1 algebras.
In Sec. V we review half-sided modular inclusion/
translation. In Sec. VI we show that half-sided translations
can be uniquely extended to all values of the parameter and
that the description of these evolution operators is com-
pletely fixed, up to a phase, for algebras generated by
generalized free fields. In Sec. VII we illustrate our con-
struction of evolution operators in the simple case of gene-
ralized free fields on Rindler spacetime. In Sec. VIII we
review bulk reconstruction in the AdS-Rindler and
Banados–Teitelboim–Zanelli (BTZ) spacetimes and then
provide new results on the boundary support of such bulk
reconstructions. In Sec. IX we show how to cross the AdS-
Rindler horizon and reconstruct the bulk Poincaré time
from Rindler patches of the boundary theory. In Sec. X we
discuss boundary descriptions of Kruskal-like time evolu-
tion in the BTZ geometry and sharp signatures of the black
hole horizons and causal structure in the boundary theory.
In Sec. XI we show that the emergent bulk evolution
becomes a pointwise transformation in the limit with the
bulk field having a very large mass. We then conclude in
Sec. XII with a discussion of our results, and we point out
many future directions to be explored.

A. Conventions and notations

In this paper we use N2 ∼ 1
GN

to denote the number of
degrees of freedom of the boundary theory, where GN is the
bulk Newton constant. For two-dimensional CFTs, N2

should be understood as the central charge c. The 1=N
perturbative expansion of the CFT is dual to the perturbative
GN expansion around the corresponding classical geometry.
In this regime, the bulk gravity theory can be described by a
weakly coupled quantum field theory in a curved spacetime.
All operator algebras discussed in this paper should be

understood as those of bounded operators.4

We will consider the boundary theory to be on R × Sd−1

or R1;d−1, and the discussion generalizes straightforwardly
to other boundary spatial manifolds such as hyperbolic
space. A boundary point is denoted by x ¼ ðt; x⃗Þ with x⃗
denoting points on either Rd−1 or Sd−1. The corresponding
Fourier space will be denoted as k ¼ ðω; qÞ with q

FIG. 1. The Penrose diagram of an eternal black hole. The dashed
lines are event horizons, and the wavy lines are the singularities.

FIG. 2. Left: evolution of the t ¼ 0 bulk slice under HR −HL,
where HR;L denote the Hamiltonians of the boundary theories.
Center: evolution of the t ¼ 0 slice under HR þHL, the action of
which is singular at the horizon. In fact any linear combination of
HR and HL other than HR −HL is expected to have a singular
action at the horizon. Right: a smooth Kruskal-like evolution. If
such an evolution can be described in a diffeomorphism invariant
way, it must be emergent in the boundary theory.

2For reviews on the classification of von Neumann algebras
see chapter III.2 of [31] or Sec. 6 of [32].

3The necessity of left/right couplings has previously been
discussed. For example, see [33].

4This is for mathematical convenience, but this constraint does
not sacrifice physical significance as essentially all observables can
be made to be bounded by putting restrictions on their spectra.
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collectively denoting momentum on Rd−1 or spherical
harmonic labels on Sd−1. A bulk point is denoted by
X ¼ ðr; xÞ with r the bulk radial direction (later in the
paper we use w as the radial variable).
A0 denotes the commutant of an algebra A, i.e. the

algebra of operators commuting with the algebra A. By
type III1 algebras we mean a von Neumann (vN) algebra
which contains type III1 factor(s).
We use t to denote the boundary time whose translation

is generated by the Hamiltonian H, η to denote the
boundary time in units where the inverse temperature is
β ¼ 2π, i.e. η ¼ 2π

β t, and t to denote the modular time. For a
detailed description of the notational conventions used in
the paper, see Appendix H.

II. EMERGENT TYPE III1 ALGEBRAS
AT FINITE TEMPERATURE

In this section we consider two copies of the boundary
CFT in the thermal field double state, which is dual to an
eternal black hole in AdS. We argue that there are emergent
type III1 vN algebras in the large N limit. We start with a
quick review of the bulk theory to set up the notation.

A. Small excitations around the eternal
black hole geometry

Consider an eternal black hole in AdSdþ1, whose metric
can be written in a form

ds2 ¼ −fdt2 þ 1

f
dr2 þ r2dΣ2

d−1; ð2:1Þ

where dΣ2
d−1 is the metric for the boundary spatial manifold

Σwhich we will take to be the unit sphere Sd−1 orRd−1, and
f is a function with a first order zero at event horizon
r ¼ r0. A bulk point is denoted by X ¼ ðt; r; x⃗Þ where x⃗
denotes a point on Σ. The Schwarzschild coordinates ðt; rÞ
can be used to cover any of the four regions of the fully

extended black hole geometry of Fig. 3, while the Kruskal
coordinates U, V cover all the regions.
Small perturbations around the black hole geometry can

be described using the standard formalism of quantum field
theory in a curved spacetime. Their quantization results in a
Fock spaceHðFockÞ

BH . We will use a real scalar field ϕ of mass
m as an illustration. The restriction ϕR of ϕ to the R region
of the black hole geometry can be expanded in terms of a

complete set of properly normalized modes vðRÞωq ðXÞ in the
R region as

ϕRðXÞ ¼
X
q

Z
∞

0

dω
2π

ðvðRÞωq ðXÞaðRÞωq þ ðvðRÞωq ðXÞÞ�ðaðRÞωq Þ†Þ;

ð2:2Þ

where q collectively denotes quantum numbers associ-
ated with Σ,5 and

½aðRÞωq ; ðaðRÞω0q0 Þ†� ¼ 2πδðω − ω0Þδqq0 : ð2:3Þ

Below for notational simplicity we will write (2.2) as

ϕRðXÞ ¼
X
k

vðRÞk ðXÞaðRÞk ; k ¼ ðω; qÞ;

vðRÞ−k ¼ ðvðRÞk Þ�; aðRÞ−k ¼ ðaðRÞk Þ†: ð2:4Þ

There is a similar expansion for the restriction of ϕ to the L
region,

ϕLðXÞ ¼
X
k

vðLÞk ðXÞaðLÞk ; k ¼ ðω; qÞ;

vðLÞ−k ¼ ðvðLÞk Þ�; aðLÞ−k ¼ ðaðLÞk Þ†: ð2:5Þ

In the case of a Schwarzschild black hole, the R and L
regions are related by spacetime reflection symmetry
ðU;V; x⃗Þ to ð−U;−V;−x⃗Þ. It is convenient to choose

vðLÞk to be

vðLÞk ðt; r; x⃗Þ ¼ vðRÞ�k ðt; r; x⃗Þ ¼ vðRÞ−k ðt; r; x⃗Þ; ð2:6Þ

and the antiunitary spacetime reflection operator J then
acts as

JϕRðt; r; x⃗ÞJ ¼ ϕLðt; r; x⃗Þ; JaðRÞk J ¼ aðLÞk : ð2:7Þ

Altogether

U V

R

F

L

P

FIG. 3. Kruskal diagram for an eternal black hole. The dashed
lines are event horizons, the solid red lines are the singularities,
and the solid black lines are the boundaries.

5The sum over q and δqq0 should be understood as integrals and
Dirac delta functions if there are continuous quantum numbers.
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ðaðαÞk Þ† ¼ aðαÞ−k ; ½aðαÞk ; aðβÞk0 � ¼ ϵðωÞδkþk0;0δαβ;

α; β ¼ R;L: ð2:8Þ

The behavior of ϕ in the F and P regions can be
determined from that in the R and L regions by causal
evolution or analytic continuation.
The Hartle-Hawking vacuum can be defined using the

standard Unruh procedure by first introducing modes wk
which are analytic in the lower U and V planes for ω > 0,

wðαÞ
k ¼ bþv

ðαÞ
k þ b−v

ðᾱÞ
−k ; L̄ ¼ R; R̄ ¼ L ð2:9Þ

b� ¼ e�
βjωj
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinh βjωj
2

q ; b2þ − b2− ¼ 1: ð2:10Þ

Denoting the oscillators corresponding to the modes wðαÞ
k as

cðαÞk we then have on a Cauchy slice

ϕ ¼
X
α;k

vðαÞk aðαÞk ¼
X
α;k

wðαÞ
k cðαÞk ; ð2:11Þ

which implies the oscillators cðαÞk and aðαÞk are related by

cðαÞk ¼ bþa
ðαÞ
k −b−a

ðᾱÞ
−k ; aðαÞk ¼ bþc

ðαÞ
k þb−c

ðᾱÞ
−k ; ð2:12Þ

½cðαÞk ; cðβÞk0 � ¼ ϵðωÞδkþk0;0δαβ; JcðαÞk J ¼ cðᾱÞk : ð2:13Þ

The Hartle-Hawking vacuum jHHi is defined to satisfy

cðαÞk jHHi ¼ 0 for ω > 0: ð2:14Þ

The Fock spaceHðFockÞ
BH is built by acting cðαÞk withω < 0 on

jHHi. Note that

aðRÞk jHHi ¼ e−
βω
2 aðLÞ−k jHHi;

hHHjaðRÞk ¼ e
βω
2 hHHjaðLÞ−k : ð2:15Þ

We will denote the operator algebra generated by ϕ and
other matter fields (including metric perturbations) in the R
region as ỸR and similarly those generated by fields in the
L region as ỸL. ỸR and ỸL are commutants of each other,
and are expected to be type III1 von Neumann algebras
[35–37]. Reflections of the type III1 structure include the
nonexistence of the Schwarzschild vacuum state j0iR ⊗
j0iL (which is defined to be annihilated by aðαÞk with ω > 0)

in HðFockÞ
BH and the entanglement entropy between R and L

regions being not well defined in the continuum limit.

B. Small excitations around thermal field
double state on the boundary

We always consider the boundary CFT at a large but
finite N and work to leading order in the 1=N expansion.
We denote the Hilbert space of the boundary CFT as H, its
Hamiltonian as H, the algebra of bounded operators as B,
and the vector space of all finite products of single-trace
operators by A. We use O to denote the single-trace
operator dual to the bulk field ϕ. Now consider two copies
of the boundary theory, to which we refer respectively as
CFTR and CFTL. Operators or states with subscripts R, L
refer to those in the respective systems. The doubled system
has Hilbert space Ĥ ¼ HR ⊗ HL, operator algebra B̂ ¼
BR ⊗ BL, and single-trace operators Â ¼ AR ⊗ AL. In the
large N limit, Â can be endowed with an algebraic structure
defined with respect to the thermal field double state
(see [38] for details). We denote the resulting algebra
by ÂTFD. The vector space of products of single-trace
operators associated to either side of thermal field double
are then also endowed with an algebraic structure and
become subalgebras of ÂTFD, which we denote by AR;TFD

and AR;TFD. Generic operators in ÂTFD will be denoted as
a; b; � � �, those in B̂ as u; v; � � �, and those in AR as
AR; BR; � � �.
The thermal field double state is defined as

jΨβi ¼
1ffiffiffiffiffiffi
Zβ

p X
n

e−
1
2
βEn jñiLjniR; ð2:16Þ

jñi ¼ θjni; hm̃jñi ¼ hnjmi ¼ δmn; Zβ ¼
X
n

e−βEn;

ð2:17Þ

where jni denotes the full set of energy eigenstates of the
CFT, with eigenvalues En. m; n here collectively denoting
all quantum numbers including spatial momenta for the
boundary theory onR1;d−1 or angular quantum numbers for
the theory onR × Sd−1. θ is an antiunitary operator and will
be taken to be the CPT operator of the CFT. When tracing
over degrees of freedom of one of the CFTs, we get the
thermal density operator at inverse temperature β ¼ 1

T for
the remaining one:

ρβ ¼
1

Zβ
e−βH: ð2:18Þ

Perturbatively in the 1=N expansion, excitations around
jΨβi can be obtained by acting single-trace boundary
operators on it.6 In fact, the collection of excitations
obtained this way has the structure of a Hilbert space,

6See also [39] for a review of the definition of the thermal field
double state in the infinite volume and large N limits.
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which can be made precise mathematically using the
Gelfand-Naimark-Segal (GNS) construction. More explic-
itly, for each operator a∈ ÂTFD we associate a state jai and
define the inner product among them as

hajbi ¼ lim
N→∞

hΨβja†bjΨβi; a; b∈ ÂTFD: ð2:19Þ

In particular, for AR; BR ∈AR;TFD, we have

hARjBRi¼ lim
N→∞

hΨβjA†
RBRjΨβi¼ lim

N→∞
TrðρβA†BÞ: ð2:20Þ

Equation (2.19) does not yet define a Hilbert
space as there can be operators y∈ ÂTFD satisfying
limN→∞hΨβjy†yjΨβi ¼ 0, and the corresponding jyi should
be set to zero. Denote the set of such operators as J . The
GNS Hilbert space is the completion of the set of
equivalence classes [a] which are defined by the equiv-
alence relations

a ∼ aþ y; a∈ ÂTFD; y∈J : ð2:21Þ

The set J is nonempty, as from (2.16), for a Hermitian
operator W ∈B

WRðt; x⃗ÞjΨβi ¼ WL

�
t − i

β

2
; x⃗

�
jΨβi;

WLðt; x⃗ÞjΨβi ¼ WR

�
tþ i

β

2
; x⃗

�
jΨβi; ð2:22Þ

where for simplicity we have assumed that θ†Wð0Þθ ¼
Wð0Þ, and we have chosen the space and time orientations
of CFTL to be the opposite of those of CFTR.

7 From (2.22)
it can be shown that AR;TFD or AL;TFD alone can be used to
generate the full GNS Hilbert space, which we will denote

asHðGNSÞ
TFD . See Appendix A for details. In other words, any

state in HðGNSÞ
TFD can be written as jARi with AR ∈AR;TFD or

as a limit of such states. The state in HðGNSÞ
TFD corresponding

to the identity operator is denoted as jΩ0i, which we
sometimes refer to as the GNS vacuum.

HðGNSÞ
TFD also provides a representation space for ÂTFD.

The representation πðaÞ of an operator a∈ ÂTFD acting on

HðGNSÞ
TFD can be defined as

πðaÞ½b� ¼ ½ab�; a; b∈ ÂTFD; ð2:23Þ

and as a result the inner product (2.19) can also bewritten as

hajbi¼ hΩ0jðπðaÞÞ†πðbÞjΩ0i: ð2:24Þ

We denote the representations of AR;TFD and AL;TFD in

HðGNSÞ
TFD respectively as YR and YL. Given that HðGNSÞ

TFD can
be generated by AR;TFD or AL;TFD alone, the GNS vacuum
jΩ0i is cyclic and separating under both YR and YL, and we

have Y0
R ¼ YL. We denote the operator algebra on HðGNSÞ

TFD
as Y.
It can also be shown thatHðGNSÞ

TFD is isomorphic toHðGNSÞ
ρβ ,

the GNS Hilbert space corresponding to the thermal density
operator ρβ over the algebra Aρβ obtained from the single-
trace operators of one copy of the CFT and the thermal
state.8

To leading order in the 1=N expansion, the inner
products (2.19) and thus (2.24) can be written as sums
of products of two-point functions of single-trace operators.
We can thus represent single-trace operators by generalized

free fields acting on HðGNSÞ
TFD , and the algebras YR, YL are

generated by generalized free fields. More explicitly, for a
single-trace scalar operator O, we can expand its repre-
sentations in terms of a complete set of functions on the
boundary manifold

πðORðxÞÞ¼
X
k

uðRÞk ðxÞaðRÞk ; πðOLðxÞÞ¼
X
k

uðLÞk ðxÞaðLÞk ;

ð2:25Þ

uðRÞk ðxÞ ¼Nke−iωthqðx⃗Þ; uðLÞk ðxÞ ¼ uðRÞ−k ðxÞ ¼ ðuðRÞk ðxÞÞ�;
x¼ ðt; x⃗Þ; ð2:26Þ

where Nk is some function of k ¼ ðω; qÞ, and hqðx⃗Þ
denotes the complete set of functions on the boundary

spatial manifold Σ, and aðR;LÞk are operators acting on

HðGNSÞ
TFD , normalized as9

ðaðαÞk Þ†¼ aðαÞ−k ; ½aðαÞk ;aðβÞk0 � ¼ ϵðωÞδkþk0;0δαβ; α;β¼R;L:

ð2:27Þ

Using (2.20) and (2.24), Nk can be deduced from the
condition

lim
N→∞

TrðρβOðx1ÞOðx2ÞÞ¼ hΩ0jðπðORðx1ÞÞπðORðx2ÞÞjΩ0i:
ð2:28Þ

Furthermore, applying (2.22) to πðORÞ and πðOLÞ we have

7That is, WRðt; x⃗Þ ¼ 1L ⊗ Wðt; x⃗Þ while WLðt; x⃗Þ ¼
Wð−t;−x⃗Þ ⊗ 1R. We take the single-trace operators Wðt; x⃗Þ to
be analytically continued to Imt∈ ½0; β

2
�. Thus WRðt; x⃗Þ are

defined for Imt∈ ½0; β
2
� while WLðt; x⃗Þ for Imt∈ ½− β

2
; 0�.

8For the construction of the latter see Sec. V.1.4 of [31]
and [40].

9Note that this is purely a boundary discussion. Even though
we use the same notation, aðαÞk as in (2.4), at this stage these
operators do not have anything to do with each other.
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aðRÞk jΩ0i¼e−
βω
2 aðLÞ−k jΩ0i; hΩ0jaðRÞk ¼e

βω
2 hΩ0jaðLÞ−k : ð2:29Þ

We can introduce an antiunitary “swap” operator J which
acts as

JjΩ0i ¼ jΩ0i; JaðαÞk J ¼ aðᾱÞk ;

JπðOαðxÞÞJ ¼ πðOᾱðxÞÞ; J2 ¼ 1: ð2:30Þ

Equations (2.29) motivate the introduction of [b� were
introduced in (2.10)]

cðαÞk ¼ bþa
ðαÞ
k −b−a

ðᾱÞ
−k ; aðαÞk ¼ bþc

ðαÞ
k þb−c

ðᾱÞ
−k ; L̄¼R

ð2:31Þ
which satisfy

cðαÞk jΩ0i ¼ 0 for ω > 0; ðcðαÞk Þ† ¼ cðαÞ−k ;

½cðαÞk ; cðβÞk0 � ¼ ϵðωÞδkþk0;0δαβ: ð2:32Þ
To conclude this subsection, we make some further

general remarks:
(1) The algebras AR;TFD;AL;TFD are defined only in the

1=N expansion. The algebras YR, YL act onHðGNSÞ
TFD ,

and are von Neumann algebras.
(2) πðOÞ is not the same as O. The former is defined

only onHðGNSÞ
TFD and is state dependent (i.e. it depends

on the state we use to build the GNS representation),
while O acts on the full CFT Hilbert space and is
state independent. The algebras YR, YL are thus also
state dependent. For example, they depend on β.

(3) The operator algebras BR, BL are type I von
Neumann algebras, and jΨβi is cyclic and separating
with respect to them. The corresponding modular
operator Δ is given by − logΔ ¼ βðHR −HLÞ. Note
that the modular time t defined by modular flow with
Δ−it is related to the usual CFT time t by10

t ¼ t
β
: ð2:33Þ

(4) Since jΩ0i is cyclic and separating for YR, there
exists a modular operator Δ0 which leaves jΩ0i
invariant and generates automorphisms of YR, YL.
The modular flows generated by Δ0 again coincide
with the time evolution of the respective boundaries.
More explicitly, combining with the previous item,
we have

πðARðt ¼ βtÞÞ ¼ πðΔ−itARΔitÞ ¼ Δ−it
0 πðARÞΔit

0;

AR ∈AR;TFD: ð2:34Þ

C. Complete spectrum and emergent
type III1 structure

For the boundary theory on R × Sd−1, we conjecture that
the algebras YR, YL are type I below the Hawking-Page
temperature THP, but become type III1 above THP. Recall
that THP is the temperature at which the boundary system
exhibits a first-order phase transition in the large N limit,
with logZβ ∼OðN0Þ for T < THP but logZβ ∼OðN2Þ for
T > THP. Below THP thermal averages are dominated by
contributions from states with energies of OðN0Þ while
above THP they are dominated by states with energies of
OðN2Þ. This change of dominance leads to dramatically
different behavior for thermal correlation functions. Since

the inner products (2.19)–(2.20) of HðGNSÞ
TFD are determined

by thermal two-point functions of single-trace operators,
the representations of elements ofAR;TFD;AL;TFD, and thus
the structure of the algebras YR, YL are sensitive to the
behavior of these two-point functions.
Consider thermal Wightman functions of a Hermitian

scalar operator O of dimension Δ

Gþðx1 − x2Þ ¼ TrðρβOðx1ÞOðx2ÞÞ
¼ hΨβjORðx1ÞORðx2ÞjΨβi: ð2:35Þ

Its Fourier transform has the Lehmann representation

Gþðω;qÞ¼
X
m;n

ð2πÞδðω−EnmÞe−βEmρmn

≡ 1

1−e−βω
ρðω;qÞ; ð2:36Þ

Enm ¼ En − Em; ρmn ¼ jhmjOð0Þjnij2; ð2:37Þ

where ρðω; qÞ is the (finite temperature) spectral function.
In the large N limit and at strong coupling,Gþ and ρ can be
computed using the standard procedure from gravity.
Below THP, the finite temperature Euclidean correlation
function, GE, of O is determined by the Euclidean function
GE0 at zero temperature via summation over images in the
Euclidean time

GEðτ; x⃗Þ ¼
X
n

GE0ðτ þ nβ; x⃗Þ: ð2:38Þ

When analytically continued back to the Lorentzian sig-
nature, this implies that

ρðω; qÞ ¼ θðωÞρ0ðω; qÞ − θð−ωÞρ0ð−ω; qÞ; ð2:39Þ

where ρ0ðω; qÞ is the spectral function at zero temperature11

and has the following form:

10Recall that we take the time of CFTL to run in the opposite
direction from that CFTR.

11This can be defined by taking β → ∞ in (2.36) and can be
found from the zero temperature momentum space Wightman
function as G0þðω; qÞ ¼ ρ0ðω; qÞ.
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ρ0ðω; qÞ ¼
X∞
l¼0

clδðω − Δ − 2lÞ: ð2:40Þ

In this case, ρ is supported only at discrete points on the real
ω axis.
In contrast, for T > THP, ρðω; qÞ is smooth and sup-

ported on the full real ω axis. For d ¼ 2, i.e. CFT on a
circle, from the BTZ black hole [41] it can be found that12

ρðω; qÞ ¼ C sinh πωΓðqþÞΓðq̄þÞΓðq−ÞΓðq̄−Þ: ð2:41Þ

We will refer to such a ρ, a smooth function supported on
the full real ω axis for any q, as having a complete
spectrum. For general d, the explicit analytic expressions
of ρðω; qÞ at strong coupling are not known, but ρ can be
shown to always have a complete spectrum due to the
presence of the horizon in the black hole geometry (see
e.g. [4]).
It is known that for a generalized free field theory in a

thermal field double state if the spectral function has a
continuous spectrum, then the corresponding subalgebra
for a single copy of the theory is type III1 [42,43]. This has
also been emphasized recently from a different perspective
in [44].13 Here the gravity calculation indicates that ρðω; qÞ
has a complete spectrum, which implies that YR, YL are
type III1. We thus conjecture that in the large N limit, at
T > THP, YR, YL become type III1. Note also that when
there is a continuous spectrum, the “vacuum” j0iL ⊗ j0iR
for aðαÞk , which is defined to be annihilated by aðαÞk with

ω > 0, does not exist inHðGNSÞ
TFD , and thusHðGNSÞ

TFD cannot be
tensor factorized.14

We will discuss in the next subsection that the type III1
structure of YR, YL is also required by the duality of YR,
YL with the bulk algebras ỸR; ỸL.
The complete spectrum of ρðω; qÞ is stronger than the

continuous spectrum required to have a type III1 algebraic
structure for YR, YL. We believe the complete spectrum is
necessary for the half-sided modular inclusion/translation
structure to be discussed in Sec. VI (which will play an
important role in later parts of the paper), but we will not
attempt a rigorous proof here.
We emphasize that a continuous spectrum is possible

only in the large N limit. CFTon Sd−1 has a discrete energy
spectrum, i.e. the sums m, n in (2.36) are literally discrete.
As a result, at finite N, the spectral function ρ is supported
on only discrete values of ω ¼ Emn. In the large N limit

(for T > THP), the dominant contributions to the sums
in (2.36) come from states with energies of OðN2Þ, where
the density of states is eOðN2Þ. If O has nonzero matrix
elements between generic states with energy differences
Emn ∼OðN0Þ, a continuous spectrum results in the large N
limit. In contrast, for T < THP, the dominant contributions
to the sums in (2.36) come from states with energies of
OðN0Þ, where the density of states isOðN0Þ, which leads to
a discrete spectrum for ρ. It is interesting to understand
what is responsible for the emergence of the complete
spectrum on the gravity side. From the bulk perspective, the
complete spectrum can be attributed to the existence of an
event horizon which results in a continuum of modes for
both signs of ω. The emergent complete spectrum in the
large N limit for T > THP was emphasized before in [4] as
a possible reason for the emergence of a bulk horizon and
singularity in holography.
The complete spectrum of finite temperature spectral

functions responsible for the emergent type III1 structure
may not be restricted to strong coupling. In [45] it was
argued that a complete spectrum may arise generically for a
matrix-type theory in the large N limit even at weak
coupling (see also [46,47]). A complete spectrum may
also arise in the Sachdev–Ye–Kitaev (SYK) model yielding
an emergent type III1 algebra in the large N limit.
Our discussion of the emergent type III1 structure is at

the generalized free field theory level, which applies at
leading order in the large N limit. See [34] for a discussion
on the deformation of this algebra when including 1=N
corrections.

D. Duality between the bulk and boundary
from the algebraic perspective

Given that single-trace operators are dual to fundamental
fields on the gravity side, we can identify the Hilbert spaces
of small excitations on both sides and the corresponding
operator algebras, i.e.

HðGNSÞ
TFD ¼ HðFockÞ

BH ; jΩ0i ¼ jHHi;
YR ¼ ỸR; YL ¼ ỸL: ð2:42Þ

More explicitly, for a bulk scalar field ϕ dual to a
boundary single-trace operator O, the last two equations

of (2.42) imply that we should identify oscillators, aðαÞk ,
constructed from the generalized free field description of
the boundary theory operators (2.25) with those in the
bulk mode expansions (2.4)–(2.5), which is the reason we
have been using the same notation for them. This identi-
fication is also reflected in the standard extrapolate dic-
tionary for the bulk and boundary operators (C is a
normalization constant)

12Now q is the momentum on the circle, and q� ¼
1
2
ðΔþ iðω� qÞÞ; q̄� ¼ 1

2
ðΔ − iðω� qÞÞ. C is a normalization

constant. In (2.41) we have chosen units such that β ¼ 2π.
13We thank Eliott Gesteau, Nima Lashkari, and Mudassir

Moosa for discussions on these references.
14From (2.31), the normalization of j0iR ⊗ j0iL is proportional

to
Q

ωð1 − e−2πωÞ, which is not well defined.
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πðORðxÞÞ ¼ C lim
r→∞

r−ΔϕRðr; xÞ;
πðOLðxÞÞ ¼ C lim

r→∞
r−ΔϕLðr; xÞ; ð2:43Þ

uðRÞk ðxÞ ¼ C lim
r→∞

r−ΔvðRÞk ðr; xÞ;

uðLÞk ðxÞ ¼ C lim
r→∞

r−ΔvðLÞk ðr; xÞ: ð2:44Þ

We emphasize that it is the representations πðORÞ; πðOLÞ
of OR, OL in the GNS Hilbert space that appear in the
extrapolation formulas (2.43). This makes sense as the
mode expansions of ϕR;ϕL depend on the bulk geometry,
which is reflected in the state dependence of πðORÞ; πðOLÞ.
The identification of jΩ0i with jHHi then follows from
(2.15) and (2.29).
With the identifications of aðαÞk in the boundary and bulk

mode expansions, ϕR;ϕL of equations (2.4)–(2.5) can now
be directly interpreted as boundary operators, which is
the statement of bulk reconstruction for the R and L regions
of the black hole [18–20]. We emphasize that the
reconstruction formula is in terms of operators in the
GNS Hilbert space.
Since the algebras ỸR; ỸL of bulk fields restricted to the

R and L regions of the black hole are believed to be type
III1 von Neumann algebras, the duality can only hold if YR,
YL are also type III1.
For the boundary theory on R × Sd−1, the above dis-

cussion applies to T ¼ 1
β > THP. For T < THP, the bulk

dual for (2.16) is given by two disconnected copies of
global AdS whose small excitations are in the thermal field
double state; see Fig. 4. In this case YR and YL are each
dual respectively to the algebra of bulk fields in the global
AdS geometry and should be type I.

III. EMERGENT TYPE III1 ALGEBRAS
IN BOUNDARY LOCAL REGIONS

The emergent type III1 structure discussed in the
previous section concerned the algebras generated by
single-trace operators over the entire boundary spacetime.
We now would like to argue this phenomenon is more

general, applying to spacetime subregions, although in a
more subtle way. The operator algebra of a boundary CFT
restricted to a subregion should be type III1 [35–37]. We
argue that there is a further emergent type III1 structure in
the large N limit, and discuss its manifestation in the bulk
gravity dual.
Our discussion in this section will be for a single copy of

the boundary CFTat zero temperature. We again consider a
finite but large N. For definiteness, we will take the
boundary spacetime to be R1;d−1. Recall that the Hilbert
space of the boundary CFT is H, with its full operator
algebra B. The algebra generated by single-trace operators
with respect to the vacuum is A0, which is only defined
perturbatively in 1=N expansion. While B can be defined
on a single time slice,A0 is defined on the whole spacetime
as single-trace operators do not obey any equations of
motion among themselves; see Fig. 5.

A. GNS Hilbert space and bulk reconstruction

For our discussion of the emergent type III1 structure for
local boundary subregions, it is again important to intro-
duce the GNS Hilbert space of small excitations, now
around the vacuum state of the CFT. The procedure is
similar to our discussion of the GNS Hilbert space around
the thermal field double state in Sec. II B, so we will not
discuss it in detail.
Consider the GNS Hilbert space HðGNSÞ

0 built from the
CFT vacuum state j0i over the single-trace operator algebra
A0. H

ðGNSÞ
0 offers a representation π0ðAÞ for an operator

A∈A0, and we denote the algebra π0ðA0Þ as Y. As the

entire operator algebra on HðGNSÞ
0 offers a representation

FIG. 4. Below THP the bulk theory is two separate global AdS
spacetimes whose small excitations are entangled in the thermal
field double state.

FIG. 5. The single-trace algebrasA1 andA2 associated with the
two different Cauchy slices shown are inequivalent, even though
they share a causal diamond, since single-trace operators do not
obey any equation of motion among themselves (standard
Heisenberg evolution takes a single-trace operator outside of
the algebra). The same statements apply to algebras generated by
generalized free fields (e.g. subalgebras of Y) which do not obey
any equations of motion.
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π0ðAÞ for an operator A∈A0; the algebra Y ≡ π0ðA0Þ, as
the entire operator algebra on HðGNSÞ

0 , is a type I vN
algebra. We will denote the vector corresponding to the

identity operator inHðGNSÞ
0 as jΩ0iGNS. The definition of Y

is again only sensible perturbatively in the 1=N expansion.
To leading order in the 1=N expansion, the algebra Y is

again generated by generalized free fields, with a mode
expansion determined by vacuum two-point functions of
single-trace operators.
The boundary theory in the vacuum state j0i is dual to

the bulk gravity theory in the empty AdS geometry (in our
case the Poincaré patch as we consider the boundary theory
on R1;d−1). We can use the standard procedure to build a
Hilbert space of small excitations around the Poincare

vacuum j0ibulk, which we will denote as HðFockÞ
0 . The

algebra of bulk fields is denoted as Ỹ. In terms of the
algebraic language we are using, the usual holographic
dictionary can be written as

HðFockÞ
0 ¼HðGNSÞ

0 ; j0ibulk ¼ jΩ0iGNS; Ỹ¼Y: ð3:1Þ

In particular, the last equation in (3.1) identifies the bulk
and boundary creation/annihilation operators, and is equiv-
alent to the statement of global reconstruction.15

B. Boundary theory in a Rindler region
and AdS Rindler duality

Now consider the boundary spacetime separated into
Rindler regions, as on the left of Fig. 6. We denote the
algebra of operators restricted to the Rindler R region (or L
region) as BR (or BL). These are type III1 vN algebras. The
single-trace operator algebras restricted to the R and L
regions are denoted byAR;0 andAL;0. The restrictions of Y
to the R and L regions are denoted by YR and YL. They are
von Neumann algebras, and we have Y0

R ¼ YL.
Our proposal is that YR and YL are type III1. This new

type III1 structure is only possible perturbatively in 1=N
expansion, and is mathematically and physically distinct
from the type III1 nature of BR and BL. The support for our
proposal again comes from the complete spectrum of the
spectral function of single-trace operators restricted to a
Rindler region and the half-sided modular translation
structure which we will study in detail in Sec. VI and
Sec. VII. It is also required by the duality with bulk gravity,
which we now elaborate upon.
The Poincaré patch of AdS can also be separated into

four AdS Rindler regions as on the right of Fig. 6. The
standard procedures of the holographic correspondence can
be applied to an AdS Rindler region, leading to a duality
between the bulk gravity theory in the AdS Rindler R (L)
region and the CFT in the boundary R (L) region [48–50].

Denoting the algebras of bulk fields in the AdS R and L
regions as ỸR and ỸL, we have the identification

YR ¼ ỸR; YL ¼ ỸL: ð3:2Þ

As local operator algebras of the bulk low energy effective
theory restricted to a spacetime subregion, ỸR and ỸL are
type III1 vN algebras, thus so are YR, YL due to the
identifications (3.2).
The CFT vacuum j0i is cyclic and separating for BR, and

the corresponding modular Hamiltonian is − logΔ ¼ K,
where K is the boost operator. Similarly, jΩ0iGNS is cyclic
and separating for YR, and the flows generated by the
corresponding modular operator Δ0 should again coincide
with boosts. We thus have

π0ðARðη ¼ 2πtÞÞ ¼ π0ðΔ−itARΔitÞ
¼ Δ−it

0 π0ðARÞΔit
0; AR ∈AR;0; ð3:3Þ

where η is the (dimensionless) Rindler time.
With BR and YR being type III1, neither Δ nor Δ0 can be

factorized into a product of operators from the R and L
regions, but their nonfactorizations are reflected very
differently in the bulk. The nonfactorization of Δ implies
that the entanglement entropy SR between the R and L
regions in the full CFT can only be defined with a short-
distance cutoff ϵb in the boundary, which corresponds to a
bulk IR cutoff near the intersection of the corresponding
Ryu-Takayanagi (RT) surface with the asymptotic boun-
dary. The nonfactorization of Δ0 is reflected in the non-
factorization of the bulk field theory across the AdS Rindler
horizon, which implies that a bulk UV cutoff ϵUV must be
introduced in order to define the bulk entanglement entropy
SR between the AdS Rindler R and L regions. See Fig. 6.

FIG. 6. Left: Rindler regions of Minkowski spacetime. Right:
AdS Rindler regions of the bulk spacetime. The vertical lines
denote the boundary, and the dashed lines are Rindler horizons.
Each AdS Rindler region has the corresponding Minkowski
Rindler region as its boundary.

15The HKLL global reconstruction [48] is a coordinate space
version of the statement.
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The above discussion of a boundary Rindler region can
be straightforwardly generalized to ball-shaped regions in
the boundary which also have geometric modular flow.

C. General boundary regions

We now generalize the above discussion of emergent
type III1 algebras for Rindler regions to general local
boundary subregions. The story is similar, so we will only
emphasize those elements which are different.
We now use R to denote a general spatial subregion in

the boundary. Its causal completion is denoted by R̂. The
restriction of B to R, BR, is the same as BR̂, and is a type III1
vN algebra. Now consider the restriction of Y to R, YR, in

the GNS Hilbert space HðGNSÞ
0 . Note that YR ≠ YR̂ as Y is

generated by generalized free fields, which do not obey any
equations of motion (see Fig. 5). We now introduce

ŶR ≡ ðYR̂Þ00: ð3:4Þ

From the definition, we have ŶR ⊇ YR̂. For a half-space
(Rindler) or a ball-shaped region, YR̂ ¼ ŶR, as the modular
flows are geometric, but for general R it may be that YR̂ is a
proper subset of ŶR. We propose that ŶR is type III1.
We denote the modular operator of BR with respect to the

CFT vacuum state j0i as Δ and the modular operator of ŶR
with respect to jΩ0iGNS as Δ0. It is tempting to postulate
that modular flows (with Δ−it) of elements of AR̂;0 also
have a sensible N → ∞ limit, in which case Δ0 may be

viewed as the representation of Δ in HðGNSÞ
0 , i.e. we should

have

π0ðΔ−isAΔisÞ ¼ Δ−is
0 π0ðAÞΔis

0 ; A∈AR̂;0 ð3:5Þ

which is the statement of the equivalence of bulk and
boundary modular flows [51,52] expressed in our language.
Unlike those in (2.34) and (3.3), the modular flow parameter
s in (3.5) does not have any geometric interpretation.
The type III1 nature of BR and ŶR is again reflected

differently in the bulk, with the IR divergence of the area of
the RT surface [53] reflecting the type III1 nature of BR,
while the divergence in the bulk entanglement entropy SER

for ER reflects the type III1 nature of ŶR; see Fig. 7.

IV. PHYSICAL IMPLICATIONS

The emergent type III1 algebras potentially have many
physical implications. One such implication, which will be
extensively explored in the rest of the paper, is the emergent
half-sided modular inclusion and translation structure,
which can be used to generate emergent in-falling flows
in the bulk. Here we discuss some other possible impli-
cations. Our discussion is somewhat vague, but hopefully
offers some pointers for future explorations.

A. Role of the bifurcating horizon and RT surfaces

Consider first the case of the system in the thermal
field double state. The doubled system has a tensor
product structure with Ĥ ¼ HR ⊗ HL, B̂ ¼ BR ⊗ BL,
and Â ¼ AR ⊗ AL. The emergent type III1 nature of

YR, YL implies that the GNS Hilbert space HðGNSÞ
TFD does

not have a tensor product structure, i.e. it cannot be
factorized into Hilbert spaces associated with the R and
L theories, and its operator algebra Y also lacks a tensor
product structure in terms of YR, YL. This can have
important implications for describing the dynamics of
low energy excitations around the thermal field double
state, including nonfactorization of certain objects on the
gravity side. An immediate bulk example of such non-
factorization comes from operators inserted at the bifurcat-
ing horizon (suitably smeared); see the left of Fig. 8. The
existence of conserved charges such as energy implies
that YR and YL have a nontrivial center at the leading order
in the 1=N expansion [34], i.e. they are not factors. The
presence of diffeomorphisms and other possible gauge
symmetries on the gravity side could also lead to a
nontrivial center [54–56] for ỸR; ỸL and thus for YR, YL.
The system can be factorized once we go beyond the

1=N expansion. From the bulk perspective this requires
going beyond the low energy approximation. Interestingly,
there are objects, which naively may be factorized only in
the full theory but turn out to be factorizable within the
low energy description, with the “help” of the bifurcating
horizon. Here we will briefly comment on two simple
examples:
(1) YR is type III1, so its modular operator Δ0 with

respect to the GNS vacuum jΩ0i cannot be

FIG. 7. RT surface, γR, for a boundary spatial region R. ER
denotes the entanglement wedge. Here we only draw a spatial
section of the bulk. The bulk IR divergence of the area of γR
comes from the part near the boundary (circled red regions) and
reflects the type III1 nature of boundary algebra BR. The type III1
nature of ŶR is reflected in the UV divergences of SER

, which
comes from UV degrees of freedom near γR in the bulk (high-
lighted by orange wavy lines).
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factorized, which translates to the bulk as the lack
of a well-defined entanglement entropy SR between
the R and L regions in the continuum limit. Going
beyond the 1=N expansion, the full theory can be
factorized, and there exists a well defined entangle-
ment entropy SR between the R and L systems. It is a
familiar fact that SR can nevertheless be found using
the low energy description on the gravity side by the
generalized entropy

SR ¼ Ahor

4GNðϵUVÞ
þ SRðϵUVÞ; ð4:1Þ

where Ahor is the horizon area and GNðϵUVÞ is the
(bare) Newton constant at some bulk short-distance
cutoff ϵUV. The left-hand side is well defined
mathematically, but SRðϵUVÞ cannot be defined in
the ϵUV → 0 limit, and thus the two terms on the
right-hand side cannot be individually defined in the
continuum limit.
This emergent type III1 structure also provides a

new perspective on the bulk UV divergences and
renormalization of the Newton constant GN . Recall
that in the usual AdS=CFT dictionary, the bulk UV
divergence is understood from the boundary theory
as coming from a truncation of operators dual to
stringy modes in the bulk. In particular, it is
generally expected that the string theory description
of a physical quantity should be devoid of UV
divergences at each genus order. Here, however, the
bulk UV divergences may be understood from the
boundary theory as arising from nonfactorization of
algebra Y. For this reason, even in string theory we
expect that the two terms in (4.1) which should come
respectively from genus zero (the area term) and
from higher genera contributions cannot be indi-
vidually finite.

(2) Another example was discussed by [57], as indicated
in the right of Fig. 8, which is a Wilson line W of a
bulk gauge field going from the left to the right

boundary. To factorize the Wilson line into a product
of left and right operators requires breaking it up
somewhere in the middle of the black hole geometry,
which cannot be done without introducing additional
structure. But there is an additional structure in the
bulk: the bifurcating horizon. We can break up the
Wilson line in the low energy theory by taking
advantage of it, as indicated in Fig. 8, with

W ¼ ψR − ψL; ψL;R ¼
Z

r0

∞
AðL;RÞ
r dr; ð4:2Þ

where r0 is the location of the horizon. From
discussions in [58–60], ψR, ψL can be identified
respectively as effective fields describing diffusion
in the right and left theories at a finite temperature.
These are collective dynamical variables and cannot
be expressed simply in terms of fundamental degrees
of freedom of the boundary theory. The bifurcating
horizon can be described in a diffeomorphism
invariant way, and thus ψR and ψL are also diffeo-
morphism invariant, and the factorization is well
defined.

For both examples above, we see that the horizon plays
the role of restoring the factorization in the low energy
description.
The above discussion can be generalized to the algebra

ŶR associated with a local boundary region R. We expect
that ŶR and ðŶRÞ0 should share a center whose “size” is
characterized by the area of the RT surface. Similarly, the
RT surface can be used to restore factorization in the low
energy description. More explicitly, the entanglement
entropy SR of a region R in the full boundary theory
can be obtained from the bulk by [61]

SR ¼ AγR

4GNðϵUVÞ
þ SRðϵUVÞ; ð4:3Þ

where AγR is the area of the RT surface γR. Recall that in
this case SR is only defined with a UV cutoff in the
boundary which translates to a bulk IR cutoff. As remarked
earlier, due to the type III1 nature of ŶR, SRðϵUVÞ cannot be
defined in the continuum limit, and thus the two terms on
the right-hand side cannot be defined separately in the limit
ϵUV → 0 as was the case in (4.1).
The parallel with (4.1) and the thermal field double case

can be made even closer if we put the boundary theory on a
lattice. In this regularized theory, at finite N we have a
tensor product decomposition of the Hilbert space
between the spatial subregion R and its complement R̄,
Hreg

CFTðNÞ ¼ HR ⊗ HR̄, analogous to the tensor product of

left and right CFT Hilbert spaces for the thermal field
double at finite N. In the regulated finite N theory, the
entanglement entropy of the subregion R is finite, and we
can treat the modular operator Δ as being factorizable.

FIG. 8. Left: operators inserted at the bifurcating horizon do not
appear to be factorizable. Right: a Wilson line in the eternal black
hole geometry and its factorization into left and right operators
via the bifurcation surface.
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In the strict N → ∞ limit, even the Hilbert space of the
boundary theory defined on the lattice will fail to factorize,
and the entanglement entropy will diverge. However, the
RT formula computes the entropy of the boundary spatial
subregion R which is finite in the lattice boundary theory at
finite N, and thus, just as with the horizon of the black hole
in (4.1), the RT surface restores factorization in the low
energy bulk description.
An alternative perspective on factorization in the boun-

dary theory can be obtained if we assume that the boundary
theory has the split property, which is believed to be
satisfied by general quantum field theories [62–64].
Consider the situation in Fig. 9, where we separate the
two regions R and L by an infinitesimal distance ϵb.
The split property says that there exists a tensor product
decomposition of the global Hilbert spaceH ¼ HN ⊗ HN̄ ,
giving rise to a type-I factor N I corresponding to operators
acting on HN , which satisfies

BR ⊆ N I ⊆ B0
L: ð4:4Þ

The entanglement entropy associated with HN is well
defined, and in the limit ϵb → 0 it can be used as a
regularization of SR.

16 Under this regularization, the type
III1 algebra ŶR can now be viewed as arising from the type
I factor N I. In other words, in Eq. (3.5) we can treat the
modular operator Δ in the full theory as being factorizable.
Similar to the role played by the event horizon in (4.1),

in (4.3) the RT surface restores the factorization structure of
H ¼ HN ⊗ HN̄ in the low energy description.
These discussions also imply that the bifurcating horizon

of an eternal black hole can be viewed as a special example
of an RT surface from an algebraic perspective. For a more
general entangled state jΨi between the CFTR and CFTL,
the RT surface which provides a signal of the factorization
of the full system in the low energy theory no longer
coincides with the horizon.
The role of the area terms in (4.1) and (4.3) in restoring

the tensor product of Ĥ and H also provides a new
perspective on their physical origin and their universality.
There are other ways to understand the appearance of the
area terms from the perspective of quantum error correction
[66,67] and superselection sectors [68]. We believe that all
these perspectives can be understood in a unified way,
which will be discussed elsewhere.

1. More general dual relations

The bulk dual of a boundary subregion R can be defined
to be the maximal bulk subregion ER whose operator
algebra can be reconstructed from that of R. In the static
situation and with a spatial region R which we are
considering, the bulk dual ER for R has been formulated
using the RT surface. It is the bulk causal completion of the
region between the RT surface γR and R. This definition
assumes that the relevant operator algebra in the boundary
for R is BR which is equivalent to BR̂.
Our discussion in the previous sections suggests that

bulk duals and subregion duality can be formulated more
generally, with the definition associated to RT surfaces as a
special case. As we emphasized, bulk reconstruction should
be more precisely formulated in terms of operators in the
GNS Hilbert space, which are built from single-trace CFT
operators. For single-trace operators or their representations
in the GNS Hilbert space, the algebras associated with
different Cauchy slices are inequivalent. This leads to new
ways of associating algebras with spacetime regions, which
in turn leads to new examples of bulk duals that are not
related to RT surfaces. We will discuss such examples in
Sec. X. RT surfaces appear in special situations where the
operator algebra is associated with the causal completion of
a spatial (or null) region. In the more general case, these
new notions of bulk duals also raise the interesting question
of whether we can define more general notions of entropies
that are associated with these bulk subregions. From our
discussion of the close connections between bulk area
terms and emergent type III1 von Neumann algebras we
expect the answer to be yes. We leave this to future
investigations.

2. Emergent symmetries

There can be emergent symmetries associated with the
emergent type III1 structure. In the example of two copies
of CFT in the thermal field double state, it can be shown

FIG. 9. Slightly separated Rindler regions on a spatial slice. The
split property implies that there is a tensor factorization of the
Hilbert space with respect to an operator algebra N contained in
the union of the green and red regions above, even though no such
tensor factorization exists for the red and blue regions alone
when ϵb ¼ 0.

16Such a regularization was discussed earlier, for example,
in [65].
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that there are emergent null translation symmetries along
the past and future event horizons of the eternal black hole,
which will be discussed in detail in Sec. X B.
There are likely many other examples where symmetries

in the low energy effective theory of gravity can be
understood as being associated with emergent type III1
algebras. Here we mention some possible candidates:
(1) In [69] it has been argued that the compactification to

(1þ 1)-dimensionalRindler spacetime cannot exist in
a quantum gravity, due to incompatibility of an exact
SLð2; RÞ symmetry with a finite number of states. It
may be possible to understand the Rindler spacetime
and associated uncompact symmetries from an emer-
gent type III1 algebra in the GN → 0 limit.

(2) An SLð2; RÞ algebra in Jackiw-Teitelboim gravity
was discussed in [14,15] (see also [70]), which
implements AdS2 isometries on the matter fields.
These symmetries may be understood from emer-
gent type III1 algebras in the SYK model.

(3) In [71] local Poincare symmetry about a RT surface
was discussed, including its relevance for the modu-
lar properties of the boundary theory. As with the
near-horizon symmetries discussed in item 1 for a
black hole, these symmetries should be a conse-
quence of the emergent type III1 structure discussed
in Sec. III C.

V. REVIEW OF HALF-SIDED
MODULAR TRANSLATIONS

In this section we discuss how to generate new times in
the boundary theory. Our main tool is half-sided modular
inclusion/translation [72,73], and an extension of it. This
structure has played a role in proofs of the CPT theorem
[72] and the construction of the Poincaré group from wedge
algebras [74]. There have also been important applications
of the half-sided modular inclusion structure to under-
standing modular Hamiltonians of regions with boundaries
on a null plane for a quantum field theory in the vacuum,
including average null energy conditions [75,76]. See also
[77] for a discussion concerning black hole interiors.

A. Review of half-sided modular translations

Suppose M is a von Neumann algebra and the vector
jΩ0i is cyclic and separating for M. The associated
modular and conjugate operators are ΔM and JM. The
commutant of M is denoted as M0. ΔM leaves jΩ0i
invariant and can be used to generate flows within M
or M0,

Δ−it
MAΔit

M ¼ eiKMtAe−iKMt ∈M;

A∈M; KM ¼ − logΔM; ð5:1Þ

while the antiunitary operator JM takesM to M0 and vice
versa,

M0 ¼ JMMJM; J2M ¼ 1: ð5:2Þ

ΔM acts on both M and M0, and in general cannot be
factorized into operators which act only on M or M0.
Now suppose there exists a von Neumann subalgebraN

of M with the following half-sided modular inclusion
properties:
(1) jΩ0i is cyclic for N (it is automatically separating

for N as N ⊂ M).
(2) The half-sided modular flow of N under ΔM lies

within N , i.e.

Δ−it
MNΔit

M ⊂ N ; t ≤ 0: ð5:3Þ

We will denote the modular operator of N with respect to
jΩ0i as ΔN with KN ¼ − logΔN .
With these assumptions there are the following theorems

[72,73,78,79].
Theorem 1.—There exists a unitary group UðsÞ; s∈R

with the following properties:
(1) UðsÞ has a positive generator, i.e.

UðsÞ ¼ e−iGs; G ≥ 0: ð5:4Þ
(2) It leaves jΩ0i invariant

UðsÞjΩ0i ¼ jΩ0i; ∀ s∈R: ð5:5Þ

(3) Half-sided inclusion

U†ðsÞMUðsÞ ⊆ M; ∀ s ≤ 0: ð5:6Þ

(4) N can be obtained from M with an action of U

N ¼ U†ð−1ÞMUð−1Þ: ð5:7Þ
Theorem 2.—Suppose UðsÞ ¼ e−iGs is a continuous

unitary group satisfying (5.6); then any of the two con-
ditions below imply the third:

1: G ≥ 0: ð5:8Þ

2: UðsÞjΩ0i ¼ jΩ0i; s∈R: ð5:9Þ

3:Δ−it
MUðsÞΔit

M ¼Uðe−2πtsÞ; and JMUðsÞJM ¼Uð−sÞ:
ð5:10Þ

Theorem 3.—Introducing

N t ≡ Δ−it
MNΔit

M ð5:11Þ

we then have
(1) The family of algebras N t with t∈R is nested, i.e.

N t1 ⊂ N t2 for t1 < t2, withN∞ ¼ M andN 0 ¼ N .
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(2) The half-sided modular flow of any member of this
family gives another algebra in the family. In
particular,

Δ−is
N N tΔis

N ¼N f0ðs;tÞ;

f0ðs; tÞ¼−
1

2π
logð1þe−2πsðe−2πt−1ÞÞ ð5:12Þ

is valid for all s, t such that the argument of the
logarithm is positive. Note the following:
(a) For t < 0, which means N t ⊂ N , we always

have f0 < 0 for any s and f0 < t for s < 0. f0
increases as s increases, and f0 → 0 as s → ∞.

(b) For t > 0, which means that N ⊂ N t, the
logarithm is defined only for s ≥ st≡
1
2π logð1 − e−2πtÞ < 0, and f0 < t for s > 0. As
s → st, f0 → þ∞, while as s → þ∞, f0 → 0.
This can be intuitively understood as that the part
ofN t which is outsideN is pushed further away
from (closer to) N for s < 0 (s > 0).

(3) The action of UðsÞ on N t has the structure

eiGsN te−iGs ¼ N f1ðs;tÞ;

f1ðs; tÞ ¼ −
1

2π
logðe−2πt − sÞ ð5:13Þ

valid for all s, t such that the argument of the
logarithm is positive. Note that f1 → −∞ as
s → −∞ and f1 → þ∞ as s → e−2πt.

(4) Modular operators of M and N satisfy the algebra

½KM; KN � ¼ −2πiðKM − KN Þ: ð5:14Þ
(5) UðsÞ can also be expressed in terms of modular flow

operators of M and N as

Δ−it
MΔit

N ¼ UðλðtÞÞ; λðtÞ ¼ e−2πt − 1: ð5:15Þ
Expanding both sides to linear order in t we have

KM − KN ¼ 2πG; ð5:16Þ
which gives the explicit form of G in terms of
modular Hamiltonians of M and N .17

Theorem 4.—Suppose we have (i) nested von Neumann
algebras N a; a∈R;N a ⊂ N b, for a < b with common
cyclic and separating vector jΩ0i; (ii) a one-parameter uni-
tary group TðaÞ with a positive generator and TðaÞjΩ0i ¼
jΩ0i; and (iii) TðaÞ translating the algebras [80]

N a ¼ TðaÞN 0Tð−aÞ: ð5:17Þ

Then TðaÞ is unique. Theorem 4 then says that givenM,N
and jΩ0i, UðsÞ is unique.

The above structure is called a half-sided modular
translation and exists only if M is a type III1 von
Neumann algebra [79].
Similarly, we can define half-sided modular inclusion

(5.3) for t ≥ 0 with the corresponding half-sided modular
translation for s ≥ 0. All the statements are parallel except
with the following sign changes for equations (5.10),
(5.12), (5.13), and (5.15):

Δ−it
MUðsÞΔit

M ¼ Uðe2πtsÞ; ð5:18Þ

f0ðs; tÞ ¼
1

2π
log ð1þ e2πsðe2πt − 1ÞÞ; ð5:19Þ

f1ðs; tÞ ¼
1

2π
logðe2πt þ sÞ; ð5:20Þ

λðtÞ ¼ e2πt − 1: ð5:21Þ

B. Example I: Null translations
in Rindler spacetime

Consider a quantum field theory in (1þ 1)-dimensional
Minkowski spacetime R1.1 with coordinates xμ ¼ ðx0; x1Þ
and momentum operators Pμ ¼ ðP0; PÞ. Suppose the
system is in the vacuum state j0i with respect to the
Minkowski time x0.
Consider the half space A given by

A ¼ fxμ ∈R1;1jx0 ¼ 0; x1 > 0g; ð5:22Þ
whose domain of dependence is the Rindler R region (see
Fig. 6, left). We take M to be the operator algebra in the R
region, so j0i is cyclic and separating under M. The
corresponding modular Hamiltonian KM in this case is
proportional to the boost operator K

KM ¼ − logΔM ¼ 2πK; Δ−it
M ¼ eiKMt; ð5:23Þ

and JM is the CPT operator.
It is convenient to use light-cone coordinates

x�¼x0�x1; P�¼1

2
ðH�PÞ¼−P∓; H¼P0; ð5:24Þ

where the translation operator by a vector aμ is given by

e−iPμ·aμ ¼ eiHa0−iPa1 ¼ eiP
−aþþiPþa− : ð5:25Þ

Note that

½K;P��¼�iP�; eiKMsP�e−iKMs¼ e∓2πsP�; ð5:26Þ

eiKMsϕðxμÞe−iKMs ¼ ϕðx0μðsÞÞ;
x0�ðsÞ ¼ e�2πsx�; ð5:27Þ

where ϕðxμÞ is a scalar operator.
17Note that the positivity of G is manifest in this expression

since KM −KN ¼ logΔN − logΔM ≥ 0.
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M is the operator algebra in the region xþ > 0; x− < 0.
Below for simplicity we will simply use the spacetime
region to denote the operator algebra in that region. We take
N to be the region fxþ > 0; x− < −1g (see Fig 10, left),
and then

N t ≡ eiKMtN e−iKMt ¼ fxþ > 0; x− < −e−2πtg; ð5:28Þ
with N t ⊂ N for t < 0. We thus have the half-sided
modular inclusion structure (5.3). In this case the modular
operator of N can be found explicitly, and existence of
the positive generator G can be directly verified. More
explicitly, flows generated by the modular operator
of N correspond to boosts which leave the point aμ ¼
ðaþ; a−Þ ¼ ð0;−1Þ invariant. Thus KN should be given by

eitKN ¼ e−ia
μPμeitKMeia

μPμ ¼ e−iP
þ
eitKMeiP

þ
; ð5:29Þ

which gives

KN ¼ KM − 2πPþ: ð5:30Þ
From (5.16) we conclude that the corresponding G is
given by

G ¼ Pþ; ð5:31Þ

and thus

UðsÞ ¼ e−isP
þ
: ð5:32Þ

We can now verify explicitly the statements of various
theorems of the last subsection. For example,

U†ðsÞMUðsÞ¼ fxþ > 0;x−<sg⊂M; s< 0; ð5:33Þ
N ¼ U†ð−1ÞMUð−1Þ;
N t ¼ U†ð−e−2πtÞMUð−e−2πtÞ; ð5:34Þ

Δ−it
MUðsÞΔit

M ¼ eiKMte−iP
þse−iKMt ¼ Uðe−2πtsÞ: ð5:35Þ

By taking N to be the operator algebra associated with
the region in Fig. 10(b), there is a half-sided modular
inclusion structure with t ≥ 0, and the corresponding
modular translation operator is given by G ¼ P−.

C. Example II: Two copies of a large N theory
in the thermal field double state

Now consider two CFTs in the thermal field double state
in the large N limit, as discussed in Sec. II B. We now take
M ¼ YR, which is the representation of the single-trace

algebra AR;TFD in the GNS Hilbert space HðGNSÞ
TFD . The

associated modular operator is ΔM ¼ Δ0 with correspond-
ing modular time t related to the usual time t by t ¼ t

β.
By choosing different subalgebras N we can construct

different generators G whose spectra are bounded from
below and thus generate new “times.” As the simplest
possibility we takeN to be the representation of the single-
trace operator algebra associated with the region indicated
in the left plot of Fig. 11. Since generalized free fields do
not satisfy any Heisenberg equations, N is inequivalent to
M (recall Fig. 5).
The GNS vacuum jΩ0i is separating with respect to N .

While we do not have a rigorous mathematical proof, we
will assume that it is also cyclic with respect to N . Since
Δ−it

0 generates a time translation, clearly

N t ≡ Δ−it
0 NΔit

0 ⊂ N ; for t < 0: ð5:36Þ

We thus have the half-sided modular inclusion structure of
(5.3). In this case ΔN and G are not explicitly known. The
theorems in Sec. VA can be used to anticipate the action of
UðsÞ ¼ e−iGs, for example as in (5.13). In Sec. X we will
give the explicit action of UðsÞ by proposing the gravity
description of it, which can be explicitly worked out.

FIG. 10. Left: the algebra of the subregion N that leads to the half-sided modular inclusion structure for x− translation. Right: the
algebra of the subregion N that leads to the half-sided modular inclusion structure for xþ translation.
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Equation (5.13) then provides a nontrivial check of the
proposal.
We can also consider choosing N to be associated with

the region in the right plot of Fig. 11, which gives a half-
sided modular inclusion structure for t > 0.
For both plots in Fig. 11, instead of letting the region

describingN be bounded by the t ¼ 0 slice, we can choose
an arbitrary Cauchy slice (not necessarily with constant t);
see Fig. 12. There is still a half-sided modular inclusion
structure and the associated modular translations. Thus
there are an infinite number of emergent “times” in the
large N limit.

VI. POSITIVE EXTENSION OF HALF-SIDED
TRANSLATIONS FOR GENERALIZED

FREE FIELDS

We now consider the general structure of half-sided
modular translations for a generalized free field theory. We
will show that in this context it is possible to determine the

general structure of the action of UðsÞ for all values of s
without the need of specifying N or ΔM.
As an illustration, we will use two CFTs in the thermal

field double state in the large N limit, as discussed in
Sec. II B and Sec. V C, with M ¼ YR;M0 ¼ YL, and
ΔM ¼ Δ0. The generalized free fields that generate the
algebras are defined by (2.25)–(2.27). Below and for the
rest of the paper for notational simplicity we will write
πðORðxÞÞ simply as ORðxÞ, but it should be kept in mind
that they are operators in the GNS Hilbert space. Also for
convenience for the rest of the paper we will rescale the
CFT time such that β ¼ 2π. The rescaled time will be
denoted as η. From (2.33) we thus have the relation
between modular time t and η:

t ¼ η

2π
: ð6:1Þ

From now on ω will be conjugate to η.
The discussion in this section also applies to YR for a

local subregion. For a Rindler region, η is simply the
Rindler time.

A. Unitary automorphism of the algebra

For convenience we first copy here some relevant
equations of Sec. II B. In the GNS Hilbert space HðGNSÞ

TFD ,
single-trace operators OL, OR can be represented by
generalized free fields with mode expansions

OαðxÞ ¼
X
k

uðαÞk ðxÞaðαÞk ¼
X
k

ðbþuðαÞk cðαÞk þ b−u
ðαÞ
−k c

ðᾱÞ
k Þ;

α ¼ R;L; R̄ ¼ L; ð6:2Þ

where k ¼ ðω; qÞ denotes all quantum numbers including
ω∈ ð−∞;∞Þ with Pω ¼ R dω

2π . The R and L systems are
assumed to be symmetric with

uðRÞ−k ðxÞ ¼ uðRÞ�k ðxÞ ¼ uðLÞk ðxÞ: ð6:3Þ

The various oscillators satisfy the equations

ðaðαÞk Þ† ¼ aðαÞ−k ; ½aðαÞk ; aðβÞk0 � ¼ ϵðωÞδkþk0;0δαβ;

aðαÞk jΩ0i ¼ e−πωaðᾱÞ−k jΩ0i; ð6:4Þ

ðcðαÞk Þ† ¼ cðαÞ−k ; ½cðαÞk ; cðβÞk0 � ¼ ϵðωÞδkþk0;0δαβ;

cðαÞk jΩ0i ¼ 0 for ω > 0; ð6:5Þ

cðαÞk ¼ bþa
ðαÞ
k − b−a

ðᾱÞ
−k ; aðαÞk ¼ bþc

ðαÞ
k þ b−c

ðᾱÞ
−k ;

b� ¼ e�
πjωj
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinh πjωjp : ð6:6Þ

FIG. 12. For both plots in Fig. 11 instead of letting the region
describing N be bounded by the t ¼ 0 slice, we can choose a
slice t ¼ fðχÞwhere χ is the boundary spatial coordinate and f an
arbitrary periodic function.

FIG. 11. Left: N denotes the spacetime subregion with t ≤ 0.
The vertical axis is time, and for simplicity we have taken the
spatial manifold to be a circle (vertical boundaries in the figure are
identified). Right:N denotes the spacetime subregion with t ≥ 0.
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The antiunitary modular conjugation operator J takesOR to
OL and vice versa, i.e.

JOαðxÞJ¼OᾱðxÞ; JaðαÞk J¼aðᾱÞk ; JcðαÞk J¼cðᾱÞk : ð6:7Þ

Now suppose there is a one-parameter unitary auto-
morphism group UðsÞ; s∈R,

ORðx; sÞ≡UðsÞ†ORðxÞUðsÞ;
OLðx; sÞ≡UðsÞ†OLðxÞUðsÞ; ð6:8Þ

which we require to satisfy the following properties:
(1) Half-sided inclusion, i.e.

ORðx; sÞ∈YR; for s < 0: ð6:9Þ

(2) It leaves the state jΩ0i invariant

UðsÞjΩ0i ¼ jΩ0i; ∀ s: ð6:10Þ

(3) J acts on U as

JUðsÞJ ¼ Uð−sÞ: ð6:11Þ

Acting on both sides of the first equation of (6.8) by
J we find

JORðx; sÞJ ¼ JUðsÞ†JJORðxÞJJUðsÞJ
¼ OLðx;−sÞ: ð6:12Þ

(4) Under modular flow we require

Δ−it
0 UðsÞΔit

0 ¼ Uðe−2πtsÞ: ð6:13Þ

(5) Uð1Þ group property

UðsÞ† ¼ Uð−sÞ; Uðs1ÞUðs2Þ ¼ Uðs1 þ s2Þ;
s; s1; s2 ∈R: ð6:14Þ

From Theorem 2 of Sec. VA, UðsÞ satisfying the above
conditions is generated by a Hermitian operator G that is
bounded from below.
We will now use the above properties to deduce the

explicit transformations of the oscillators under UðsÞ. For
this purpose we denote

σsðaðαÞk Þ≡U†ðsÞaðαÞk UðsÞ ¼ Λαβ
kk0 ðsÞaðβÞk0 ;

σsðcðαÞk Þ≡U†ðsÞcðαÞk UðsÞ ¼ Σαβ
kk0 ðsÞcðβÞk0 : ð6:15Þ

In the above equations and also subsequent discussions,
repeated indices k0 and β should be understood as being
summed. The transformation matrices Σ and Λ can be

related to each other using the basis changes (6.6). More
explicitly, we have (b0� denotes the corresponding expres-
sion as in (6.6) for ω0)

Λαβ
kk0 ðsÞ ¼ bþΣ

αβ
kk0 ðsÞb0þ þ b−Σ

ᾱβ
−kk0 ðsÞb0þ − bþΣ

αβ̄
k−k0 ðsÞb0−

− b−Σ
ᾱ β̄
−k−k0 ðsÞb0−; ð6:16Þ

Σαβ
kk0 ðsÞ ¼ bþΛ

αβ
kk0 ðsÞb0þ − b−Λ

ᾱβ
−kk0 ðsÞb0þ þ bþΛ

αβ̄
k−k0 ðsÞb0−

− b−Λ
ᾱ β̄
−k−k0 ðsÞb0−: ð6:17Þ

Introducing

uðαβÞk ðx;sÞ¼ uðαÞk0 ðxÞΛαβ
k0kðsÞ;

wðαβÞ
k ðx;sÞ¼ b0þu

ðαÞ
k0 ðxÞΣαβ

k0kðsÞþb0−u
ðαÞ
−k0 ðxÞΣᾱβ

k0kðsÞ; ð6:18Þ

(α is not summed) we have

Oαðx; sÞ ¼ uðαβÞk0 ðx; sÞaðβÞk0 ¼ wðαβÞ
k0 ðx; sÞcðβÞk0 ; ð6:19Þ

wðαβÞ
k ðx; sÞ ¼ uðαβÞk ðx; sÞbþ þ uðαβ̄Þ−k ðx; sÞb−: ð6:20Þ

We now work out the conditions on Σαβ
kk0 and Λ

αβ
kk0 that are

implied by (6.9)–(6.14)

ΛRL
kk0 ðsÞ ¼ 0; for s < 0; ð6:21Þ

and we denote

ΛRR
kk0 ðs < 0Þ ¼ Ckk0 ðsÞ: ð6:22Þ

We take the Hermitian conjugate of (6.15)

ðσsðcðαÞk ÞÞ†¼σsðcðαÞ−k Þ→Σαβ
kk0 ðsÞcðβÞ−k0 ¼Σαβ

−kk0 ðsÞcðβÞk0 ; ð6:23Þ

which requires that

Σαβ
kk0 ðsÞ ¼ Σαβ

−k;−k0 ðsÞ: ð6:24Þ

Similarly we have

Λαβ
kk0 ðsÞ ¼ Λαβ

−k;−k0 ðsÞ; C�
kk0 ðsÞ ¼ C−k−k0 ðsÞ: ð6:25Þ

Acting J on (6.15) we have

JðσsðcðαÞk ÞÞJ ¼ JU†ðsÞcðαÞk UðsÞJ ¼ σ−sðcðᾱÞk Þ
→ Σαβ

kk0 ðsÞcðβ̄Þk0 ¼ Σᾱ β̄
kk0 ð−sÞcðβ̄Þk0 ; ð6:26Þ

which implies that

Σαβ
kk0 ðsÞ ¼ Σᾱ β̄

kk0 ð−sÞ; ð6:27Þ
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and similarly

Λαβ
kk0 ðsÞ ¼ Λᾱ β̄

kk0 ð−sÞ: ð6:28Þ

From (6.10) and (6.4) we have

σsðcðαÞk ÞjΩ0i ¼ 0 for ω > 0;

hΩ0jσsðcðαÞk Þ ¼ 0 for ω < 0; ð6:29Þ

i.e. the action of σs does not mix c-type creation and
annihilation operators, which implies that Σ should have
the structure

Σαβ
kk0 ðsÞ¼θðωÞθðω0ÞAαβ

kk0 ðsÞþθð−ωÞθð−ω0ÞBαβ
kk0 ðsÞ: ð6:30Þ

Equations (6.27) and (6.24) imply that

AðαβÞ�
kk0 ðsÞ ¼ Aðᾱ β̄Þ

kk0 ð−sÞ ¼ BðαβÞ
−k−k0 ðsÞ;

BðαβÞ�
kk0 ðsÞ ¼ Bðᾱ β̄Þ

kk0 ð−sÞ ¼ AðαβÞ
−k−k0 ðsÞ: ð6:31Þ

Wewill now show that (6.30) further implies that the full
Λαβ
kk0 ðsÞ and Σαβ

kk0 ðsÞ can be expressed in terms of Ckk0 ðsÞ
with s < 0. From (6.18) and (6.19) we have for s < 0

uðRRÞk ðx; sÞbþ ¼ b0þu
ðRÞ
k0 ðxÞΣRR

k0k þ b0−u
ðRÞ
−k0 ðxÞΣLR

k0k; ð6:32Þ

uðRRÞ−k ðx; sÞb− ¼ b0þu
ðRÞ
k0 ðxÞΣRL

k0k þ b0−u
ðRÞ
−k0 ðxÞΣLL

k0k: ð6:33Þ

From (6.30) we then have

uðRÞk0 ðxÞCk0kðsÞbþ ¼ b0þu
ðRÞ
k0 ðxÞðθðωÞθðω0ÞARR

k0kðsÞ
þ θð−ωÞθð−ω0ÞBRR

k0kðsÞÞ
þ b0−u

ðRÞ
k0 ðxÞðθðωÞθð−ω0ÞALR

−k0kðsÞ
þ θð−ωÞθðω0ÞBLR

−k0kðsÞÞ ð6:34Þ

uðRÞk0 ðxÞCk0−kðsÞb− ¼ b0þu
ðRÞ
k0 ðxÞðθðωÞθðω0ÞARL

k0kðsÞ
þ θð−ωÞθð−ω0ÞBRL

k0kðsÞÞ
þ b0−u

ðRÞ
k0 ðxÞðθðωÞθð−ω0ÞALL

−k0kðsÞ
þ θð−ωÞθðω0ÞBLL

−k0kðsÞÞ: ð6:35Þ

Considering respectively ω > 0 and ω < 0 on both sides
we find that

ARR
k0kðsÞ ¼ θðωÞθðω0Þ bþ

b0þ
Ck0kðsÞ;

ALR
k0kðsÞ ¼ θðωÞθðω0Þ bþ

b0−
C−k0kðsÞ; ð6:36Þ

ARL
k0kðsÞ ¼ θðωÞθðω0Þ b−

b0þ
Ck0−kðsÞ;

ALL
k0kðsÞ ¼ θðωÞθðω0Þ b−

b0−
C−k0−kðsÞ; ð6:37Þ

BRR
k0kðsÞ ¼ θð−ωÞθð−ω0Þ bþ

bþ0 Ck0kðsÞ;

BLR
k0kðsÞ ¼ θð−ωÞθð−ω0Þ bþ

b−0
C−k0kðsÞ; ð6:38Þ

BRL
k0kðsÞ ¼ θð−ωÞθð−ω0Þ b−

bþ0 Ck0−kðsÞ;

BLL
k0kðsÞ ¼ θð−ωÞθð−ω0Þ b−

b−0
C−k0−kðsÞ: ð6:39Þ

The above equations can be written more compactly as

Aαβ
k0kðsÞ ¼

bβ
b0α

θðωÞθðω0ÞCαk0βkðsÞ;

Bαβ
k0kðsÞ ¼

bβ
b0α

θð−ωÞθð−ω0ÞCαk0βkðsÞ; ð6:40Þ

where in subscripts for b and C it should be understood that
R ¼ þ and L ¼ −. From the above we also have the
relations

AðαβÞ�
k0k ðsÞ¼BðαβÞ

−k0−kðsÞ;
b0α
bβ

Aαβ
k0kðsÞ¼

b0̄α
bβ̄

Bᾱ β̄
−k0−kðsÞ; ð6:41Þ

where the first relation follows from the second equa-
tion of (6.25). The above expressions apply to s < 0.
We can now find the expressions for A and B for s > 0
from (6.27)

AðαβÞ
k0k ðsÞ ¼ Aðᾱ β̄Þ�

k0k ð−sÞ ¼ bβ̄
b0̄α

θðωÞθðω0ÞCαk0βkð−sÞ; ð6:42Þ

BðαβÞ
k0k ðsÞ ¼ Bðᾱ β̄Þ�

k0k ð−sÞ

¼ bβ̄
b0̄α

θð−ωÞθð−ω0ÞCαk0βkð−sÞ: ð6:43Þ

Collecting everything together we thus have

Σαβ
k0kðsÞ ¼

8<
:

bβ̄
b0ᾱ
θðωω0ÞCαk0βkð−sÞ; s > 0

bβ
b0α
θðωω0ÞCαk0βkðsÞ; s < 0

ð6:44Þ

and more explicitly
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ΣRR
k0kðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjω0jp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjωjp � ½eπ

2
ðω−ω0ÞθðωÞθðω0Þ þ e−

π
2
ðω−ω0Þθð−ωÞθð−ω0Þ�Ck0kðsÞ s < 0

½e−π
2
ðω−ω0ÞθðωÞθðω0Þ þ e

π
2
ðω−ω0Þθð−ωÞθð−ω0Þ�Ck0kð−sÞ s > 0

; ð6:45Þ

ΣRL
k0kðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjω0jp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjωjp � ½e−π

2
ðωþω0ÞθðωÞθðω0Þ þ e

π
2
ðωþω0Þθð−ωÞθð−ω0Þ�Ck0−kðsÞ s < 0

½eπ
2
ðωþω0ÞθðωÞθðω0Þ þ e−

π
2
ðωþω0Þθð−ωÞθð−ω0Þ�Ck0−kð−sÞ s > 0

; ð6:46Þ

and similarly for ΣLR and ΣLL. From (6.16) we then have

ΛRR
k0kðsÞ ¼

�Ck0kðsÞ s < 0

sinh πω0
sinh πω Ck0kð−sÞ s > 0

; ΛRL
k0kðsÞ ¼

�
0 s < 0
sinh πðωþω0Þ

sinh πω Ck0−kð−sÞ s > 0
; ð6:47Þ

ΛLL
k0kðsÞ ¼

� sinh πω0
sinh πω C−k0−kðsÞ s < 0

C−k0−kð−sÞ s > 0
; ΛLR

k0kðsÞ ¼
� sinh πðωþω0Þ

sinh πω C−k0kðsÞ s < 0

0 s > 0
: ð6:48Þ

B. Determining the structure of Ckk0 ðsÞ
We first collect the conditions Ckk0 ðsÞ should satisfy and

then show that under certain assumptions it can be
completely determined up to a phase.
The Uð1Þ property implies that for s1, s2 < 0

Ckk0 ðs1ÞCk0k00 ðs2Þ ¼ Ckk00 ðs1 þ s2Þ: ð6:49Þ

Since the modular operator Δ0 generates a translation in

time t, it acts on aðαÞk as18

Δ−it
0 aðαÞk Δit

0 ¼ e−2πiαωtaðαÞk ; ð6:50Þ

which also implies

Δ−it
0 cðαÞk Δit

0 ¼ e−2πiαωtcðαÞk : ð6:51Þ

Acting Δ−it
0 on (6.15) we find from (6.13) that

Δ−it
0 UðsÞ†cðαÞk UðsÞΔit

0 ¼ e−2πiαωtΣαβ
kk0 ðe−2πtsÞcðβÞk0

¼ Σαβ
kk0 ðsÞcðβÞk0 e

−2πiβω0t; ð6:52Þ

which implies that

e−2πiαωtΣαβ
kk0 ðe−2πtsÞ ¼ Σαβ

kk0 ðsÞe−2πiβω
0t: ð6:53Þ

The above equation implies that the s dependence of Σ
must have the form

Σαβ
kk0 ðsÞ ∝ s−iðαω−βω0Þ; ð6:54Þ

which in turn implies that

Ckk0 ðsÞ ∝ ð−sÞ−iðω−ω0Þ: ð6:55Þ

We will make a further assumption that Ckk0 is diagonal in
other quantum numbers, i.e.

Ckk0 ðsÞ ¼ ð−sÞ−iðω−ω0Þgðk; k0Þδq;q0 : ð6:56Þ

From (6.25) g should satisfy

g�ðk; k0Þ ¼ gð−k;−k0Þ: ð6:57Þ

Equation (6.49) requires

Z
dω0

2π
ð−s1Þ−iðω−ω0Þgðk; k0Þð−s2Þ−iðω0−ω00Þgðk0; k00Þ

¼ ð−s1 − s2Þ−iðω−ω00Þgðk; k00Þ: ð6:58Þ

Without loss of generality, we take js2j > js1j. The above
equation can then be written as

Z
dω0

2π
z−iðω−ω0Þgðk; k0Þgðk0; k00Þ ¼ ð1þ zÞ−iðω−ω00Þgðk; k00Þ;

z ¼ js1j
js2j

< 1: ð6:59Þ

To compare with the lhs, let us expand the rhs in powers
of z,

ð1þ zÞ−iðω−ω00Þ

¼ 1

Γðiðω−ω00ÞÞ
X∞
n¼0

ð−1Þnzn
n!

Γðiðω−ω00ÞþnÞ; ð6:60Þ

and Eq. (6.59) can follow if the integral on the lhs can be
evaluated using Cauchy’s theorem with poles with
ω − ω0 ¼ in. This motivates us to consider the function18Recall that t ¼ η

2π and ω is the frequency for η.
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Iωω0 ðxÞ ¼ x−iðω−ω0ÞΓðiðω − ω0Þ þ ϵÞ

¼
Z

∞

0

dp
p

piðω−ω0Þþϵe−px; x > 0; ð6:61Þ

which satisfies

Z
dω0

2π
Iωω0 ðx1ÞIω0ω00 ðx2Þ ¼ Iωω00 ðx1 þ x2Þ;

Iωω0 ð0Þ ¼ 2πδðω − ω0Þ≡ δωω0 : ð6:62Þ

Equation (6.58) can then be satisfied if gðk; k0Þ has the
form

gðk; k0Þ ¼ λðkÞ
λðk0ÞΓðiðω − ω0Þ þ ϵÞ; ð6:63Þ

which gives C of the form

Ckk0 ðsÞ ¼
λðkÞ
λðk0Þ Iωω0 ð−sÞδqq0 : ð6:64Þ

Equation (6.57) requires

λ�ðkÞ
λ�ðk0Þ ¼

λð−kÞ
λð−k0Þ : ð6:65Þ

We still need to consider the full consequences of (6.10).
The invariance of jΩ0i under UðsÞ requires that

hΩ0jσsðcαk1Þσsðc
β
k2
ÞjΩ0i ¼ Σαγ

k1k01
ðsÞΣβγ

k2;−k01
ðsÞθðω0

1Þ ð6:66Þ

is independent of s, which leads to19

Σαγ
k1k01

ðsÞΣβγ
k2;−k01

ðsÞθðω0
1Þ ¼ δαβδk1;−k2θðω1Þ: ð6:68Þ

The above equations are in turn equivalent to

Ck1k0 ðsÞCk2−k0 ðsÞðb02þθðω0Þ þ b02−θð−ω0ÞÞ
¼ ðb21þθðω1Þ þ b21−θð−ω1ÞÞδk1;−k2 ; ð6:69Þ

which can be written more explicitly as

X
k0
Ck1k0 ðsÞCk2−k0 ðsÞ

eπω
0

2 sinh πjω0j
¼ ðb21þθðω1Þ þ b21−θð−ω1ÞÞδk1;−k2 : ð6:70Þ

Inserting (6.64) into (6.70) leads to

X
k0
Iω1ω

0 ðsÞ λðk1Þ
λðk0Þ δq1q0Iω2−ω0 ðsÞ λðk2Þ

λð−k0Þ δq2;−q0
eπω

0

2 sinh πjω0j

¼ eπω1

2 sinh πjω1j
δk1;−k2 : ð6:71Þ

It can be checked thatX
ω0

Iω1ω
0 ðsÞIω2−ω0 ðsÞeπω0 ¼ δω1;−ω2

eπω1 ; ð6:72Þ

and thus (6.71) is satisfied if

λðk0Þλð−k0Þ ¼ 1

2 sinh πjω0j : ð6:73Þ

From (6.65) we then have

λðkÞ ¼ eiγkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh πjωjp ; γ−k ¼ −γk ð6:74Þ

and

Ckk0 ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjω0j
sinh πjωj

s
eiγk−iγk0 Iωω0 ðsÞδqq0 : ð6:75Þ

With the above form Ckk0 has the following “transpose”
property:

Ckk0 ðsÞ ¼ C�
k0kðsÞ

sinh πjω0j
sinh πjωj : ð6:76Þ

With (6.76), (6.70) can be rewritten asX
k0
Ck1k0 ðsÞCk0−k2ðsÞeπω

0 ¼ eπω1δk1;−k2 : ð6:77Þ

From (6.14) we have

σs1ðσs2ðaðαÞk ÞÞ ¼ σs1þs2ðaðαÞk Þ; ð6:78Þ

which implies that

Λαβ
kk0 ðs1ÞΛβγ

k0k00 ðs2Þ ¼ Λαγ
kk00 ðs1 þ s2Þ: ð6:79Þ

For s1, s2 with the same sign, it can be shown that the group
properties (6.79) follow from (6.49). For s1, s2 of opposite
signs, (6.49) is not enough, but (6.79) can be shown to
follow from the more explicit form (6.75). See Appendix B
for details.
To conclude, Eqs. (6.75), (6.47), and (6.48) give the

explicit transformation of aðαÞk and thus OðxÞ under UðsÞ
(for all s∈R), which satisfies all the desired properties
(6.9)–(6.14) for half-sided modular translations. Without
needing any explicit information about N we have

19Note

hΩ0jcαkcβk0 jΩ0i ¼ δαβδk;−k0θðωÞ: ð6:67Þ
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determined the action of UðsÞ up to a phase factor eiγk.
Information about different choices of N as well as the
nature of emergent time s is encoded in this phase factor.

VII. AN EXAMPLE: GENERALIZED FREE
FIELDS IN RINDLER SPACETIME

In this section we use a simple example to illustrate the
formalism developed in Sec. VI. Consider a generalized
free field OðxÞ in Minkowski spacetime and the following
question: given the restrictionsOR,OL ofO to the R and L
Rindler regions (see Fig. 6, left), is it possible to recover the
behavior of the field in the full spacetime (i.e. also in the F
and P regions)? Intuitively the answer is no, since a
generalized free field does not satisfy any equation of
motion, so we cannot obtain the behavior ofO in the F and
P regions by evolvingOR andOL from a Cauchy slice as in
a standard quantum field theory. Here we show that by
using the procedure of Sec. VI we in fact can express O in
the F and P regions in terms of those in R and L regions.

A. The transformation

Consider (1þ 1)-dimensional Minkowski spacetime

ds2 ¼ −ðdx0Þ2 þ ðdx1Þ2 ¼ −dxþdx− ¼ e2χð−dη2 þ dχ2Þ
¼ −e2χdξþdξ−; ð7:1Þ

x0 ¼ eχ sinh η; x1 ¼ eχ cosh η;

x� ¼ x0 � x1 ¼ �e�ξ� ; ξ� ¼ η� χ; ð7:2Þ

where the coordinates ξ� cover the R patch. There is a
similar description for the L patch.
For simplicity and also for the later connection with the

AdS Rindler discussion we take O to be given by an
operator of dimension Δ in a CFT. The expression for the
two-point function of O is fixed by conformal symmetry
including the restriction to the R region. Accordingly the
mode expansion forORðξÞ in the R region can be written as
(see Appendix E)

ORðξÞ ¼
Z

d2k
ð2πÞ2 u

ðRÞ
k ðξÞaðRÞk ≡X

k

uðRÞk ðξÞaðRÞk ð7:3Þ

uðRÞk ¼ Nke
Δ
2
ðξ−−ξþÞe−iωηþiqχ ¼ Nkeq̄þξ

−−q−ξþ ;

Nk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjωjp
ffiffiffiffiffiffi
2π

p
ΓðΔÞ jΓðqþÞΓðq−Þj ð7:4Þ

k¼ ðω;qÞ; k� ¼ 1

2
ðω�qÞ; q� ¼ 1

2
ðΔþ iðω�qÞÞ;

q̄� ¼ 1

2
ðΔ− iðω�qÞÞ: ð7:5Þ

There is an analogous mode expansion for OL with

uðLÞk ¼ uðRÞ−k .
Taking M to be the algebra generated by OR and N the

subalgebra associated with the region ξ− < 0 (Fig. 10, left),
as discussed in Sec. V B the generator G for half-sided
modular translation simply corresponds to a null translation
x− → x− þ s, or in terms of ξ�,

ξ− → ξ−s ¼ ξ− − logð1− seξ
−Þ; ξþ → ξþs ¼ ξþ; s < 0:

ð7:6Þ

We now show how to use the formalism developed in
Sec. VI to extend the action of UðsÞ to positive s and
thereby extend OR, OL to the F and P regions.
For s < 0, we have

ORðξ; sÞ≡U†ðsÞORðξÞUðsÞ ¼ ORðξsÞ; ð7:7Þ

which implies that

uðRÞk ðξsÞ ¼ uðRÞk0 ðξÞCk0kðsÞ; s < 0: ð7:8Þ

We then find that

Ck0kðsÞ ¼
Nk

Nk0

Z
d2ξe−ik

0·ξþik·ξsþΔ
2
ðξ−s −ξ−Þ

¼ 1

2

Nk

Nk0
δk0−;k−

Γðq̄0þÞ
Γðq̄þÞ

Iω0ωð−sÞ ð7:9Þ

¼ 1

2
δk0−;k−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjωjp jΓðqþÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjω0jp jΓðq0þÞj

Γðq̄0þÞ
Γðq̄þÞ

Iω0ωð−sÞ;

ð7:10Þ

where function I was introduced previously in (6.61) and
the last expression has the form of (6.75) with

eiγk ¼ Γðq̄þÞ
jΓðq̄þÞj

: ð7:11Þ

B. Crossing the Rindler horizon

We now consider ORðξ; sÞ with s > 0,

ORðξ; sÞ ¼
X
k

uðRÞk ðξÞσsðaðRÞk Þ ¼
X
k

uðRβÞk ðξ; sÞaðβÞk ;

uðRβÞk ðξ; sÞ≡ uðRÞk0 ðξÞΛRβ
k0kðsÞ: ð7:12Þ

From (6.47) we have
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uðRRÞk0 ðξ; sÞ ¼ Nk0
eq̄

0
þξ

−−q0−ξþ

Γðq̄0þÞ sinhðπω0Þ J1;

uðRLÞk0 ðξ; sÞ ¼ Nk0
eq

0
þξ

−−q̄0−ξþ

sinhðπω0ÞΓðq0þÞ
J2; ð7:13Þ

J1 ¼
Z

dω
2π

sinh πðωþ ω0Þe−iωðξ−þlog sÞ

× Γðiωþ ϵÞΓð−iωþ q̄0þÞ; ð7:14Þ

J2 ¼
Z

dω
2π

e−iωðξ−þlog sÞΓð−iωþ q0þÞΓðiωþ ϵÞ sinh πω:

ð7:15Þ

The integrals (7.14)–(7.15) can be evaluated using contour
integration. We have the following situations:
(1) ξ− þ log s < 0, i.e. s < s0 ≡ e−ξ

−
. In this case we

can close the contour in the upper-half complex-ω
plane picking up poles at

ω ¼ iðnþ ϵÞ; n ¼ 0; 1;… ð7:16Þ

which results in

J1¼Γðq̄0þÞsinhπω0ð1− seξ
−Þ−q̄0þ ; J2¼ 0 ð7:17Þ

and

uðRRÞk0 ðξ; sÞ ¼ uðRÞk0 ðξ−s ; ξþÞ;
ûðRLÞk0 ðξ; sÞ ¼ 0; → ORðξ; sÞ ¼ ORðξ−s ; ξþÞ:

ð7:18Þ

This is the situation where the transformation (7.6) is
still well defined and ORðξ; sÞ remains in the R
region.

(2) ξ− þ log s > 0, i.e. s > s0 or equivalently seξ
−
> 1.

In this case we can close the contour in the
lower-half complex-ω plane picking up poles for
(7.14)–(7.15) respectively at

ω¼ −iðnþ q̄0þÞ; ω¼ −iðnþ q0þÞ; n¼ 0;1;…

ð7:19Þ

which results in

J1 ¼ ð−iÞ sin πq0−Γðq̄0þÞðseξ− − 1Þ−q̄0þ ; ð7:20Þ

J2 ¼ ð−iÞ sin πq0þΓðq0þÞðseξ− − 1Þ−q0þ ; ð7:21Þ

and

uðRRÞk ðξ; sÞ ¼ −i
sin πq−
sinhðπωÞNkðx−s Þ−q̄þðxþÞ−q− ;

x−s ¼ x− þ s; ð7:22Þ

uðRLÞk ðξ; sÞ ¼ −i
sin πqþ
sinhðπωÞNkðx−s Þ−qþðxþÞ−q̄− :

ð7:23Þ

In this range of s, (7.6) becomes complex and is no
longer well-defined. But the action ofUðsÞ leads to a
well-defined new transformation described by
(7.22)–(7.23) if we use Minkowski x� coordinates
of the initial point. Note x−s ¼ x− þ s > 0, i.e. we
are now in the future region. It can be checked that
the expressions (7.22)–(7.23) precisely agree with
behavior of the CFT in the F region; see the second
line of (E4) and (E5).
Thus we see that s0 is the “critical” value for the

half-sided modular translation to takeORðξÞ beyond
the Rindler horizon and into the F region. Crossing

the Rindler is signaled by the appearance of aðLÞk
in ORðξ; sÞ.

By takingN to be given by the region indicated on the right
of Fig. 10, we can takeOR beyond the past Rindler horizon
and into the P region.

VIII. BULK RECONSTRUCTION FOR AdS
RINDLER AND BTZ REVISITED

We will now use the formalism developed in earlier
sections to study emergent in-falling times in a black
hole geometry. In particular, we will give an explicit
construction in the boundary theory of an evolution
operator for a family of bulk in-falling observers, making
manifest the boundary emergence of the black hole
horizons, the interiors, and the associated causal structure.
As an illustration, we will work with the BTZ black hole in
AdS3. For contrast, it is also instructive to see how the AdS-
Rindler horizon emerges in the boundary theory in this
framework.
In this section we first review the metrics of the BTZ

black hole and an AdS3 Rindler region, as well as the mode
expansions of a bulk scalar field in these geometries. We
then discuss the boundary support of a bulk field in the
BTZ black hole or AdS-Rindler spacetime. This part is new
and will provide an important preparation for our discus-
sion in Sec. X.
We will set the AdS radius to be unity throughout

the paper.
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A. AdS Rindler and BTZ geometries

Consider the Poincaré patch of AdS3,

ds2 ¼ 1

z2
ð−ðdx0Þ2 þ ðdx1Þ2 þ dz2Þ

¼ 1

z2
ð−dxþdx− þ dz2Þ; x� ¼ x0 � x1; ð8:1Þ

which can be separated into four different AdS Rindler
regions, labeled by R, L, F , P on the right of Fig. 6,
corresponding respectively to regions with ðxþ; x−Þ having
signs ðþ;−Þ, ð−;þÞ, ðþ;þÞ, ð−;−Þ. They have respec-
tively R, L, F, P Rindler regions of Minkowski spacetime
R1;1 (depicted on the left of Fig. 6) as their boundaries (i.e.
as z → 0). It is also convenient to introduce the so-called
BTZ coordinates ðη; w; χÞ, which for the R region have
the form

z ¼ weχ ; xþ ¼ eξ
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
;

x− ¼ −e−ξ−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
; ξ� ¼ η� χ; ð8:2Þ

and in terms of which the metric has a “black hole” form,

ds2 ¼ 1

w2
½−ð1 − w2Þdη2 þ ð1 − w2Þ−1dw2 þ dχ2�: ð8:3Þ

The AdS Rindler horizon is at w ¼ 1, and the boundary is at
w ¼ 0.Whenw > 1, themetric (8.3) covers the part of theF
or P regions with z2 − xþx− > 0. w ¼ ∞ is a coordinate
singularity beyond which we have z2 − xþx− < 0, and the
BTZ coordinates ðη; w; χÞ no longer apply. We will refer to
the parts of F with z2 − xþx− > 0 and z2 − xþx− < 0
respectively as the F 1 and F 2 regions. Similarly the P
region is split into P1 and P2.
The BTZ black hole can be obtained by making χ

compact [41], in which case w ¼ ∞ becomes a genuine
singularity where the spacetime ends, and w ¼ 1 becomes
an event horizon. The black hole has inverse temperature
β ¼ 2π corresponding to the time η. For compact χ, the
Poincaré coordinates (8.2) can no longer be used to connect
different regions. Instead, we can introduce the Kruskal
coordinates in the R region:

U¼−eζ−η¼−
ffiffiffiffiffiffiffiffiffiffiffi
1−w
1þw

r
e−η; V¼eζþη¼

ffiffiffiffiffiffiffiffiffiffiffi
1−w
1þw

r
eη; ð8:4Þ

where ζ is the tortoise coordinate

ζ ¼ −
Z

dw
1 − w2

¼ 1

2
log

1 − w
1þ w

: ð8:5Þ

The event horizons lie atU;V ¼ 0, and the boundary lies at
UV ¼ −1. See Fig. 3.

Note that the Kruskal coordinates U, V can also be used
for AdS-Rindler, with U;V ¼ 0 corresponding to the
AdS-Rindler horizons and UV ¼ 1 now a coordinate
singularity.20

For a more extensive discussion of the AdS-Rindler and
BTZ spacetimes, see Appendix C.

B. Mode expansion in AdS-Rindler and BTZ

Consider a bulk scalar field ϕ dual to a boundary
operator O of dimension Δ. The restriction ϕRðXÞ of ϕ
to the AdS Rindler R region (with X ¼ ðη; w; χÞ) or to the
R region of the BTZ black hole has the same mode
expansion except that the momentum q along the χ
direction is continuous for AdS-Rindler and discrete for
BTZ. Below we will use the same notation for both cases.
ϕR can be expanded in modes as

ϕRðXÞ¼
X
k

vðRÞk ðXÞaðRÞk ; vðRÞk ðXÞ¼NkfkðwÞeik·x ð8:6Þ

k¼ðω;qÞ; k ·x¼−ωηþqχ

q� ¼ 1

2
ðΔþ iðω�qÞÞ; q̄� ¼ 1

2
ðΔ− iðω�qÞÞ ð8:7Þ

Nk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjωjp
ffiffiffiffiffiffi
2π

p
ΓðΔÞ jΓðqþÞΓðq−Þj;

fkðwÞ ¼ wΔð1 − w2Þ−iω=22F1ðq̄−; q̄þ;Δ;w2Þ: ð8:8Þ

The aðRÞk are creation (for ω < 0) and annihilation (for
ω > 0) operators of the boundary generalized free field
theory in the R region, and thus ϕRðXÞ can be interpreted as
an operator in the boundary theory. There is a similar “bulk

reconstruction” equation for ϕL in terms of aðLÞk . Note that
fkðwÞ is normalizable at infinity

lim
w→0

fkðwÞ ¼ wΔ þ � � � ; ð8:9Þ

and satisfies

fkðwÞ¼ f�kðwÞ¼ f−kðwÞ¼ f−ω;qðwÞ¼ fω;−qðwÞ: ð8:10Þ

Near the horizon, w → 1, we have

vðRÞk ðXÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2jωjp eik·xðe−iωξþiδk þ eiωξ−iδkÞ; ð8:11Þ

where the phase shift δk is given by

20Note that in terms of the range of Kruskal coordinates U, V,
the AdS-Rindler R and L regions coincide respectively with the
R and L regions of the BTZ black hole, but the F and P regions
of the BTZ black hole only cover the F 1 and P1 regions of
AdS-Rindler.
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eiδk ¼ ΓðiωÞjΓðq−ÞΓðqþÞj
jΓðiωÞjΓðq−ÞΓðqþÞ

e−iω log 2: ð8:12Þ

We also note the asymptotic behavior for jωj → ∞∶

2F1ðq̄−; q̄þ;Δ;w2Þ

≈ w
1
2
−Δ ΓðΔÞ

2
ffiffiffi
π

p
� ð1 − wÞiωð− iω

2
Þ12−Δ Imω > 0

ð1þ wÞiωðiω
2
Þ12−Δ Imω < 0;

ð8:13Þ

which can be obtained from the discussion of Appendix F.
As jqj → ∞ we have [50]

fkðwÞ¼ jqj12−Δw1
2ð1−wÞ−1

4ðeq arcsinwþe−q arcsinwÞ; ð8:14Þ

jNkj2 ¼
21−2d

ðΓðΔÞÞ2 sinhðπjωjÞjqj
2ðΔ−1Þe−πjqjð1þOðjqj−2ÞÞ;

ð8:15Þ

NkfkðwÞ ∼ ðe−jqjðπ2−arcsin wÞ þ e−jqjðπ2þarcsin wÞÞ; ð8:16Þ

and similarly for ϕL. The expressions in the F and P
regions of BTZ, and in the F and P regions of Poincare
AdS can be obtained from analytic continuation which we
discuss in Appendix D.
The corresponding boundary operators are obtained by

the extrapolate dictionary, i.e. removing wΔ and taking
w → 0. We find

ORðxÞ ¼
X
k

uðRÞk ðxÞaðRÞk ; uðRÞk ðxÞ ¼ Nkeik·x; ð8:17Þ

and similarly for OLðxÞ with uðLÞk ðxÞ ¼ ðuðRÞk ðxÞÞ�. For the
AdS Rindler the boundary limit is taken by removing zΔ, so
the corresponding boundary operator in the Rindler patch
has an extra factor e−Δχ as in (7.4).

C. Boundary support of a bulk operator

The identification of bulk and boundary oscillators aðαÞk
implies that ϕR of (8.6) can be regarded as a boundary
operator. This is the statement of bulk reconstruction. We
will now examine the support of ϕRðXÞ on the boundary.
Wewill use the notation for the BTZ spacetime, and exactly
the same conclusion applies to AdS-Rindler.

Consider the smearing function KðX; yÞ defined by
[18,19]

ϕRðXÞ ¼
X
k

Nkeik·xfkðwÞaðRÞk ¼
Z

d2yKðX; yÞORðyÞ

ð8:18Þ

ORðxÞ ¼
X
k

Nkeik·xa
ðRÞ
k ; KðX; yÞ ¼

X
k

eik·ðx−yÞfkðwÞ;

ð8:19Þ

where ORðxÞ is obtained by taking the boundary limit of
ϕRðXÞ [see (8.17) or Appendix E]. From the large q
behavior of fkðwÞ [see (8.14)], the q integral in (8.19) is
divergent, and thus KðX; yÞ cannot be consistently defined
as a function [50]. The origin of the divergence can be
traced to the complete spectrum feature emphasized in
Sec. II C: for any ω, O has nonzero support for arbitrary
large values of jqj, but this support decays exponentially at
large jqj.21 The same statements apply to all AdS-Rindler
and black hole systems in all dimensions (see [81] for other
arguments from the bulk).
The divergences can be avoided if we smear ϕRðXÞ in the

χ direction by a function with sufficiently soft large q
behavior [50]. Alternatively, instead of ϕRðXÞ, we can

consider ϕðRÞ
q ðη; wÞ with a fixed momentum q in the χ

direction. This gives

ϕðRÞ
q ðη; wÞ ¼

Z
dω
2π

Nωqe−iωηfωqðwÞaðRÞωq

¼
Z

dη0Kqðη; w; η0ÞOðRÞ
q ðη0Þ ð8:20Þ

OðRÞ
q ðηÞ ¼

Z
dχe−iqχORðη; χÞ

¼
Z

dω
2π

Nωqe−iωηa
ðRÞ
ωq ; ð8:21Þ

Kqðη; w; η0Þ ¼
Z

dω
2π

e−iωðη−η0ÞfωqðwÞ: ð8:22Þ

The kernel Kqðη; w; η0Þ is now well-defined, and we can
study its support in η0.
From (8.13), we have the asymptotic behavior

fkðwÞ ¼ w
1
2
ΓðΔÞ
2
ffiffiffi
π

p

8>><
>>:

ð1−w
1þwÞ

iω
2 ð− iω

2
Þ12−Δ Imω > 0

ð1þw
1−wÞ

iω
2 ðiω

2
Þ12−Δ Imω < 0; jωj → ∞:

ðð1−w
1þwÞ

iω
2 − iϵðωÞe−iπϵðωÞðΔ−1Þð1þw

1−wÞ
iω
2 Þð− iω

2
Þ12−Δ Imω ¼ 0

ð8:23Þ

21We expect that the amplitude for creating a mode of large qwith a finite ω should be proportional to e−cβjqj with c an Oð1Þ number.
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This behavior implies that we can close the contour of
(8.22) in the upper-half ω plane for

η−η0−
1

2
log

1−w
1þw

< 0→ η0 > η−
1

2
log

1−w
1þw

→Uðη0;w¼ 0Þ>Uðη;wÞ ð8:24Þ

and can close the contour in the lower-half ω plane for

η−η0−
1

2
log

1þw
1−w

> 0→ η0 < η−
1

2
log

1þw
1−w

→Vðη0;w¼ 0Þ<Vðη;wÞ; ð8:25Þ

where in the last equations of (8.24)–(8.25) we have
expressed the conditions in terms of the Kruskal coordi-
nates (8.4).
Since fkðwÞ is an entire function in the complex ω plane,

when we can close the contour either in the upper-half or
the lower-half planes, Kqðη; w; η0Þ is zero, and thus it is
only supported in the region

ηmax ≡ η −
1

2
log

1 − w
1þ w

> η0 > η −
1

2
log

1þ w
1 − w

≡ ηmin: ð8:26Þ

Using the last expressions of (8.24)–(8.25), the above
equation corresponds to the region on the boundary which
is spacelike connected to the bulk point ðη; wÞ on the
Penrose diagram; see Fig. 13. Since the range (8.26) is q
independent, we conclude that any bulk field smeared in the
χ direction is also supported in the same window of
boundary time.
A bulk field operator in the F region must be supported

on both the R and L boundaries. Using the expression of ϕ
in the F region it can be shown that it is supported on the
right boundary for Vðη0; w ¼ 0Þ > Vðη; wÞ and on the left
boundary Uðη0; w ¼ 0Þ > Uðη; wÞ. See Fig. 13.

IX. EMERGENCE OF AdS
RINDLER HORIZONS

As a warm-up for the black hole story we consider the
emergence of the bulk AdS-Rindler horizon from the
boundary system using the unitary group UðsÞ constructed
in Sec. VII. Recall that under the duality, aðαÞk for the bulk
mode expansion in the AdS-Rindler regions are identified
with those of the generalized free theory in the correspond-
ing boundary Rindler regions. We show that the same

transformation on aðαÞk that took a boundary CFT operator
across the boundary Rindler horizon also takes a bulk field
operator in the R region of AdS-Rindler across the bulk
horizon. In this case going beyond the AdS-Rindler horizon
is dictated by symmetries22 as the null shifts discussed in
Sec. VII become part of the AdS isometry group. This
approach does not apply to a general black hole for which
such isometries do not exist. In Sec. X we will consider an
alternative approach which also applies to black holes.
The discussion is parallel to that of Sec. VII except that

the wave functions in the AdS-Rindler case are more
complicated than the Rindler case. Consider the evolution
of a bulk field operator initially at a point X ¼ ðη; w; χÞ ¼
ðxþ; x−; zÞ∈R,

ΦðX; sÞ ¼ UðsÞ†ϕRðXÞUðsÞ

¼
X
β

Z
d2k0

ð2πÞ2 v
ðRβÞ
k0 ðX; sÞaðβÞk0 ; ð9:1Þ

vðRβÞk0 ðX; sÞ ¼
Z

d2k
ð2πÞ2 v

ðRÞ
k ðXÞΛRβ

kk0 ðsÞ

¼
Z

d2k
ð2πÞ2Nkeik·xfkðwÞΛRβ

kk0 ðsÞ; ð9:2Þ

where ΛRβ
kk0 are given by (6.47) with Ckk0 given by (7.10).

We then have

vðRRÞk0 ðsÞ ¼ Nk0eik
0·ξ

Γðq̄0þÞ
wΔð1 − w2Þ−iω0=2

�
J1 s < 0

1
sinh πω0 J2 s > 0

;

ð9:3Þ

vðRLÞk0 ðsÞ ¼ Nk0e−ik
0·ξ

sinh πω0Γðq0þÞ
wΔð1 − w2Þiω0=2

�
0 s < 0

J3 s > 0
;

ð9:4Þ

with

FIG. 13. Left: support of a bulk field operator ϕRðXÞ in the right
region on the boundary in the Penrose diagram. The supported
region is highlighted with blue color. Right: boundary support of
a bulk field operator ϕF in the future region.

22See [40] for a discussion. Going behind the horizon of a black
hole in Jackiw-Teitelboim gravity [14,15] is also similar to the
AdS-Rindler case, as it can be done using a symmetry operator.
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J1 ¼
Z

dω
2π

e−iωηsFðq̄0−;−iωþ q̄0þ;Δ;w2Þ

× Γð−iωþ q̄0þÞΓðiωþ ϵÞ; ð9:5Þ

J2 ¼
Z

dω
2π

e−iωηs sinh πðωþ ω0ÞFðq̄0−;−iωþ q̄0þ;Δ;w2Þ

× Γð−iωþ q̄0þÞΓðiωþ ϵÞ; ð9:6Þ

J3 ¼
Z

dω
2π

e−iωηs sinh πωFðq0−;−iωþ q0þ;Δ;w2Þ

× Γð−iωþ q0þÞΓðiωþ ϵÞ; ð9:7Þ

ηs ¼ ξ− þ log jsj þ 1

2
logð1 − w2Þ: ð9:8Þ

We can evaluate the above integrals by closing the
contours in the upper or lower-half planes. For this purpose
we need to know the asymptotic behavior (as jωj → ∞) of
the hypergeometric functions that appear in the integrands.
It is convenient to use the identity

Fðq̄0−;−iωþ q̄0þ;Δ;w2Þ

¼ ΓðΔÞΓðiωþ iω0Þ
Γðq0−ÞΓðq0þ þ iωÞFðq̄

0
−; q̄0þ − iω; 1− iω0 − iω; 1−w2Þ

þ ð1−w2Þiω0þiω ΓðΔÞΓð−iω0 − iωÞ
Γðq̄0−ÞΓðq̄0þ − iωÞ

×Fðq0−; q0þ þ iω; 1þ iω0 þ iω; 1−w2Þ: ð9:9Þ

From Eq. (F1) of Appendix F, the hypergeometric functions
in the above equations are of order Oð1Þ as jωj → ∞ for
1 − w2 > −1 (as is the case for all possible initial points
inR). Each integral in J1;2;3 can then be separated into two
terms,

Ji ¼ Jia þ Jib; i ¼ 1; 2; 3; ð9:10Þ

where Jia and Jib are obtained by respectively inserting the
first and second term of (9.9) into the expression for Ji.
Denoting the corresponding integrands as jia and jib, we
have23

jia∼e−iωηs ; jib∼e−iωηsð1−w2Þiω; ω→�i∞: ð9:11Þ

We then conclude that for Jia we can close the contour in
the upper-half plane for ηs < 0 and in the lower-half plane
for ηs > 0, while for Jib we can close the contour in the
upper-half plane for ηs − logð1 − w2Þ < 0 and in the lower-
half plane for ηs − logð1 − w2Þ > 0. Denoting the values of
s for ηs ¼ 0 and ηs − logð1 − w2Þ ¼ 0 respectively as s0
and s1, we then have

Ji ¼

8>>><
>>>:

JðþÞ
ia þ JðþÞ

ib ¼ JðþÞ
i jsj < s0

JðþÞ
ia þ Jð−Þib s0 < jsj < s1

Jð−Þia þ Jð−Þib ¼ Jð−Þi jsj > s1

; ð9:12Þ

where Jð�Þ
ia denotes the expression for Jia obtained by

closing the contour in the upper (lower) half plane. Note
that, for s > 0, using (8.2) we have

s ¼ s0 → ξ− þ log s −
1

2
logð1 − w2Þ ¼ 0

→ s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
e−ξ

− ¼ −x−; ð9:13Þ

so s ¼ s0 is the coordinate distance from X to the horizon
along the x− direction. Also note

s ¼ s1 → ξ− þ log sþ 1

2
logð1 − w2Þ ¼ 0

→ s1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − w2
p e−ξ

− ¼ z2

xþ
− x−: ð9:14Þ

s1 is then the coordinate distance along the x− direction
from X to the hypersurface separating the F 1 and F 2

regions.
Consider first J1 which applies to s < 0. For jsj < s0

from (9.12) we can close the contour of (9.5) in the upper-
half plane which gives

J1 ¼
X∞
n¼0

ð−1Þn
n!

enηsFðq̄0−;nþ q̄0þ;Δ;w2ÞΓðq̄0þ þnÞ

¼ Γðq̄0þÞF2ðq̄0þ; q̄0−;1;Δ;1;w2;−eηsÞ

¼ Γðq̄0þÞð1þ eηsÞ−q̄0þFðq̄0−; q̄0þ;Δ;w2
1Þ; w2

1 ¼
w2

1þ eηs
;

ð9:15Þ

where F2 is the second Appell hypergeometric function,
and we have used (F24) and (F25). We then find

vðRRÞk0 ðX; sÞ ¼ Nk0eik
0·ξswΔ

s ð1 − w2
sÞ−iω0=2Fðq̄0−; q̄0þ;Δ;w2

sÞ
¼ vðRÞk0 ðXsÞ; ð9:16Þ

where Xs ¼ ðws; ξþs ; ξ−s Þ is given by

ws ¼
wffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − as
p ; as ≡ seξ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
; ð9:17Þ

eξ
−
s ¼ eξ

− ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − as

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − as − w2

p ;

eξ
þ
s ¼ eξ

þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − as

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − as − w2

p : ð9:18Þ
23ω being pure imaginary gives the most stringent conditions.
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Comparing (9.17)–(9.18) with (C11) we conclude that

ΦðX;sÞ¼ϕRðXsÞ; Xs¼ðxþ;x−þ s;zÞ∈R: ð9:19Þ

It can be checked that the expression (9.16) is in fact valid
for all s < 0.
Now consider s > 0 and J2, J3. For s < s0, we can close

the contours of (9.6) and (9.7) in the upper-half plane. Since
the integrand for J3 has no poles in the upper-half plane,
J3 ¼ 0, while J2 can be evaluated in a similar manner to
(9.15), giving

J2 ¼ sinh πω0Γðq̄0þÞð1 − eηsÞ−q̄0þFðq̄0−; q̄0þ;Δ;w2
2Þ

w2
2 ¼

w2

1 − eηs
: ð9:20Þ

We then find that for s∈ ð0; s0Þ, vðRRÞk0 ðX; sÞ is still given by
(9.16) while vðRLÞk0 ðX; sÞ ¼ 0, and (9.19) results.
For s∈ ðs0; s1Þ, from (9.12), we find24

J2a ¼ sinh πω0 ΓðΔÞΓðiω0ÞΓðq̄0þÞ
Γðq0þÞΓðq0−Þ

ð1 − eηsÞ−q̄0þ

× Fðq̄0−; q̄0þ; 1 − iω0; 1 − w2
2Þ ð9:21Þ

while J2b ¼ 0 since the integrand has no poles in the lower-
half plane (the potential poles of Γð−iω − iω0Þ are canceled
by sinh πðωþ ω0Þ). We then have

vðRRÞk0 ðX; sÞ ¼ Nk0eik
0·ξswΔ

s ðw2
s − 1Þ−iω0=2 ΓðΔÞΓðiω0Þ

Γðq0þÞΓðq0−Þ
× Fðq̄0−; q̄0þ; 1 − iω0; 1 − w2

sÞ ð9:22Þ

where ws is given by (9.17) but ξ�s are now given by

eξ
−
s ¼ eξ

− ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − as

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
as − 1þ w2

p ;

eξ
þ
s ¼ eξ

þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − as

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
as − 1þ w2

p : ð9:23Þ

We can similarly evaluate J3:

J3 ¼ sinh πω0 ΓðΔÞΓðiω0Þ
Γðq0−Þ

ð1 − eηsÞ−q̄0−ðeηs − 1þ w2Þ−iω0

× Fðq̄0þ; q̄0−; 1 − iω0; 1 − w2
2Þ; ð9:24Þ

which results in

vðRLÞk0 ðX; sÞ ¼ Nk0e−ik
0·ξswΔ

s ðw2
s − 1Þ−iω0=2 ΓðΔÞΓðiω0Þ

Γðq0þÞΓðq0−Þ
× Fðq̄0−; q̄0þ; 1 − iω0; 1 − w2

sÞ; ð9:25Þ

where ξ�s are given by (9.23). Collecting (9.22) and (9.25),
and comparing them with the expressions for the wave
functions in theF 1 region (D7)–(D8) [note (9.23) is exactly
(C13)] we conclude

ΦðX;sÞ¼ϕFðXsÞ; Xs¼ðxþ;x−þ s;zÞ∈F 1: ð9:26Þ

From the boundary perspective s0 is the “critical” value of

UðsÞ evolution after which ΦðX; sÞ now also involves aðLÞk .
This is the signature of the emergence of the AdS-Rindler
horizon from the boundary perspective.
For s > s1, the integrals J2 and J3 can be closed in the

lower-half plane. We find

J2¼ sinhπð−iq0−ÞΓðq̄0þÞðeηs −1Þ−q̄0þF
�
q̄0−; q̄0þ;Δ;

w2

1−eηs

�
;

ð9:27Þ

J3¼ sinhπð−iq0þÞΓðq0þÞðeηs −1Þ−q0þF
�
q0−;q0þ;Δ;

w2

1−eηs

�
;

ð9:28Þ

leading to

vðRÞk0 ðX; sÞ ¼ Nk0eik
0·ξswΔ

s ð1þ w2
sÞ−iω0=2 sinh πð−iq0−Þ

sinh πω0

× Fðq̄0−; q̄0þ;Δ;−w2
sÞ ð9:29Þ

vðLÞk0 ðX; sÞ ¼ Nk0e−ik
0·ξswΔ

s ð1þ w2
sÞiω0=2 sinh πð−iq0þÞ

sinh πω0

× Fðq0−; q0þ;Δ;−ws
2Þ; ð9:30Þ

where now ws; ξ�s are given by (for this range of s, as > 1)

ws ¼
wffiffiffiffiffiffiffiffiffiffiffiffiffi

as − 1
p ; eξ

−
s ¼ eξ

− ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
as − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
as − 1þ w2

p ;

eξ
þ
s ¼ eξ

þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
as − 1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
as − 1þ w2

p : ð9:31Þ

Comparing with (C14) and (D7)–(D8) we then find that

ΦðX;sÞ¼ϕFðXsÞ; Xs¼ðxþ;x−þ s;zÞ∈F 2: ð9:32Þ

We have demonstrated that the transformation UðsÞ,
determined from half-sided modular translations in the
boundary theory in Sec. VII, implements a null shift
isometry in AdS, and can be used to generate the full

24The evaluation is again similar to (9.15). The poles of the
integrand in the upper-half ω plane are at ω ¼ iðnþ ϵÞ, and we
have used (F26).
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Poincaré AdS from its R and L AdS-Rindler regions. The
transformation is well-defined and pointwise for all real
values of s and for any choice of initial location of the bulk
operator.

X. BOUNDARY EMERGENCE OF AN IN-FALLING
TIME IN A BLACK HOLE GEOMETRY

We now consider the generation of an in-falling time in a
black hole geometry from the boundary. Our goal is to
identify UðsÞ in the boundary theory which can “globally
evolve” a Cauchy slice of a black hole geometry across the
horizon. We will show that the half-sided modular trans-
lations discussed in Sec. V C can be used for this purpose.
That is, here we take M ¼ YR and N to be the algebra of

single-trace operators in the GNS Hilbert space HðGNSÞ
TFD

associated with the subregion η ≤ 0 in CFTR (see Fig. 11).
Recall the identifications (2.42) and that the modular
operator for M is Δ0 with modular time t ¼ 2πη.

A. Expressions for the transformations

As discussed in Sec. V C, finding the explicit modular
operator and the associated half-sided modular translation
generator G for the subalgebra N indicated in Fig. 11
directly in the boundary theory appears to be difficult. Here
we will find it by proposing the bulk dual for N .
Consider a boundary subregion defined by η ≤ η0 and

the corresponding algebra X η0 of single-trace operators in

the GNS Hilbert space HðGNSÞ
TFD . We denote the algebra of

bulk fields in the bulk subregion defined by U ≤ U0 ¼
−e−η0 (see Fig. 14), as X̃ η0 . We propose that

X η0 ¼ X̃ η0 : ð10:1Þ

In other words, the bulk dual of the boundary subregion
X η0 is given by the bulk region X̃ η0 . This proposal is natural
from various perspectives. Firstly, from our discussion of
Sec. VIII C, a bulk field operator in X̃ η0 has boundary
support only in the region X η0 . Secondly, under modular
flow of Δ0, X η1 ¼ Δ−it

0 X η0Δ
it
0 is the region η ≤ η1 ¼

η0 þ 2πt. Under such a flow, the bulk region X̃ η0 is taken

to X̃ η1 defined with U ≤ U1 ¼ −e−η1 . So the identification
is consistent with this flow. In Sec. X D below wewill show
that (5.13) is recovered from this identification, providing
further nontrivial support. Under this identification we then
have N ¼ X0 ¼ X̃0.
Near the horizon, the black hole spacetime is approx-

imately given by Rindler. In the bulk field theory, the half-
sided modular flows associated with M ¼ ỸR and its
subalgebra N ¼ X̃0 should then act on near-horizon
operators in the same way as the half-sided flow for the
Rindler spacetime with M and N as depicted in the left
panel of Fig. 10. From the discussion of Sec. V B,G should
then correspond to a null shift in the Kruskal coordinate U.
We can thus determine the matrix Ckk0 from the trans-

formation of aðαÞk near the horizon, from which we obtain

the full Λαβ
kk0 . The discussion in this section applies to a

general black hole, not restricted to the BTZ. We will use
the more general notation of Sec. II except that the
boundary time is now taken to be η in whose units
β ¼ 2π. That is, a bulk point is X ¼ ðη; r; x⃗Þ with r the
radial direction. We will switch to the BTZ coordinates
when restricting to that case.
Consider a bulk operator in the R region

ϕRðXÞ ¼
X
k

vðRÞk ðXÞaðRÞk ;

vðRÞk ðXÞ ¼ e−iωηfkðrÞhqðx⃗Þ; ð10:2Þ

where k ¼ ðω; qÞ and hqðx⃗Þ denotes the wave function in
the boundary spatial directions. Near the horizon, the bulk
wave function can be written as

vðRÞk ðXÞ ¼ hqðx⃗Þffiffiffiffiffiffiffiffiffi
2jωjp e−iωηðe−iωζþiδk þ eiωζ−iδkÞ

¼ hqðx⃗Þffiffiffiffiffiffiffiffiffi
2jωjp ðeiδkV−iω þ e−iδkð−UÞiωÞ ð10:3Þ

U ¼ −e−ξ− ; V ¼ eξ
þ
; ξ� ¼ η� ζ; ð10:4Þ

where ζ is the tortoise coordinate.
Consider the evolution with s < 0:

ΦðX;sÞ¼UðsÞ†ϕRðXÞUðsÞ¼
X
k

vðRRÞk ðX;sÞaðRÞk ; ð10:5Þ

vðRRÞk ðX; sÞ ¼
X
k0
vðRÞk0 ðXÞCk0kðsÞ: ð10:6Þ

Note that Ck0k is independent of X. Now consider X
to be close to the past horizon, i.e. V → 0, where, as

discussed above, we expect vðRRÞk ðX; sÞ ¼ vðRÞk ðXsÞ with
Xs ¼ ðU þ s; V; x⃗Þ. Then (10.6) can be written as

FIG. 14. The respective proposed bulk duals for the boundary
subregions indicated in Fig. 11.

SAM LEUTHEUSSER and HONG LIU PHYS. REV. D 108, 086020 (2023)

086020-28



hqðx⃗Þffiffiffiffiffiffiffiffiffi
2jωjp ðeiδkV−iωþe−iδkð−U−sÞiωÞ

¼
X
k0

hq0 ðx⃗Þffiffiffiffiffiffiffiffiffiffi
2jω0jp ðeiδk0V−iω0 þe−iδk0 ð−UÞiω0 ÞCk0kðsÞ: ð10:7Þ

By equating U-dependent terms on both sides of (10.7),
we find

Ck0kðsÞ ¼ δqq0

ffiffiffiffiffiffiffijω0jp
ffiffiffiffiffiffijωjp eiδk0−iδk

Γð−iðω0 þ iϵÞÞ
Γð−iðωþ iϵÞÞ Iω0ωð−sÞ

¼ δqq0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjωj
sinh πjω0j

s
eiγk0−iγk Iω0ωð−sÞ; ð10:8Þ

where eiγk is defined by

eiγk ≡ eiδk
jΓðiωÞj
ΓðiωÞ : ð10:9Þ

We still need to check that V-dependent terms (10.7) are
also equal when we use (10.8). More explicitly, the
V-dependent term on the right-hand side can be written as

R1 ¼
hqðx⃗Þe−iδkffiffiffiffiffiffiffiffiffi
2jωjp

Γð−iωÞFðVÞ; ð10:10Þ

where

FðVÞ ¼
Z

dω0

2π
e2iδk0V−iω0Γð−iðω0 þ iϵÞÞIω0ωð−sÞ

¼ ð−sÞiω
Z

dω0

2π
e2iδk0Γð−iω0 þ ϵÞΓð−iðω−ω0 þ iϵÞÞ

× e−iω
0 logð−sVÞ: ð10:11Þ

In the near-horizon limit V → 0, we can close the contour
in the upper-half ω0 plane.25 Any pole in the upper-half
plane (include those coming from e2iδk0 ) that is a finite
distance away from the real axis will lead to a contribution
that vanishes as V → 0. Thus the only relevant contribution
comes from the pole at ω0 ¼ ωþ iϵ,26 leading to

FðVÞ ¼ e2iδkV−iωΓð−iωÞ; ð10:12Þ
which reproduces the V-dependent term on the left-hand
side of (10.7).
For the case of a BTZ black hole we have from (8.12)

eiδk ¼ ΓðiωÞjΓðq−ÞΓðqþÞj
jΓðiωÞjΓðq−ÞΓðqþÞ

e−iω log 2; ð10:13Þ

which then leads to

Ck0kðsÞ ¼ δqq0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjωj
sinh πjω0j

s
eiðω−ω0Þ log 2

×
Γðq−ÞΓðqþÞ
jΓðq−ÞΓðqþÞj

Γðq̄0−ÞΓðq̄0þÞ
jΓðq0−ÞΓðq0þÞj

Iω0ωð−sÞ

¼ δqq0
Nk

Nk0
eiðω−ω0Þ log 2 Γðq̄0þÞΓðq̄0−Þ

Γðq̄þÞΓðq̄−Þ
Iω0ωð−sÞ:

ð10:14Þ
With Ck0k in hand, we can write down the transformation

for general s,

ΦðX; sÞ ¼ UðsÞ†ϕRðXÞUðsÞ ¼
X
k0

ð10:15Þ

vðRβÞk0 ðX; sÞaðβÞk0 ; v
ðRβÞ
k0 ðX; sÞ ¼

X
k

vðRÞk ðXÞΛRβ
kk0 ðsÞ; ð10:16Þ

with ΛRβ
kk0 given by (6.47). Using the explicit expression

(10.14) for the BTZ black hole we have

vðRRÞk ðX; sÞ ¼ wΔeiqχ
Nkeiω log 2

Γðq̄þÞΓðq̄−Þ
� ð−sÞiωJ1 s < 0

siω J2
sinh πω s > 0

;

ð10:17Þ

vðRLÞk ðX; sÞ ¼ wΔeiqχ
Nke−iω log2

sinhπωΓðqþÞΓðq−Þ
s−iωJ3; s > 0;

ð10:18Þ

J1 ¼
Z

dω0

2π
Γðq̄0þÞΓðq̄0−ÞΓðiðω0 − ω − iϵÞÞ

× a−iω
0
Fðq̄0þ; q̄0−;Δ;w2Þ; ð10:19Þ

J2 ¼
Z

dω0

2π
sinh πω0Γðq̄0þÞΓðq̄0−ÞΓðiðω0 − ω − iϵÞÞ

× a−iω
0
Fðq̄0þ; q̄0−;Δ;w2Þ; ð10:20Þ

J3 ¼
Z

dω0

2π
sinh πðω0 þ ωÞΓðq̄0þÞΓðq̄0−ÞΓðiðω0 þ ω − iϵÞÞ

× a−iω
0
Fðq̄0þ; q̄0−;Δ;w2Þ; ð10:21Þ

a≡ 2jsjeη
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
: ð10:22Þ

We can evaluate J1, J2, and J3 by contour integration.
The discussion is very similar to that of Sec. IX, except in
this case the integrals J1;2;3 can no longer be evaluated
explicitly. Here we mention some general features, and in
the rest of this section we discuss more specifically various
aspects of the transformation.
Recall that the Gauss hypergeometric function F is an

entire function of its first two parameters, and the

25Since logV → −∞ this statement is independent of possible
e−iω

0γ (with γ a constant)-type dependence in e2iδk0 .
26We do not expect the phase shift eiδk to have poles on the real

axis.
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asymptotic behavior of the hypergeometric functions in
J1;2;3 for jω0j → ∞ was given by (8.13). Note that the
integrand of J1 decays exponentially at large jω0j for real
ω0, while the integrands of J2 and J3 (denoted by j2, j3
respectively) have power law decay in jω0j times a Fourier
phase factor:

j2 ¼ Ajω0j−1−iω
��

1 − w
1þ w

�iω0
2

− iϵðω0Þe−iπϵðω0ÞðΔ−1Þ
�
1þ w
1 − w

�iω0
2

�
× ð1þOðjω0j−1ÞÞ; ð10:23Þ

j3 ¼ Ajω0j−1þiω

��
1 − w
1þ w

�iω0
2

− iϵðω0Þe−iπϵðω0ÞðΔ−1Þ
�
1þ w
1 − w

�iω0
2

�
× ð1þOðjω0j−1ÞÞ; ð10:24Þ

A ¼ 1

2
w

1
2
−ΔΓðΔÞeπ

2
ϵðω0Þωe−iω0 logðjsjeηÞ: ð10:25Þ

For all J1;2;3, we can close the ω0 integral in the upper-
half plane for

a
2ð1 − wÞ ¼ jsjeη

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w
1 − w

r
¼ jsj

s0
< 1;

s0 ≡ e−η
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − w
1þ w

r
¼ −U; ð10:26Þ

while for

a
2ð1þ wÞ ¼ jsjeη

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − w
1þ w

r
¼ jsj

s2
> 1;

s2 ≡ e−η
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w
1 − w

r
¼ 1

V
; ð10:27Þ

we can close the contour in the lower-halfω0 plane. Note that
U and V are the values of Kruskal coordinates for the initial
pointX. Also notice that J3 ¼ 0 for s < s0, i.e.ΦðX; sÞ only
involves aðRÞk for s < s0. Thus s0 can be interpreted as the
“critical value” for crossing the future event horizon.
For s∈ ðs0; s2Þ as in the discussion of Sec. IX we can

split the integrals by using the transformation on the
hypergeometric function in J1;2;3:

Fðq̄0þ; q̄0−;Δ;w2Þ ¼ ΓðΔÞΓðiω0Þ
Γðq0þÞΓðq0−Þ

Fðq̄0þ; q̄0−;1− iω0; 1−w2Þ

þ ð1−w2Þiω0 ΓðΔÞΓð−iω0Þ
Γðq̄0þÞΓðq̄0−Þ

×Fðq0þ;q0−; 1þ iω0; 1−w2Þ: ð10:28Þ

Then one of the terms can be evaluated by closing the
contour in the lower-half plane and the other in the upper-
half plane.

B. Near horizon transformation

We now examine (10.15) near the horizon (V → 0) for
s > 0, which we will show to be

ΦðX;sÞ ¼
�
ϕRðXsÞs < s0 ≡−U
ϕFðXsÞs > s0

; Xs ¼ ðUþ s;V; x⃗Þ;

ð10:29Þ

with ϕFðXÞ the expression in the F region described by
(D14)–(D16). s0 is the critical value for crossing the future
event horizon. Thus the action of UðsÞ reveals an emergent
translational symmetry near the horizon. The discussion
applies to a general black hole without knowledge of the
details of the phase shift eiδk .
More explicitly, for s > 0, we have

vðRRÞk ðX; sÞ ¼ hqðx⃗Þ
sinh πω

Z
dω0

2π

sinh πω0ffiffiffiffiffiffiffiffiffiffi
2jω0jp

× ðeiδk0V−iω0 þ e−iδk0 ð−UÞiω0 ÞCk0kð−sÞ;
ð10:30Þ

vðRLÞk ðX; sÞ ¼ hqðx⃗Þ
sinh πω

Z
dω0

2π

sinh πðω0 þ ωÞffiffiffiffiffiffiffiffiffiffi
2jω0jp

× ðeiδk0V−iω0 þ e−iδk0 ð−UÞiω0 ÞCk0−kð−sÞ:
ð10:31Þ

From Ck0k given in (10.8),

vðRRÞk ðX; sÞ ¼ ϵðωÞhqðx⃗Þe−iγkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sinh πjωjp ðA1 þ A2Þ;

vðRLÞk ðX; sÞ ¼ ϵðωÞh−qðx⃗Þeiγkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π sinh jωjp ðB1 þ B2Þ ð10:32Þ

A1 ¼ siω
Z

dω0

2π
sinh πω0e2iγk0Γðiðω0 þ iϵÞÞ

× Γð−iðω − ω0 þ iϵÞÞe−iω0 logðsVÞ; ð10:33Þ

A2 ¼ siω
Z

dω0

2π
sinh πω0Γð−iðω0 þ iϵÞÞ

× Γð−iðω − ω0 þ iϵÞÞeiω0 logð−U=sÞ; ð10:34Þ

B1 ¼ s−iω
Z

dω0

2π
sinh πðω0 þ ωÞe2iγk0Γðiðω0 þ iϵÞÞ

× Γðiðωþ ω0 − iϵÞÞe−iω0 logðsVÞ ð10:35Þ
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B2 ¼ s−iω
Z

dω0

2π
sinh πðω0 þ ωÞΓð−iðω0 þ iϵÞÞ

× Γðiðωþ ω0 − iϵÞÞeiω0 logð−U=sÞ: ð10:36Þ

The evaluation of A1 and B1 is similar to (10.11): with
V → 0 we can always close the integration contour in the
upper-half ω0 plane to find

A1¼e2iγkV−iωΓðiωÞsinhπωþ���; B1¼0þ���; ð10:37Þ

where � � � denotes contributions that vanish as V → 0. For
A2, B2, we can close the contour in the upper (lower) half
plane for s < s0 ≡ −U (s > s0), leading to

A2 ¼
�
sinh πωΓð−iωÞð−U − sÞiω s < −U
0 s > −U

; ð10:38Þ

B2 ¼
�
0 s < −U
sinh πωΓðiωÞðU þ sÞ−iω s > −U

; ð10:39Þ

where for A2 (B2) there is no pole in the lower (upper)
half plane for s > −U (s < −U). Putting these results all
together we find

vðRRÞk ðX;sÞ¼
8<
:

hqðx⃗Þffiffiffiffiffiffi
2jωj

p ðeiδkV−iωþe−iδkð−U−sÞiωÞ s<−U

hqðx⃗Þffiffiffiffiffiffi
2jωj

p eiδkV−iω s>−U
;

ð10:40Þ

vðRLÞk ðX; sÞ ¼
(
0 s < −U
h−qðx⃗Þffiffiffiffiffiffi

2jωj
p eiδkðU þ sÞ−iω s > −U ; ð10:41Þ

which indeed give (10.29) by comparing with (D14)–(D16).
Since the above discussion fixes s and assumes V → 0,

the valid range of s is for jsj < s2 ¼ 1
V, which is infinite in

this limit.

C. Left-right commutators and causal structure

For the action of UðsÞ on a bulk field at a generic point
in the R region, the details of the phase shift eiδk will
matter, and from now on we will specialize to the BTZ
black hole with the corresponding expressions given by
(10.15)–(10.22). The transformation is complicated and is
nonlocal. Below (10.22) we already commented that

vðRLÞk ðX; sÞ ≠ 0 only for s > s0, which can be interpreted
as the boundary emergence of the event horizon. This is
further confirmed by the near-horizon analysis of the last
subsection. Here we show that despite the transformation
being nonlocal it respects sharp causal structure.
Consider the commutator of an evolved bulk field from

the right exterior and a bulk field operator at some fixed

location in the left exterior (i.e. set X1 ∈R; X2; ∈L and
Us ¼ UðsÞ):

CðsÞ ¼ ½ΦðX1; sÞ;ϕLðX2Þ�
¼ ½U†

sϕRðX1ÞUs;ϕLðX2Þ�: ð10:42Þ

Now multiply both sides of the above equation by U†
v and

Uv. Since we are working at the level of free field, CðsÞ is a
c-number and thus is unchanged by this conjugation. Using
unitarity and the group property of Us, we find

CðsÞ ¼ ½U†
sþvϕRðX1ÞUsþv; U

†
vϕLðX2ÞUv�: ð10:43Þ

Recall that ΦðX; sÞ has support on left operators only for
s > s0ðXÞ ¼ −UðXÞ. From J conjugation U†

vϕLðX2ÞUv
should take ϕL closer to the past horizon for v < 0, but it
will not have any dependence on the right operators for
v > −s0ðX2Þ ¼ −UðX2Þ; see Fig. 15. Now take v ¼
−s0ðX2Þ þ ϵ where ϵ > 0 is an infinitesimal number.
With such a v, U†

vϕLðX2ÞUv still lies in the L region.
To have a nonzero commutator we need ΦðX1; sþ vÞ to
have support on the left, which requires

sþv> s0ðX1Þ→ s> s0ðX1Þþ s0ðX2Þ¼−UðX1ÞþUðX2Þ:
ð10:44Þ

SinceΦðX1; sÞmust enter the light cone of ϕLðX2Þ in order
for the commutator to become nonzero, the above equation

FIG. 15. Left: when a bulk field ϕRðX1Þ with X1 ∈R is
transported by a null Kruskal coordinate distance −U1 þ U2

(since U1 < 0), it enters the light cone of ϕLðX2Þ. The shaded
region is a cartoon for the spread of ΦðX1; sÞ. The orange dashed
lines are event horizons, and the purple dashed lines give the light
cones of X2. Right: the commutator between the evolved right
operator and fixed left bulk field is equal to the commutator of the
evolved left and right fields with the same difference of evolution
parameters. We use this to evolve the left operator almost all the
way to the past horizon. The commutator can only be nonzero
then if the evolved right operator remains supported on left
oscillators after now also applying the evolution that brought the
left field to the horizon. The blue shaded region is a cartoon for
the spread of ΦðX1; sþ vÞ, and the purple shaded region is a
cartoon for the spread of ΦðX2; vÞ. The boundaries and singu-
larities are suppressed in each figure.
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implies that the support of ΦðX1; sÞ must lie in the region
U ≤ U1 þ s; see Fig. 15.

D. Transformation of a boundary operator

We now consider the evolution underUðsÞ of a boundary
operator ORðxÞ,

ORðx;sÞ¼UðsÞ†ORðxÞUðsÞ¼
X
k0
uðRβÞk0 ðx;sÞaðβÞk0 ; ð10:45Þ

ORðxÞ ¼
X
k

uðRÞk ðxÞaðRÞk ; uðRÞk ðxÞ ¼ Nke−iωηþiqχ ;

uðRβÞk0 ðx; sÞ ¼
X
k

uðRÞk ðxÞΛRβ
kk0 ðsÞ: ð10:46Þ

uðRβÞk0 ðx; sÞ can be obtained from (10.17)–(10.18) by taking
w → 0 and stripping off the factor of wΔ. J1;2;3 then
simplify to

J1 ¼ ð2cÞ−iω
Z

dω0

2π
Γ
�
q̄þ −

iω0

2

�
Γ
�
q̄− −

iω0

2

�
× Γðiω0 þ ϵÞð2cÞ−iω0 ð10:47Þ

J2 ¼ ð2cÞ−iω
Z

dω0

2π
sinh πðω0 þ ωÞΓ

�
q̄þ −

iω0

2

�

× Γ
�
q̄− −

iω0

2

�
Γðiω0 þ ϵÞð2cÞ−iω0 ð10:48Þ

J3 ¼ ð2cÞiω
Z

dω0

2π
sinh πω0Γ

�
q− −

iω0

2

�
Γ
�
qþ −

iω0

2

�
× Γðiω0 þ ϵÞð2cÞ−iω0 ð10:49Þ

aðw ¼ 0Þ ¼ 2c; c≡ jsjeη: ð10:50Þ

From (10.26)–(10.27) we now have s0 ¼ s2 ¼ e−η as on
the boundaryUV ¼ −1. For c < 1 (c > 1) we can close the
contours of the above integrals in the upper (lower) half
plane.
Consider first J1 which is relevant for s < 0. For any

value of c, we find that J1 can be expressed as another
hypergeometric function, and (see Appendix F 2 for a
derivation)

uðRRÞk ðx; sÞ ¼ Nke−iωηþiqχJkðsÞ ¼ uðRÞk ðxÞJkðsÞ ð10:51Þ

JkðsÞ ¼
Γðq̄þ þ 1

2
ÞΓðq̄− þ 1

2
Þffiffiffi

π
p

ΓðΔ − iωþ 1
2
Þ

× F

�
2q̄þ; 2q̄−;Δ − iωþ 1

2
;
1þ seη

2

�
: ð10:52Þ

Clearly the transformation is not pointwise. For s > 0, the
evolution is described by J2, J3. For c < 1 (i.e. s < s0) we

have J3 ¼ 0, and J2 is such that we again recover
(10.51)–(10.52).
The argument of the hypergeometric function in (10.52)

becomes 1 for s ¼ s0 ¼ e−η (c ¼ 1). The behavior of
hypergeometric function Fða; b; c; zÞ at z ¼ 1 depends on
Reðc − a − bÞ: it is divergent for Reðc − a − bÞ < 0.27 Now
ReðΔ − iωþ 1

2
− 2q̄þ − 2q̄−Þ ¼ −Δþ 1

2
; thus (10.51)

becomes singular for any operator with Δ > 1
2
. In other

words,ORðx; sÞ becomes singular for s ¼ s0. Recall that s0 is
precisely the Kruskal U distance between initial point η
and η ¼ þ∞.
To understand the action (10.51)–(10.52) of UðsÞ on a

boundary operator ORðxÞ a bit further, now consider its
support in the position space. For this purpose it is convenient
to introduce an evolution function Gðx; x0; sÞ defined by

ORðx; sÞ ¼
Z

d2x0Gðx; x0; sÞORðx0Þ; ð10:53Þ

where

Gðx; x0; sÞ ¼
X
k

JkðsÞe−iωðη−η0Þþiqðχ−χ0Þ: ð10:54Þ

To understand the support in η, consider the ω integral in
(10.54),

Gqðη; η0; sÞ≡
Z

dω
2π

e−iωðη−η0ÞJkðsÞ: ð10:55Þ

Notice that JkðsÞ has no pole in the upper-half ω plane, and
has the asymptotic behavior

JkðsÞ¼ð1−seηÞ12−Δþiωð1þOðjωj−1ÞÞ; jωj→∞: ð10:56Þ

Given that JkðsÞ ∝ Oð1Þ for realω → �∞, (10.55) has to be
treated with a bit of care. By adding and subtracting
ð1 − seηÞ12−Δþiω in the integrand we can rewrite it as

Gqðη; η0; sÞ≡ ð1 − seηÞ12−ΔδðλÞ þ G̃q;

G̃q ¼
Z

dω
2π

e−iωλJ̃kðsÞ; ð10:57Þ

where

λ≡ η − η0 − log ð1 − seηÞ;
J̃kðsÞ≡ JkðsÞð1 − seηÞ−iω − ð1 − seηÞ12−Δ: ð10:58Þ

Now J̃kðsÞ → 0 along the real axis as ω → �∞, and it only
has poles in the lower-half ω plane.
We can close the contour for ω integration in G̃q of

(10.57) in the upper-half ω plane if

27This can be seen by the transformation Fða; b; c; zÞ ¼
ð1 − zÞc−a−bFðc − a; c − b; c; zÞ.
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η − η0 − logð1 − seηÞ < 0; ð10:59Þ

for which the integral gives zero. We conclude that
Gqðη; η0; sÞ only has support for

η0 ≤ η − logð1 − seηÞ → U0 ≤ U þ s;

U0 ¼ −e−η0 ; U ¼ −e−η; ð10:60Þ

where U0; U are respectively the boundary Kruskal coor-
dinates for η0 and η. We note that Eq. (10.60) agrees precisely
with (5.13) with the identification of η ¼ 2πt, providing a
nontrivial further consistency check of our identification of
the bulk region X̃0 as the bulk dual of N ¼ X0.
As s → s0 ¼ e−η, the support of Gq and thus Gðx; x0; sÞ

covers the full η0 axis, andGðx; x0; sÞ is singular at s ¼ s0 as
a result of the singular behavior of JkðsÞ. This indicates that
we cannot extend the action of UðsÞ beyond s0.

28

Plugging (10.57) into (10.53) we find that

ORðx; sÞ ¼ ð1 − seηÞ12−ΔORðxsÞ þ ÕRðx; sÞ ð10:61Þ

ÕRðx; sÞ ¼
Z

d2x0G̃ðx; x0; sÞORðx0Þ;

G̃ðx; x0; sÞ ¼
X
q

eiqðχ−χ0ÞG̃qðη; η0; sÞ; ð10:62Þ

where the first term is a pointlike transformation with

xs¼ðηs;χÞ; ηs¼η− logð1−seηÞ or Us¼Uþs: ð10:63Þ

From (10.57), G̃qðη; η0; sÞ can be written in a form

G̃qðη; η0; sÞ ¼ −i
X
�

X∞
n¼0

e−ω
ð�Þ
n ðqÞðηs−η0Þcð�Þ

n ðqÞ;

ωð�Þ
n ðqÞ ¼ ð2nþ 1þ ΔÞ � iq; ð10:64Þ

where −iωð�Þ
n are the poles of J̃kðsÞ in the lower-half ω

plane and cð�Þ
n are the corresponding residues. Thus G̃q

only has a small exponential tail away from ηs. We are not
able to evaluate the q sum in (10.62) explicitly, but from
(10.64) we expect that

Gðx; x0; sÞ ∼ e−ðΔþ1Þðηs−ηÞ þ � � � ; ð10:65Þ

where � � � denotes higher exponential suppressions in ηs − η.
We thus find that the support of Gðx; x0; sÞ is localized
around ηs with a small exponential tail away from it.

E. Summary

For a general bulk point X0 ¼ ðη0; w0; χ0Þ ¼
ðU0; V0; χ0Þ the transformation (10.17)–(10.22). is not
pointwise and rather complicated. As outlined there we
can evaluate the integrals J1;2;3 for any s using residues
which results in an infinite sum of hypergeometric func-
tions (some of which can be summed to Appell functions).
The analyses of these infinite sums (or Appell functions)
appear intricate and will not be treated here. From the last
few subsections we have found the following.
(1) For X0 close to the past horizon V0 → 0, we have

ΦðX0; sÞ ¼ ϕðXsÞ where Xs ¼ ðU0 þ s; V0; χ0Þ is
obtained by X0 by a null shift. We can view this as an
indication of an emergent horizon symmetry.

(2) While for a general point the action of UðsÞ is
nonlocal, the support of ΦðX0; sÞ respects the sharp
causal structure implied by the event horizon:
(i) There exists a critical value s0 ¼ −U0 after

which ΦðX0; sÞ develops dependence on aðLÞk ,
which signals crossing the horizon; (ii) it starts
having nontrivial commutators with ϕLðX1Þ for
s > −U0 þ UðX1Þ. Both imply that the support of
ΦðX0; sÞ lies in the region U ≤ U0 þ s, consistent
with the proposal of the bulk dual of Fig. 14.

(3) For a boundary operatorORðx0Þ (i.e. w0 → 0 limit of
a bulk field) with x0 ¼ ðη0; χ0Þ, the evolved operator
remains on the boundary, and we can show explicitly
that the support of ORðx0; sÞ lies in the region U ≤
U0 þ s where now U ¼ −e−η and U0 ¼ −e−η0 . In
particular, ORðx0; sÞ contains a local piece propor-
tional to ORðxsÞ with xs ¼ ðU0 þ s; χ0Þ and a non-
local piece which is still mostly supported near the
time slice ηs ¼ η0 − logð1 − seη0Þ. The action of
UðsÞ becomes singular at s ¼ s0 ¼ −U0.

In next section we will show that the transformation of a
bulk field becomes much simpler in the largeΔ limit, and in
fact becomes a pointwise transformation.

XI. A POINTWISE TRANSFORMATION
IN THE LARGE MASS LIMIT

In this section we consider the evolution of bulk fields
under UðsÞ in the large mass limit (or large dimension Δ
limit). Interestingly we find that in this limit the evolution
becomes pointwise when we average over the spatial
manifold of the boundary theory.

A. General setup and summary of results

Evolution of a bulk field, initially at a point X0¼
ðη0;w0;χ0Þ¼ðU0;V0;χ0Þ∈R, is given by (10.15)–(10.16)
which we copy here for convenience:

ΦðX0; sÞ ¼ U†ðsÞϕRðX0ÞUðsÞ
¼
X
k0
vðRβÞk0 ðX0; sÞaðβÞk0 ; ð11:1Þ

28Integrals for J2 and J3 appear to be well defined for s > s0
(i.e. c > 1). J3 is now nonzero, i.e. ORðx; sÞ now involves also
aðLÞk . But due to the singular behavior as s → s0 from below,
ORðx; sÞ for s > s0 may not be meaningful.
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vðRRÞk0 ðX0; sÞ ¼
X
k

vðRÞk ðX0ÞΛRR
kk0 ðsÞ;

vðRLÞk0 ðX0; sÞ ¼
X
k

vðRÞk ðX0ÞΛRL
kk0 ðsÞ: ð11:2Þ

Recall that the massm of ϕ is related to the dimension Δ of
the corresponding boundary operator O by

Δ ¼ d
2
þ ν; ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
þm2

r
: ð11:3Þ

We will consider the large ν limit and expand various
quantities in (11.1) and (11.2) in 1=ν.29 To define the
limit, we will also scale frequency and spatial momenta
as [4]

ω¼ νu; q¼ νp; k¼ðu;pÞ fixed; ν→∞: ð11:4Þ

In the limit (11.4) the various quantities in (11.2) have
the form

vðRÞk ðX0Þ ¼

8>><
>>:
P
γ¼�

AðγÞ
k ðX0ÞeiνZ

ðγÞ
k ðX0Þð1þOðν−1ÞÞ; juj > uw ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−w2

0
Þð1þp2w2

0
Þ

p
w0

AðfÞ
k ðX0Þe−νZ

ðfÞ
k ðX0Þð1þOðν−1ÞÞ; juj < uw

ð11:5Þ

ΛRα
kk0 ðsÞ ¼ δqq0BRα

kk0 ðsÞeiνW
Rα
kk0 ðsÞð1þOðν−1ÞÞ; ð11:6Þ

where the first (second) line of (11.5) is the wave function in the classically allowed (forbidden) region. Explicit expressions
for these quantities are given in (G5)–(G8). We then find

vðRRÞk0 ðX0; sÞ ¼ ν

�Z
juj>uw

du
2π

X
γ¼�

AðγÞ
k BRR

kk0 ðsÞeiνG
ðγÞ
R þ

Z
uw

−uw

du
2π

AðfÞ
k BRR

kk0 ðsÞe−νG
ðfÞ
R

�
; ð11:7Þ

where

GðγÞ
R ¼ ZðγÞ

k ðX0Þ þWRR
kk0 ðsÞ;

GðfÞ
R ¼ ZðγÞ

k ðX0Þ − iWRR
kk0 ðsÞ: ð11:8Þ

Asimilar expressionapplies forvðRLÞk0 ðX0; sÞ. Equation (11.7)
can be evaluated using the saddle-point (steepest descent)
approximation.
Since we are mainly interested in how ΦðX0; sÞ evolves

with s in the ðw; ηÞ (or ðU;VÞ) plane, it is convenient to
average it over the boundary spatial direction χ, i.e.
restricting to q ¼ 0 in all equations. In this case we find
that the transformation is pointwise

ΦðX0;sÞ¼ λXϕðXsÞ; λX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− seη0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−w2

0

q
;

r
ð11:9Þ

with Xs given in terms of Kruskal coordinates as

Us ¼ U0 þ s; Vs ¼
V0

1 − sV0

: ð11:10Þ

Here are some remarks on the transformation
(11.9)–(11.10):
(1) At the horizon, V0 ¼ 0, we have Vs ¼ 0 and

Us ¼ U0 þ s.

(2) At the boundary we have V0 ¼ − 1
U0

giving
Vs ¼ − 1

U0þs ¼ − 1
Us
, so a point initially on the

boundary remains on the boundary.
(3) Given that a boundary operator can be found

by ORðxÞ ¼ limw→0 w−ΔϕRðXÞ, we have from
(11.9)–(11.34)

ORðx0; sÞ ¼ ð1 − seη0Þ12−ΔORðxsÞ ð11:11Þ

precisely giving the first term of (10.61) including
the prefactor. Thus the second term of (10.61) must
be suppressed in the large ν limit, which is consistent
with the expectation (10.65).

(4) For a generic initial point with −1 < U0V0 < 0, the

horizon is reached for s ¼ s0 ¼ −U0 ¼
ffiffiffiffiffiffiffiffi
1−w0

1þw0

q
e−η0.

(5) For s < 0, the boundary is reached in the limit
s → −∞. i.e.

UsVs ¼
U0V0þ sV0

1− sV0

→−1; s→−∞: ð11:12Þ

29ν is always OðN0Þ. Equivalently we can expand in 1
m or 1=Δ.

At leading order, i.e. OðνÞ all these expansions agree. But for
higher orders, including the calculation of Oðν0Þ prefactors,
expanding in 1=ν is the most natural and convenient.
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(6) Notice that the prefactor λX in (11.9) becomes
zero for

s ¼ s1 ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

0

p e−η0 ; ð11:13Þ

at which value we have Us1Vs1 ¼ 1, i.e. the location
of the black hole singularity. For s > s1, ϕðXsÞ is no
longer defined, but the left-hand side of (11.9)
appears still to be well defined. Note that
s1
s2
¼ 1

1þw0
≤ 1, where s2 was introduced in (10.27).

(7) At s ¼ s2 ¼ 1
V0

we have Vs → ∞.
(8) Equation (11.10) does not appear to correspond to

any geodesic motion.
(9) Equation (11.10) also applies if the initial point X0

lies in the L region.
The trajectories following from (11.10) are shown in
Fig. 16.
By choosing N to be the algebra associated with region

in the right plot of Fig. 11, we can similarly construct
unitary evolutions as above but with the roles of Kruskal U

and V swapped. See Fig. 17 for the corresponding flow
trajectories.
We will now describe the calculation of (11.7) in detail.

B. Saddle-point equations

It is useful to first notice that the Hermitian conjugation
property of our transformation, ΛRα

ð−kÞð−k0ÞðsÞ ¼ ðΛRα
kk0 ðsÞÞ�,

and vðRÞ−k ðX0Þ ¼ ðvðRÞk ðX0ÞÞ� imply

vðRαÞ−k0 ðX0; sÞ ¼
X
k

vðRÞk ðX0ÞΛRα
kð−k0ÞðsÞ

¼
X
k

vðRÞ−k ðX0ÞΛRα
ð−kÞð−k0ÞðsÞ

¼ ðvðRαÞk0 ðX0; sÞÞ�: ð11:14Þ

Thus (11.14) implies that the results for u0 < 0 can be
immediately obtained from those with u0 > 0, so we restrict
to u0 > 0 for the calculations of this section. From the

expressions of Appendix G we find Gð�Þ
R in (11.7) can be

written as

Gð�Þ
R ¼ −u log jcj þ juj

2
logð1 − w2

0Þ − ðu0 − uÞ logðiðu − u0ÞÞ − iπ
2
ϵðsÞjuj − i logð1 − iuÞ

− juj log
�
juj � w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u2w

q 	
þ i log

�
1 ∓ iw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u2w

q 	
− θð−uÞu logð1þ u2Þ

þ u0 log jsj − i
2
log

�
1þ iu0

1 − iu0

�
þ u0

2
logð1þ u02Þ þ iπ

2
ϵðsÞju0j − i logw0: ð11:15Þ

It will turn out that GðfÞ
R does not lead to any saddle point

and the contribution from the second term in (11.7) is
always suppressed compared with that from the first term.

We will thus not give the explicit expression of GðfÞ
R here,

leaving it to Appendix G. For our discussion below it is
convenient to introduce

b≡ seη0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

0

p ; c≡ seη0 : ð11:16Þ

The saddle-point equation of (11.15) can be written as

− log jbj þ logðiðu − u0ÞÞ − log
�
juj � ϵðuÞw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u2w

q 	
−
iπ
2
ϵðsÞϵðuÞ ¼ 0; ð11:17Þ

FIG. 16. The left plot gives trajectories of (11.10). The right
plot gives constant s surfaces evolved from the η ¼ 0 slice. The
orange dashed lines are the event horizons and black solid lines
are the boundaries, while the red solid lines are the singularities.

FIG. 17. The counterparts of Fig. 16 when using N as in the
right plot of Fig. 11.
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which leads to

ð1 − bÞu − u0 ¼ �bw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u2w

q
; ð11:18Þ

whose solutions are given by

uð�Þ
c ¼

ð1 − bÞu0 � bw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 − u2wðsÞ

q
1 − 2bþ c2

;

u2wðsÞ ¼ u2wð1 − 2bþ c2Þ: ð11:19Þ

The solution is real for u0 > uwðsÞ. We can also check that

both roots (11.19) satisfy the requirement u0 > uð�Þ
c > uw

for s < 0 and uð�Þ
c > u; uð�Þ

c > uw for s > 0. For s < s0 the

root uðþÞ
c above satisfies ϵðð1 − bÞuðþÞ

c − u0Þ ¼ ϵðsÞ, so it is
only a proper solution for (11.18) with the plus sign on the

right side. Thus this is a saddle solution for GðþÞ
c . Similarly,

uð−Þc is a saddle for Gð−Þ
c . For these real roots we have the

following behavior as functions of s. We have uð�Þ
c > 0 for

all s < s0. As s → s−0 , u
ðþÞ
c → ∞ while uð−Þc is finite, and

we have uðþÞ
c < 0; uð−Þc > 0 for s0 < s < s2. Finally, as

s → s−2 , u
ð−Þ
c → ∞ while uðþÞ

c is finite, and for s > s2 we

have uð�Þ
c < 0.

For s < s0 and s > s2, u2wðsÞ > 0, so the solutions (11.19)
are not real for all real u0. In particular, for u02 < u2wðsÞ the
solutions are complex.30 For such small values of u0, the
steepest descent contour should only pass through uð−Þc , so
there is only one contribution to the saddle-point evaluation
of the integral for u02 < u2wðsÞ. Note that for s0 < s < s2,

u2wðsÞ < 0, so both roots are always real, independent of the

value of u0, in this region of s.
We will now argue that we need only consider the roots

uð�Þ
c when they are positive. Even when uð�Þ

c < 0 is a
genuine saddle point, its contribution will be subleading.
The magnitude of the result of saddle point integration in

(11.7) is controlled by ImGð�Þ
R j

kð�Þ
c
. For s < 0 we always

have uð�Þ
c < u0, so

ImGð�Þ
R j

kð�Þ
c

¼ π

2
ðjuð�Þ

c j − ju0j þ juð�Þ
c − u0jÞ

¼ 0; s < 0; ð11:20Þ

while for s > 0 we either have uð�Þ
c > u0 > 0 or uð�Þ

c < 0
giving

ImGð�Þ
R j

kð�Þ
c

¼ π

2
ðju0j − juð�Þ

c j þ juð�Þ
c − u0jÞ

¼
�
0; uð�Þ

c > u0 > 0

πu0; uð�Þ
c < 0

: ð11:21Þ

We then see that the contributions of uðþÞ
c for s > s0 and of

uð−Þc for s > s2 are suppressed by expð−πνu0Þ, which are
subdominant. Thus, for s < s0 we have leading order

contributions from both uðþÞ
c and uð−Þc , for s0 < s < s2

we have a leading order contribution from uð−Þc , and for
s > s2 both contributions are exponentially small.
Now we turn to vðRLÞk ðX0; sÞ, where there is only a

nontrivial calculation for s > 0:

Gð�Þ
L ¼ −u log jcj þ juj

2
logð1 − w2

0Þ þ ðu0 þ uÞ logðiðuþ u0ÞÞ − iπ
2
ð2juþ u0j − juj − ju0jÞ − i logð1 − iuÞ

− juj log
�
juj � w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u2w

q 	
þ i log

�
1 ∓ iw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u2w

q 	
− θð−uÞu logð1þ u2Þ

− u0 log jsj þ i
2
log

�
1þ iu0

1 − iu0

�
−
u0

2
logð1þ u02Þ − i logw0: ð11:22Þ

It can be shown that Gð�Þ
L has no real saddle point with

minf−uw;−u0g < u < uw, and the saddle-point equation
outside this region can be written as

− log jbj þ log
�
iðuþ u0ÞÞ − log ðjuj � ϵðuÞw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u2w

q 	
−
iπ
2
ϵðuÞ ¼ 0; ð11:23Þ

which leads to

ð1 − bÞuþ u0 ¼ �bw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u2w

q
; ð11:24Þ

with solutions

uð�Þ
d ¼

−ð1 − bÞu0 ∓ bw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 − u2wðsÞ

q
1 − 2bþ c2

¼ −uð�Þ
c ;

u2wðsÞ ¼ u2wð1 − 2bþ c2Þ: ð11:25Þ
30Note that uwðsÞ is exactly the critical frequency separating

classically allowed and classically forbidden frequencies u0 when
w ¼ ws as in (11.34).
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Recall that here b > 0. Again we have real saddle points for
u02 > u2wðsÞ, whose behavior we now discuss. For s < s0,

we have uð�Þ
d < 0, while for s0 < s < s2 we have u

ðþÞ
d > 0

and uð−Þd < 0. Finally, for s > s2 we have uð�Þ
d > 0.

From (11.29) we see that the magnitude of the contribu-

tions of the saddle points are controlled by ImGð�Þ
L j

kð�Þ
d
, so

we will again find that the contributions from saddle points

uð�Þ
d < 0 are exponentially small. We have

ImGð�Þ
L j

kð�Þ
d

¼
�
0; uð�Þ

d > 0

πu0; uð�Þ
d < 0:

; ð11:26Þ

Thus the contributions of saddle points with uð�Þ
d < 0 are

suppressed by expð−πνuÞ. Thus, for s < s0 both contribu-
tions are exponentially small, for s0 < s < s2 we have an

Oð1Þ contribution from uðþÞ
d , and for s > s2 there are Oð1Þ

contributions from both uðþÞ
d and uð−Þd .

C. Transformed wave functions

Evaluating (11.7) at the saddle point we find

vðRRÞk0 ðX0; sÞ ¼
X
γ¼�

ffiffiffiffiffiffi
iν
2π

r
AðγÞ
kðγÞc

ðX0ÞBRR
kðγÞc k0

ðsÞKðγÞ−1
2

R

× e
iνGðγÞ

R j
k
ðγÞ
c ð1þOðν−1ÞÞ; ð11:27Þ

where

KðγÞ
R ¼ ∂

2
uG

ðγÞ
R j

uðγÞc
; ð11:28Þ

and kðγÞc ¼ ðuðγÞc ; 0Þ with uðγÞc the saddle point for GðγÞ
R and

note that there is no saddle point for juj < uw. Similarly
we have

vðRLÞk0 ðX0; sÞ ¼
X
γ¼�

ffiffiffiffiffiffi
iν
2π

r
AðγÞ
kðγÞd

ðX0ÞBRL
kðγÞd k0

ðsÞKðγÞ−1
2

L

× e
iνGðγÞ

L j
k
ðγÞ
d ð1þOðν−1ÞÞ; ð11:29Þ

GðγÞ
L ¼ZðγÞ

k ðX0ÞþWRL
kk0 ðsÞ; KðγÞ

L ¼∂
2
uG

ðγÞ
L j

uðγÞd
; ð11:30Þ

where kðγÞd ¼ ðuðγÞd ; 0Þ with uðγÞd the saddle point for GðγÞ
L .

Explicit expressions for the quantities appearing in (11.27)
and (11.29) at general values of k and k0 are given in (G8),
(G10), (G11), and (G15).
We now show that our transformation in the large

mass limit, as described by (11.27)–(11.29) with saddle
points (11.19) and (11.19), is exactly the pointwise trans-
formation (11.9).

1. Outside the horizon

Here we consider s < s0. We first restrict to the case
of u0 > uwðsÞ.
We begin with the calculation of vðRRÞk ðX0; sÞ. Explicitly

evaluating the quantities in (11.27) at the respective saddle

points for GðþÞ
R and Gð−Þ

R is quite complicated. Repeatedly

using that uð�Þ
c solves the saddle-point equation in the form

(11.18) and recalling that we only need to consider

uð�Þ > 0, Gð�Þ
R can be brought to the form

Gð�Þ
R j

kð�Þ
c

¼−u0 logðϵðsÞðuð�Þ
c −u0ÞÞ

þ i log
�
1∓ iw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð�Þ2
c −u2w

q 	
− i logð1− iuð�Þ

c Þ

þu0 log jsj− i
2
log

�
1þ iu0

1− iu0

�

þu0

2
logð1þu02Þ− i logw0: ð11:31Þ

Comparing (11.31) with (G10) we see that Gð�Þ
R j

kð�Þ
c

will

equal to Zð�Þ
k0 ðX0Þ for X0 ¼ ðη0; w0; χ0Þ only if

log jb0j þ log ðu0 � w0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 − u2w0

q
Þ ¼ logðϵðsÞðuð�Þ

c − u0ÞÞ;
ð11:32Þ

log
w0

w0 ¼ log
1− iu0

1− iuð�Þ
c

þ log
1∓ iw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð�Þ2
c −u2w

q
1∓ iw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02−u2w0

q : ð11:33Þ

The above equations mean that u0 and uð�Þ
c should play

symmetrical roles, with uð�Þ
c being the saddle point for the

transformation with parameter s from ðη0; w0Þ at frequency
u0, and u0 being the saddle point for the transformation by

−s from the point ðη0; w0Þ at frequency uð�Þ
c . That such

ðη0; w0Þ exist (as they cannot depend on u0) is highly
nontrivial.
Now it can be checked that for η0 ¼ ηs; w0 ¼ ws, with

e2ηs ¼ e2η0

1 − 2bþ c2
; ws ¼

w0

1 − bð1 − w2
0Þ
; ð11:34Þ

which in terms of Kruskal coordinates gives (11.10),
Eqs. (11.32) and (11.33) are satisfied. To see this we
note that
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1−w02¼ð1−w2
0Þ

1−2bþc2

ð1−bð1−w2
0ÞÞ2

→e2η
0 1−w02

w02 ¼e2η
1−w2

0

w2
0

→e2η
0
u2w0 ¼e2ηu2w; b0 ¼b

1−bð1−w2
0Þ

1−2bþc2
; ð11:35Þ

and the inverse transformation is given by

w0 ¼
w0

1þ b0ð1 − w02Þ ; eη ¼ eη
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2b0 þ c02
p ;

b0 ¼ seη
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − w02p ¼ c0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w02p : ð11:36Þ

Also note that

1þ b0ð1 − w02Þ ¼ 1

1 − bð1 − w2
0Þ
;

1þ 2b0 þ c02 ¼ 1

1 − 2bþ c2
: ð11:37Þ

From the above relations and (11.19) we then have

uð�Þ
c − u0 ¼ b

1 − bð1 − w2
0Þ

1 − 2bþ c2

�
u0 � w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 − u2w0

q 	
¼ b0

�
u0 � w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 − u2w0

q 	
; ð11:38Þ

which gives (11.32). We note by passing

uð�Þ
c − u0 ¼ b0

�
u0 � w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 − u2w0

q 	
¼ b
�
uð�Þ
c � w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð�Þ2
c − u2w

q 	
: ð11:39Þ

Similarly we have

1 − iu0

1 − iuð�Þ
c

�
1 ∓ iw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð�Þ2
c − u2w

q 	

¼ ð1 − bð1 − w2
0ÞÞ
�
1 ∓ iw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 − u2w0

q 	
¼ w0

w0
�
1 ∓ iw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 − u2w0

q 	
; ð11:40Þ

which gives (11.33). We have then shown

Gð�Þ
R j

kð�Þ
c

¼ Zð�Þ
k0 ðXsÞ: ð11:41Þ

Now let us look at the prefactor of (11.27). Computing
the second derivative at the saddle point we have

Kð�Þ
R ¼ 1

uð�Þ
c − u0

−
1� uð�Þ

c w0ffiffiffiffiffiffiffiffiffiffiffiffiffi
uð�Þ2
c −u2w

p

uð�Þ
c �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð�Þ2
c − u2w

q

¼
�bw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 − u2wðsÞ

q
ðuð�Þ

c − u0Þðð1 − bÞuð�Þ
c − u0Þ

; ð11:42Þ

where we used (11.18) twice to replace all terms with

square roots involving uð�Þ
c and then the explicit form of the

root (11.19). From (G8) we have

BRR
kð�Þ
c k

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

iνðuð�Þ
c − u0Þ

s
: ð11:43Þ

From (G11) we have

Að�Þ
kð�Þ
c
ðX0Þ ¼

w
1
2

0e
�iπ

4ffiffiffiffiffi
2ν

p
�

1

uð�Þ2
c − u2w

�1
4

¼ w
1
2

0e
�iπ

4ffiffiffiffiffi
2ν

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�bw0

ð1 − bÞuð�Þ
c − u0

s
; ð11:44Þ

where we use (11.18). Putting all the prefactor contribu-
tions together we obtain

Að�Þ
kð�Þ
c
ðX0ÞBRR

kð�Þ
c k

K
ð�Þ−1

2

R ¼
ffiffiffiffiffiffi
2π

iν

r
w

1
2

0e
�iπ

4ffiffiffiffiffi
2ν

p
�

1

u02 − u2wðsÞ

�1
4

¼
ffiffiffiffiffiffi
2π

iν

r ffiffiffiffiffiffi
w0

ws

r
Að�Þ
k0 ðXsÞ; ð11:45Þ

so the final result of the saddle-point calculation is

vðRRÞk0 ðX0; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − seη0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

0

qr X
γ¼�

AðγÞ
k0 ðXsÞeiνZ

ðγÞ
k0 ðXsÞ;

ð11:46Þ

giving (11.9).
The story for u0 < uwðsÞ is rather similar, except that as

mentioned earlier the saddle point is now complex.
Through rather parallel calculations we again find (11.9).
For vðRLÞk0 ðX0; sÞ as noted earlier Gð�Þ

L only has saddle

points with uð�Þ
d < 0 for 0 < s < s0 which give rise to

contributions which are exponentially suppressed. Thus, at
the order we are working with, for s < s0, the saddle-point
calculation gives

vðRLÞk0 ðX0; sÞ ¼ 0; ð11:47Þ

as required by (11.9) for an operator in the right exterior
region.
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2. Inside the horizon

Now consider s > s0. Since ϕðXsÞ ceases to make sense
[and so does equation (11.9)] beyond the singularity, which
is at s ¼ s1, we will first consider s < s1.
We begin with the calculation of vðRRÞk ðX0; sÞ. The saddle

point uðþÞ
c is now negative and gives a subdominant

contribution which can be dropped. The only contribution

is then from uð−Þc . Explicitly evaluating the quantities in

(11.7) at the saddle point for Gð−Þ
R and comparing with

(G13) and (G14) we find

Gð−Þ
R j

kð−Þc
¼ ZðF Þ

k0 ðXsÞ ð11:48Þ

and

Að−Þ
kð−Þc

ðX0ÞBRR
kð−Þc k

K
ð−Þ−1

2

R ¼
ffiffiffiffiffiffi
2π

iν

r
w

1
2

0e
−iπ

4ffiffiffiffiffi
2ν

p
�

1

u02 − u2wðsÞ

�1
4

¼
ffiffiffiffiffiffi
2π

iν

r ffiffiffiffiffiffi
w0

ws

r
AðF Þ
k0 ðXsÞ; ð11:49Þ

where Xs is given by

e2ηs ¼ −
e2η0

1 − 2bþ c2
; ws ¼

w0

1 − bð1 − w2
0Þ
: ð11:50Þ

Equation (11.50) gives (11.10) with Xs ∈F.
The final result of the saddle-point calculation is then

vðRRÞk0 ðX0; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − seη0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

0

qr
AðF Þ
k0 ðXsÞeiνZ

ðF Þ
k0 ðXsÞ;

ð11:51Þ

giving (11.9), now with Xs ∈F.
For vðRLÞk0 ðX0; sÞ we now have the saddle point uðþÞ

d > 0

of GðþÞ
L giving a leading order contribution. Explicitly

evaluating the quantities in (11.29) at the saddle point and
comparing with (G10) we find

GðþÞ
L j

kðþÞ
d

¼ ZðF Þ
k0 ðXsÞ þ 2uηs ð11:52Þ

and

AðþÞ
kðþÞ
d

ðX0ÞBRL
kðþÞ
d k

K
ðþÞ−1

2

L ¼
ffiffiffiffiffiffi
2π

iν

r
w

1
2

0e
−iπ

4ffiffiffiffiffi
2ν

p
�

1

u02 − u2wðsÞ

�1
4

¼
ffiffiffiffiffiffi
2π

iν

r ffiffiffiffiffiffi
w0

ws

r
AðF Þ
k0 ðXsÞ: ð11:53Þ

Thus, for s0 < s < s1, the saddle-point calculation gives

vðRLÞk0 ðX0;sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− seη0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−w2

0

qr
AðF Þ
k0 ðXsÞe2iνuηsþiνZðF Þ

k0 ðXsÞ:

ð11:54Þ

Note that the left and right mode functions, vðLÞk ðXÞ and

vðRÞk ðXÞ, are identical in the F region except that the former
involves eiωη−iqχ and the latter e−iωηþiqχ, which are exactly
reproduced by (11.51) and (11.54). For more details, see
(D13) and (G12).
For s1 < s < s2, the expressions for the exponents and

prefactors are the same except that we can no longer
compare them with ϕðXsÞ.

D. Comments on initial operators localized in χ

We now quickly comment on the computation of
ΦðX0; sÞ which is no longer averaged in the χ direction.
Unlike the q ¼ 0 case, we cannot explicitly verify that the
transformation is pointwise in the large mass limit as the
transformation can now involve a change of the χ coor-
dinate as well. Moreover, the saddle points are now
solutions of a quartic equation and thus are very compli-
cated functions of the parameters of the evolution. We will
leave such analysis to the future.

XII. CONCLUSIONS AND DISCUSSIONS

In this paper we discussed in detail how to construct
emergent bulk “in-falling” times in the boundary theory.
Their construction is a consequence of emergent type III1
algebras and an associated half-sided modular inclusion/
translation structure. We discussed explicitly two choices of
such times which at the horizon correspond to uniform (in
the transverse spatial directions) null U or V translations.
There is an infinite number of others. For example, we can
choose the subalgebra N to be either of those depicted
in Fig. 12, which should give rise to bulk in-falling
evolutions which are nonuniform in the transverse spatial
directions. Alternatively, instead of taking the cyclic and
separating vector to be the GNS vacuum jΩ0i, we can
choose other vectors. The simplest possibilities are
obtained by acting unitaries from YR and YL on jΩ0i,
i.e. VLWRjΩ0i; VL ∈YL;WR ∈YR which results in a
ŨðsÞ ¼ VLWRUðsÞW†

RV
†
L with UðsÞ the evolution oper-

ator corresponding to jΩ0i.
Our discussion can also be generalized to other

entangled states of CFTR and CFTL. A simple variant is to
act on jΨβi by a left unitary UL which does not change the
reduced density matrix ρβ of the CFTR, i.e. jΨi ¼ ULjΨβi.
The story depends on whether jΨi lies in the image of the
GNS Hilbert space built from jΨβi. If jΨi lies in the image
of the GNS Hilbert space, the bulk geometry is still
described by the eternal black hole, now with some small
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excitations on the left due to the insertion of UL. The
construction of UðsÞ is the same as that for jΨβi. When jΨi
does not lie in the GNS Hilbert space, which happens when
UL changes the energy of the system by an amount which
scales with N, the story is different. We need to work with
the GNS space HGNS

Ψ associated with jΨ, which does not
overlap with that associated with jΨβ. The corresponding
representations, YL;R, of single-trace operator algebras in
the GNS Hilbert space built from jΨ will then also be
different from those associated with jΨβ.

31 In this case there
is no simple relation between UðsÞ for jΨi with those for
jΨβi as they act on different GNS Hilbert spaces.
There are many future questions to explore. We already

mentioned some in Sec. IV. Here we highlight a few more:
(1) From a generic bulk point X∈R, the flow (11.10)

reaches the future singularity for a finite value of s.
We have not seen a sharp signature of the singularity
either from (10.16)–(10.22) or the leading expres-
sions in the large mass limit except that the prefactor
λX in (11.9) goes to zero at the singularity. It is
possible that the signature of the singularity is
weakened by the nonlocal nature of the UðsÞ
evolution and is more subtle to detect. The singu-
larity should signal the breakdown of the UðsÞ
evolution, which is the way gravity tells us of its
emergent nature. It is clearly of great interest to
understand the emergence of the singularity better
and its possible resolution using our approach.

(2) Our discussions have been restricted to the leading
order in the 1=N expansion: in the bulk we have a
free field in a curved spacetime while on the
boundary we have a generalized free field theory.
We expect the general structure we uncovered
should persist to any finite order in the 1=N
expansion. Including higher order corrections cor-
responds to including gravitational physics in the
bulk, which could lead to a much richer structure, in
particular when including 1=N corrections to all
orders [34].

(3) It is of great interest to understand better how the
type III1 structure emerges in the large N limit.
Systems like the SYK model or matrix quantum
mechanics should provide laboratories. In fact, a
better understanding of the continuum limit of local
operator algebras of a quantum field theory should
be very instructive.

(4) The discussion here should also be generalizable to
single-sided black holes including evaporating ones.
We expect such constructions can shed new light on
the information loss problem.

(5) We also expect that the manner in which an in-
falling time emerges from the boundary theory here
should teach us valuable lessons about holography
for asymptotically flat and cosmological spacetimes.
This should be especially helpful for understanding
time in cosmological spacetimes including de Sitter.
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APPENDIX A: DETAILS OF THE
GNS CONSTRUCTION

In this Appendix we discuss some details of the GNS
construction of Sec. II B.
For each operator a∈ ÂTFD we associate a state jai, with

the inner products among them given by (2.19). The set of
operators y∈ ÂTFD such that hyjyi ¼ 0 is denoted by J . J
is a left ideal, as ay∈J for ∀ a∈ ÂTFD; y∈J , and is

called the Gelfand ideal. The GNS Hilbert space HðGNSÞ
TFD is

the completion of ÂTFD=J .
Equation (2.22) implies that for each equivalence class in

ÂTFD=J we may choose a representative in the subalgebra
AR;TFD, i.e. for any a∈ ÂTFD there exists AR ∈AR;TFD such
that

½a� ¼ ½AR�: ðA1Þ

To see this, consider an a∈ ÂTFD of the form

a ¼ BRCL; CL ¼
Yn
i¼1

OLðti; xiÞ: ðA2Þ

From (2.22)

yi¼OLðti;xiÞ−OR

�
tiþ

iβ
2
;xi

�
∈J ; i¼1;…;n: ðA3Þ

We can then write

OLðti; xiÞ ¼ OR

�
ti þ

iβ
2
; xi

�
þ yi; ðA4Þ

and CL can be written as

31The appearance of a different representation in this case is
also required by the duality since the bulk geometry is also
modified.
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CL ¼
Yn−1
i¼1

OLðti; xiÞ
�
OR

�
tn þ

iβ
2
; xn

�
þ yn

�

¼ OR

�
tn þ

iβ
2
; xn

�Yn−1
i¼1

OLðti; xiÞ þ cyn ðA5Þ

for some c∈ ÂTFD. Note cyn ∈J as J is a left ideal.
Continuing this process repeatedly we reach at the end

CL ¼ OR

�
tn þ

iβ
2
; xn

�
OR

�
tn−1 þ

iβ
2
; xn−1

�
� � �

×OR

�
t1 þ

iβ
2
; x1

�
þ ỹ; ỹ∈J ; ðA6Þ

which gives (A1). The discussion immediately generalizes
to sums of operators of the form (A2). Note that the
representative AR in (A1) is unique, as if there is another A0

R
also satisfying ½a� ¼ ½A0

R�; we then have AR − A0
R ∈J , but

this cannot be the case since jΨβi is separating for AR;TFD.

We thus conclude that HðGNSÞ
TFD can be generated by

AR;TFD alone.

APPENDIX B: VERIFICATION
OF Uð1Þ PROPERTIES

In this Appendix we show that the group property of
Λαβ
kk0 ðsÞ is satisfied, i.e.

Λαβ
kk0 ðs1ÞΛβγ

k0k00 ðs2Þ ¼ Λαγ
kk00 ðs1 þ s2Þ: ðB1Þ

Recall Λαβ
kk0 ðsÞ are given in terms of Ckk0 ðsÞ by (6.47)

and (6.48).

1. s1 and s2 of the same sign

We first show that (B1) follows from (6.49) when s1 and
s2 are of the same sign.
For s1 and s2 both negative, (6.79) trivially follows from

(6.49) for α ¼ R and either choice of β. For α ¼ L we need

ΛLL
kk0 ðs1ÞΛLL

k0k00 ðs2Þ þ ΛLR
kk0 ðs1ÞΛRL

k0k00 ðs2Þ
¼ ΛLL

kk00 ðs1 þ s2Þ; ðB2Þ

ΛLR
kk0 ðs1ÞΛRR

k0k00 ðs2Þ þ ΛLL
kk0 ðs1ÞΛLR

k0k00 ðs2Þ
¼ ΛLR

kk00 ðs1 þ s2Þ: ðB3Þ

For (B2) we have

sinh πω
sinh πω0 C−k−k0 ðs1Þ

sinh πω0

sinh πω00 C−k0−k00 ðs2Þ

¼ sinh πω
sinh πω00 C−k−k00 ðs1 þ s2Þ; ðB4Þ

which is automatically satisfied. For (B3), the left-hand side
has the form

sinh πðωþ ω0Þ
sinh πω0 C−kk0 ðs1ÞCk0k00 ðs2Þ þ

sinh πω
sinh πω0 C−k−k0 ðs1Þ

sinh πðω0 þ ω00Þ
sinh πω00 C−k0k00 ðs2Þ

¼
�
sinh πðω0 þ ωÞ

sinh πω0 −
sinh πω
sinh πω0

sinh πðω00 − ω0Þ
sinh πω00

�
C−kk0 ðs1ÞCk0k00 ðs2Þ

¼ sinh πðωþ ω00Þ
sinh πω00 C−kk00 ðs1 þ s2Þ ¼ ΛLR

kk00 ðs1 þ s2Þ: ðB5Þ

For s1, s2 > 0 we have the same story due to the symmetry between L and R in changing s < 0 to s > 0.

2. Opposite signs

For s1 and s2 of opposite sign the situation is more complicated, as we know that it must be since there must be some kind
of transition when s1 þ s2 changes sign. For α ¼ R, we need

ΛRR
kk0 ðs1ÞΛRR

k0k00 ðs2Þ þ ΛRL
kk0 ðs1ÞΛLR

k0k00 ðs2Þ ¼ ΛRR
kk00 ðs1 þ s2Þ; ðB6Þ

ΛRR
kk0 ðs1ÞΛRL

k0k00 ðs2Þ þ ΛRL
kk0 ðs1ÞΛLL

k0k00 ðs2Þ ¼ ΛRL
kk00 ðs1 þ s2Þ: ðB7Þ

For s1 < 0, s2 > 0, (B6) can be written more explicitly as

Ckk0 ðs1Þ
sinh πω0

sinh πω00 Ck0k00 ð−s2Þ ¼
�
Ckk00 ðs1 þ s2Þ s1 þ s2 < 0

sinh πω
sinh πω00 Ckk00 ð−s1 − s2Þ s1 þ s2 > 0

; ðB8Þ
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while for s1 > 0, s2 < 0

sinh πω
sinh πω0 Ckk0 ð−s1ÞCk0k00 ðs2Þ þ

sinh πðωþ ω0Þ
sinh πω0 Ck−k0 ð−s1Þ

sinh πðω0 þ ω00Þ
sinh πω00 C−k0k00 ðs2Þ

¼ Ckk0 ð−s1Þ
sinh πðωþ ω00 − ω0Þ

sinh πω00 Ck0k00 ðs2Þ

¼
�
Ckk00 ðs1 þ s2Þ s1 þ s2 < 0

sinh πω
sinh πω00 Ckk00 ð−s1 − s2Þ s1 þ s2 > 0

: ðB9Þ

For s1 < 0, s2 > 0 (B7) can be written more explicitly as

Ckk0 ðs1Þ sinh πðω0 þ ω00ÞCk0−k00 ð−s2Þ ¼
�
0 s1 þ s2 < 0

sinh πðωþ ω00ÞCkk00 ð−s1 − s2Þ s1 þ s2 > 0
; ðB10Þ

while for s1 > 0, s2 < 0

sinh πðωþ ω0Þ
sinh πω0 Ck−k0 ð−s1Þ

sinh πω0

sinh πω00 C−k0−k00 ðs2Þ ¼ Ckk0 ðs01Þ
sinh πðω − ω0Þ

sinh πω00 Ck0−k00 ð−s02Þ

¼
�
0 s01 þ s02 > 0

sinh πðωþω00Þ
sinh πω00 Ckk00 ðs01 þ s02Þ s01 þ s02 < 0

; s01 ¼ −s1 < 0; s02 ¼ −s2 > 0: ðB11Þ

From the “transpose” property (6.76) Eqs. (B11) and (B10) are equivalent. Equation (B9) becomes

Ckk0 ðs2Þ sinh πðωþ ω00 − ω0ÞCk0k00 ð−s1Þ ¼
�
sinh πωCkk00 ðs1 þ s2Þ s1 þ s2 < 0

sinh πω00Ckk00 ð−s1 − s2Þ s1 þ s2 > 0
ðB12Þ

while (B8) has the form

Ckk0 ðs1Þ sinh πω0Ck0k00 ð−s2Þ ¼
�
sinh πω00Ckk00 ðs1 þ s2Þ s1 þ s2 < 0

sinh πωCkk00 ð−s1 − s2Þ s1 þ s2 > 0
: ðB13Þ

The independent equations are then (B12), (B13), and (B10), respectively. These relations readily follow from (6.75) and
the following identity:

Z
dω0

2π
Iωω0 ðs1Þ sinh πðω0 þ aÞIω0ω00 ðs2Þ ¼ Iωω00 ðjs1 − s2jÞ sinh πðω̃þ aÞ; s1;2 > 0 ðB14Þ

where ω̃ ¼ ω;ω00 for s2 > s1 and s2 < s1. To see the identity, note

Z
dω0

2π
Iωω0 ðs1Þ sinh πðω0 þ aÞIω0ω00 ðs2Þ ¼

Z
dω0

2π
s−iðω−ω

0Þ
1 Γðiðω − ω0Þ þ ϵÞs−iðω0−ω00Þ

2 Γðiðω0 − ω00Þ þ ϵÞ sinh πðω0 þ aÞ

¼
X∞
n¼0

1

n!

� ðs1s2Þns
−iðω−ω00Þ
2 Γðiðω − ω00Þ þ nÞ sinh πðωþ aÞ s2 > s1

ðs2s1Þns
−iðω−ω00Þ
1 Γðiðω − ω00Þ þ nÞ sinh πðω00 þ aÞ s2 < s1

¼ Γðiðω − ω00Þ þ ϵÞðsa − sbÞ−iðω−ω00Þ sinh πðω̃þ aÞ; ðB15Þ

where for s2 < s1 (s2 > s1) we can close the contour in the upper (lower) half complex ω0 plane. In the above we have
sa ¼ maxðs1; s2Þ; sb ¼ minðs1; s2Þ and ω̃ as defined earlier.
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APPENDIX C: REVIEW OF ADS RINDLER
AND BTZ BLACK HOLE

In this section we elaborate more on the geometries of
AdS-Rindler in (2þ 1) dimensions and the BTZ black hole
reviewed in Sec. VIII A. We will set the AdS radius to be
unity throughout.

1. AdS Rindler in (2 + 1) dimension

The Poincaré patch of AdS3,

ds2 ¼ 1

z2
ð−ðdx0Þ2 þ ðdx1Þ2 þ dz2Þ

¼ 1

z2
ð−dxþdx− þ dz2Þ; x� ¼ x0 � x1; ðC1Þ

can be separated into four different AdS Rindler regions,
labeled by R, L, F , P corresponding respectively to
regions with ðxþ; x−Þ having signs ðþ;−Þ, ð−;þÞ,
ðþ;þÞ, ð−;−Þ. They have respectively R, L, F, P
Rindler regions of Minkowski spacetime R1;1 as their
boundaries (z → 0). See Fig. 6. In the BTZ coordinates
ðη; w; χÞ, which for R region has the form

z ¼ weχ ; xþ ¼ eξ
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
;

x− ¼ −e−ξ−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
; ξ� ¼ η� χ; ðC2Þ

e2η ¼ −
xþ

x−
; e2χ ¼ z2 − xþx−;

w2 ¼ z2

z2 − xþx−
; 1 − w2 ¼ −xþx−

z2 − xþx−
; ðC3Þ

the metric has the form

ds2 ¼ 1

w2
½−ð1 − w2Þdη2 þ ð1 − w2Þ−1dw2 þ dχ2�: ðC4Þ

The AdS Rindler horizon is at w ¼ 1, and the boundary is
at w ¼ 0. The metric (C4) can be used to cover the other
AdS Rindler regions with the transformation (C2) suitably
modified for each region. For example, for the F region we
can introduce

z ¼ weχ ; xþ ¼ eξ
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
; x− ¼ e−ξ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
;

ðC5Þ

e2η ¼ xþ

x−
; e2χ ¼ z2 − xþx−; w2 ¼ z2

z2 − xþx−
:

ðC6Þ

Notice that the last three equations of (C6) remain the same
as those in (C3) except that now w > 1. Equations (C5) and
(C6), however, only cover the part of the F region with

z2 − xþx− > 0 (to which we will refer as F 1 region), with
w ¼ ∞ corresponding to z2 ¼ xþx−. For z2 − xþx− < 0 (to
which we will refer as F 2 region) the second equation of
(C6) no longer makes sense. For the F 2 region we can
analogously introduce

z ¼ weχ ; xþ ¼ eξ
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þw2
p

; x− ¼ e−ξ
−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

p
;

ðC7Þ

e2η ¼ xþ

x−
; e2χ ¼ xþx− − z2; w2 ¼ z2

xþx− − z2
;

ðC8Þ

but the corresponding metric now has the form

ds2 ¼ 1

w2
½ð1þ w2Þdη2 þ ð1þ w2Þ−1dw2 − dχ2�; ðC9Þ

and similarly for the P region. Note that the F 1, P1 regions
do not contain any points near the asymptotic boundary,
while the boundaries of the F 2 and P2 regions are
respectively the F and P regions of Minkowski spacetime
R1;1.
Now consider a point X ¼ ðx−; xþ; zÞ in the R region

(with x− < 0; xþ > 0) and a null shift X → Xs ¼
ðxþs ; x−s ; zsÞ with

x−s ¼ x− þ s; xþs ¼ xþ; zs ¼ z: ðC10Þ

For x−s < 0, Xs remains in theR region. The corresponding
transformation can be written in terms of the BTZ coor-
dinates as

ws ¼
wffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − as
p ; eξ

−
s ¼ eξ

− ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − as

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − as − w2

p ;

eξ
þ
s ¼ eξ

þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − as

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − as − w2

p ; ðC11Þ

where

as ≡ seξ
−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
ðC12Þ

and as < 1 − w2 for this range of s. For s ≥ s0 ¼
e−ξ

− ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
, the AdS Rindler horizon is crossed,

and we have x−s > 0. For z2s − xþs x−s > 0, we have
1 > as > 1 − w2, and Xs lies in the F 1 region. The
corresponding transformation becomes
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ws ¼
wffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − as
p ; eξ

−
s ¼ eξ

− ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − as

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
as − 1þ w2

p ;

eξ
þ
s ¼ eξ

þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − as

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
as − 1þ w2

p : ðC13Þ

Finally, for x−s > 0; z2s − xþs x−s < 0, we have as > 1, and Xs
lies in the F 2 region. The corresponding transformation
becomes

ws ¼
wffiffiffiffiffiffiffiffiffiffiffiffiffi

as − 1
p ; eξ

−
s ¼ eξ

− ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
as − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
as − 1þ w2

p ;

eξ
þ
s ¼ eξ

þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
as − 1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
as − 1þ w2

p : ðC14Þ

2. BTZ geometry

The BTZ black hole can be obtained from the AdS
Rindler metric (C4) by making χ compact [41]. Now
w ¼ ∞ is a genuine singularity where the spacetime ends,
and w ¼ 1 becomes an event horizon. The black hole has
inverse temperature β ¼ 2π. As usual the black hole
spacetime can be extended to four regions by using the
Kruskal coordinates (see Fig. 3), which for R and F regions
have the form

R∶ U ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − w
1þ w

r
e−η; V ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − w
1þ w

r
eη; ðC15Þ

F∶ U ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
w − 1

1þ w

r
e−η; V ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
w − 1

1þ w

r
eη: ðC16Þ

In terms of the Kruskal coordinates the metric has the form

ds2 ¼ −
4

ð1þ UVÞ2 dUdV þ ð1 −UVÞ2
ð1þ UVÞ2 dχ

2: ðC17Þ

The event horizons lie at U;V ¼ 0, the boundary lies at
UV ¼ −1, and the singularity at UV ¼ 1.
Consider a shift of a point X ¼ ðU;V; χÞ∈R to Xs ¼

ðUs; Vs; χsÞ with

Us ¼ U þ s; Vs ¼
V

1 − sV
; χs ¼ χ: ðC18Þ

For Xs ∈R, this can be expressed in BTZ coordinates as

e2ηs ¼ e2η

1 − 2bþ c2
; ws ¼

w
1 − bð1 − w2Þ ðC19Þ

b≡ seηffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p ; c≡ seη: ðC20Þ

Xs crosses the horizon at s ¼ s0 ¼
ffiffiffiffiffiffiffiffi
1−w0

1þw0

q
e−η0 where

1 − 2bþ c2 ¼ 0. For s > s0, i.e. Xs ∈F, the first equation
in (C19) has an extra minus sign.

APPENDIX D: ANALYTIC CONTINUATIONS
OF BULK MODE FUNCTIONS

In this Appendix we give analytic continuations of
(i) mode functions in the R and L regions to the F region
for the AdS Rindler; (ii) mode functions in the R and L
regions to the F region of the BTZ geometry.

1. AdS-Rindler mode functions

The AdS-Rindler mode functions in the right/left
AdS-Rindler regions are given by

vðRÞk ðXÞ ¼ Nke−iωηþiqχwΔð1 − w2Þ−iω
2Fðq̄þ; q̄−;Δ; w2Þ

¼ NkðxþÞ−iωðz2 − xþx−Þ−qþ

× F

�
q̄þ; q̄−;Δ;

z2

z2 − xþx−

�
ðD1Þ

vðLÞk ðXÞ ¼ Nkeiωη−iqχwΔð1 − w2Þiω2Fðqþ; q−;Δ; w2Þ
¼ NkðxþÞiωðz2 − xþx−Þ−q̄þ

× F

�
qþ; q−;Δ;

z2

z2 − xþx−

�
; ðD2Þ

where we have also expressed them in terms of Poincare
coordinates.
From the usual Unruh procedure, we can obtain mode

functions wðR;LÞ
k corresponding to the Poincare vacuum

j0ibulk by analytically continuing vðR;LÞk in the complex
planes32:

wðRÞ
k ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinh πjωjp ðeπjωj
2 vðRÞk þ e−

πjωj
2 vðLÞ−k Þ; ðD3Þ

wðLÞ
k ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinh πjωjp ðeπjωj
2 vðLÞk þ e−

πjωj
2 vðRÞ−k Þ ðD4Þ

and the inverse are given by

vðRÞk ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh πjωjp ðeπjωj

2 wðRÞ
k − e−

πjωj
2 wðLÞ

−k Þ; ðD5Þ

vðLÞk ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh πjωjp ðeπjωj

2 wðLÞ
k − e−

πjωj
2 wðRÞ

−k Þ: ðD6Þ

32wðR;LÞ
k with ω > 0 (ω < 0) are obtained from continuing in

the lower (upper) complex x−; xþ planes.
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By construction wðR;LÞ
k are analytic in x� and are thus defined for all x�. We can then use (D5)–(D6) to “continue” vðR;LÞk

to the F and P regions. Note that thus constructed vðR;LÞk are not analytic at the Rindler horizons. We then find that

vðRÞk ðXÞ ¼ NkwΔe−iωηþiqχ ·

8>>>>>>>>>>><
>>>>>>>>>>>:

−i sin πq−sinh πω ðw2 þ 1Þ−iω
2Fðq̄þ; q̄−;Δ;−w2Þ; F 2

ΓðΔÞΓðiωÞ
ΓðqþÞΓðq−Þ ðw2 − 1Þ−iω

2Fðq̄þ; q̄−; 1 − iω; 1 − w2Þ; F 1

ð1 − w2Þ−iω
2Fðq̄þ; q̄−;Δ;w2Þ; R

0; L
ΓðΔÞΓð−iωÞ
Γðq̄þÞΓðq̄−Þ ðw2 − 1Þiω2Fðqþ; q−; 1þ iω; 1 − w2Þ; P1

i sin πq̄þsinh πω ðw2 þ 1Þiω2Fðqþ; q−;Δ;−w2Þ; P2

ðD7Þ

and

vðLÞk ðXÞ ¼ NkwΔeiωη−iqχ ·

8>>>>>>>>>>><
>>>>>>>>>>>:

−i sin πqþsinh πω ðw2 þ 1Þ−iω
2Fðq̄þ; q̄−;Δ;−w2Þ; F 2

ΓðΔÞΓðiωÞ
ΓðqþÞΓðq−Þ ðw2 − 1Þ−iω

2Fðq̄þ; q̄−; 1 − iω; 1 − w2Þ; F 1

0; R

ð1 − w2Þiω2Fðqþ; q−;Δ;w2Þ; L
ΓðΔÞΓð−iωÞ
Γðq̄þÞΓðq̄−Þ ðw2 − 1Þiω2Fðqþ; q−; 1þ iω; 1 − w2Þ; P1

i sin πq̄−sinh πω ðw2 þ 1Þiω2Fðqþ; q−;Δ;−w2Þ; P2

: ðD8Þ

2. BTZ mode functions

The story is completely parallel for continuing mode functions in BTZ, except now we use the Kruskal coordinates, in
terms of which

vðRÞk ðXÞ ¼ Nkeiqχð2VÞ−iωð1þ UVÞΔð1 −UVÞ−ΔþiωF

�
q̄þ; q̄−;Δ;

�
1þ UV
1 −UV

�
2
�
; ðD9Þ

vðLÞk ðXÞ ¼ Nke−iqχð−2VÞiωð1þ UVÞΔð1 −UVÞ−Δ−iωF
�
qþ; q−;Δ;

�
1þ UV
1 −UV

�
2
�
: ðD10Þ

Again by first constructing wðR;LÞ
k in the R and L regions using (D3) and (D4), analytically continuing wðR;LÞ

k to other

regions, we then use (D5) and (D6) to find the corresponding vðR;LÞk in other regions. We find

vðRÞk ðXÞ ¼ Nk

�
1þ UV
1 −UV

�
Δ
eiqχ ·

8>>>>>>>>><
>>>>>>>>>:

ð2VÞ−iωð1 −UVÞiω ΓðΔÞΓðiωÞ
ΓðqþÞΓðq−ÞF

�
q̄þ; q̄−; 1 − iω;

−4UV
ð1 −UVÞ2

�
; F

ð2VÞ−iωð1 −UVÞiωF
�
q̄þ; q̄−;Δ;

�
1þ UV
1 −UV

�
2
�
; R

0; L

ð−2UÞ−iωð1 −UVÞ−iω ΓðΔÞΓð−iωÞ
Γðq̄þÞΓðq̄−Þ F

�
qþ; q−; 1þ iω;

−4UV
ð1 −UVÞ2

�
; P

ðD11Þ

and
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vðLÞk ðXÞ ¼ Nk

�
1þ UV
1 −UV

�
Δ
e−iqχ ·

8>>>>>>>>><
>>>>>>>>>:

ð2UÞ−iωð1 −UVÞiω ΓðΔÞΓðiωÞ
ΓðqþÞΓðq−ÞF

�
q̄þ; q̄−; 1 − iω;

−4UV
ð1 −UVÞ2

�
; F

0; R

ð−2VÞiωð1 −UVÞ−iωF
�
qþ; q−;Δ;

�
1þUV
1 − UV

�
2
�
; L

ð−2VÞiωð1 −UVÞ−iω ΓðΔÞΓð−iωÞ
Γðq̄þÞΓðq̄−Þ F

�
qþ; q−; 1þ iω;

−4UV
ð1 − UVÞ2

�
; P:

ðD12Þ

Note that (D11) and (D12) may be also expressed in terms of BTZ coordinates. For example, in the F region we have

vðRÞk ðXÞ ¼ NkwΔe−iωηþiqχ ΓðΔÞΓðiωÞ
ΓðqþÞΓðq−Þ

ðw2 − 1Þ−iω
2Fðq̄þ; q̄−; 1 − iω; 1 − w2Þ

vðLÞk ðXÞ ¼ NkwΔeiωη−iqχ
ΓðΔÞΓðiωÞ
ΓðqþÞΓðq−Þ

ðw2 − 1Þ−iω
2Fðq̄þ; q̄−; 1 − iω; 1 − w2Þ: ðD13Þ

Near the horizon, i.e. taking UV → 0 in (D11) and
(D12), we then have

vðRÞk ðXÞ ¼ eiqχffiffiffiffiffiffiffiffiffi
2jωjp ·

8>>><
>>>:

eiδkV−iω; F

eiδkV−iω þ e−iδkð−UÞiω; R

0; L

e−iδkð−UÞiω; P

ðD14Þ

and

vðLÞk ðXÞ ¼ e−iqχffiffiffiffiffiffiffiffiffi
2jωjp ·

8>>><
>>>:

eiδkU−iω; F

0; R

eiδkU−iω þ e−iδkð−VÞiω; L

e−iδkð−VÞiω; P:

ðD15Þ

In each case the phase shift is given by

eiδk ¼ ΓðiωÞjΓðq−ÞΓðqþÞj
jΓðiωÞjΓðq−ÞΓðqþÞ

e−iω log 2: ðD16Þ

APPENDIX E: MODE EXPANSIONS
IN THE BOUNDARY

Here we discuss the mode expansions for the generalized
free field theories resulting from a two-dimensional CFT in

the large N limit for two cases: (i) in vacuum restricted to a
Rindler region; (ii) at finite temperature (dual to a BTZ
black hole). A convenient way to obtain both is to take the
boundary limit of the corresponding bulk mode expansions.
For the boundary CFTR;L dual to a BTZ black hole, the

boundary mode expansion for the dual operator Oα can be
obtained by taking w → 0 limit of (8.6) and stripping off
the wΔ factor, which gives

OαðxÞ ¼ lim
w→0

w−ΔϕðαÞðXÞ ¼
Z

d2k
ð2πÞ2 u

ðαÞ
k ðxÞaðαÞk ðE1Þ

uðRÞk ðxÞ ¼ Nkeik·x; uðLÞk ðxÞ ¼ Nke−ik·x: ðE2Þ

In the AdS-Rindler case (with noncompact χ), the
boundary limit should now be defined by using the
Poincaré radial coordinate z and stripping off a factor of
zΔ, which gives

OαðxÞ ¼ lim
z→0

z−ΔϕðαÞðXÞ ¼
Z

d2k
ð2πÞ2 u

ðαÞ
k ðxÞaðαÞk : ðE3Þ

Now due to the difference between w and z we have an
additional e−Δχ factor compared with (E1). The behavior of

uðαÞk in various Rindler regions can then be obtained from
(D7)–(D8):

uðRÞk ðxÞ ¼ Nk

sinh πω

8>>><
>>>:

sinh πωð−x−Þ−q̄þðxþÞ−q− ; x− < 0; xþ > 0ðRÞ
−i sin πq−ðx−Þ−q̄þðxþÞ−q− ; x− > 0; xþ > 0ðFÞ
0; x− > 0; xþ < 0ðLÞ
i sin πq̄þð−x−Þ−q̄þð−xþÞ−q− ; x− < 0; xþ < 0ðPÞ

ðE4Þ

and
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uðLÞk ðxÞ ¼ Nk

sinh πω

8>>><
>>>:

0; x− < 0; xþ > 0ðRÞ
−i sin qþðx−Þ−qþðxþÞ−q̄− ; x− > 0; xþ > 0ðFÞ
sinh πωðx−Þ−qþð−xþÞ−q̄− ; x− > 0; xþ < 0ðLÞ
i sin πq̄−ð−x−Þ−qþð−xþÞ−q̄− ; x− < 0; xþ < 0ðPÞ

: ðE5Þ

APPENDIX F: PROPERTIES OF
HYPERGEOMETRIC FUNCTIONS

Here we collect for convenience various properties of
hypergeometric functions used in the main text.

1. Asymptotic behavior of hypergeometric function

We first discuss the asymptotic behavior of the hyper-
geometric function Fða; b; c; zÞ when one or more of its
parameters a, b, c are taken to be large.
Below λ should be understood as a complex parameter

with jλj → ∞.

a. Case I

From [82], for y=ðy − 1Þ < 1
2
and λ not on the negative

imaginary axis,

Fða;b− iλ;c− iλ;yÞ ¼ ð1− yÞ−aF
�
a;c− b;c− iλ;

y
y− 1

�
¼ ð1− yÞ−að1þOðλ−1ÞÞ: ðF1Þ

For 1
2
< y=ðy − 1Þ < 1 the leading term is the same as (F1),

although there are additional terms that are exponentially
suppressed at large jλj.

b. Case II

When λ is on the imaginary axis or in the right half plane
and for any real y∈ ð1;∞Þ, we have [82]

F

�
aþ λ;a− λ;c;

1− y
2

�

¼ ΓðcÞΓðλþ 1þa− cÞ
Γðaþ λÞ

�
a0

�
ζ

2

�
1−c

Ic−1ðζλÞþOðΦ1Þ
�
;

ðF2Þ
where (Ic below is a modified Bessel function)

ζ ¼ log
�
yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

q 	
;

a0 ¼ 2aþ1
2
−cðyþ 1Þc2−1

4
−aðy − 1Þ14−c

2ζc−
1
2 ðF3Þ

Φ1 ¼ jζ1−cλ−1Ic−1ðζλÞj þ jζ−cλ−1IcðζλÞj: ðF4Þ

For λ in the upper-half complex plane, −iλ is in the right
half plane, while for λ in the lower-half complex plane, iλ.

Now consider with w∈ ð0; 1Þ,

Fða − iλ; b − iλ; c;w2Þ

¼ ð1 − w2Þ−bþiλF

�
b1 þ iλ1; b1 − iλ1; c;

1 − y
2

�
ðF5Þ

¼ ð1 − w2Þ−aþiλF

�
b2 − iλ1; b2 þ iλ1; c;

1 − y
2

�
ðF6Þ

b1 ¼
c − aþ b

2
; λ1 ¼ λ − i

c − a − b
2

;

b2 ¼
c − bþ a

2
; y ¼ 1þ w2

1 − w2
: ðF7Þ

From (F2), we should use (F5) for λ in the lower-half
complex plane and (F6) for λ in the upper-half complex
plane. We thus find for Imλ > 0

Fða − iλ; b − iλ; c;w2Þ

¼ ð1 − w2Þ−aþiλ ΓðcÞΓða − iλþ 1 − cÞ
Γða − iλÞ

× A0

�
ζ

2

�
1−c e−iζλ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2πiζλ1
p ; ðF8Þ

ζ ¼ log
�
yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

q 	
¼ log

1þ w
1 − w

;

A0 ¼ 2b2þ1
2
−cðyþ 1Þc2−1

4
−b2ðy − 1Þ14−c

2ζc−
1
2; ðF9Þ

and for Imλ < 0

Fða− iλ;b− iλ;c;w2Þ

¼ ð1−w2Þ−bþiλΓðcÞΓð−aþ iλþ1Þ
Γðc−aþ iλÞ Ã0

�
ζ

2

�
1−c eiζλ1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2πiζλ1
p ;

ðF10Þ

Ã0 ¼ 2b1þ1
2
−cðyþ 1Þc2−1

4
−b1ðy − 1Þ14−c

2ζc−
1
2: ðF11Þ

In each case we have kept only the leading term and used
(F2) and the asymptotic expansion of the Bessel function
at large argument. Applying the above equations to
Fðq̄−; q̄þ;Δ;w2Þ we then find (8.13).
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2. A derivation

Here we give a derivation of (10.52). First consider c ¼
jsjeη < 1 for which we may close the contour in (10.47) in
the upper-half plane enclosing poles at ω0 ¼ iðnþ ϵÞ,
which gives

J1 ¼ ð2cÞ−iω
X∞
n¼0

ð−1Þnð2cÞn
n!

Γ
�
q̄þ þ n

2

�
Γ
�
q̄− þ n

2

�

ðF12Þ

¼ð2cÞ−iω
�
Γðq̄þÞΓðq̄−ÞF

�
q̄þ;q̄−;

1

2
;c2
�

−2cΓ
�
q̄þþ

1

2

�
Γ
�
q̄−þ

1

2

�
F

�
q̄þþ

1

2
;q̄−þ

1

2
;
3

2
;c2
��

:

ðF13Þ

For c > 1, we may close the integral of (10.47) in the
lower-half plane enclosing poles at ω0 ¼ −2iðq̄� þ nÞ
to find

J1 ¼ ð2cÞ−iω
X∞
n¼0

2ð−1Þnð2cÞ−2n
n!

½ð2cÞ−2q̄þΓðiq − nÞΓð2ðnþ q̄þÞÞ þ ð2cÞ−2q̄−Γð−iq − nÞΓð2ðnþ q̄−ÞÞ�

¼ 2ð2cÞ−iω
�
ð2cÞ−2q̄þΓðiqÞΓð2q̄þÞF

�
q̄þ; q̄þ þ 1

2
; 1 − iq; c−2

�

þð2cÞ−2q̄−Γð−iqÞΓð2q̄−ÞF
�
q̄−; q̄− þ 1

2
; 1þ iq; c−2

��
: ðF14Þ

Finally for 0 < s < s0, we may close the integral for (10.48) in the upper-half plane enclosing poles at ω0 ¼ iðnþ ϵÞ
to find

J2 ¼ ð2cÞ−iω
X∞
n¼0

sinh πðωþ inÞð−1Þnð2cÞn
n!

Γ
�
q̄þ þ n

2

�
Γ
�
q̄− þ n

2

�
ðF15Þ

¼ ð2cÞ−iω sinh πω
�
Γðq̄þÞΓðq̄−ÞF

�
q̄þ; q̄−;

1

2
; c2
�

þ2cΓ
�
q̄þ þ 1

2

�
Γ
�
q̄− þ 1

2

�
F

�
q̄þ þ 1

2
; q̄− þ 1

2
;
3

2
; c2
��

: ðF16Þ

Notice that the quantities in square brackets in (F13) and (F16) are identical as functions of s, since for (F13) s < 0 so
c ¼ −seη while for (F16) we have s > 0, so c ¼ seη.
Applying the following identities to (F13) and (F16),

F

�
a;b;

1

2
;c2
�
þ2c

Γðaþ 1
2
ÞΓðbþ 1

2
Þ

ΓðaÞΓðbÞ F

�
aþ1

2
;bþ1

2
;
3

2
;c2
�
¼Γðaþ 1

2
ÞΓðbþ 1

2
Þffiffiffi

π
p

Γðaþbþ 1
2
Þ F
�
2a;2b;aþbþ1

2
;
1þc
2

�
ðF17Þ

F

�
a;b;

1

2
;c2
�
− 2c

Γðaþ 1
2
ÞΓðbþ 1

2
Þ

ΓðaÞΓðbÞ F

�
aþ 1

2
; bþ 1

2
;
3

2
;c2
�
¼ Γðaþ 1

2
ÞΓðbþ 1

2
Þffiffiffi

π
p

Γðaþ bþ 1
2
Þ F
�
2a;2b;aþ bþ 1

2
;
1− c
2

�
; ðF18Þ

we find for jsj < s0

J1 ¼
J2

sinh πω
¼ ð2cÞ−iω Γðq̄þÞΓðq̄−ÞΓðq̄þ þ 1

2
ÞΓðq̄− þ 1

2
Þffiffiffi

π
p

ΓðΔ − iωþ 1
2
Þ F

�
2q̄þ; 2q̄−;Δ − iωþ 1

2
;
1þ seη

2

�
; ðF19Þ

where J1 is for s < 0 and J2 for s > 0.
We can now show that (F14) yields the exact same result (F19), so (F19) also applies for s < −s0. First notice that the

second term in square brackets in (F14) can be obtained from the first by taking q → −q. Since we have 0 < c−2 < 1when
(F14) applies, the hypergeometric function in the first term in square brackets in (F19) can be rewritten as follows using the
standard z → 1 − 1

z identity of the hypergeometric function
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F

�
q̄þ; q̄þ þ 1

2
; 1 − iq; c−2

�
¼ πΓð1 − iqÞ

sin πð1
2
− Δþ iωÞ

�
c2q̄þFðq̄þ; q̄−;Δ − iωþ 1

2
; 1 − c2Þ

Γð1 − q̄−ÞΓð12 − q̄−ÞΓðΔ − iωþ 1
2
Þ

−ð1 − c−2Þ12−Δþiω c
2−2q̄−Fð1 − q̄þ; 1 − q̄−; iω − Δþ 3

2
; 1 − c2Þ

Γðq̄þÞΓðq̄þ þ 1
2
ÞΓðiω − Δþ 3

2
Þ

�
: ðF20Þ

Using product formulas for the gamma function, the Legendre duplication formula and (F20) the first term in square
brackets in (F14) is

ð2cÞ−2q̄þΓðiqÞΓð2q̄þÞF
�
q̄þ; q̄þ þ 1

2
; 1 − iq; c−2

�

¼ π2Γðq̄þÞΓðq̄þ þ 1
2
Þ

2
ffiffiffi
π

p
sin iπq sin πð1

2
− Δþ iωÞ

�
Fðq̄þ; q̄−;Δ − iωþ 1

2
; 1 − c2Þ

Γð1 − q̄−ÞΓð12 − q̄−ÞΓðΔ − iωþ 1
2
Þ

− ð1 − c−2Þ12−Δþiω c
2ð1−ΔþiωÞFð1 − q̄þ; 1 − q̄−; iω − Δþ 3

2
; 1 − c2Þ

Γðq̄þÞΓðq̄þ þ 1
2
ÞΓðiω − Δþ 3

2
Þ

�
: ðF21Þ

Notice that, when we include the multiplication by the
overall factor, the second term in (F21) is an odd function
of q. Since J1 is obtained by adding (F21) to an identical
expression with q → −q as in (F14), this second term in
(F21) will cancel out of the full expression for J1. The result
from (F14) is then

J1 ¼ ð2cÞ−iω π2ffiffiffi
π

p
sin iπq sin πð1

2
− Δþ iωÞΓðΔ − iωþ 1

2
Þ

·

�
Γðq̄þÞΓðq̄þ þ 1

2
Þ

Γð1 − q̄−ÞΓð12 − q̄−Þ
−

Γðq̄−ÞΓðq̄− þ 1
2
Þ

Γð1 − q̄þÞΓð12 − q̄þÞ
�

× F

�
q̄þ; q̄−;Δ − iωþ 1

2
; 1 − c2

�
: ðF22Þ

Using product formulas for gamma functions, the term
in square brackets in (F22) can be shown to be
π−2Γðq̄þÞΓðq̄þþ1

2
ÞΓðq̄−ÞΓðq̄−þ1

2
Þsiniπqsinπð1

2
−Δþ iωÞ,

while, since c > 0 by definition, we have the quadratic
identity for the hypergeometric function

F

�
q̄þ; q̄−;Δ − iωþ 1

2
; 1 − c2

�

¼ F

�
2q̄þ; 2q̄−;Δ − iωþ 1

2
;
1 − c
2

�
: ðF23Þ

Thus with these two observations, and recalling that J1 only
applies for s < 0 ⇒ c ¼ −seη, the result (F19) immedi-
ately follows, confirming that (F19) applies for all s < s0.

3. Some summation formulas
for hypergeometric functions

In this subsection we quote some useful formulas
regarding hypergeometric functions. The fourth formula
from section 6.7.1 of [83] is

X∞
n¼0

ðaÞnðb0Þn
n!ðc0Þk

tnFðaþ n; b; c; xÞ ¼ F2ða; b; b0; c; c0; x; tÞ;

ðF24Þ
valid for jtj þ jxj < 1. Another useful formula is (35) from
[84] which gives

F2ða; b; b0;b; c0; x; tÞ ¼ ð1 − xÞ−aF
�
a; b0; c0;

t
1 − x

�
:

ðF25Þ
The eighth formula from section 6.7.1 of [83],

X∞
n¼0

ðaÞnðc − bÞn
n!ðcÞk

tnFðaþ n; b; cþ n; xÞ

¼ ð1 − tÞ−aF
�
a; b; c;

x − t
1 − t

�
; ðF26Þ

valid for jxj; jtj < 1, is also useful.

APPENDIX G: WAVE FUNCTIONS ON THE BTZ
GEOMETRY IN THE LARGE MASS LIMIT

In this appendix we collect the quantities describing the
evolution of a large mass bulk scalar field in the BTZ
geometry. We begin by considering finite transverse
momentum (q ≠ 0) and then specialize to zero transverse
momentum where the expressions greatly simplify.
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1. General q

We first collect the quantities describing the large mass limit of the bulk mode function in (11.5)–(11.6), which, for
convenience we copy below:

vðRÞk ðXÞ ¼
8<
:
P
γ¼�

AðγÞ
k ðXÞeiνZðγÞ

k ðXÞð1þOðν−1ÞÞ; juj > uw ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−w2Þð1þp2w2Þ

p
w

AðfÞ
k ðXÞe−νZðfÞ

k ðXÞð1þOðν−1ÞÞ; juj < uw

ðG1Þ

ΛRα
kk0 ðsÞ ¼ δqq0BRα

kk0 ðsÞeiνW
Rα
kk0 ðsÞð1þOðν−1ÞÞ; ðG2Þ

where we have taken X ¼ ðη; w; χÞ∈R above. For X ¼ ðη; w; χÞ∈L, there is a similar expression,

vðLÞk ðXÞ ¼
8<
:
P
γ¼�

AðγÞ
k ðXÞeiνð2uη−2pχþZðγÞ

k ðXÞÞð1þOðν−1ÞÞ; juj > uw ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−w2Þð1þp2w2Þ

p
w

AðfÞ
k ðXÞe−νð2ipχ−2iuηþZðfÞ

k ðXÞÞð1þOðν−1ÞÞ; juj < uw

: ðG3Þ

At finite q, there are four classical turning points in the complex w plane. They are w ¼ �aq;�ibq, with

aq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − u2 − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − u2 − 1Þ2 þ 4p2

p
2p2

s
; bq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
p2 − u2 − 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 − u2 − 1Þ2 þ 4p2

p
2p2

s
: ðG4Þ

The WKB phase is then given by

Zð�Þ
k ðXÞ ¼ −uηþ pχ �

"
i
2
log

 
aq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ b2q

q
− ibq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − a2q

q
aq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ b2q

q
þ ibq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − a2q

q
!

þ jpj log
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 − a2q
a2q þ b2q

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ b2q
a2q þ b2q

s !

−
juj
2
log

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ b2q

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2q

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2q

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − a2q

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ b2q

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2q

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2q

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − a2q

q
!#

ZðfÞ
k ðXÞ ¼ iuη − ipχ þ 1

2
log

 
aq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ b2q

q
þ bq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2q − w2

q
aq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ b2q

q
− bq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2q − w2

q
!
− ijpj log

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ b2q
a2q þ b2q

s
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2q − w2

a2q þ b2q

s !

−
ijuj
2

log

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ b2q

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2q

q
− i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2q

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2q − w2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ b2q

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2q

q
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2q

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2q − w2

q
!
: ðG5Þ

The Oðν−1
2Þ prefactor is given by

Að�Þ
k ðXÞ ¼ w

1
2ffiffiffiffiffi
2ν

p
�

1

p2ðw2 − a2qÞðw2 þ b2qÞ
�1

4

e�iπ
4 AðfÞ

k ðXÞ ¼ w
1
2ffiffiffiffiffi
2ν

p
�

1

p2ða2q − w2Þðw2 þ b2qÞ
�1

4

: ðG6Þ
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The large ν limit of ΛRα
kk0 ðsÞ is described by

WRR
kk0 ðsÞ ¼ −

iπ
2
ϵðsÞðjuj − ju0jÞ þ ðu0 − uÞ log jsj − ðu0 − uÞ logðiðu − u0ÞÞ

þ u0

4
log ðð1þ ðu0 þ p0Þ2Þð1þ ðu0 − p0Þ2ÞÞ − u

4
log ðð1þ ðuþ p0Þ2Þð1þ ðu − p0Þ2ÞÞ

þ p0

4
log

�
1þ ðu0 þ p0Þ2
1þ ðu0 − p0Þ2

�
−
p0

4
log

�
1þ ðuþ p0Þ2
1þ ðu − p0Þ2

�

−
i
4
log

�
1þ iðu0 þ p0Þ
1 − iðu0 þ p0Þ ·

1þ iðu0 − p0Þ
1 − iðu0 − p0Þ

�
þ i
4
log

�
1þ iðuþ p0Þ
1 − iðuþ p0Þ ·

1þ iðu − p0Þ
1 − iðu − p0Þ

�

WRL
kk0 ðsÞ ¼ −

iπ
2
ð2juþ u0j − juj − ju0jÞ − ðu0 þ uÞ log jsj þ ðu0 þ uÞ logðiðuþ u0ÞÞ

−
u0

4
log ðð1þ ðu0 þ p0Þ2Þð1þ ðu0 − p0Þ2ÞÞ − u

4
log ðð1þ ðuþ p0Þ2Þð1þ ðu − p0Þ2ÞÞ

−
p0

4
log

�
1þ ðu0 þ p0Þ2
1þ ðu0 − p0Þ2

�
−
p0

4
log

�
1þ ðuþ p0Þ2
1þ ðu − p0Þ2

�

þ i
4
log

�
1þ iðu0 þ p0Þ
1 − iðu0 þ p0Þ ·

1þ iðu0 − p0Þ
1 − iðu0 − p0Þ

�
þ i
4
log

�
1þ iðuþ p0Þ
1 − iðuþ p0Þ ·

1þ iðu − p0Þ
1 − iðu − p0Þ

�
ðG7Þ

and

BRR
kk0 ðsÞ ¼ ðθð−sÞ þ θðsÞϵðuÞϵðu0ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

iνðu − u0Þ

s

BRL
kk0 ðsÞ ¼ θðsÞϵðu0Þϵðuþ u0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

iνðuþ u0Þ

s
; ðG8Þ

as in (11.6).

2. Expressions in the large mass limit at q= 0

In this subsection we now specialize to the case q ¼ 0 (equivalently p ¼ 0) where the expressions greatly simplify.
Taking the p → 0 limit of (G4) we find

aq → a0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p ; bq → ∞; ðG9Þ

so there are actually only two (real) turning points in the p → 0 limit.33 The bulk wave function at a point X in the right
exterior is described in the large ν limit by a WKB phase

Zð�Þ
k ðXÞ ¼ −uη�

�
i
2
log
�
a0 − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − a20

p
a0 þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − a20

p �
−
juj
2
log
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a20
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − a20

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a20

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − a20

p ��

ZðfÞ
k ðXÞ ¼ iuηþ 1

2
log

�
a0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 − w2

p
a0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 − w2

p �
þ ijuj

2
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a20

p
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 − w2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a20

p
− i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 − w2

p �
ðG10Þ

and the Oðν−1
2Þ prefactor

33All results in this subsection can be obtained from the finite p results by carefully taking p → 0 or instead working with the p ¼ 0
effective potential from the outset.
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Að�Þ
k ðXÞ ¼ w

1
2ffiffiffiffiffi
2ν

p
�

w2a20
w2 − a20

�1
4

e�iπ
4 ¼ w

1
2ffiffiffiffiffi
2ν

p
�

1

u2 − u2w

�1
4

e�iπ
4

AðfÞ
k ðXÞ ¼ w

1
2ffiffiffiffiffi
2ν

p
�

w2a20
a20 − w2

�1
4 ¼ w

1
2ffiffiffiffiffi
2ν

p
�

1

u2w − u2

�1
4

; ðG11Þ

as in (G1).
Using the analytic continuation techniques discussed in Appendix D, one can “extend” the BTZ wave functions to the F

region of the BTZ black hole. The result is (with X ¼ ðη; w; χÞ∈F)

vðRÞk ðXÞ ¼ AðF Þ
k ðXÞeiνZðF Þ

k ðXÞð1þOðν−1ÞÞ
vðLÞk ðXÞ ¼ AðF Þ

k ðXÞeiνð2uηþZðF Þ
k ðXÞÞð1þOðν−1ÞÞ; ðG12Þ

where this “extended” wave function in the large mass limit is described by a single WKB phase:

ZðF Þ
k ðXÞ ¼ −uη − ϵðuÞ

�
i
2
log

�
a0 − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − a20

p
a0 þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − a20

p �
−
juj
2
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − a20

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a20

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − a20

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a20

p ��
; ðG13Þ

and corresponding Oðν−1
2Þ prefactor,

AðF Þ
k ðXÞ ¼ w

1
2ffiffiffiffiffi
2ν

p
�

w2a20
w2 − a20

�1
4

e−
iπ
4
ϵðuÞ ¼ w

1
2ffiffiffiffiffi
2ν

p
�

1

u2 − u2w

�1
4

e−
iπ
4
ϵðuÞ: ðG14Þ

The expressions (G12)–(G14) apply for all real values of the frequency u since all frequencies become classically allowed
inside the horizon.
In (11.6), the large ν limit of ΛRα

kk0 ðsÞ (at q ¼ 0) is described by

WRR
kk0 ðsÞ ¼ −

iπ
2
ϵðsÞðjuj − ju0jÞ þ ðu0 − uÞ log jsj − ðu0 − uÞ logðiðu − u0ÞÞ

þ u0

2
logð1þ u02Þ − u

2
logð1þ u2Þ − i

2
log

�
1þ iu0

1 − iu0

�
þ i
2
log

�
1þ iu
1 − iu

�

WRL
kk0 ðsÞ ¼ θðsÞ

�
−
iπ
2
ð2juþ u0j − juj − ju0jÞ − ðu0 þ uÞ log jsj þ ðu0 þ uÞ logðiðuþ u0ÞÞ

−
u0

2
logð1þ u02Þ − u

2
logð1þ u2Þ þ i

2
log

�
1þ iu0

1 − iu0

�
þ i
2
log

�
1þ iu
1 − iu

��
; ðG15Þ

and the Oðν−1
2Þ prefactors given in (G8).

With the expressions above and the help of (G18)–(G21) one may compute the exponential factor appearing in the regime
−uw < u < uw of the integral (11.7) to be

GðfÞ
R ¼ iu log jcj þ ijuj

2
logð1 − w2Þ þ iðu0 − uÞ logðiðu − u0ÞÞ − π

2
ϵðsÞjuj − logð1 − iuÞ

− ijuj log
�
juj − iw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2w − u2

q 	
þ log

�
1þ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2w − u2

q 	
þ iθðuÞu logð1þ u2Þ

− iu0 log jsj − 1

2
log

�
1þ iu0

1 − iu0

�
−
iu0

2
logð1þ u02Þ þ π

2
ϵðsÞju0j − logw; ðG16Þ

and the analogous expression for the saddle-point evaluation of vðRLÞk ðX; sÞ is
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GðfÞ
L ¼ iu log jcj þ ijuj

2
logð1 − w2Þ − iðu0 þ uÞ logðiðuþ u0ÞÞ − π

2
ð2juþ u0j − juj − ju0jÞ − logð1 − iuÞ

− ijuj log
�
juj − iw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2w − u2

q 	
þ log

�
1þ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2w − u2

q 	
þ iθðuÞu logð1þ u2Þ

þ iu0 log jsj þ 1

2
log

�
1þ iu0

1 − iu0

�
þ iu0

2
logð1þ u02Þ − logw; ðG17Þ

recalling c≡ seη. There are never any genuine saddle points of (G16) or (G17).
To obtain the expressions (11.15) and (11.22) from (G10) and (G15) one must use the identities

a0 � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − a20

q
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p

�
1� iw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u2w

q 	
ðG18Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a20

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − a20

q
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p

�
juj � w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u2w

q 	
ðG19Þ

1� iw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u2w

q
¼ w2ð1þ u2Þ

1 ∓ iw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u2w

p ðG20Þ

juj � w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u2w

q
¼ ð1 − w2Þð1þ u2Þ

juj ∓ w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − u2w

p : ðG21Þ

APPENDIX H: TABLE OF NOTATION

In this Appendix we collect the notation used throughout the paper.

Symbol Meaning

d Boundary spacetime dimension (bulk spacetime ¼ dþ 1 dimensional)
HR=L Right/left boundary Hamiltonian
t Dimensionful Schwarzschild/boundary time
G Generator of in-falling time evolution
s In-falling time parameter
x ¼ ðt; x⃗Þ Boundary point, time and spatial coordinates
Σ Boundary spatial manifold
k ¼ ðω; qÞ Boundary momenta, frequency and spatial momenta
X ¼ ðr; xÞ Bulk point, radial and boundary coordinates
fð¼ fðrÞÞ “Emblackening factor” in black hole metric
r0 Location of the event horizon ðfðr0Þ ¼ 0Þ
w AdS-Rindler/BTZ radial coordinate
T Temperature with respect to t
β Inverse temperature (1=T) with respect to t
η ¼ 2π

β t Dimensionless time with respect to which inverse temperature is 2π

U, V Null Kruskal coordinates for the black hole
R=L=F=P Right/left/future/past regions of the eternal black hole (Section VII: Left/right/future/past regions

of Minkowski plane)

HðFockÞ
BH

Bulk Hilbert space of small excitations on the eternal black hole geometry

ϕðXÞ Free bulk scalar field of mass m
ϕR=L=F=P Restriction of bulk field to R=L=F=P bulk subregion

vðR=LÞk ðXÞ Bulk mode function for field in R=L subregion

aðR=LÞk
Bulk/boundary oscillators associated to R=L subregion

δqq0 Momentum delta function (Kronecker delta for discrete, 2πδðq − q0Þ for continuous)
J Bulk CPT operator

(Table continued)
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(Continued)

Symbol Meaning

α, β Indices taking on values L, R
ϵðωÞ Sign function, ϵðωÞ ¼ 1 if ω > 0, ϵðωÞ ¼ −1 if ω < 0

wðαÞ
k

Analytic continuation of exterior mode function Continuation in lower/upper half U, V planes
for positive/negative ω

cðαÞk
Oscillator associated to analytically continued mode function

jHHi Hartle-Hawking state for bulk quantum fields
ỸR=L Bulk subalgebra in right/left exterior region
j0iR=L Right Schwarzschild vacuum state
B Operator algebra defined in the finite N CFT
OðxÞ Single-trace CFT operator
H CFT Hilbert space
AR=L;TFD Algebra of single-trace operators in right/left CFT defined around the Thermal Field Double (TFD) state
jΨβi Thermal field double state of two CFTs at temperature T ¼ 1=β
En nth energy in CFT spectrum (eigenvalue of HR=L)
jni nth energy eigenstate of CFT
θ CPT operation on the CFT
jñi ¼ θjni CPT conjugation of nth CFT energy eigenstate
ρβ Thermal density operator on CFT at inverse temperature β
J Gelfand ideal in GNS construction

HðGNSÞ
TFD

GNS Hilbert space built from single-trace operators and jΨβi
jΩ0i GNS vacuum state
πðaÞ GNS representation of single-trace operator a on HðGNSÞ

TFD
YR=L GNS representation of AR=L;TFD on HðGNSÞ

TFD

uðαÞk
Local mode function for boundary generalized free field

Δ Modular operator for a finite N CFT algebra
tð¼ t=βÞ Modular time
Δ0 Modular operator for a single-trace subalgebra
Δ Scaling dimensional of single-trace operator dual to ϕ
ν ¼ Δ − d

2
Scaling parameter for large mass limit in bulk

q� ¼ Δþiðω�qÞ
2

Combination of momenta relevant for calculations

A0 Single-trace algebra about the CFT vacuum

HðGNSÞ
0

GNS Hilbert space of small excitations above the CFT vacuum

Y Representation of A0 on HðGNSÞ
0

Ỹ Algebras of bulk field about pure AdS

HðFockÞ
0

Hilbert space of small excitations above pure AdS

R=L=F=P Right/left/future/past AdS-Rindler regions of the Poincare patch of AdS
SR Entanglement entropy of boundary spatial subregion R in the CFT
R̂ Boundary causal completion of boundary subregion R
YR̂ Restriction of single-trace algebra to boundary subregion R̂
ŶR ≡ ðYR̂Þ00 Weak closure of single-trace algebra in boundary subregion R̂
γR Ryu-Takayanagi surface for boundary spatial subregion R
ER Homology hypersurface associated to γR and boundary spatial subregion R
SER

Entanglement entropy of bulk subregion ER in bulk EFT
M Generic von Neumann algebra used in half-sided modular inclusions
JM;ΔM; KM Modular conjugation, operator, and Hamiltonian associated to M
N Subalgebra of M obeying half-sided modular inclusion property
UðsÞ≡ eiGs Unitary operator implementing half-sided modular translation
σsðaÞ Adjoint action of UðsÞ† on operator a
Λαβ
kk0 ðsÞ Decomposition of σsðaðαÞk Þ in terms of aðβÞk0

Σαβ
kk0 ðsÞ Decomposition of σsðcðαÞk Þ in terms of cðβÞk0

Aαβ
kk0 ðsÞðBαβ

kk0 ðsÞÞ Positive (negative) frequency part of Σαβ
kk0 ðsÞ

(Table continued)
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(Continued)

Symbol Meaning

eiγk Undetermined phase in the action of UðsÞ on GFFs
ðη; χÞ Dimensionless Rindler/BTZ boundary coordinates
z Poincare AdS radial coordinate
ζ BTZ black hole tortoise coordinate
fkðwÞ AdS-Rindler/BTZ radial mode function
KðX; yÞ Smearing function to describe ϕðXÞ in terms of πðOðyÞÞ
ϕðR=LÞ
q ðη; wÞ Bulk field of fixed angular momentum q in right/left exterior of BTZ black hole

Kqðη; w; η0Þ Smearing function for ϕðRÞ
q ðη; wÞ in terms of πðOqðη0ÞÞ

ΦðX; sÞ≡ σsðϕðXÞÞ Evolution of a bulk field at X under adjoint action of UðsÞ†
X η0 Boundary GFF algebra supported at η ≤ η0
X̃ η0

Bulk field algebra supported for U ≤ −e−η0 ; V ≥ 0

eiδk Phase shift of bulk mode function at the horizon
s0 Value of in-falling time at which the evolved operator crosses the horizon
k ¼ ðu; pÞ≡ ðω; qÞ=ν Rescaled frequency and momentum for large ν limit
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