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In holographic duality an eternal anti–de Sitter black hole is described by two copies of the
boundary conformal field theory in the thermal field double state. This identification has many
puzzles, including the boundary descriptions of the event horizons, the interiors of the black hole,
and the singularities. Compounding these mysteries is the fact that, while there is no interaction
between the conformal field theories, observers from them can fall into the black hole and interact.
We address these issues in this paper. In particular, we (i) present a boundary formulation of a
class of in-falling bulk observers; (ii) present an argument that a sharp bulk event horizon can
only emerge in the infinite N limit of the boundary theory; (iii) give an explicit construction in
the boundary theory of an evolution operator for a bulk in-falling observer, making manifest
the boundary emergence of the black hole horizons, the interiors, and the associated causal structure.
A byproduct is a concept called causal connectability, which is a criterion for any two quantum
systems (which do not need to have a known gravity dual) to have an emergent sharp horizon
structure.
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I. INTRODUCTION

Understanding the emergence of causal structure in
the bulk gravity theory from the boundary system in
holographic duality has been an outstanding challenge.
This issue can be formulated at many different levels.
One of the most conspicuous features of bulk causal
structure is the event horizon of a black hole.
Understanding how these horizons and the regions
beyond them emerge from the boundary theory should
be a first step to address finer questions regarding
bulk causal structure. Consider an eternal black hole,
which is dual to two copies of the boundary CFT in
the thermal field double state jTFDi [1]. See Fig. 1.
The boundary time, t, for each copy of the CFT
coincides with the bulk Schwarzschild time which ends
at the horizon. How is it then possible to construct an
explicit evolution operator in the CFT describing a bulk
observer originally in region R falling through the

horizon into the F region?1 How should we interpret
the black hole singularities in the bulk F and P regions
from the boundary theory? Compounding these mys-
teries is the observation, first emphasized in [27], that
while there is no interaction between the two CFTs,
observers from the R and L regions can fall into the F
region and interact with each other.
In this paper we address these questions.We first introduce

a formulation of in-falling observers, which naturally leads
to the concept of casual connectability: a boundary criterion
for an emergent sharp horizon in the dual gravity system.
We then provide an explicit boundary construction of a
one-parameter family of unitary operators, UðsÞ, that play
the role of evolution operators along an in-falling trajectory.
More explicitly, UðsÞ has the following properties:
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1In Jackiw-Teitelboim gravity it is possible to take an operator
behind the horizon using symmetries, as discussed in [2,3]. There
are also many different ways that boundary observables can probe
regions behind the horizon; see, e.g., [4–15], but in these
discussions neither an emergent Kruskal-type time nor the casual
structure of the horizon were visible from the boundary. Sim-
ilarly, ER ¼ EPR type arguments [16,17] are largely concerned
with a single time slice, not casual structure. See [18] for an
interesting recent discussion of in-falling observers using modu-
lar flows. Earlier discussions of bulk reconstruction in the F
region include [19–21]. See also [22–26] for a description of the
black hole interior from the perspective of coarse graining.

PHYSICAL REVIEW D 108, 086019 (2023)
Editors' Suggestion

2470-0010=2023=108(8)=086019(13) 086019-1 Published by the American Physical Society

https://orcid.org/0000-0003-3922-8128
https://orcid.org/0000-0002-4911-3183
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.086019&domain=pdf&date_stamp=2023-10-12
https://doi.org/10.1103/PhysRevD.108.086019
https://doi.org/10.1103/PhysRevD.108.086019
https://doi.org/10.1103/PhysRevD.108.086019
https://doi.org/10.1103/PhysRevD.108.086019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


(1) It is generated by a Hermitian operator with a
spectrum bounded from below.

(2) Consider a scalar field ϕðXÞ in the R region, i.e.,
with X∈R, and its evolution under UðsÞ: ΦðX; sÞ≡
U†ðsÞϕðXÞUðsÞ. In this setup, there exists an
s0 > 0, such that for s > s0,ΦðX; sÞ can start having
nonzero commutators with operators in CFTL.
Furthermore, s0 coincides with the null Kruskal
coordinate distance from X to the horizon.

(3) In the geometric optics limit (i.e., if the mass of
ϕ is large), and with zero momentum along
boundary spatial directions, ΦðX; sÞ ¼ ϕðXsÞ where
Xs is a bulk point. For s < s0, Xs ∈R, while for
s > s0, Xs ∈F.

The key to our discussion is the emergence, in the large
N limit of the boundary theory, of a type III1 von Neumann
algebraic structure from the type I boundary operator
algebra and the half-sided modular translation structure
associated to this type III1 algebra. The black hole horizons,
interiors, and singularities can all be understood as conse-
quences of it. The type III1 structure also sheds new light on
the origin and nature of ultraviolet divergences in gravity.
In this paper we outline the general ideas and the main
results, leaving detailed expositions to [28].

II. CAUSAL CONNECTABILITY:
A BOUNDARY FORMULATION OF BULK

HORIZON STRUCTURE

In this section we introduce a boundary formulation
of a class of bulk in-falling observers and the associated
signature of a sharp horizon.

A. A boundary formulation of in-falling observers

In [27] a puzzle regarding the duality between the TFD
state and the bulk eternal black hole geometry was raised.
Consider an initial state of the form

jΨ0i ¼ eiAL jTFDi ð2:1Þ

where AL is a Hermitian operator in CFTL and we assume
that its insertion only changes the energy of the system by
an Oð1Þ amount such that its backreaction on the geometry
can be neglected. Since operators from the R and L sides
commute, any measurement operator M of the R observer
should commute with eiAL , i.e.,

hΨ0jMjΨ0i ¼ hTFDjMjTFDi ð2:2Þ

so the presence of eiAL cannot have any consequence on
the measurement. But this appears to be in contradiction
with the ability of the insertion of eiAL to influence a right
observer who has fallen into the F region of the eternal
black hole geometry; see Fig. 1.
The above argument by itself does not directly pose a

contradiction, as it assumes that the evolution of an in-
falling observer from the R region remains in CFTR. It
highlights, however, a seemingly counterintuitive require-
ment: for the identification of Fig. 1 to be correct, the
description of an in-falling observer originally from the
R region must involve both the R and L systems. Indeed,
from the causal structure of the black hole geometry, any
operator in the F region should involve degrees of freedom
from both CFTR and CFTL. Thus, whatever measurement
operator,M, the observer uses in the F region must involve
degrees of freedom in CFTL, and we cannot assume thatM
commutes with eiAL .
In this paper we will show that the evolution of a family

of in-falling observers on the gravity side can be described
by a boundary “evolution operator” UðsÞ ¼ e−iGs; s∈R
that satisfies the following properties:

(i) G involves degrees of freedom from both CFTR
and CFTL.

FIG. 1. The Penrose diagram of an eternal black hole. The dashed lines are event horizons and the wavy lines are the singularities. Two
observers from R and L can meet and interact behind the horizon despite the fact that there is no interaction between the left and
right CFTs.
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(ii) The Hermitian generator G has a spectrum that is
bounded from below,

G ≥ 0: ð2:3Þ

The first property is needed for the in-falling evolution
ΦðX; sÞ≡Uð−sÞϕðXÞUðsÞ of a bulk operator ϕðXÞ with
X∈R to have support in the F region. The second property
is natural from the following perspectives: (i) if we interpret
the eigenvalues of G as energies for a family of bulk
observers, they should be bounded from below to ensure
stability,2 and (ii) the spectrum condition distinguishes G,
as a generator of “time” flow, from operators generating
spacelike displacements (such as momentum operators).

B. Sharp horizon structure only at infinite N

We will now show that the property (2.3) has important
general implications regardless of the specific form of
UðsÞ: a sharp event horizon can only emerge in the large N
limit of the boundary theory.
For this purpose, consider again the state (2.1), and the

probability pðsÞ for an in-falling observer originally from
the R region to observe the existence of eiAL along their
“trajectory” parametrized by s. To reproduce the causal
structure of the black hole spacetime, pðsÞ should have
the form

pðsÞ ¼
�
0 s < s0
≠ 0 s > s0

; ð2:4Þ

with s0 > 0, as it is only possible to detect the influence of
eiAL after the horizon has been crossed. The existence of
such an s0 and the nonsmooth behavior of pðsÞ at s0 reflect
the sharp causal structure from a sharp horizon.
There is a simple quantum mechanical argument [29]

that the behavior (2.4) is in fact not possible. Denote the
projection operator that can detect the possible existence
of eiAL as PR. The subscript R emphasizes that this is an
operator in CFTR. The probability pðsÞ can then be
written as

pðsÞ ¼ hΨ0jU†ðsÞPRUðsÞjΨ0i ¼ hϕðsÞjϕðsÞi;
jϕðsÞi ¼ PRe−iGsjΨ0i: ð2:5Þ

From (2.3), we can analytically continue UðsÞ to the
lower half complex s plane. Accordingly, jϕðsÞi is a
vector-valued analytic function of s in the lower half
complex s plane, and is continuous along the real s axis.

Equation (2.4) means that jϕðsÞi vanishes for a finite
segment, s∈ ð0; s0Þ, of the real s axis. Cauchy’s theorem
then says if jϕðsÞi is zero for any finite segment of s, it
has to be identically zero for all s, which is incompatible
with (2.4). Thus, pðsÞ can be zero only at isolated values
of s or identically zero, but cannot obey (2.4).
This argument is very general, independent of details of

specific states or quantum systems. For example, the two
CFTs can interact and have a bulk geometry described by a
traversable wormhole [30].
Since the bulk gravity theory does have a sharp light

cone, the above no-go argument must somehow be avoided
in the duality relation. To understand a possible resolution,
consider a closely related case: Rindler patches for a
quantum field theory in Minkowski spacetime. See Fig. 2.
If we discretize the theory by putting it on a lattice, the
Minkowski vacuum jΩi can be expressed as a TFD state for
the R and L Rindler patches. In the discrete case there are
no sharp light cones. Any evolution on a lattice system has
a small tail which gives rise to a nonzero commutator
between two spacelike separated operators. Indeed, in the
discrete case, the above no-go argument applies: observers
from the R and L Rindler systems are either always
connected [for pðsÞ having only isolated zeros] or can
never be connected [for pðsÞ identically zero]. However, in
the continuum limit, they are separated by sharp light
cones, and can meet in the F region only after evolution by
some nonzero s0. This difference in the sharpness of the
light-cone structure between the discrete case and the
continuum limit can be attributed to a fundamental differ-
ence in the structure of their operator algebras. In the
discrete case, the full Hilbert space factorizes into a tensor
product of those of the R and L systems, and the operator
algebras associated with the R and L systems are type I von
Neumann algebras. In the continuum limit, there is no local
Hilbert space associated with the R or L patch, and the local
operator algebra associated to a Rindler region is a type III1

L R

F

P

FIG. 2. Rindler regions of Minkowski spacetime.

2Note that G should be understood as the “energy” associated
with a full Cauchy slice in the black hole geometry rather than
some local region. While some of the in-falling observers may
only have a finite “lifetime” due to the presence of the singularity,
they should nevertheless have a well-defined quantum mechani-
cal description before hitting the singularity.
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von Neumann algebra.3 In the continuum case, the no-go
argument does not apply, since for a type III1 von Neumann
algebra, there does not exist any projector PR that can be
used to detect the influence of an L observer.4 We expect
that a type II von Neumann algebra will also be unable to
describe operators outside of a sharp horizon but we will
leave a rigorous mathematical proof elsewhere.
The above Rindler story suggests a way to go around the

no-go argument regarding (2.4). The argument implicitly
used that the full operator algebra of bounded operators of a
CFT is type I (with the existence of a finite rank projector
PR), which is the case for the theory at finite N.5 But the
duality with the classical black hole geometry and the
associated sharp causal structure needs to hold only in
the large N limit. We will argue that in the N → ∞ limit
there is a pair of emergent type III1 algebras, MR;L, in the
boundary theory.6 The event horizons, black hole interior,
and singularities are all consequences of this emergence.
Given that the conditions (2.4)–(2.5) for a sharp horizon

structure cannot be defined for a type III1 algebra, we need
a generalization. We consider the function [33,34]

FðsÞ ¼ supfjhΨ0jU†ðsÞORUðsÞjΨ0i
− hTFDjU†ðsÞORUðsÞjTFDij;

OR ∈MR; kORk ≤ 1g: ð2:6Þ

Existence of a sharp bulk horizon structure implies the
existence of an s0 > 0 and the behavior

FðsÞ ¼
�
0 s < s0
≠ 0 s > s0

: ð2:7Þ

For infinitesimal AL, the above equation is the same as the
existence of an s0 > 0 and OR such that

½AL;U†ðsÞORUðsÞ� ≠ 0; s > s0: ð2:8Þ

The condition (2.7) can be used to describe an emergent
sharp horizon for any two quantum systems and general
states, even those without a known gravity dual. We will
refer to two systems in a state which satisfies (2.7) as being
causally connectable.

C. Emergent type III1 von Neumann algebras

There is a natural candidate for the emergent type III1
von Neumann algebra. Consider the vector space of
products of single-trace operators of CFTR. In the large
N limit, we can define an algebra of single-trace operators
(see [35] for details), AR, with respect to the thermal
state, ρβ (β is the inverse temperature).7 We can build the

Gelfand-Naimark-Segal (GNS) Hilbert spaceHðGNSÞ
ρβ ofAR

with respect to ρβ. We denote the representation of AR on

HðGNSÞ
ρβ as MR. Here are some features of HðGNSÞ

ρβ :
(1) The representation of ρβ in HðGNSÞ

ρβ is a pure state
which we denote as jΩ0i. jΩ0i is cyclic and
separating for MR.

(2) HðGNSÞ
ρβ coincides with the GNS Hilbert space of

the union of AL and AR with respect to jTFDi. In
particular, ML, the commutant of MR in the

operator algebra on HðGNSÞ
ρβ , can be viewed as the

representation of AL on HðGNSÞ
ρβ .8

We conjecture that MR and its commutant ML are
type III1 in the large N limit. An indication of this is the
fact that the finite temperature spectral functions of single-
trace operators have a continuous spectrum supported on
the full real frequency axis despite the boundary CFT being
defined on a compact space.9

On the gravity side we quantize small metric and matter
perturbations around the eternal black hole geometry. The
resulting Fock space built on the Hartle-Hawking vacuum

jHHi is denoted asHðFockÞ
BH and the algebras of operators for

the bulk theory in the R and L regions of the black hole are
denoted as M̃R;M̃L. Under the duality we identify

HðGNSÞ
ρβ ¼ HðFockÞ

BH ; jHHi ¼ jΩ0i;
MR ¼ M̃R; ML ¼ M̃L: ð2:9Þ

The above identifications essentially consist of the
statement of bulk reconstruction for the R and L regions
of the black hole. They should hold perturbatively in the
1=N expansion (or bulk GN expansion). That MR;L

should be type III1 is also required by the duality, as
the bulk field algebras M̃R;L, being associated with local

3For reviews on the classification of von Neumann algebras
see Chap. III.2 of [31] or Sec. 6 of [32].

4Any projector in a type III von Neumann algebra is infinite,
and it is not possible to use such a projector to measure local
excitations [33,34]. Heuristically, due to the lack of a local Hilbert
space associated with a Rindler region, there is no way to form
finite projectors.

5N is the quantity that characterizes the number of boundary
degrees of freedom, such as the rank of the gauge group or the
central charge of the boundary CFT.

6Note that operator algebra associated with a local region in a
QFT is type III1. But here the emergent type III1 algebras refer to
those associated with the full boundary spacetime.

7Strictly speaking, in the large N limit the thermal state can
only be defined through correlation functions obeying the Kubo-
Martin-Schwinger (KMS) condition. No density matrix exists in
AR, but we will continue to use the notation ρβ, meant for the
definition as a functional in the large N limit.

8The emergence of this commutant algebra in HðGNSÞ
ρβ is also

discussed in Appendix A of [36].
9In [6] the continuous spectrum has been argued to be

responsible for the emergence of black hole horizons and
singularities. See also [37] for general arguments regarding the
emergence of such a continuous spectrum.
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bulk regions in a quantum field theory in curved space-
time, must be type III1.
At the leading order in the 1=N expansion, the bulk

algebras M̃R;L are generated by a free field theory while
the boundary algebrasMR;L are generated by a generalized
free field theory (since representations of single-trace

operators on HðGNSÞ
ρβ are generalized free fields). More

explicitly, suppose a bulk field ϕ is dual to a boundary
operatorO. The restrictions ϕR;L of ϕ to the R, L regions of
the black hole are dual respectively to the representations

in HðGNSÞ
ρβ of OR;L. They can be expanded in modes as (the

sums below should be viewed as a proxy for integrals)10

ϕRðt; x⃗; wÞ ¼
X
ω;k⃗

e−iωtþik⃗·x⃗vωk⃗ðwÞa
ðRÞ
ωk⃗

;

ϕLðt; x⃗; wÞ ¼
X
ω;k⃗

eiωt−ik⃗·x⃗vωk⃗ðwÞa
ðLÞ
ω;k⃗

; ð2:10Þ

ORðt; x⃗Þ ¼
X
ω;k⃗

e−iωtþik⃗·x⃗Nωk⃗a
ðRÞ
ωk⃗

;

OLðt; x⃗Þ ¼
X
ω;k⃗

eiωt−ik⃗·x⃗Nωk⃗a
ðLÞ
ω;k⃗

; ð2:11Þ

where x⃗ collectively denotes the spatial coordinates on the
boundary and w denotes the bulk radial coordinate. vωk⃗ðwÞ
are the bulk mode functions and the Nωk⃗ are constants.
The identifications (2.9) are reflected in the fact that ϕ

andO share the same creation/annihilation operators aðR;LÞ
ωk⃗

,

and thus ϕR;L can be viewed as elements of boundary
algebras MR;L.
The identifications (2.9) are shown in Fig. 3. In sub-

sequent sections we will show that the type III1 nature of

MR;L leads to the emergence of the F and P regions and
the associated causal structure.

III. EMERGENT NEW TIMES IN THE BOUNDARY

In this section we discuss how to generate new times in
the boundary theory. Our main tool is half-sided modular
translation [38,39], and an extension of it. Suppose M is a
von Neumann algebra and the vector Ω is cyclic and
separating for M. We denote the corresponding modular
flow and conjugation operators as ΔM and JM. Now
suppose there exists a von Neumann subalgebra N of M
with the properties:

(i) Ω is cyclic for N (it is automatically separating for
N as N ⊂ M).

(ii) The half-sided modular flow of N under ΔM lies
within N , i.e.

Δ−it
MNΔit

M ⊂ N ; t ≤ 0: ð3:1Þ

It can then be shown [38–40] that there exists a unitary
group UðsÞ; s∈R with the following properties:

(i) UðsÞ has a positive generator, i.e.

UðsÞ ¼ e−iGs; G ≥ 0: ð3:2Þ

(ii) It leaves Ω invariant

UðsÞΩ ¼ Ω; ∀ s∈R: ð3:3Þ

(iii) Half-sided inclusion

U†ðsÞMUðsÞ ⊆ M; ∀ s ≤ 0: ð3:4Þ

(iv) N can be obtained from M with an action of U

N ¼ U†ð−1ÞMUð−1Þ ð3:5Þ

and with N t ≡ Δ−it
MNΔit

M

eiGsN te−iGs ¼ N f1ðs;tÞ;

f1ðs; tÞ ¼ −
1

2π
logðe−2πt − sÞ: ð3:6Þ

We also note that

JMUðsÞJM ¼ Uð−sÞ ð3:7Þ

and since M0 ¼ JMMJM

U†ðsÞM0UðsÞ ⊆ M0; s ≥ 0: ð3:8Þ

FIG. 3. The identifications (2.9) establish duality of CFTR;L
with the exteriors of the black hole spacetime, but they do not
directly say anything about the existence of the F, P regions of a
connected bulk.

10In the equations below and the subsequent discussion, O
should be viewed as the representation of a single-trace operator
on the GNS Hilbert space.
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The above structure is called half-sided modular
translation and exists only ifM is a type III1 von Neumann
algebra [41].
In our context, we take M ¼ MR, M0 ¼ ML, and

Ω ¼ Ω0 (introduced in Sec. II C), with the modular
operator ΔM ¼ exp ðβðHR −HLÞÞ whereHR;L are, respec-
tively, the Hamiltonians of CFTR;L. Thus, modular evolu-
tions of MR under ΔM are simply the standard boundary
time translations. By choosing different N we can con-
struct different one-parameter group evolutions. These are
candidates for new emergent “times” as the corresponding
generators are bounded from below, as in (3.2). At leading
order in the 1=N expansion,MR andML are generated by
generalized free fields. With the mode expansion (2.11),
using (3.4) the action ofUðsÞ onOR can be written in terms

of a linear transform on aðRÞ
ωk⃗

,

U†ðsÞaðRÞk UðsÞ ¼
X
k0
Ckk0 ðsÞaðRÞk0 ; k¼ ðω; k⃗Þ; s ≤ 0:

ð3:9Þ
When s > 0, UðsÞ takes OR outside MR and the evolved
operator is no longer covered by the theorem.
It turns out that when MR is generated by generalized

free fields, much more can be learned and it is possible to
generalize the action of UðsÞ to all values of s [28]:
(1) The matrix Ckk0 ðsÞ can be determined up to a phase

Ckk0 ðsÞ ¼ δk⃗;k⃗0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjω0j
sinh πjωj

s
eiγωðk⃗Þ−iγω0 ðk⃗Þð−sÞ−iðω−ω0Þ

× Γðiðω − ω0ÞÞ ð3:10Þ

where the phase eiγωðk⃗Þ depends on the specific
system and the choice of N .

(2) For all s, we can write

U†ðsÞaðαÞk UðsÞ ¼
X
k0

X
β¼R;L

Λαβ
kk0 ðsÞaðβÞk0 ;

α ¼ R;L: ð3:11Þ
For α ¼ R and s < 0, equation (3.11) reduces back
to (3.9) which means that

ΛRR
kk0 ðsÞ¼Ckk0 ðsÞ; ΛRL

kk0 ðsÞ¼0; s<0: ð3:12Þ

ΛRβ
kk0 ðsÞ for s > 0 can also be expressed in terms of

Ckk0 ðsÞ,

ΛRR
kk0 ðsÞ ¼

sinh πω
sinh πω0 Ckk0 ð−sÞ;

ΛRL
kk0 ðsÞ ¼

sinh πðωþ ω0Þ
sinh πω0 Ck;−k0 ð−sÞ; s > 0:

ð3:13Þ

The action of UðsÞ on OL, i.e., Λαβ with α ¼ L,
can be obtained from the relation

Λαβ
kk0 ðsÞ ¼ Λᾱ β̄

−k;−k0 ð−sÞ ð3:14Þ

which is a consequence of (3.7) and M0 ¼
JMMJM.

IV. EMERGENCE OF THE BULK RINDLER
HORIZON FROM THE BOUNDARY

As a warmup for the black hole story we consider the
emergence of the bulk Rindler horizon from the boundary
system using the method outlined in the last section. Our
input is the duality between the anti–de Sitter (AdS)
Rindler region and the boundary CFT in the corresponding
Rindler patch [42–44]. We will consider as an illustration, a
bulk theory in the Poincaré patch of AdS3, dual to a two-
dimensional boundary CFT on R1;1. The bulk spacetime
contains two AdS Rindler regions which, respectively, have
the two Rindler regions in R1;1 as their boundaries. The
bulk theory in the bulk R=L region in Fig. 4 is “recon-
structible” from the boundary theory in the corresponding
boundary R=L region in Fig. 2. In this case, MR=L is the
algebra generated by single-trace operators in the R=L
Rindler regions. We note that going beyond the AdS
Rindler horizon can be achieved by symmetries11 as the
usual AdS isometries (which are dual to boundary con-
formal symmetries) can take an operator in theR region to

FIG. 4. AdS Rindler regions of the bulk spacetime. The vertical
lines denote the boundary and the dashed lines are Rindler
horizons.

11See [36] for a discussion. Going behind the horizon of a
black hole in Jackiw-Teitelboim gravity [2,3] is also similar to the
AdS Rindler case, as it can be done using a symmetry operator.
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the F region. But this example provides a nice illustration
of the method of the last section and an interesting contrast
for the discussion of the black hole case where such
symmetries do not exist.
More explicitly, the metric for an AdS Rindler region can

be written as

ds2 ¼ R2

w2
½−ð1 − w2Þdη2 þ ð1 − w2Þ−1dw2 þ dχ2� ð4:1Þ

with the Rindler horizon at w ¼ 1 and boundary at w ¼ 0.
Consider a bulk scalar field ϕ dual to a boundary operator
O with dimension Δ. The restriction ϕRðXÞ of ϕ to the R
region [with X ¼ ðη; w; χÞ] can be expanded in modes as

ϕRðXÞ ¼
Z

d2k
ð2πÞ2 e

ik·xvkðwÞaðRÞk ;

k ¼ ðω; qÞ; k · x ¼ −ωηþ qχ ð4:2Þ

vkðwÞ ¼ NkfkðwÞ; q� ¼ 1

2
ðΔþ iðω� qÞÞ;

q̄� ¼ 1

2
ðΔ − iðω� qÞÞ ð4:3Þ

Nk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjωjp
ffiffiffiffiffiffi
2π

p
ΓðΔÞ jΓðqþÞΓðq−Þj;

fkðwÞ ¼ wΔð1 − w2Þ−iω=22F1ðq̄−; q̄þ;Δ;w2Þ: ð4:4Þ

The aðRÞk are creation (for ω < 0) and annihilation (for
ω > 0) operators of the boundary generalized free field
theory in the R region, and thus ϕRðXÞ can be interpreted as

an operator in the boundary theory. There is a similar “bulk

reconstruction” equation for ϕL in terms of aðLÞk .
Our goal is to use the boundary theory in the R, L

regions and (4.2) to reconstruct the bulk theory in the full
Poincare AdS spacetime, including the F and P regions in
Fig. 4. For this purpose we take M ¼ MR, which is
type III1 as it is the local algebra for a Rindler region.
We take N to be the algebra of operators in the region
indicated in Fig. 5, corresponding to a null shift in one of
the boundary light cone directions. Clearly N ⊂ M. For
the choice of the left plot of Fig. 5, the corresponding Ckk0

can be computed explicitly in the boundary theory. It has
the form of (3.10) with

eiγk ¼ Γðq̄þÞ
jΓðq̄þÞj

: ð4:5Þ

From our earlier discussion this fully determines Λαβ
kk0 ðsÞ

for all s. We can then work out how a bulk field (4.2)
transforms under the evolution of UðsÞ. From the form of
vkðwÞ it can be shown that for s < s0 ≡ e−ηþχ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p

U†ðsÞϕRðXÞUðsÞ ¼ ϕRðXsÞ; ð4:6Þ

where Xs ¼ ðηs; χs; wsÞ with

ws ¼
wffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − as
p ; eηs ¼ eη

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − as − w2

p ;

eχs ¼ eχ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − as

p
; as ≡ sð1 − w2Þ

s0
: ð4:7Þ

It can be readily checked that the above transformation
precisely corresponds to a shift U → U þ s of the

FIG. 5. Boundary subregions that are used for the construction of a one-parameter group of unitaries implementing bulk PoincaréU—
and V—translations, respectively. t; x are boundary Minkowski coordinates.
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Poincaré null coordinate U, in terms of which the AdS
metric reads12

ds2 ¼ R2

z2
ð−dt2 þ dx2 þ dz2Þ ¼ R2

z2
ð−dUdV þ dz2Þ;

U ¼ t − x; V ¼ tþ x: ð4:8Þ

In particular, −s0 is the value of the U coordinate for the
point X, and thus s ¼ s0 takes X to the Rindler horizon.
The transformation (4.6) is smooth at s ¼ s0, and when

s > s0 the right-hand side also involves aðLÞk with

U†ðsÞϕRðXÞUðsÞ ¼ ϕFðXsÞ; ð4:9Þ

where Xs ∈F is again obtained by a null Poincare shift
U → U þ s and ϕFðXsÞ is the restriction of ϕ to the F
region.
Similarly, choosing N as in the right plot of Fig. 5 gives

rise to null Poincaré translations V → V þ s.
The above construction explicitly demonstrates the

emergence of the AdS Rindler horizons and the associated
bulk causal structure from the boundary theory.

V. EMERGENCE OF THE BLACK HOLE EVENT
HORIZON AND KRUSKAL TIME

We now consider the emergence of the interior of the
black hole from the boundary theory. The bulk theory in the

eternal black hole geometry is now dual to two copies of
the boundary theory on R × Sd−1 in the state jTFDi. For
illustration we again take d ¼ 2, i.e., a Banados-Teitelboim-
Zanelli (BTZ) black hole [45], whose metric has exactly the
same form as (4.1) but now with χ compact.13 The bulk
reconstruction formula for a scalar field ϕ in the R region has
the same form as (4.2) except that the integration over q is
replaced by a discrete sum. The corresponding boundary
manifold, instead of being a Rindler patch of Minkowski
spacetime, is given by R × S1. We take M ¼ MR, the
algebra generated by single-trace operators in CFTR. The
corresponding algebra of bulk fields in the R region is M̃R.
In this case the constructions of the last section no longer

apply since when χ is compact, a boundary null shift as in
Fig. 5 is not well defined. We will instead take N to be the
operator algebra associated with the region indicated in the
left plot of Fig. 6. To see that this is a sensible choice, it
should be emphasized that generalized free fields do not
satisfy any Heisenberg equations, and thus the algebras
generated by them are not defined by causal diamonds.
For example, the algebras associated with the two space-
time regions in Fig. 7 are inequivalent, even though they
share the same causal diamond. The state jTFDi is clearly
separating with respect to N . While we do not have a
rigorous mathematical proof, we will assume that it is also
cyclic with respect to N .
Finding UðsÞ for this choice of N is now difficult.

We will find its explicit form by proposing a candidate for

FIG. 6. The left plot gives the boundary subregion that is used for the construction of a one-parameter group of unitaries that carries an
observer from the R region across the future horizon of the black hole into the F region. The boundary is R × S1 (vertical boundaries in
the figure are identified). The relevant subalgebra is that generated by single-trace operators supported up to some maximum value of the
boundary time (which we will take to be η ¼ 0). The right plot is the boundary subregion used to construct the unitaries to carry an
observer from the R region across the past horizon of the black hole. The relevant subalgebra is that generated by single-trace operators
supported at boundary times greater than some minimum value (which we will again take to be η ¼ 0).

12The two sets of coordinates are related by t ¼
Reχ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
sinh η; x ¼ Reχ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
cosh η; z ¼ Reχw.

13In units of (4.1), the inverse Hawking temperature is β ¼ 2π
while the size of χ is a free parameter.
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the dual of N in the bulk. We propose that the operator
algebra N is dual to the algebra of bulk fields in the
region Ñ shown in Fig. 8. This proposal is natural as this
is the causal wedge associated with that part of the
boundary, and we conjecture it is also the bulk subregion
whose associated operator algebra is equal to N . We
emphasize that the bulk dual here is not defined by an
extremal surface prescription. We will provide further
support for this identification below.
Using the bulk theory it is then possible to explicitly

construct UðsÞ. For a bulk scalar field (4.2) the correspond-
ing matrix Ckk0 again has the form (3.10) with phase γ
given by

eiγk ¼ eiδk
jΓðiωÞj
ΓðiωÞ ¼ e−iω log 2 Γðq̄−ÞΓðq̄þÞ

jΓðq̄−ÞΓðq̄þÞj
ð5:1Þ

where eiδk is the phase shift for the scalar field at the
horizon, and in the second equality we have given the

explicit expression for the case of a BTZ black hole
[q̄� was defined earlier in (4.3)]. More explicitly, δk can
be read from the behavior of the bulk mode function vkðwÞ
near w ¼ 1

vkðwÞ ¼
1ffiffiffiffiffiffiffiffiffi
2jωjp ðe−iωξþiδk þ eiωξ−iδkÞ; w → 1;

ξ ¼ 1

2
log

1 − w
1þ w

ð5:2Þ

where ξ is the tortoise coordinate. With the explicit form
of Ckk0 we can then work out the action of UðsÞ on ϕRðXÞ.
The resulting operator ΦðX; sÞ≡U†ðsÞϕRðXÞUðsÞ has the
following properties:

(i) It is not a local operator, but may be understood as ϕ
smeared over a certain spacetime region. Writing
X ¼ ðη0; χ0; w0Þ in terms of Kruskal coordinates,
X ¼ ðU0; V0; χ0Þ [see the Appendix for the trans-
formation between the coordinates of (4.1) and the
Kruskal coordinates], we find ΦðX; sÞ is supported
only forU<U0þs. In particular, for s < s0 ≡ −U0,

ΦðX; sÞ∈M̃R, while for s > s0, a
ðLÞ
k is now also

involved.
(ii) For X near the horizon, i.e. −U0 ≪ 1, UðsÞ acts as

a point-wise U translation, ΦðX; sÞ ¼ ϕðXsÞ with
Xs ¼ ðU0 þ s; V0; χ0Þ, to leading order in −U0.

(iii) For general points X1 ∈R and X2 ∈L, we find that

½U†ðsÞϕRðX1ÞUðsÞ;ϕLðX2Þ� ¼ 0 ð5:3Þ

for s < s12 ≡ −U1 þ U2, but the commutator be-
comes nonzero when s > s12, precisely reproducing
the casual structure expected from the black hole
geometry. See Fig. 9. From the boundary theory
perspective, this means that the two boundary systems
are casually connectable in the sense of (2.8).

(iv) Acting on an operator OR at boundary point ðη0; χ0Þ
it is a nonlocal transformation with support only for

FIG. 8. The respective proposed bulk duals for the boundary subregions indicated in Fig. 6.

FIG. 7. In a generalized free field theory, the algebras A1 and
A2 of the two different slices shown are inequivalent, even
though they share a causal diamond.
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η < − logðe−η0 − sÞ. This agrees with (3.6),14 and
provides a nontrivial consistency check of the
identification of the shaded region Ñ in Fig. 8 as
the bulk dual of the boundary subalgebra N .

(v) In the large Δ limit, with q ¼ 0 (i.e., if we dimen-
sionally reduce both the bulk and boundary theories
on the circle χ), the transformation is point wise

ΦðX; sÞ ¼ λXϕðXsÞ; λX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

0

q
eη0

r
ð5:4Þ

with Xs given by

e2ηs ¼ e2η0

1 − 2seη0ffiffiffiffiffiffiffiffi
1−w2

0

p þ s2e2η0
;

ws ¼
w0

1 − s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

0

p
eη0

: ð5:5Þ

The above transformation can be expressed in terms
of Kruskal coordinates as

Us ¼ U0 þ s; Vs ¼
V0

1 − sV0

: ð5:6Þ

The trajectories following from (5.6) are shown
in Fig. 10.

By choosing N to be the algebra associated with the
region in the right plot of Fig. 6, we can similarly construct
unitary evolutions as above but with the roles of Kruskal U
and V swapped. See Fig. 11 for the corresponding flow
trajectories.

VI. DISCUSSION

A. Possible choices of UðsÞ and more general states

In Sec. V we discussed two possible choices of N
and the corresponding UðsÞ. These are only the simplest
choices. There are an infinite number of others. For
example, for both plots in Fig. 6 instead of letting the
region describing N be bounded by the η ¼ 0 slice on
the boundary, we can choose a slice η ¼ fðχÞ where χ is
the boundary spatial coordinate and f is an arbitrary
periodic function. Alternatively, instead of taking the
cyclic and separating vector jΩi to be the “vacuum” jΩ0i
of the GNS Hilbert space dual to the bulk Hartle-Hawking
vacuum we can also choose other jΩi. The simplest
possibilities are obtained by acting on jΩ0i unitaries from
MR and ML, i.e.,

jΩi ¼ VLWRjΩ0i; VL ∈ML; WR ∈MR ð6:1Þ

which results in a UðsÞ ¼ VLWRU0ðsÞW†
RV

†
L with U0

denoting the evolution operator corresponding to jΩ0i.
Our discussion can also be generalized to more general

entangled states of CFTR and CFTL. A simple variant is to
act on jTFDi by a left unitary UL which does not change
the reduced density matrix ρβ of the CFTR, i.e.,

jΨi ¼ ULjTFDi: ð6:2Þ

The story depends on whether jΨi lies in the GNS Hilbert
space built from jTFDi. If jΨi lies in the GNS Hilbert
space, the bulk geometry is still described by the eternal
black hole, now with some small excitations on the left
due to insertion of UL. The construction of UðsÞ is the
same as that for jTFDi. In particular, there are an infinite
number of choices of jΩi as in (6.1). When jΨi does not
lie in the GNS Hilbert space, for example if UL changes
the energy of the system by an amount which scales with
N, the story is different. We need to work with the GNS
space HGNS

Ψ associated with jΨi, which does not overlap
with that associated with jTFDi, and the corresponding
representations ML;R of single-trace operator algebras
are also different from those of associated with jTFDi.15
In this case there is no simple relation between UðsÞ for
jΨi with those for jTFDi as they act on different GNS
Hilbert spaces.

FIG. 9. When a bulk field ϕRðX1Þ with X1 ∈R is transported by
a null Kruskal coordinate distance −U1 þU2 (since U1 < 0),
it enters the light cone of ϕLðX2Þ. The shaded region is a cartoon
for the spread of ΦðX1; sÞ. The orange dashed lines are event
horizons, and the purple dashed lines give the light cones of X2.
The boundaries and singularities suppressed in the figure.

14Note the boundary time η is related to modular time t of (3.6)
by η ¼ βt ¼ 2πt.

15The appearance of a different representation in this case is
also required by the duality since the bulk geometry should also
be modified.
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B. Interpretation of the black hole singularity

From a generic bulk point X∈R, the flow (5.6) reaches
the future singularity for a finite value of s. Since we
expect, in general, that the wave function of a bulk field
should become singular at the singularity, the presence
of the singularity in the black hole geometry should imply
that the emergent evolution UðsÞ breaks down at finite
values of s.
It is instructive to contrast the nature of the UðsÞ of

Sec. V with those of Sec. IV. In the discussion of Sec. IV,
while we also used generalized free fields, the evolution
operator UðsÞ from the choices of N in Fig. 5 can be
defined for the full theory at finite N. Thus UðsÞ there
should be well defined for s∈ ð−∞;þ∞Þ. But the UðsÞ of
Sec. V only exists in the large N limit, so the associated
sharp horizon and interior (i.e., causal connectability from

the boundary perspective) only exist in this limit. We can
thus interpret the black hole singularity as a limitation on
this emergent causal connectability; the connection of
left and right observers cannot be extended indefinitely,16

unlike the case of AdS Rindler.

C. The nature of UV divergences in gravity and
factorization of modular operator

The entanglement entropy, SR, of CFTR in jTFDi is
given by the generalized entropy on the gravity side

SR ¼ A
4GN

þ SR ð6:3Þ

FIG. 10. The left plot gives trajectories of (5.6). The right plot gives constant s surfaces evolved from the η ¼ 0 slice. The orange
dashed lines are the event horizons, black solid lines are the boundaries, while the red solid lines are the singularities.

FIG. 11. The counterparts of Fig. 10 when using N as in the right plot of Fig. 6.

16See [22] for a related perspective.
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where A is the horizon area and SR denotes entropy of
matter fields in the R region of the black hole geometry.
There is also a relation between the corresponding modular
operators [46]

HR ¼ Â
4GN

þ KR ð6:4Þ

where HR is the Hamiltonian of CFTR, KR is the modular
operator for the bulk field algebra M̃R, and Â is the horizon
area operator. KR suffers from bulk UV divergences as
does SR.

17 But the left-hand sides of (6.3) and (6.4) are well
defined. For these expressions to make sense, the UV
divergences of KR and SR must exactly be canceled by
those in GN (understood as the bare coupling) to all orders
in GN expansion.
From the identification of MR and M̃R, KR can be

identified with the modular operator of MR, and its
divergences must then originate from the emergent type III1
structure. This provides a different perspective on the bulk
UV divergences and renormalization of the Newton con-
stant GN .

18 The divergence in KR is a reflection that, in a
type III1 algebra, the modular operator for MR cannot be
factorized into those for the R and L systems. Since the
algebra for the full CFT is type I, the corresponding
modular operator is factorizable, and thus the area term
in (6.4) must “restore” the algebra from type III1 to type I.

19

D. Some future directions

There are many more questions to be understood and
we mention a few here. It is clearly of great interest to
understand better the emergence of the type III1 structure
in the large N limit,20 and what becomes of the in-falling

evolution operators at finiteN. In particular, it is important
to understand more precisely the emergence of singular-
ities in the boundary theory. The discussion here should
also be generalizable to single-sided black holes including
evaporating ones. We expect such constructions can
shed new light on the information loss problem. We also
expect that the manner in which an in-falling time emerges
from the boundary theory here should teach us valuable
lessons about holography for asymptotically flat and
cosmological spacetimes. This should be especially help-
ful for understanding time in cosmological spacetimes
including de Sitter.
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APPENDIX: KRUSKAL COORDINATES
FOR THE BTZ SPACETIME

For the BTZ metric (4.1), the tortoise coordinate is
given by

ξ ¼ −
Z

dw
1 − w2

¼ 1

2
log

1 − w
1þ w

: ðA1Þ

The Kruskal coordinates in the right exterior region are

U ¼ −eξ−η ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − w
1þ w

r
e−η; V ¼ eξþη ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − w
1þ w

r
eη;

ðA2Þ

−e2ξ ¼ UV ¼ w − 1

wþ 1
; w ¼ 1þ UV

1 −UV
; e2η ¼ −

V
U
:

ðA3Þ

The singularity lies at UV ¼ 1 and the boundary at
UV ¼ −1. The event horizons are at U;V ¼ 0.

17Strictly speaking, KR cannot be mathematically defined due
to UV divergences.

18Recall that in the usual AdS=CFT dictionary, the bulk UV
divergence is understood from the boundary theory as coming
from a truncation of operators dual to stringy modes in the bulk.

19After this paper appeared, subsequent developments have
suggested that the generalized entropy (up to an additive con-
stant) can be obtained by deforming the algebra from type III1 to
type II∞ [47,48].

20The emergence of a type III1 structure, and the associated
symmetries and continuous spectrum are also closely related to
the discussion of [49] of incompatibility of an exact SL(2,R)
symmetry with a finite number of states, and the factorization of
Wilson line problem discussed in [50].
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