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The finite local conformally noninvariant R2 term emerges in the one-loop effective action of the model
of quantum gravity based on the Weyl-squared classical action. This term is related to the□R contribution
to the conformal anomaly, which in a wide class of regularization schemes is determined by the second
Schwinger-DeWitt (or Gilkey-Seeley) coefficient of the heat kernel expansion for inverse propagators of
the theory. The calculation of this term requires evaluating the contributions of the fourth-order derivative
minimal and of the second-order nonminimal operators in the tensor and vector sectors of the theory,
corresponding to metric, ghost, and gauge-fixing operators. To ensure the correctness of existing formulas,
we derived (and confirmed) the result using a special technique of calculations, based on the heat-kernel
representation of the Euclidean Green’s function and the method of universal functional traces.
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I. INTRODUCTION

Conformal models play a very special role in modern
quantum field theory and there is an extensive literature
about various aspects of these theories. One of the important
facts in even spacetime dimensions is that the local con-
formal symmetry is violated by the conformal (trace)
anomaly hTμ

μi, starting from the one-loop level [1,2].
Violation of local conformal symmetry comes in the
form of local and nonlocal terms in the effective action,
generating this anomaly. Breakdown of local Weyl
invariance in classically conformally invariant theories
with hTμ

μi ¼ 0 is the result of regularization and subtraction

of UV divergences by local diffeomorphism invariant
counterterms. In curved spacetime, when gravity plays
the role of an external classical background, one-loop
divergences of the classically conformal matter field theory
has been proven to be universally Weyl invariant [3]. For
Weyl-squared quantized conformal gravity, the same state-
ment has a more involved status. Initially it has been derived
with the use of the Fradkin-Vilkovisky conformization
procedure [4] in [5], then confirmed in [6] and passed
verification by direct calculations in [7].1

Despite conformal invariance of one-loop divergences,
their subtraction from the regularized effective action entails
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1Modulo quantum anomalies, local gauge invariance of
counterterms generically follows to all loops of perturbation
expansion in the class of local background covariant gauges [8],
but their application in the case of Weyl squared quantum gravity
stumbles upon the problem of the search for such gauges
satisfying the condition of background covariance for both
diffeomorphism and conformal gauge transformations. Various
approaches to this problem include [5], but can be circumvented
by direct calculations confirming Weyl invariance of one-loop
divergences in the conformally noncovariant background gauges
as was done in [6,7,9]. Gauge independence of this result is
discussed below in Sec. III.
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nonvanishing hTμ
μi, the structure of this trace anomaly

reflecting the structure of divergences. According to the
general classification of the possible terms composing
anomaly in the purely metric sector of the four dimensional
theory (we restrict ourselves with this dimension only)
[10,11], the expression for hTμ

μi consists of the following
three types of terms: (i) conformally covariant square of the
Weyl tensor C2

μναβ ¼ R2
μναβ − 2R2

μν þ 1
3
R2 (its densitized

version
ffiffiffi
g

p
C2
μναβ being conformally invariant); (ii) topologi-

cal invariant Gauss-Bonnet term E4 ¼ R2
μναβ − 4R2

μν þ R2

(its densitized version
ffiffiffi
g

p
E4 being conformally invariant up

to the addition of the total derivative term) and, finally,
(iii) the total derivative □R-term.
All these structures, when they are densitized, i.e.,

multiplied by
ffiffiffi
g

p
, represent the trace of the functional

variational derivatives of certain metric functionals. The
principal difference between them is that this functional is
nonlocal for

ffiffiffi
g

p
C2
μναβ and

ffiffiffi
g

p
E4 and local only for the last

total derivative contribution due to the relation

−
2ffiffiffi
g

p gμν
δ

δgμν

Z
d4x

ffiffiffi
g

p
R2 ¼ 12□R: ð1:1Þ

This relation shows that the □R-term in the quantum trace
anomaly can be modified or even completely removed by
adding a finite term

R
d4x

ffiffiffi
g

p
R2 to the classical action of

gravity theory. This is legitimate for quantum theory of
conformal matter in external gravitational field, where such
a finite termbelongs to the so-called vacuumpart of the action
(involving only classical background metric field). The
vacuum action may not follow the symmetry of the quantum
fields and does not affect the number of active degrees of
freedom. Thus, the□R-term in the semiclassical anomaly is
renormalization ambiguous (see e.g., [12], the detailed
analysis of this issue in [13] and further developments for
metric-scalarmodels in [14]) and this opens theway for fixing
the coefficient of the R2-term according to observations as is
usually done in high-energy particle physics, e.g., related to
the Starobinsky model of inflation [15,16] (see [17–21] for
more recent developments concerning the anomaly-induced
inflation and further references).
For quantized metric of Weyl invariant gravity theory,

the situation is qualitatively different. Its classical action is

SW ¼ −
Z

d4x
ffiffiffi
g

p �
1

2λ
C2 þ 1

2ρ
E4 þ

1

2ξ
□R

�
; ð1:2Þ

where C2 ¼ C2
μναβ is the square of the Weyl tensor,

E4 ¼ R2
μναβ − 4R2

μν þ R2 is the Gauss-Bonnet integrand
and λ, ρ and ξ are coupling constants of the dynamical,
topological and total derivative terms. The action satisfies
the conformal Noether identity

−Tμ
μ ¼ 2ffiffiffi

g
p gμν

δSW
δgμν

¼ 0: ð1:3Þ

According to the existing tradition, Tμ
μ is called the trace of

the metric stress tensor. Correspondingly, the violation of
the identity (1.3) with SW replaced by the quantum effective
action Γ is called the quantum trace anomaly.
The different status of the theory (1.2) from that of a

conformal matter in external gravitational field is that the
counterterms needed to cancel the C2

μναβ and E4 anomalies
are nonlocal, and their nonlocality contradicts the concept
and the rules of renormalization by local counterterms [22].
Now these metric functionals no longer belong to the
vacuum (external field) sector of the theory and carry
quantum degrees of freedom of the theory. In higher-order
loops of semiclassical expansion the nonvanishing one-
loop anomaly will irrecoverably destroy renormalizability
of the theory and its Ward identities providing its unitarity,
as this was originally stated in [23,24]. The □R part of the
anomaly will also make the theory inconsistent because the
finite local R2-counterterm needed for its cancellation is
itself conformally not invariant. Therefore, consistency of
the renormalization scheme would require introducing this
term already at the classical level, which would mean the
loss of local Weyl invariance from the very beginning of the
quantization procedure.
Despite inconsistency of the Weyl theory (1.2) at the

quantum level, there was much interest in this model
considered in the series of papers [5–7,9,25] where the
Weyl squared and Gauss-Bonnet terms of the trace anomaly
were fully calculated while its □R part was ignored. Lack
of interest in this contribution might be explained by the
fact that it is usually considered to be ambiguous
and depending on the chosen regularization and renorm-
alization scheme. For instance, in zeta function regulari-
zation [26] or in the covariant cutoff of the lower limit of
the proper time integral [13], the □R-term enters the
anomaly as the trace of the coincidence limit of the
coefficient â2 of the Schwinger-DeWitt expansion, i.e., it
is proportional to the corresponding term in the one-loop
divergence. On the contrary, in the dimensional regulari-
zation, it is ambiguous and strongly depends on the details
of analytic continuation into the complex plane of space-
time dimensionality [2,12,27].
On the other hand, the□Rmight be important in various

implications because its contribution to the finite nonzero
hTμ

μi in view of Eq. (1.1) is responsible for a finite R2-term
in effective action, and this term represents the core of the
Starobinsky model of inflation [15,16]. In addition to this,
the knowledge of□R in the anomaly allows one to pose the
question of complete calculation of the surface terms in the
one-loop divergences of the theory and their dependence on
the boundary conditions at spacetime boundaries. As the
trace anomaly in fact represents the spacetime integrand of
the one-loop divergences—the local Schwinger-DeWitt
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coefficient a2 (or Gilkey-Seeley E4 coefficient) [28,29], its
□R part after integration gets washed out from the
spacetime bulk M and reduces to the surface integralR
∂M dΣμ∇μR over the boundary Σ ¼ ∂M, whereas another
part of this surface integral comes from the boundary part
of the Gilkey-Seeley coefficient E3. This issue was a
subject of a very preliminary analyses [5] and never fully
considered within Weyl invariant gravity theory. All this
explains our interest in the□R part of the trace anomaly in
Weyl gravity theory.
Thus, the derivation of the term □R in the one-loop

trace anomaly is the main subject of the present work. As
we will see the calculation of this term requires not only the
use of known algorithms for the minimal fourth-
order operator [5,9,30,31], but also the generalization of
the algorithms for the nonminimal second-order vector
operator [5,9,30,32].
Though the □R term was ignored in previous calcu-

lations in conformal gravity [5–7,9,25], its calculation in
generic curvature squared nonconformal theory was suc-
cessfully accomplished [5]. We emphasize again that the
status of this term in nonconformal case is different because
the relevant R2 term in the classical action is not forbidden
by the requirement of local Weyl invariance and is subject
to the renormalization and experimental adjustment in the
subtraction point.
The paper is organized as follows. In Sec. II we explain

the role of □R term in quantum field theory on classical
curved background and in conformal quantum gravity and
emphasize the fundamental difference between the two
cases. In the subsequent sections, we describe the calcu-
lation of the □R-type anomaly in the Weyl conformal
gravity. Section III discusses the background field method
in the conformal quantum gravity, presents the results for
Hessian operators and introduces gauge fixing condition.
On top of this, we repeat the proof of [33] of the gauge-
fixing independence of the result for the one-loop
divergences in this theory. Section IV gives the final forms
of Faddeev-Popov ghosts and weight operator contributing
to the one-loop divergences along with the tensor sector
coming from quantum metric. In Sec. V we briefly
summarize the algorithms for the heat-kernel-based
algorithms for the minimal fourth-derivative operators
acting in space of arbitrary fields [5,9,30,31] and for the
nonminimal second-order vector operator [32]. Most of the
calculational efforts of the present work consisted in
the verification of this result by the method of universal
functional traces of [30]. We report on this extensive
calculation in Sec. VI and show that the mentioned
algorithm of [32] is confirmed. Section VII reports on
the final derivation of the anomaly□R term by using these
algorithms. In Sec. VIII we present the conclusions and
final discussions of the conformal symmetry breakdown in
Weyl quantum gravity by the local term. Throughout the
paper we use Euclidean notations.

II. TRACE ANOMALY AND INDUCED
ACTION OF GRAVITY

Let us briefly review the conformal anomaly and
derivation of the anomaly-induced action [24,34]. In the
discussion of this subject, we shall pay special attention to
the ambiguities related to the choice of regularization and to
the difference between conformal theories in external
gravitational field and conformal quantum gravity.
The starting classical theory of the fields Φi and the

metric, is conformal, i.e., its action Sconf satisfies the
conformal Noether identity, that is a generalization of (1.3),

1ffiffiffi
g

p
�
2gμν

δ

δgμν
þ
X
i

wiΦi
δ

δΦi

�
S ¼ 0; ð2:1Þ

were wi is the conformal weight of the field Φi and S is the
action of gravity and fields Φi. In the purely gravitational
sector, the action has the form (1.2), and the form of
conformal actions of scalars, fermions and vectors can be
found, e.g., in [35] or elsewhere. In pure quantum gravity or
on shell of matter fields, when δS=δΦi ¼ 0, the Noether
identity (2.1) reduces to (1.3). In this sense, conformal
quantum gravity and semiclassical theories are similar.
Another common point is that, at the one-loop level, the
identity (1.3) gets violated, i.e., acquires a nonvanishing
mean value

hTμ
μi ¼ −

2ffiffiffi
g

p gμν
δΓ
δgμν

≠ 0: ð2:2Þ

In the case of quantum matter fields, the trace anomaly
corresponds to the violation of conformal symmetry in the
finite vacuum part of effective action. Depending on the
regularization scheme, the expression for hTμ

μi is propor-
tional to the local one-loop divergences modulo the □R
term which is the object of our prime interest. In quantum
theory of conformal matter fields, these divergences and
trace anomaly consist of the C2, E4, and □R [3]. Thus
within the existing classification of invariants [10,11]

hTμ
μi ¼ ωC2 þ bE4 þ c□R; ð2:3Þ

where ω, b, and c depend on the fields content of the
model. Equation (2.2) can be used to find the part of the full
effective action, which is responsible for the anomaly and
also called induced effective action.
The anomaly can be integrated using the relations (1.1)

and
ffiffiffi
g

p ðE4 − 2
3
□RÞ ¼ ffiffiffī

g
p ðĒ4 − 2

3
□ R̄þ4Δ̄4σÞ, where the

metrics gμν and ḡμν are related by gμν ¼ ḡμνe2σ and

Δ4 ¼ □2 þ 2Rμν∇μ∇ν −
2

3
R□þ 1

3
ð∇μRÞ∇μ; ð2:4Þ

is the fourth-order Hermitian conformal invariant
operator [36,37] acting on a scalar field of zero conformal
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weight. The covariant solution of Eq. (1.1) has the
form

Γind ¼ ScðgμνÞ þ
ω

4

Z
x

Z
y
C2ðxÞGðx; yÞ

�
E4 −

2

3
□R

�
y

þ b
8

Z
x

Z
y

�
E4 −

2

3
□R

�
x
Gðx; yÞ

�
E4 −

2

3
□R

�
y

−
3cþ 2b

36

Z
x
R2ðxÞ: ð2:5Þ

Here ScðgμνÞ is arbitrary conformally invariant functional
of metric, serving as an integration constant for this
solution. This term is important for short distance behavior
of stress-tensor correlators [38] or in the model of initial
conditions for inflationary cosmology driven by a
conformal field theory [39,40], but for the purposes of
our paper it is largely irrelevant (see, e.g., the discussion
in [41]). The next two terms include the conformal Green
function Gðx; yÞ of the operator Δ4 and are free of
ambiguities. On the other hand, the situation is more
complex with the local term

R ffiffiffi
g

p
R2, which is directly

related to the□R-type anomaly owing to the relation (1.1).
In semiclassical theories, one can modify□R-term in the

anomalous trace simply by adding the
R ffiffiffi

g
p

R2 term to the
classical action. This procedure can be also hidden in the
details of dimensional or Pauli-Villars regularizations [13].
However the corresponding ambiguities are in fact equiv-
alent to adding a classical

R ffiffiffi
g

p
R2 term. In a semiclassical

model, this vacuum term does not produce changes in the
quantum theory because the metric is not quantized.
However, things change if we add such a term in the
theory of conformal quantum gravity, because this oper-
ation violates the classical conformal symmetry, increases
the number of degrees of freedom and changes the quantum
theory.

III. BACKGROUND FIELD METHOD
AND GAUGE FIXING

For a one-loop calculation, we shall use the background
field method, as it was done in the previous works in the
same model, starting from [5]. The first step is to separate
the metric field into background gμν and quantum hμν
counterparts,

gμν → g0μν ¼ gμν þ hμν: ð3:1Þ

The one-loop calculations include contribution of the
Hessian for the fluctuation hμν, so we need to expand
the action up to second order in this field. One detail makes
our calculation different from what was done before. We
need only the □R-type term and, therefore, can restrict our
attention to the linear in curvature tensor terms, since other
contributions were calculated and verified in [5–7,9].

In what follows, we use standard condensed notations of
DeWitt [29]. The unity operator and the covariant deriv-
atives obeying the Leibnitz rule read as

δμν;αβ¼
1

2
ðgμαgνβþgμβgναÞ; ∇μA¼ð∇μAÞþA∇μ: ð3:2Þ

In the framework of usual Faddeev-Popov approach, we
add the background-invariant gauge-fixing term fixing the
diffeomorphism invariance for the quantum fields,

Sgf ¼
Z

d4x
ffiffiffi
g

p
χμYμνχν; ð3:3Þ

with the gauge condition χμ and the gauge fixing operator
Yμν of the general form

χμ ¼ ∇αhαμ þ τ∇μh; Yμν ¼ γ1gμν□þ γ2∇μ∇ν; ð3:4Þ

where h is the trace, h ¼ gμνhμν, while τ and γ1;2 are three
gauge-fixing parameters. For arbitrary choice of these
parameters, the calculations become complicated. The total
Hessian contributed by the sum of the action (1.2) and the
gauge-fixing term (3.3) is a nonminimal fourth-order
operator. On the other hand, there is a unique special
choice of the gauge-fixing parameters [7,9,25].

γ1 ¼
1

2
; γ2 ¼ −

1

6
; τ ¼ −

1

4
; ð3:5Þ

that reduces this Hessian to the minimal form. Then, the
quadratic form of the action reads as

Sð2Þconf ¼
1

4

Z
d4x

ffiffiffi
g

p
hμνHμν;αβhαβ; ð3:6Þ

where

Ĥ ¼ Hμν;αβ ¼ 1̂□2 þ V̂ρσ∇ρ∇σ þ N̂ρ∇ρ þ Û: ð3:7Þ

At this point, we encounter a special feature of conformal
gravity, which has not only diffeomorphism invariance, but
also conformal symmetry. For the gauge fixing of con-
formal symmetry we follow [5,9] and choose the degen-
erate (delta function type) gauge ϕ≡ gμνhμν ¼ 0. This
means that the quantum metric fluctuation in the path
integral hμν becomes traceless and the unity matrix in the
metric sector is a projector operator to the subspace of
traceless tensors (the hat indicating the action of the tensor
matrix objects in the space of tensors)

1̂ ¼ δμν;αβ −
1

4
gμνgαβ: ð3:8Þ

After some algebra, we get the following elements of the
operator (3.7):
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V̂ρσ ¼ −
2

3
Rδμν;αβgρσ þ

4

3
Rgνβδμα;ρσ þ

4

3
Rαβδμν;

ρσ þ 4

3
Rμνδαβ;

ρσ

þ 2Rμαδνβ;
ρσ − 4Rρ

μgνβδσα − 4Rρ
αgνβδσμ þ 4Rμανβgρσ þ 2δμν;αβRρσ; ð3:9Þ

N̂λ ¼ 1

3
δμν;αβð∇λRÞ − 4

3
ð∇μRαβÞδλν −

2

3
ð∇αRÞgνβδλμ − 2ð∇μRνβÞδλα

þ 4ð∇αRμνÞδλβ þ 4ð∇αRμβÞδλν − 4ð∇αRλ
μÞgνβ þ 4ð∇λRμανβÞ; ð3:10Þ

and

Û ¼ −
1

3
δμν;αβð□RÞ − 4

3
ð∇μ∇αRÞgνβ þ

4

3
ð∇μ∇νRαβÞ þ 2ð□RμαÞgνβ þ 2ð□RμανβÞ: ð3:11Þ

Before starting the calculations, let us comment on the
important question about the gauge-fixing dependence.
Repeating the arguments of [33,35] (and those of [5] for
a general higher-derivative quantum gravity) this issue may
be stated as follows. As is well-known, the gauge and
parametrization dependence of the one-loop effective action
is proportional to classical equations of motion [42–45].
In view of locality of UV divergences [46,47] in the
theory (1.2), the difference between its divergences ΔΓð1Þ

div
calculated in different background-covariantgauges [8],
which necessarily has dimensionality 4 and is proportional
to equations of motion, can only be of the following
form [33]:

ΔΓð1Þ
div ∝

Z
d4xgμν

δSW
δgμν

ð3:12Þ

(other powers of δSW=δgμν are obviously excluded for
dimensional reasons). Therefore, in view of the conformal
symmetry of the classical action (1.3), it is vanishing. Thus,
in the conformal theory (1.2) in this class of gauges the one-
loop divergences are parametrization and gauge-fixing
independent. Hence, we can safely use the simplest choices
of variables and gauge-fixing conditions.

IV. GAUGE GHOSTS AND GAUGE-FIXING
OPERATOR

The general expression for the one-loop effective action
in Euclidean notations reads [5] (see also [48,49] and the
recent review in [50])

Γ ¼ 1

2
Tr log Ĥ −

1

2
Tr log Ŷ − Tr log M̂; ð4:1Þ

where Tr denotes the functional trace, Ĥ is defined in (3.7),
the gauge-fixing operator

Ŷ ¼ Yμν ¼ 1

2

�
gμν□ −

1

3
∇μ∇ν

�
; ð4:2Þ

is defined in (3.4) and (3.5), and M̂ ¼ Mβ
α is the Hessian of

the action of ghost fields responsible for diffeomorphism
gauge transformations,

Mβα ¼
δχβ
δhμν

Rμν;α; ð4:3Þ

with the generator of diffeomorphism transformations
Rμν;α ¼ −gμα∇ν − gνα∇μ. This operator is built with the
diffeomorphism gauge conditions in (3.4) and (3.5).
Regarding the conformal gauge h ¼ 0 we note that its
ghost field does not contribute to the effective action (4.1)
owing to the nondynamical (nonderivative) nature of its
conformal ghost sector.2 Thus, we get

M̂ ¼ Mβ
α ¼ −

�
δβα□þ 1

2
∇β∇α þ Rβ

α

�
: ð4:4Þ

In both cases of operators (4.2) and (4.4) we meet the
problem of calculating Tr log F̂ for the nonminimal vector
operator

F̂≡ Fμ
ν ¼ □δμν − λ∇μ∇ν þ Pμ

ν ð4:5Þ

with a generic value of the parameter λ and some potential
term Pμ

ν .

2This is a nontrivial and very helpful corollary of the choice
of the diffeomorphism gauge (3.4) and (3.5). In the full set of
diffeomorphism and conformal gauge conditions ðχμ;ϕÞ,
ϕ≡ gμνhμν, the full Faddeev-Popov operator has a block
matrix form with the off-diagonal element ðδχα=δhμνÞRμν, where
Rμν ¼ gμν is the linearized generator of the conformal trans-
formation of hμν. But in the gauge (3.4) with the parameter
τ ¼ −1=4 of (3.5) this block turns out to be vanishing, so
that the total ghost determinant factorizes into the product of
DetMαβ and the determinant of its conformal-conformal block
ðδϕ=δhμνÞRμν ¼ 4. The latter one is ultralocal and does not
contribute to the effective action.
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V. THE ALGORITHMS FOR ANOMOLIES AND
DIVERGENCES

One-loop UV divergences and anomalies in curved
spacetime can be covariantly calculated by using the heat
kernel of the corresponding wave operators of the theory.
For the effective action built in terms of the functional
determinants of the second-order operators F̂ and the
fourth-order operators Ĥ, the heat kernels of these oper-
ators can be represented in the form of asymptotic
expansions at small values of the proper time s → 0,

esF̂δðx; yÞjy¼x ¼
ffiffiffiffiffiffiffiffiffi
gðxÞp

ð4πsÞd=2
X∞
m¼0

smâFmðxÞ; ð5:1Þ

and

esĤδðx; yÞjy¼x ¼
ffiffiffiffiffiffiffiffiffi
gðxÞp

ð4πs1=2Þd=2
X∞
m¼0

sm=2âHmðxÞ; ð5:2Þ

where d is the spacetime dimension, and âF;Hm ðxÞ are
respectively the local Schwinger-DeWitt [29,30] coeffi-
cients of the operators F̂ and Ĥ related to the Gilkey-Seeley
coefficients [28] ÊF;H

2m ðxÞ by

âF;Hm ðxÞ ¼ ð4πÞd=2ÊF;H
2m ðxÞ; ð5:3Þ

These heat kernels generate by integration over the
proper time parameter the contributions to the Euclidean
effective action Γ ¼ 1

2
Tr lnF ¼ 1

2

R∞
0 ds e−sF=s coming

from the operator F̂ and correspondingly from Ĥ. Their
divergent parts read respectively as

1

2
Tr log F̂jdiv ¼ −

1

ϵ

Z
d4x

ffiffiffi
g

p
tr âF2 ; ð5:4Þ

1

2
Tr log Ĥjdiv ¼ −

2

ϵ

Z
d4x

ffiffiffi
g

p
tr âH2 ; ð5:5Þ

where tr denotes the matrix trace with respect to the indices
of the second Schwinger-DeWitt coefficient â2 and
ϵ ¼ ð4πÞ2ð4 − nÞ → 0 is the parameter of dimensional
regularization with n denoting the regularized spacetime
dimension. To avoid the ambiguities related to this
regularization [12,13], one can use the covariant cutoff
in the proper-time regularization with the dimensionless
parameter L → ∞ representing the ratio of the dimensional
UV cutoff and the renormalization scale (see [30])

1

ϵ
¼ logL2

32π2
: ð5:6Þ

Note the difference in coefficients in (5.4) and (5.5)
associated with the fact that the operator Ĥ is quartic in
derivatives (that is, it has the dimension four in units of

mass and the corresponding conformal weight −4),
whereas weight −2 operator F̂ is quadratic in derivatives.
This weight plays important role in the generation of trace
anomaly, which can be most easily demonstrated within
zeta-functional regularization as follows.
Consider a symmetric Weyl-covariant operator Ĥ of the

conformal weight −2w (correspondingly the weight of the
field acted upon by Ĥ being w), which transforms under
the infinitesimal conformal rescaling δσgμν ¼ þ2σgμν as
δσĤ ¼ −wðσĤ þ ĤσÞ. The conformal transform of its
“effective action” Γ ¼ 1

2
log Ĥ, expresses in zeta function

regularization in terms of the particular value of the zeta
function, ζðzjxÞ ¼ trð−ĤÞ−zδðx; yÞjy¼x, at z ¼ 0—the
value which is given in 4-dimensional massless theories
in terms of the local Schwinger-DeWitt (or Gilkey-Seeley)
coefficient (5.3), ζð0jxÞ ¼ trÊH

4 ðxÞ. Namely,

hTμ
μi≡ −δσΓ ¼ wζð0jxÞ ¼ w tr ÊH

4 ðxÞ: ð5:7Þ

Thus, when the both operators F̂ and Ĥ are individually
Weyl invariant with respect to local conformal transforma-
tions, their functional determinants supply the total trace
anomaly with the following contributions expressible in
terms of the second Schwinger-DeWitt coefficient

hTμðFÞ
μ i ¼ tr âF2 ðxÞ

16π2
; hTμðHÞ

μ i ¼ 2
tr âH2 ðxÞ
16π2

; ð5:8Þ

in accordance with their conformal weights −2w ¼ −2 and
−2w ¼ −4, respectively.
In Weyl gravity theory the fourth-order operator Ĥ given

by (3.7) and nonminimal second-order operators F̂ ¼
ðMμν; YμνÞ given by Eqs. (4.2) and (4.3) are not individu-
ally Weyl covariant, because the chosen diffeomorphism
and conformal gauges are not background covariant with
respect to the local conformal subgroup of the full set of
gauge transformations. However, these operators are inter-
twined by Ward identities which provide the expression
(3.12) for gauge conditions variation of the one-loop
divergences, which in its turn occurs to be vanishing also
off shell in view of the discussion above. Thus, the
deviation of the actual conformal transformations from
the expressions (5.8) above in fact cancels out in the total
sum of contributions into effective action (4.1), which
generate the overall trace anomaly

hTμ
μðxÞi¼ 1

16π2

�
2 tr âH2 ðxÞ− tr âY2 ðxÞ−2 tr âM2 ðxÞ

�
: ð5:9Þ

This expression thus turns out to be the integrand of the
overall set of the one-loop divergences of the model,

Γjdiv ¼ −
1

ϵ

Z
d4x

ffiffiffi
g

p 	
2trâH2 − trâY2 − 2trâM2



: ð5:10Þ
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Note, however, that unless we include the surface terms at
the boundary of spacetime, which are disregarded in this
four-dimensional integral, the □R contributions—the
object of our prime interest—are completely washed out
from the right-hand side of (5.10) because they do not
contribute to the interior of spacetime domain. But they
enter the right hand side of (5.9). They are ambiguous, as it
was already remarked, in the dimensional regualarization,
but in the zeta-functional regularization appear as uniquely
defined ingredients of the relevant Schwinger-DeWitt
(or Gilkey-Seeley) coefficients. Our goal is to calculate
them here.
Let us start the calculation of various terms of (5.9)

with the contribution of the minimal fourth-derivative
operator (3.7). We shall ignore in what follows all the terms
which are not of the desired□R type, as they are not of our
interest. The reader can easily find the corresponding
expressions in [5,30] or in [31,32,51]. The expression for
the□R-type terms for the fourth orderminimal operatorwas
derived in [31] using the heat-kernel method. The formula
obtained in [31] is equivalent, for the operator (3.7), to

tr âH2 ðxÞ ¼
1

2
tr

�
1̂

15
ð□RÞ þ 1

9
□V̂

−
5

18
∇ρ∇σV̂

ρσ þ 1

2
∇λN̂

λ − Û

�
; ð5:11Þ

It is worth mentioning that this expression passes the test
of representing the fourth-order derivative operator as a
product of two minimal second order ones [5] and
calculating the divergent part of its functional determinant.
The details of this verification sound as follows. For the
basic second-order operator, the divergent part is [29]

−
1

2
Trlogðb□þ Π̂Þjdiv¼−

1

ϵ

Z
d4x

ffiffiffi
g

p
tr

�
1̂

30
□Rþ 1̂

6
□Π̂

�
;

ð5:12Þ

Taking the particular form of the fourth-derivative operator

Ô¼ 	b□þ Π̂


2¼ b□2þ2Π̂□þ2

	∇λΠ̂

∇λþ

	
□Π̂



;

TrlogÔ¼2Trlog
	b□þ Π̂



; ð5:13Þ

we identify this with the special version of (3.7), when

V̂ρσ ¼2Π̂gρσ; N̂ρ¼2ð∇ρΠ̂Þ; Û¼ð□Π̂Þ: ð5:14Þ

At this point, we can establish the form of the possible
divergences of the □R-type. These divergences should be
the total derivative expressions constructed from V̂ρσ, N̂ρ

and Û. taking into account the dimension of these building
blocks,we arrive at the expression for divergenceswhich has
four unknown coefficients a1;…;4, that are still to be defined,

1

2
Tr log Ĥjdiv ¼ −

1

ϵ

Z
d4x

ffiffiffi
g

p
tr

�
1̂

90
□Rþ a1∇ρ∇σV̂

ρσ

þ a2□V̂ þ a3∇ρN̂
ρ þ a4Û

�
; ð5:15Þ

From the nontotal derivative terms we know that a4 ¼ −1
(e.g., [5,30]). Other coefficients can be obtained using
different doubling tricks [5]. In this case, we can identify
∇ρ∇σV̂

ρσ ¼ 2□Π̂ and □V̂ ¼ 8□Π̂. Using these relations
and (5.13), we arrive at the equation

2a1 þ 8a2 þ 2a3 þ a4 ¼
1

3
: ð5:16Þ

Since Eq. (5.11) fits this condition, we conclude that it has
passed this partial check.
Let us now consider the contribution of the nonminimal

vector operator (4.5). The algorithms for the divergences in
this case is known from [5] and [30]. However, in both
cases the formula for divergences did not include the total
derivative terms, such as □R, □P and ∇μ∇μPμν, where
P ¼ Pμνgμν. The algorithm for these terms was obtained
in [32]. The final result for the vector operator (4.5),
âF2 ≡ ðaF2 Þμν , trâF2 ¼ ðaF2 Þμμ, reads

tr âF2 ¼ c1□Pþ c2∇α∇βPαβ þ c11□R; ð5:17Þ
with the coefficients

c1¼−
8λ2−21λþ6

36λð1−λÞ þ2λ−1

6λ2
logð1−λÞ;

c2¼−
13λ2þ6λ−24

36λð1−λÞ þλþ4

6λ2
logð1−λÞ;

c11¼−
133λ2−168λ−60

360λð1−λÞ −
λ2−5λ−2

12λ2
logð1−λÞ; ð5:18Þ

where we keep enumeration of the coefficients adopted
in [32]. To have an additional verification, in the next section
we present an alternative derivation of the contribution of
minimal-vector operator, by using a different approach.

VI. NEW DERIVATION FOR NONMINIMAL
VECTOR OPERATOR

Consider the vector field operator (4.5)

F≡ Fμ
ν ¼ □δμν − λ∇μ∇ν þ Pμ

ν : ð6:1Þ
Coincidence limit of the heat kernel has Schwinger-DeWitt
expansion given by [29,30]

esFδμνðx; yÞjy¼x ¼
1

ð4πsÞd=2 g
1=2

h
aμ0 νðx; xÞ þ aμ1 νðx; xÞs

þ aμ2 νðx; xÞs2 þ � � �
i
; ð6:2Þ
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where the aμn;νðx; xÞ are the coincidence limits of the two-
point Schwinger-DeWitt coefficients aμn;νðx; yÞ labeled
above by one argument aμn;νðxÞ≡ aμn;νðx; xÞ.
We intend to find total derivative terms in the second

Schwinger-DeWitt coefficient aμ2 νðx; xÞ which determine
the corresponding one-loop divergences in the effective
action. For the matrix trace of aμ2 νðx; xÞ there are three such
structures with some numerical coefficients a, b, and c,

aμ2μðx;xÞ¼a□Rþb□Pþc∇μ∇νPμ
ν ; P≡Pμ

μ: ð6:3Þ

These terms cannot be extracted from the integral quantity
like TresF or Tr logF because under integration over

spacetime they get washed out and materialize as surface
terms at the boundary which we do not control. Therefore,
let us extract them from the local quantity. The simplest
object is the coincidence limit of the Green’s function

−
1

F
δμνðx; yÞjy¼x ¼

Z
∞

0

ds esF δμνðx; yÞjy¼x: ð6:4Þ

Unfortunately, however, aμ2 νðx; xÞ is contained in the UV
finite part of this quantity which for massless operator is
badly IR divergent within the local Schwinger-DeWitt
expansion (6.2). Therefore we have to consider the massive
Green’s function

1

m2 − F
δμνðx; yÞjy¼x ¼

Z
∞

0

dsesF−sm
2

δμνðx; yÞjy¼x

¼
Z

∞

0

dse−sm
2

ð4πsÞd=2 g
1=2

h
aμ0 νðx; xÞ þ aμ1 νðx; xÞsþ aμ2 νðx; xÞs2 þ � � �

i

¼ 1

ð4πÞd=2 g
1=2

�
Γð1 − d

2
Þ

ðm2Þ1−d
2

aμ0 νðx; xÞ þ
Γð2 − d

2
Þ

ðm2Þ2−d
2

aμ1 νðx; xÞ þ
1

m2
aμ2 νðx; xÞ þ � � �

�
; ð6:5Þ

for d → 4. Then aμ2 νðx; xÞ=16π2 is the coefficient of 1=m2

in the inverse mass expansion of a massive Green’s
function.
Let us calculate this Green’s function by the method of

universal functional traces of [30]. In the lowest order in
curvatures, we have

1

F −m2
¼ Kμ

α
δαν

ð□ −m2Þ
�
□ − m2

1−λ

�þ � � � ; ð6:6Þ

where

K ≡ Kμ
ν ¼

�
□ −

m2

1 − λ

�
δμν þ λ

1 − λ
∇μ∇ν: ð6:7Þ

More precisely, we can derive the exact equality:

ðFμ
α −m2δμαÞKα

ν ¼ ð□ −m2Þ
�
□ −

m2

1 − λ

�
δμν þMμ

ν ; ð6:8Þ

where the perturbation operator Mμ
ν equals

Mμ
ν ¼ λ

1−λ
ðRμ

αþPμ
αÞ∇α∇νþPμ

ν

�
□−

m2

1−λ

�
−λRνα∇μ∇α

−λð∇μRναÞ∇α−
λ

2
ð∇νRÞ∇μ−

λ

2
ð∇μ∇νRÞ: ð6:9Þ

From (6.8), we find

1

F −m2
¼ K

1

F1F2 þM
; ð6:10Þ

where we have introduced the abbreviations

F1 ¼ □ −m2; F2 ¼ □ −
m2

1 − λ
: ð6:11Þ

We expand (6.10) in the inverse powers of F1F2,

1

F −m2
¼ K

X∞
p¼0

ð−1ÞpMp
1

ðF1F2Þpþ1
: ð6:12Þ

We then find

M0¼1; M1¼M; Mpþ1¼MMpþ
h
F1F2;Mp

i
: ð6:13Þ

For our purposes of finding linear ∇∇R and ∇∇P terms,
we need the above operators up to p ¼ 3 with

M2 ¼ MM1 þ ½F1F2;M1� ¼ M2 þ
h
F1F2;M

i
¼ ½□;M�ðF1 þ F2Þ þ


□; ½□;M��þ � � � ; ð6:14Þ

where only OðRÞ terms are kept. We also have
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M3 ¼ MM2 þ ½F1F2;M2� ¼
h
F1F2;M2

i
þ � � � ¼ ½□; ½□;M��ðF1 þ F2Þ2 þ � � � ; ð6:15Þ

where we keep only those terms linear in the curvature with two derivatives. Then the single and double commutators of□
with M are also needed:

½□;Mμ
ν � ¼ 2λ

1 − λ

h
∇βðRμ

α þ Pμ
αÞ
i
∇β∇α∇ν þ 2ð∇αPμ

νÞ∇αF2

− 2λð∇βRναÞ∇β∇μ∇α þ λ

1 − λ

h
□ðRμ

α þ Pμ
αÞ
i
∇α∇ν þ ð□Pμ

νÞF2

− λð□RναÞ∇μ∇α − 2λð∇β∇μRναÞ∇β∇α − λð∇α∇νRÞ∇α∇μ þ � � � ; ð6:16Þ

h
□; ½□;Mμ

ν �
i
¼ 4λ

1 − λ

∇γ∇βðRμ
α þ Pμ

αÞ
�∇γ∇β∇α∇ν

þ 4ð∇β∇αPμ
νÞ∇β∇αF2

− 4λð∇γ∇βRναÞ∇γ∇β∇μ∇α þ � � � ; ð6:17Þ

up to terms OðR2Þ, OðRPÞ and higher derivatives of the
curvatures.

A. M0-term

Let us explicitly calculate the contribution of the first
term in (6.12),

Kμ
α

δαν
F1F2

δðx; yÞjy¼x ¼
δμν
F1

δðx; yÞjy¼x

þ λ

1 − λ
∇μ∇α

δαν
F1F2

δðx; yÞjy¼x

ð6:18Þ

The 1=m2 term from the first term can be obtained from
(6.5) and is given by

−g1=2
a□ μ
2 ν ðx; xÞ
16π2m2

: ð6:19Þ

That from the second term in (6.18) is calculated as

λ

1 − λ
∇μ∇α

δαν
ð□ −m2Þð□ − m2

1−λÞ
δðx; yÞjy¼x ¼

λg1=2

1 − λ
∇μ∇α

Z
∞

0

ds dt exp

�
ðsþ tÞ□ −m2

�
sþ t

1 − λ

��
δðx; yÞjy¼x

¼ λg1=2

1 − λ

Z
∞

0

dγγe−m
21−αλ
1−λ

ð4πγÞd=2
Z

1

0

dα

�
∇μ −

σμ

2γ

��
∇α −

σα
2γ

�

× Δ1=2
�
a□ α
0 ν þ a□ α

1 ν γ þ a□ α
2 ν γ

2 þ � � �
�
jy¼x; ð6:20Þ

where we have used proper time representations for both massive Green’s functions (s- and t-integrals) and made a change
of integration variables s; t → γ; α, s ¼ αγ, t ¼ ð1 − αÞγ, with 0 ≤ sþ t ¼ γ < ∞. We have also used the Schwinger-
DeWitt expansion (A6) and pulled expð−σðx; yÞ=2γÞ to the left through two covariant derivatives. Here σα ¼ ∇ασðx; yÞ and
similarly σμ.
Only two terms containing ∇∇R survive here after differentiation and taking the coincidence limits. These are where ∇μ

acts on σα times a□2 [they give ð∇μσαÞa□ α
2 ν jy¼x ¼ a□ μ

2 ν ðx; xÞ] and where both derivatives act on a□1 . They have a needed
dimensionality, and contain the needed ∇∇R terms. Taking in these two terms the integral over γ (which can be done
directly in d ¼ 4, because these terms are UV finite) we get

λ

1 − λ
∇μ∇α

δαν
ð□ −m2Þð□ − m2

1−λÞ
δðx; yÞjy¼x ¼ λ

g1=2

16π2m2

Z
1

0

dα
1 − αλ

�
∇μ∇αa□ α

1 ν ðx; yÞ −
1

2
a□ μ
2 ν ðx; yÞ

�����
y¼x

þ � � �

¼ −g1=2
logð1 − λÞ
16π2m2

�
∇μ∇αa□ α

1 ν ðx; yÞ −
1

2
a□ μ
2 ν ðx; yÞ

�����
y¼x

þ � � � : ð6:21Þ
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Using the coincidence limits (4.32) and (4.33) of [30] for the vector field Schwinger-DeWitt coefficients a□ α
n ν ðx; yÞ,

n ¼ 0; 1;…, of the operator □δμν :

∇μ∇αa□ α
1 ν ðx; yÞjy¼x ¼ −

1

15
□Rμ

ν þ 2

15
∇μ∇νRþ � � � ; ð6:22Þ

a□ μ
2 ν ðx; xÞ ¼

1

30
□Rδμν þ � � � ; ð6:23Þ

one finally has

Kμ
α

δαν
F1F2

δðx; yÞjy¼x ¼
g1=2

16π2m2

��
−

1

30
þ 1

60
logð1 − λÞ

�
□Rδμν −

2

15
logð1 − λÞ∇μ∇νRþ 1

15
□Rμ

ν logð1 − λÞ þ � � �
�
:

ð6:24Þ

B. M1-term

The rest of the terms can be calculated by using the formulas given in Appendix A. Using (6.7) and (6.9) and retaining
only the terms with ∇2R and ∇2P, we have, for the second term in (6.12),

−ðKMÞμν 1

F2
1F

2
2

¼ g1=2
�
−
�
−
λ

2
∇μ∇νRþ□Pμ

ν þ λ

1 − λ
∇μ∇αPα

ν

�
1

F2
1F2

−
�

λ

1 − λ
□ðRμα þ PμαÞ þ

�
λ

1 − λ

�
2∇μ∇βðRβα þ PβαÞ

�
∇α∇ν

1

F2
1F

2
2

þ 1

2

λ2

1 − λ
ð∇μ∇νRÞ□

1

F2
1F

2
2

þ 2λ

1 − λ
ð∇α∇μRνβÞ∇α∇β 1

F2
1F

2
2

þ λ

1 − λ

h
∇α∇νRþ□Rαν

i
∇μ∇α

1

F2
1F

2
2

þ � � �
�
: ð6:25Þ

Using the results in Appendix A in (6.25), one gets the result for M1-term,

−ðKMÞμν 1

F2
1F

2
2

¼ g1=2
1 − λ

16π2m2

�
ð∇μ∇νRÞ

�
−
λ

2
I1;0 þ

�
γ2

4
− γλ − γ

�
I1;1

�

þ ð□Pμ
νÞ
�
I1;0 þ

γ

2
I1;1

�
þ ð∇μ∇αPα

νÞ
�
γI1;0 þ

γ2

2
I1;1

��
; ð6:26Þ

where the integrals In1;n2 here and below are defined in
(A10) in Appendix A and

γ ¼ λ

1 − λ
: ð6:27Þ

Note that □Rμ
ν-term does not appear in this order at all.

C. M2-term

Using (A1), we have for the third term in (6.12),

ðKM2Þμν ¼ Kμ
α½□;Mα

ν �ðF1 þF2Þ þKμ
α


□; ½□;Mα

ν �
�þ � � �

¼ ½□;Mα
ν �Kμ

αðF1 þF2Þ þ

Kμ

α; ½□;Mα
ν �
�ðF1 þF2Þ

þ 
□; ½□;Mα

ν �
�
Kμ

α þ � � � : ð6:28Þ

The derivative operator is put to the right, and to the order
we need, we find

ðKM2Þμν ¼½□;Mμ
ν �F2ðF1þF2Þ

þ λ

1−λ
½□;Mα

ν �∇μ∇αðF1þF2Þ
þ

□; ½□;Mμ
ν �
�ðF1þ2F2Þ

þ λ

1−λ


□; ½□;Mα

ν �
�∇μ∇α

þ λ

1−λ

∇μ∇α; ½□;Mα
ν �
�ðF1þF2Þþ���: ð6:29Þ

Using the results in Appendix A, we can calculate each
term in (6.29). Collecting these terms, we find the M2 term
which reads
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ðKM2Þμν
1

F3
1F

3
2

¼ −
g1=2

16π2m2

�
λ

4

h
2λI1;1 þ λI2;0 þ ðγ − 4λÞI2;2 þ ðγ − 3λÞI1;2 þ ðγ − λÞI2;1

i
□Rμ

ν

þ 1

4

h
2þ 4ð1 − λÞI1;0 þ 4ð2 − λÞI1;1 þ 2ð4 − 3λÞI2;0 þ λðγ þ 2ÞI1;2

þ λðγ þ 6ÞI2;1 þ γλI2;2
i
□Pμ

ν

þ γλ

8
ðI1;2 þ I2;1 þ I2;2Þ

h
δμνð2□Rþ□Pþ 2∇α∇βPαβÞ þ 2∇μ∇νP

i
þ λ

4

h
ð3γ − 4λÞðI2;1 þ I2;2Þ þ ð3γ − 6λÞI1;2 − 2ð1 − λÞðI2;0 þ 2I1;1Þ

i
∇μ∇νR

þ λ

4

h
ðγ þ 8ÞI2;1 þ ðγ þ 4ÞI1;2 þ 2γI2;2

i
∇ν∇αPμ

α

þ λ

4

h
8I1;1 þ 4I2;0 þ 3γI1;2 þ ð3γ þ 4ÞI2;1 þ 2γI2;2

i
∇μ∇αPαν

�
: ð6:30Þ

D. M3-term

We find that the M3-term is

−ðKM3Þμν ¼ −
h
4γ∇γ∇βðRμ

α þ Pμ
αÞ∇γ∇β∇α∇νF2 þ 4ð∇β∇αPμ

νÞ∇β∇αF2
2

− 4λð∇γ∇βRναÞ∇γ∇β∇μ∇αF2 þ 4γ2∇γ∇βðRρ
α þ Pρ

αÞ∇μ∇ρ∇γ∇β∇α∇ν

þ 4γð∇β∇αPρ
νÞ∇μ∇ρ∇β∇αF2 − 4γλð∇γ∇βRανÞ□∇μ∇γ∇β∇α

i
ðF1 þ F2Þ2: ð6:31Þ

By use of the results in Appendix A, this gives

−ðKM3Þμν
1

F4
1F

4
2

¼ g1=2

16π2m2

�
ð□Rμ

νÞλ
�
−3I1;2 þ 3I2;1 þ I3;0

6
þ γ

I1;3 þ 3I2;2 þ I3;1
6

−
I0;3
6

�

þ ð□Pμ
νÞ
�
1

3
þ 2ð1 − λÞðI1;1 þ I2;0Þ þ λ

3I1;2 þ 6I2;1 þ I3;0
3

þ γλ
I1;3 þ 3I2;2 þ I3;1

6

�

þ ð∇μ∇αPνα þ∇ν∇αPμ
αÞλ

�
γ
I1;3 þ 3I2;2 þ I3;1

3
þ 3I1;2 þ 6I2;1 þ I3;0

3

�

þ ð∇μ∇νRÞλ
�
−3I1;2 þ 3I2;1 þ I3;0 − I0;3

6
þ γ

I1;3 þ 3I2;2 þ I3;1
2

�

þ γλðδμνf2□Rþ□Pþ 2∇α∇βPαβg þ 2∇μ∇νPÞ
I1;3 þ 3I2;2 þ I3;1

12

�
: ð6:32Þ

E. The total result

Collecting all the results up to the M3 terms and substituting the result of the integrals from Appendix A, we get

−trĜðx; xÞ ∼ g1=2

360ð4πÞ2m2ð1 − λÞλ2
h
λ
n
ð60þ 168λ − 133λ2Þ□R

− 10ð6 − 21λþ 8λ2Þð□PÞ − 10ð−24þ 6λþ 13λ2Þð∇α∇βPαβÞ
o

þ 30ð1 − λÞ
n
ð2þ 5λ − λ2Þð□RÞ þ 2ð2λ − 1Þð□PÞ

þ 2ð4þ λÞð∇α∇βPαβÞ
o
logð1 − λÞ

i
: ð6:33Þ
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On the other hand, the result in [32] is

tr Ê4ðxÞ ¼
1

ð4πÞ2 a
μ
2;μðx;xÞ

¼ 1

ð4πÞ2 ðc1□Pþ c2∇α∇βPαβ þ c11□RÞ; ð6:34Þ

with the coefficients given in (5.18). Thus, this result agrees
with Eq. (6.33).

VII. FINAL RESULT FOR THE ANOMALOUS □R
TERM

Let us now apply the algorithm for the minimal fourth-
order operator (5.11) and for the nonminimal vector
operator (5.17), to derive the one-loop total-derivative
divergence in the theory (1.2).
We start from the tensor sector. The intermediate

expressions for the elements of the general formula (5.11),
with the elements (3.9)–(3.11), can be found in
Appendix B. Summing up these expressions, we arrive at

tr âH2 ¼ 1

2
tr

�
74

135
δμν;αβ□Rþ 8

27
gμν□Rαβ −

8

3
gνβ□Rμα þ

2

3
□Rμανβ −

20

27
∇μ∇νRαβ þ

4

9
∇μ∇αRνβ þ

20

27
gνβ∇μ∇αR

�
: ð7:1Þ

The rule of taking trace should take into account that the
unite matrix is the projector to the traceless states, such that,
e.g.,

trδμν;αβ ¼
�
δμν;αβ −

1

4
gμνgαβ

�
δμν;αβ ¼ 9: ð7:2Þ

In this way, after small algebra, we get

tr âH2 ¼ 13

135
□R: ð7:3Þ

For the nonminimal vector operators, we have to apply
the results (5.17) and (5.18) to the operators (4.2) and (4.4).
In the first case, Pμν ¼ 0 and λ ¼ 1=3. After a small
algebra, we get

tr âY2 ¼
�
911

720
−
8

3
log

�
3

2

��
□R: ð7:4Þ

For the ghost operator M̂, we have Pμν ¼ Rμν and
λ ¼ −1=2. The calculations give, in this case,

tr âM2 ¼
�
247

540
−

5

12
log

�
3

2

��
□R: ð7:5Þ

Substituting these results in (5.9) we get

hTμ
μðxÞijtotal derivative ¼

1

16π2

�
7

2
log

�
3

2

�
−
159

80

�
□R; ð7:6Þ

where we explicitly indicated that this is a total derivative
part of the full trace anomaly. Other terms in the anomaly
can be recovered from the integrand of the one-loop
divergences in Weyl gravity model, which can be
found in [6] or [7,9]. As we have mentioned above, the
result quoted in (7.6) cannot be modified by adding a
finite classical R2 term, and the last enters into the

anomaly-induced action only in the form defined by the
anomaly and the relation (1.1).
At this point, we can formulate the complete version of

Eq. (2.2) for the effective action of gravity induced by
conformal anomaly in Weyl-squared quantum conformal
gravity. This equation has the form

hTμ
μðxÞi ¼ −

2ffiffiffi
g

p gμν
δΓrenorm

δgμν
¼ ωC2 þ bE4 þ c□R; ð7:7Þ

where we stressed the fact that the equation is for the finite
renormalized part Γrenorm of the effective action with the
divergences are subtracted in the process of renormaliza-
tion. According to [6,7,9] and (7.6) the coefficients are

ω ¼ 1

ð4πÞ2
199

15
;

b ¼ −
1

ð4πÞ2
87

20
;

c ¼ 1

ð4πÞ2
�
7

2
log

�
3

2

�
−
159

80

�
: ð7:8Þ

The solution of Eq. (7.7) has the general form (2.5) and, as
usual, it includes a conformal invariant functional of themetric
Sc, playing the role of an integration constant for the equation.
This functional is not controlled by the trace anomaly.

VIII. CONCLUSIONS

We have presented original calculation of the□R term in
the one-loop trace anomaly of Weyl gravity model with the
action (1.2). The mapping of this anomaly to one-loop
divergences of the theory runs within the framework of the
zeta-function regularization or the regularization by the
covariant proper time cutoff in the heat kernel. Functional
integration of the □R anomaly term yields a finite local R2

term in the one-loop effective action. Unlike the semi-
classical theory, this term cannot be “removed” by adding a
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“finite counterterm.” This situation demonstrates that the
local conformal invariance gets violated at the one-loop
level. This violation is related not only to the nonlocal terms
shown in (2.5), but also to the local R2 term. Starting from
the second loop, one has to take this term into account,
modify propagator by adding the dynamical scalar mode,
modify vertices, etc. This confirms that the local conformal
symmetry cannot be exact at the quantum level and, more-
over, its violation beyond one-loop approximation cannot be
controlled [23] unless some mechanisms like supersym-
metry are used for the cancellation of anomalies [24].
Despite this set of intrinsic inconsistencies and regulari-

zation ambiguities of the above type, the calculation of
anomalous □R terms still makes sense for the sake of the
potential analysis of the boundary terms in one-loop
divergences and in view of cosmological implications of
the related R2 terms in the Starobinsky model of modified
gravity theory. Let us also note that since in dimensional
and Pauli-Villars regularizations there are ambiguities on
the way from divergences to the trace anomaly, it would be
certainly interesting to make derivation within nonlocal
covariant curvature expansion of [52,53]. In particular, it is
worth deriving the form factors of the R2 term for the
minimal fourth-order and nonminimal second-order vector
operators. However, this challenging calculation is beyond
the scope of the present work and we postpone it for future.
Let us mention two important aspects of the conformal

anomaly. First, while the local conformal symmetry is
violated by both local and nonlocal terms, the global
symmetry still holds in the anomaly-induced action
(2.5). This shows that the destinies of these two symmetries
at the quantum level are very much different. Unlike the
anomaly which was discussed above, the violation of the
global symmetry requires the presence of a dimensional
parameter, which may emerge either from an interaction
with massive fields or from the phase transition and
dimensional transmutation, as discussed in [54,55].
The only way to use local conformal symmetry in

quantum theory is by assuming the corresponding hier-
archy, as it was discussed in [7]. One can start with the
theory that has both C2 and R2 terms, but the coefficient of
the last is very small, such that its contributions in loops get
strongly suppressed. There is a chance that this hierarchy
may hold at higher loops. This scheme enables one to
preserve the advantages of conformal theory, including the
compact and useful form of anomaly-induced action.
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APPENDIX A: DETAILS OF THE
CALCULATIONS

In this appendix, we summarize formulae necessary
for the evaluation of the Green’s functions performed
in Sec. VI.
M2 and M3 take the following skeleton form in the

needed approximation

M2 ¼ ½□;M�ðF1 þ F2Þ þ

□; ½□;M��þ � � � ; ðA1Þ

M3 ¼

□; ½□;M��ðF1 þ F2Þ2 þ � � � ; ðA2Þ

and the expansion (6.12) starts with the following four
terms which contribute to needed ∇∇R and ∇∇P
structures

1

F −m2
¼ K

1

F1F2

− KM
1

F2
1F

2
2

þ KM2

1

F3
1F

3
2

− KM3

1

F4
1F

4
2

þ � � � : ðA3Þ

Note that the coefficient functions in (A3) are differential
operators K, KM, KM2, KM3 which contain the mass
parameter only in combinations F1, F2 given by (6.11) or
their powers. Therefore, the final answer is a linear
combination of the following massive universal traces

∇α1…∇α2n

1

Fn1
1 Fn2

2

δðx; yÞjy¼x; ðA4Þ

where n1 þ n2 − n ¼ 3 and the restriction on n, n1 and n2
follows from their dimensionality ∼1=m2. To evaluate this,
we need the proper time representation in terms of the heat
kernel

1

ð□ −m2
1Þn1ð□ −m2

2Þn2
δðx; yÞ ¼ ð−1Þn1þn2

Γðn1ÞΓðn2Þ
Z

∞

0

ds1ds2s
n1−1
1 sn2−12 eðs1þs2Þ□−ðs1m2

1
þs2m2

2
Þδðx; yÞ

¼ ð−1Þn1þn2

Γðn1ÞΓðn2Þ
Z

∞

0

dttn1þn2−1
Z

1

0

dααn1−1ð1 − αÞn2−1e−tm2ðαÞet□δðx; yÞ; ðA5Þ
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where we have made the change of variables s1 ¼ αt; s2 ¼ ð1 − αÞt and m2ðαÞ≡m2
1αþm2

2ð1 − αÞ. Substitution of the
Schwinger-DeWitt expansion for the □-operator [29]

es□δμνðx; x0Þ ¼ Δ1=2ðx; x0Þ
ð4πsÞd=2 g1=2ðx0Þe−σðx;x0Þ

2s

�
a□ μ
0 ν ðx; x0Þ þ a□ μ

1 ν ðx; x0Þsþ a□ μ
2 ν ðx; x0Þs2 þ � � �

�
; ðA6Þ

then gives the final result with a given accuracy in curvatures. Here σðx; x0Þ is a geodesic interval given by one half of the
square of the distance along the geodesic between x and x0, Δðx; x0Þ ¼ −gðxÞ−1=2 detð−σ;μν0 Þgðx0Þ−1=2, and a□ μ

n ν ðx; x0Þ are
the Schwinger-DeWitt coefficients for the □-operator.
We need to keep only the first term to obtain

g−1=2∇α1…∇α2n

1

Fn1
1 Fn2

2

δðx; yÞjy¼x ¼
ð−1Þn1þn2

Γðn1ÞΓðn2Þ
Z

∞

0

dttn1þn2−1

ð4πtÞ2
Z

1

0

dααn1−1ð1 − αÞn2−1

× e−tm
2ðαÞ∇α1…∇α2ne

−σðx;yÞ=2tjy¼x þ � � �

¼ −
1

2nðn1 − 1Þ!ðn2 − 1Þ!
1 − λ

16π2m2

Z
1

0

dα
αn1−1ð1 − αÞn2−1

1 − αλ
gðnÞα1…α2n þ � � � ; ðA7Þ

where we have taken into account that ð−1Þnþn1þn2 ¼ −1 in
view of the above restriction, ellipses denote terms other
than (□R) and (□P) structures, and we have used the
totally symmetric tensor built of the metric [30]

∇α1…∇α2ne
−σðx;yÞ=2tjy¼x þ � � �

¼ ð∇α1 − σα1=2tÞ…ð∇α2n − σα2n=2tÞ1jy¼x þ � � �

¼
�
−

1

2t

�
n
gðnÞα1…α2n þ � � � ; ðA8Þ

gð1Þαβ ¼gαβ; gð2Þαβμν¼ gαβgμνþgαμgβνþgανgβμ;…: ðA9Þ

It proves useful to introduce the notation for the
α-integrals,

In1;n2ðλÞ ¼
Z

1

0

dα
αn1ð1 − αÞn2

1 − αλ
: ðA10Þ

This integral can be easily evaluated for integer n1, n2 by
using Mathematica or other software.
Next, it follows from (A7) that for all n1, n2 and the

number of derivatives 2n ¼ 2ðn1 þ n2 − 3Þ, the needed
massive universal functional traces read

∇α1…∇α2n

1

Fn1
1 Fn2

2

δðx;yÞjy¼x

¼g1=2
1−λ

16π2m2

ð−1Þnþn1þn2In1−1;n2−1ðλÞ
2nðn1−1Þ!ðn2−1Þ! gðnÞα1…α2n þ���

¼−g1=2
1−λ

16π2m2

In1−1;n2−1ðλÞ
2nðn1−1Þ!ðn2−1Þ!g

ðnÞ
α1…α2n þ��� ðA11Þ

We also need

∇α1…∇α2n

1

Fn1
1

δðx; yÞjy¼x: ðA12Þ

First recall that

1

Fn1
1

¼ ð−1Þn1
Γðn1Þ

Z
∞

0

dssn1−1esF1 : ðA13Þ

So we get

∇α1…∇α2n

1

Fn1
1

δðx; yÞjy¼x

¼ g1=2
ð−1Þn1
Γðn1Þ

Z
∞

0

ds sn1−1∇α1…∇α2ne
sF1δðx; yÞjy¼x

¼ g1=2
ð−1Þn1
Γðn1Þ

Z
∞

0

dssn1−1

ð4πsÞ2 ∇α1…∇α2ne
−sm2

e−σðx;yÞ=2sjy¼x

¼ g1=2
ð−1Þn1

16π2Γðn1Þ
�
−
1

2

�
n
Z

∞

0

dse−sm
2

gðnÞα1…α2n þ � � �

¼ −
g1=2

16π2m2

1

2nðn1 − 1Þ! g
ðnÞ
α1…α2n þ � � � ; ðA14Þ

where we have chosen n ¼ n1 − 3.

APPENDIX B: TENSOR CONTRIBUTION
IN □R-TYPE DIVERGENCES

Let us list the particular results necessary to evaluate the
general formula (5.11) in (7.1) for the tensor sector. These
are derived from (3.9) and (3.10).

ANDREI O. BARVINSKY et al. PHYS. REV. D 108, 086018 (2023)

086018-14



ð∇ρ∇σV̂
ρσÞμν;αβ ¼

1

3
δμν;αβð□RÞ − 8

3
ð∇μ∇αRÞgνβ þ

4

3
ð∇μ∇νRαβÞ þ

4

3
ð∇α∇βRμνÞ þ 2ð∇ν∇βRμαÞ þ 4ð□RμανβÞ; ðB1Þ

ð□V̂Þμν;αβ ¼
2

3
δμν;αβð□RÞ þ 4

3
gμνð□RαβÞ þ

4

3
gαβð□RμνÞ − 6ð□RμαÞgνβ þ 16ð□RμανβÞ; ðB2Þ

ð∇λN̂
λÞμν;αβ ¼

1

3
δμν;αβð□RÞ − 4

3
ð∇μ∇νRαβÞ −

8

3
ð∇μ∇αRÞgνβ − 2ð∇μ∇αRνβÞ

þ 4ð∇α∇βRμνÞ þ 4ð∇ν∇βRμαÞ þ 4ð□RμανβÞ; ðB3Þ

where symmetrization μ ↔ ν, α ↔ β and ðμ; νÞ ↔ ðα; βÞ should be understood.
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