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We analyze the general structure of the three-point functions involving conserved higher-spin currents
Js ≔ JαðiÞα̇ðjÞ belonging to any Lorentz representation in four-dimensional conformal field theory. Using
the constraints of conformal symmetry and conservation equations, we computationally analyze the general
structure of three-point functions hJs1J0s2J00s3i for arbitrary spins and propose a classification of the results.
For bosonic vectorlike currents with i ¼ j, it is known that the number of independent conserved structures
is 2 minðsiÞ þ 1. For the three-point functions of conserved currents with arbitrarily many dotted and
undotted indices, we show that in many cases the number of structures deviates from 2 minðsiÞ þ 1.
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I. INTRODUCTION

In conformal field theory (CFT), it is known that the
general structure of three-point functions of conserved
currents is highly constrained by conformal symmetry. A
systematic approach to study three-point functions of
primary operators was introduced in [1,2] (see also
Refs. [3–12] for earlier works), which presented an analysis
of the general structure of three-point functions involving
the energy-momentum tensor and conserved vector cur-
rents. The analysis of three-point functions of conserved
higher-spin bosonic currents was later undertaken by
Stanev [13–15] (see also [16,17]) in the four-dimensional
case, and by Zhiboedov [18] in general dimensions.1 In four
dimensions (4D) it was shown that the number of inde-
pendent structures in the three-point function of conserved
bosonic vector-like currents Jμ1…μs increases linearly with
the minimum spin. This is quite different to the results found
in three dimensions (3D), where it has been shown by many
authors [37–43] that there are only three possible indepen-
dent conserved structures for currents of arbitrary integer/
half-integer spins. The aim of this paper is to study three-
point functions of conserved currents belonging to arbitrary

Lorentz representations in 4D CFT. An approach to this
problem was outlined in [16], however, it did not study
correlation functions when the operators are all conserved
currents.
In this paper we provide a complete classification of

three-point functions of conserved currents JαðiÞα̇ðjÞ, with i,
j ≥ 1 in four-dimensional conformal field theory. Such
currents satisfy the conservation equation

∂
ββ̇Jβαði−1Þβ̇ α̇ðj−1Þ ¼ 0; ð1:1Þ

and possess scale dimension ΔJ ¼ sþ 2, where the spin s
is given by s ¼ 1

2
ðiþ jÞ. To classify the possible three-

point functions of currents JαðiÞα̇ðjÞ, we find it more
convenient to parametrize them in terms of their spin, s,
and an integer, q ¼ i − j, as follows:

Jðs;qÞ ≔ Jαðsþq
2
Þα̇ðs−q

2
Þ: ð1:2Þ

With this convention q is necessarily even/odd when s is
integer/half-integer valued. Note that the Hermitian con-
jugate of Jðs;qÞ is Jðs;−qÞ, hence, we introduce J̄ðs;qÞ ≔ Jðs;−qÞ
and view q as being non-negative, taking values
q ¼ 0; 1;…; 2s − 2. The case q ¼ 0 corresponds to “stan-
dard” bosonic conserved currents Jðs;0Þ ≡ JαðsÞα̇ðsÞ.
Likewise, for q ¼ 1 we obtain pairs of (higher-spin)
“supersymmetry-like” currents Jðs;1Þ ≡ Jαðsþ1

2
Þα̇ðs−1

2
Þ, J̄ðs;1Þ≡

Jðs;−1Þ ¼ Jαðs−1
2
Þα̇ðsþ1

2
Þ, where s is necessarily half-integer

valued. For example, by setting s ¼ 3
2
we obtain supersym-

metry currents. In nonsupersymmetric settings, the currents
with i ¼ j (i.e., q ¼ 0) were constructed explicitly in terms
of free fields in [44].
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1The study of correlation functions of conserved currents has
also been extended to superconformal field theories in diverse
dimensions [19–36].
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For the three-point functions of conserved currents, there
are essentially only two possibilities to consider as a result
of the notation (1.2):

hJðs1;q1Þðx1ÞJ0ðs2;q2Þðx2ÞJ00ðs3;q3Þðx3Þi;
hJðs1;q1Þðx1ÞJ̄0ðs2;q2Þðx2ÞJ00ðs3;q3Þðx3Þi: ð1:3Þ

Any other possible three-point functions are equivalent to
these up to permutations of the points or complex con-
jugation. The main aim of this paper is to develop a general
formalism to study the structure of the three-point corre-
lation functions (1.3), where we assume only the con-
straints imposed by conformal symmetry and conservation
equations. In doing so we essentially provide a complete
classification of all possible conserved three-point func-
tions in 4D CFT. The three-point functions of currents with
q ¼ 0, 1 have been studied in e.g. [13,16–18]. For bosonic
conserved currents (qi ¼ 0), it is known that three-point
functions of conserved currents with spins s1, s2, s3 are
fixed up to 2 minðs1; s2; s3Þ þ 1 solutions in general. We
show that the same result also holds for three-point
functions involving conserved currents with q ¼ 1. The
three-point functions of currents Jðs;qÞ with q ≥ 2, however,
are relatively unexplored in the literature. Conserved
currents with q ≥ 2 naturally arise in superconformal field
theories in four-dimensions. As an example, consider a
N ¼ 2 superconformal field theory possessing a conserved
higher-spin supercurrent, J αðsÞα̇ðsÞ with s ≥ 1, satisfying
the following superfield conservation equation [45]:

Dβ
iJ βαðs−1Þα̇ðsÞ ¼ 0; ð1:4Þ

where Dβ
i is the spinor covariant derivative in N ¼ 2

superspace, and i ¼ 1, 2 is an iso-spinor index. The
component structure of these supercurrents was elucidated
in [46,47]. The N ¼ 2 supercurrent J αðsÞα̇ðsÞ can be
decomposed into the following collection of independent
conformal N ¼ 1 supercurrent multiplets (see [46,47] for
more details):

fJαðsÞα̇ðsÞ; Jαðsþ1Þα̇ðsÞ; Jαðsþ1Þα̇ðsþ1Þg: ð1:5Þ

These N ¼ 1 supercurrents, in turn, contain a multiplet
of conserved component currents [48]. In particular, the
N ¼ 1 supercurrent, Jαðsþ1Þα̇ðsÞ,

2 contains a conserved
component current, Sαðsþ2Þα̇ðsÞ, defined as follows:

Sαðsþ2Þα̇ðsÞ ¼ DαJαðsþ1Þα̇ðsÞj; ð1:6Þ

where implicit symmetrization among all α-indices is
assumed. Hence, the N ¼ 2 higher-spin supercurrent
J αðsÞα̇ðsÞ contains a conserved component current
Sαðsþ2Þα̇ðsÞ, which corresponds to q ¼ 2 in our convention
above. The N ¼ 2 supercurrents have been constructed
explicitly for the free hypermultiplet and vector multiplet
in [46,47].
The formalism, which augments the approach of [1] with

auxiliary spinors, is suitable for constructing three-point
functions of (conserved) primary operators in any Lorentz
representation. Our approach is exhaustive in the sense that
we construct all possible structures for the three-point
function consistent with the conformal properties of the
fields. We then systematically extract the linearly indepen-
dent structures and impose the constraints arising from
conservation equations, reality conditions, properties under
inversion, and symmetries under permutations of spacetime
points. The calculations are automated for arbitrary spins,
and as a result we obtain the three-point function in an
explicit form which can be presented up to our computa-
tional limit, si ¼ 10. However, this limit is sufficient to
propose a general classification of the results.
We would like to point out that though the formalism

developed in this paper is conceptually similar to the one
developed for three-dimensional CFT in [43], there are two
important differences. First, in three dimensions, three-
point functions of conserved currents can have at most three
independent structures (two parity-even and one parity-
odd), whereas in four dimensions the number of conserved
structures (generically) grows linearly with the minimum
spin. Second, for three-point functions in 3D CFT an
important role is played by the triangle inequalities

s1 ≤ s2 þ s3; s2 ≤ s1 þ s3; s3 ≤ s1 þ s2: ð1:7Þ

For three-point functions involving conserved currents
which are within the triangle inequalities, there are two
parity-even solutions and one parity-odd solution. However,
if any of the triangle inequalities are not satisfied then the
parity-odd solution is incompatible with conservation equa-
tions [37–43]. This statement has been proven in the light-
cone limit in [38,39] (see also [40] for results in momentum
space). However, we found that in 4D CFT the triangle
inequalities appear to have no significance.
The content of this paper is organized as follows. In

Sec. II we review the properties of the conformal building
blocks used to construct correlation functions of primary
operators in four dimensions. We then develop the formal-
ism to construct three-point functions of primary operators
of the form JαðiÞα̇ðjÞ, where we demonstrate how to impose
all constraints arising from conservation equations, reality
conditions and point switch symmetries. In particular, we
utilize an index-free auxiliary spinor formalism to construct
a generating function for the three-point functions, and we
outline the pertinent aspects of our computational approach.

2This supercurrent was constructed explicitly in terms of a free
massless hypermultiplet in [49].
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In Sec. III, we demonstrate our formalism by analyzing the
structure of three-point functions involving conserved
vector currents, “supersymmetry-like” currents and the
energy-momentum tensor. We reproduce the known results
previously found in [1,13,18]. We then expand our dis-
cussion to include three-point functions of higher-spin
currents belonging to any Lorentz representation, and
provide a classification of the results. For this the structure
of the solutions is more easily identified by using the
notation Jðs;qÞ, J̄ðs;qÞ for the currents as outlined above. In
particular, we show that special attention is required for
three-point functions of the form hJðs1;qÞJ̄0ðs2;qÞJ00ðs3;0Þi with

q ≥ 2. In this case the formula for the number of indepen-
dent conserved structures is found to be quite nontrivial. The
Appendix A is devoted to mathematical conventions and
various useful identities. In Appendix B we provide some
examples of the three-point functions hJðs1;qÞJ̄0ðs2;qÞJ00ðs3;0Þi
for which the number of independent conserved structures
differs from 2 minðs1; s2; s3Þ þ 1. Then, as a consistency
check, in Appendix C we provide further examples of three-
point functions involving scalars, spinors and conserved
currents to compare against the results in [16].

II. CONFORMAL BUILDING BLOCKS

In this section we will review the group theoretic
formalism used to compute correlation functions of primary
operators in four dimensional conformal field theories. For
a more detailed introduction to the formalism as applied to
correlation functions of bosonic primary fields see [1]. Our
4D conventions and notation are outlined in Appendix A.

A. Two-point functions

Consider 4D Minkowski space M1;3, parametrized by
coordinates xm, where m ¼ 0, 1, 2, 3 are Lorentz indices.
For any two points, x1, x2, we construct the covariant two-
point functions

x12m ¼ ðx1 − x2Þm: ð2:1Þ

The two-point functions can be converted to spinor notation
using the conventions outlined in Appendix A:

x12αα̇ ¼ ðσmÞαα̇x12m; xα̇α12 ¼ ðσ̃mÞα̇αx12m;

x212 ¼ −
1

2
xα̇α12x12αα̇: ð2:2Þ

In this form the two-point functions possess the following
useful properties:

xα̇α12x12βα̇ ¼ −x212δαβ; xα̇α12x12αβ̇ ¼ −x212δα̇β̇: ð2:3Þ

Hence, we find

ðx−112 Þα̇α ¼ −
xα̇α12
x212

: ð2:4Þ

We also introduce the normalized two-point functions,
denoted by x̂12,

x̂12αα̇ ¼
x12αα̇

ðx212Þ1=2
; x̂α̇α12 x̂12βα̇ ¼ −δαβ: ð2:5Þ

From here we can now construct an operator analogous to
the conformal inversion tensor acting on the space of
symmetric traceless tensors of arbitrary rank. Given a two-
point function, x, we define the operator

IαðkÞα̇ðkÞðxÞ ¼ x̂ðα1ðα̇1…x̂αkÞα̇kÞ; ð2:6Þ

along with its inverse

Ī α̇ðkÞαðkÞðxÞ ¼ x̂ðα̇1ðα1…x̂α̇kÞαkÞ: ð2:7Þ

The spinor indices may be raised and lowered using the
standard conventions as follows:

IαðkÞ
α̇ðkÞðxÞ ¼ εα1γ1…εαkγkI γðkÞα̇ðkÞðxÞ; ð2:8aÞ

Ī α̇ðkÞαðkÞðxÞ ¼ εα̇1 γ̇1…εα̇k γ̇k Ī
γ̇ðkÞαðkÞðxÞ: ð2:8bÞ

Now due to the property

IαðkÞα̇ðkÞð−xÞ ¼ ð−1ÞkIαðkÞα̇ðkÞðxÞ; ð2:9Þ

we have the following useful relations:

IαðkÞα̇ðkÞðx12ÞĪ α̇ðkÞβðkÞðx21Þ ¼ δðβ1ðα1…δβkÞαkÞ; ð2:10aÞ

Ī β̇ðkÞαðkÞðx12ÞIαðkÞα̇ðkÞðx21Þ ¼ δðβ̇1ðα̇1…δβ̇kÞα̇kÞ: ð2:10bÞ

The objects (2.6) and (2.7) prove to be essential in the
construction of correlation functions involving primary
operators of arbitrary spins. Indeed, the vector representa-
tion of the inversion tensor may be recovered in terms of the
spinor two-point functions as follows:

ImnðxÞ ¼ −
1

2
Trðσ̃mx̂σ̃nx̂Þ: ð2:11Þ

Now let ΦA be a primary field with dimension Δ, where A
denotes a collection of Lorentz spinor indices. The two-
point correlation function of ΦA and its conjugate Φ̄Ā is
fixed by conformal symmetry to the form

hΦAðx1ÞΦ̄Āðx2Þi ¼ c
IA

Āðx12Þ
ðx212ÞΔ

; ð2:12Þ
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where I is an appropriate representation of the inversion
tensor and c is a constant complex parameter. The denom-
inator of the two-point function is determined by the
conformal dimension of ΦA, which guarantees that the
correlation function transforms with the appropriate weight
under scale transformations.

B. Three-point functions

Given three distinct points in Minkowski space, xi, with
i ¼ 1, 2, 3, we define conformally covariant three-point
functions in terms of the two-point functions as in [1]

Xij ¼
xik
x2ik

−
xjk
x2jk

; Xji ¼−Xij; X2
ij ¼

x2ij
x2ikx

2
jk

; ð2:13Þ

where ði; j; kÞ is a cyclic permutation of (1, 2, 3). For
example, we have

Xm
12 ¼

xm13
x213

−
xm23
x223

; X2
12 ¼

x212
x213x

2
23

: ð2:14Þ

There are several useful identities involving the two- and
three-point functions and the conformal inversion tensor.
For example we have the useful algebraic relations

Imaðx13ÞIanðx23Þ ¼ Imaðx12ÞIanðX13Þ;

Imnðx23ÞXn
12 ¼

x212
x213

X13m; ð2:15aÞ

Imaðx23ÞIanðx13Þ ¼ Imaðx21ÞIanðX32Þ;

Imnðx13ÞXn
12 ¼

x212
x223

X32m; ð2:15bÞ

and the differential identities

∂
ð1Þ
m X12n ¼

1

x213
Imnðx13Þ; ∂

ð2Þ
m X12n ¼ −

1

x223
Imnðx23Þ:

ð2:16Þ

The three-point functions also may be represented in spinor
notation as follows:

Xij;αα̇ ¼ ðσmÞαα̇Xm
ij; Xij;αα̇ ¼ ðx−1ik Þαγ̇xγ̇γij ðx−1jk Þγα̇: ð2:17Þ

These objects satisfy properties similar to the two-point
functions (2.3). Indeed, it is convenient to define the
normalized three-point functions, X̂ij, and the inverses,
ðX−1

ij Þ

X̂ij;αα̇ ¼
Xij;αα̇

ðX2
ijÞ1=2

; ðX−1
ij Þα̇α ¼ −

Xα̇α
ij

X2
ij
: ð2:18Þ

Now given an arbitrary three-point building block X, it is
also useful to construct the following higher-spin operator:

IαðkÞα̇ðkÞðXÞ ¼ X̂ðα1ðα̇1…X̂αkÞα̇kÞ; ð2:19Þ

along with its inverse

Ī α̇ðkÞαðkÞðXÞ ¼ X̂ðα̇1ðα1…X̂α̇kÞαkÞ: ð2:20Þ

These operators have properties similar to the two-point
higher-spin inversion operators (2.6) and (2.7). There are
also some useful algebraic identities relating the two- and
three-point functions at various points, such as

Iαα̇ðX12Þ ¼ Iαγ̇ðx13ÞĪ γ̇γðx12ÞI γα̇ðx23Þ;
Ī α̇γðx13ÞI γγ̇ðX12ÞĪ γ̇αðx13Þ ¼ Ī α̇αðX32Þ: ð2:21Þ

These identities are analogous to (2.15a) and (2.15b), and
admit generalizations to higher-spins, for example

Ī α̇ðkÞγðkÞðx13ÞI γðkÞγ̇ðkÞðX12ÞĪ γ̇ðkÞαðkÞðx13Þ ¼ Ī α̇ðkÞαðkÞðX32Þ:
ð2:22Þ

In addition, similar to (2.16), there are also the following
useful identities:

∂
ð1Þ
αα̇X

σ̇σ
12 ¼ −

2

x213
Iα

σ̇ðx13ÞĪ α̇
σðx13Þ;

∂
ð2Þ
αα̇X

σ̇σ
12 ¼ 2

x223
Iα

σ̇ðx23ÞĪ α̇
σðx23Þ: ð2:23Þ

These identities allow us to account for the fact that
correlation functions of primary fields can obey differ-
ential constraints which can arise due to conservation
equations. Indeed, given a tensor field T AðXÞ, there are
the following differential identities which arise as a
consequence of (2.23):

∂ð1Þαα̇T AðX12Þ ¼
1

x213
Iα

σ̇ðx13ÞĪ α̇
σðx13Þ

∂

∂Xσ̇σ
12

T AðX12Þ;

ð2:24aÞ

∂ð2Þαα̇T AðX12Þ ¼ −
1

x223
Iα

σ̇ðx23ÞĪ α̇
σðx23Þ

∂

∂Xσ̇σ
12

T AðX12Þ:

ð2:24bÞ

Now let Φ, Ψ, Π be primary fields with scale dimensions
Δ1, Δ2, and Δ3 respectively. The three-point function may
be constructed using the general ansatz
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hΦA1
ðx1ÞΨA2

ðx2ÞΠA3
ðx3Þi

¼ I ð1Þ
A1

Ā1ðx13ÞI ð2Þ
A2

Ā2ðx23Þ
ðx213ÞΔ1ðx223ÞΔ2

HĀ1Ā2A3
ðX12Þ; ð2:25Þ

where the tensor HĀ1Ā2A3
encodes all information about

the correlation function, and is constrained by the con-
formal symmetry as follows:

(i) Under scale transformations of Minkowski space
xm ↦ x0m ¼ λ−2xm, the three-point building blocks
transform as Xm ↦ X0m ¼ λ2Xm. As a consequence,
the correlation function transforms as

hΦA1
ðx01ÞΨA2

ðx02ÞΠA3
ðx03Þi

¼ ðλ2ÞΔ1þΔ2þΔ3hΦA1
ðx1ÞΨA2

ðx2ÞΠA3
ðx3Þi; ð2:26Þ

which implies that H obeys the scaling property

HĀ1Ā2A3
ðλ2XÞ ¼ ðλ2ÞΔ3−Δ2−Δ1HĀ1Ā2A3

ðXÞ;
∀ λ∈Rnf0g: ð2:27Þ

This guarantees that the correlation function trans-
forms correctly under scale transformations.

(ii) If any of the fields Φ, Ψ, Π obey differential
equations, such as conservation equations, then
the tensor H is also constrained by differential
equations. Such constraints may be derived with
the aid of identities (2.24a) and (2.24b).

(iii) If any (or all) of the operators Φ, Ψ, Π coincide, the
correlation function possesses symmetries under
permutations of spacetime points, e.g.

hΦA1
ðx1ÞΦA0

1
ðx2ÞΠA3

ðx3Þi
¼ ð−1ÞϵðΦÞhΦA0

1
ðx2ÞΦA1

ðx1ÞΠA3
ðx3Þi; ð2:28Þ

where ϵðΦÞ is the Grassmann parity of Φ. As a
consequence, the tensor H obeys constraints which
will be referred to as “point-switch symmetries.” A
similar relation may also be derived for two fields
which are related by complex conjugation.

The constraints above fix the functional form of H (and
therefore the correlation function) up to finitely many
independent parameters. Hence, using the general for-
mula (2.29), the problem of computing three-point corre-
lation functions is reduced to deriving the general
structure of the tensor H subject to the above constraints.

1. Comments on differential constraints

For three-point functions of conserved currents, we must
impose conservation on all three space-time points. For x1
and x2, this process is simple due to the identities (2.24a)
and (2.24b), and the resulting conservation equations
become equivalent to simple differential constraints on

H. However, conservation on x3 is more challenging due to
a lack of useful identities analogous to (2.24a) and (2.24b)
for x3. To correctly impose conservation on x3, consider
the correlation function hΦA1

ðx1ÞΨA2
ðx2ÞΠA3

ðx3Þi, with
the ansatz

hΦA1
ðx1ÞΨA2

ðx2ÞΠA3
ðx3Þi

¼ I ð1Þ
A1

Ā1ðx13ÞI ð2Þ
A2

Ā2ðx23Þ
ðx213ÞΔ1ðx223ÞΔ2

HĀ1Ā2A3
ðX12Þ: ð2:29Þ

We now reformulate the ansatz with Π at the front

hΠA3
ðx3ÞΨA2

ðx2ÞΦA1
ðx1Þi

¼ I ð3Þ
A3

Ā3ðx31ÞI ð2Þ
A2

Ā2ðx21Þ
ðx231ÞΔ3ðx221ÞΔ2

H̃Ā3Ā2A1
ðX32Þ: ð2:30Þ

These two correlators are the same up to an overall sign due
to Grassmann parity. Equating the two ansatz above yields
the following relation:

H̃Ā3Ā2A1
ðX32Þ ¼ ðx213ÞΔ3−Δ1

�
x221
x223

�
Δ2

I ð1Þ
A1

Ā1ðx13Þ

× Ī ð2Þ
Ā2

A0
2ðx12ÞI ð2Þ

A0
2

Ā0
2ðx23Þ

× Ī ð3Þ
Ā3

A3ðx13ÞHĀ1Ā
0
2A3

ðX12Þ: ð2:31Þ

Now supposeHðXÞ (with indices suppressed) is composed
of finitely many linearly independent tensor structures,
PiðXÞ, i.e. HðXÞ ¼ P

i aiPiðXÞ where ai are constant
complex parameters. We define H̄ðXÞ ¼ P

i āiP̄iðXÞ, the
conjugate of H, and also HcðXÞ ¼ P

i aiP̄iðXÞ, which
we denote as the complement of H. As a consequence
of (2.21), the following relation holds:

Hc
A1A2Ā3

ðX32Þ ¼ ðx213X2
32ÞΔ3−Δ2−Δ1I ð1Þ

A1

Ā1ðx13Þ
× I ð2Þ

A2

Ā2ðx13ÞĪ ð3Þ
Ā3

A3ðx13Þ
×HĀ1Ā2A3

ðX12Þ: ð2:32Þ

After inverting this identity and substituting it directly
into (2.31), we apply (2.21) to obtain an equation relating
Hc and H̃

H̃Ā3Ā2A1
ðXÞ¼ðX2ÞΔ1−Δ3 Ī ð2Þ

Ā2

A2ðXÞHc
A1A2Ā3

ðXÞ: ð2:33Þ

Conservation on x3 may now be imposed by using (2.24a),
with x1 ↔ x3. In principle, this procedure can be carried
out for any configuration of the fields.
If we now consider the correlation function of three

conserved primaries Jαði1Þα̇ðj1Þ, J
0
βði2Þβ̇ðj2Þ, J

00
γði3Þγ̇ðj3Þ, where

s1 ¼ 1
2
ði1 þ j1Þ, s2 ¼ 1

2
ði2 þ j2Þ, s3 ¼ 1

2
ði3 þ j3Þ, then the

general ansatz is
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hJαði1Þα̇ðj1Þðx1ÞJ0βði2Þβ̇ðj2Þðx2ÞJ
00
γði3Þγ̇ðj3Þðx3Þi ¼

1

ðx213ÞΔ1ðx223ÞΔ2
Iαði1Þ

α̇0ði1Þðx13ÞĪ α̇ðj1Þ
α0ðj1Þðx13Þ

× Iβði2Þ
β̇0ði2Þðx23ÞĪ β̇ðj2Þ

β0ðj2Þðx23ÞHα0ðj1Þα̇0ði1Þβ0ðj2Þβ̇0ði2Þγði3Þγ̇ðj3ÞðX12Þ; ð2:34Þ

where Δi ¼ si þ 2. The constraints on H are then as follows:
(i) Homogeneity:

Recall that H is a homogeneous tensor field satisfying

Hαðj1Þα̇ði1Þβðj2Þβ̇ði2Þγði3Þγ̇ðj3Þðλ2XÞ ¼ ðλ2ÞΔ3−Δ2−Δ1Hαðj1Þα̇ði1Þβðj2Þβ̇ði2Þγði3Þγ̇ðj3ÞðXÞ: ð2:35Þ

It is often convenient to introduce Ĥαðj1Þα̇ði1Þβðj2Þβ̇ði2Þγði3Þγ̇ðj3ÞðXÞ, such that

Hαðj1Þα̇ði1Þβðj2Þβ̇ði2Þγði3Þγ̇ðj3ÞðXÞ ¼ XΔ3−Δ2−Δ1Ĥαðj1Þα̇ði1Þβðj2Þβ̇ði2Þγði3Þγ̇ðj3ÞðXÞ; ð2:36Þ

where Ĥαðj1Þα̇ði1Þβðj2Þβ̇ði2Þγði3Þγ̇ðj3ÞðXÞ is homogeneous degree 0 in X, i.e.

Ĥαðj1Þα̇ði1Þβðj2Þβ̇ði2Þγði3Þγ̇ðj3Þðλ2XÞ ¼ Ĥαðj1Þα̇ði1Þβðj2Þβ̇ði2Þγði3Þγ̇ðj3ÞðXÞ: ð2:37Þ

(ii) Differential constraints:
After application of the identities (2.24a) and (2.24b) we obtain the following constraints:

Conservation at x1∶ ∂
αα̇
X Hααðj1−1Þα̇ α̇ði1−1Þβðj2Þβ̇ði2Þγði3Þγ̇ðj3ÞðXÞ ¼ 0; ð2:38aÞ

Conservation atx2∶ ∂
ββ̇
X Hαðj1Þα̇ði1Þββðj2−1Þβ̇ β̇ði2−1Þγði3Þγ̇ðj3ÞðXÞ ¼ 0; ð2:38bÞ

Conservation at x3∶ ∂
γγ̇
X H̃αði1Þα̇ðj1Þβðj2Þβ̇ði2Þγγðj3−1Þγ̇ γ̇ði3−1ÞðXÞ ¼ 0; ð2:38cÞ

where

H̃αði1Þα̇ðj1Þβðj2Þβ̇ði2Þγðj3Þγ̇ði3ÞðXÞ ¼ ðX2ÞΔ1−Δ3Iβðj2Þ
β̇0ðj2ÞðXÞĪ β̇ði2Þ

β0ði2ÞðXÞ
×Hc

αði1Þα̇ðj1Þβ0ði2Þβ̇0ðj2Þγðj3Þγ̇ði3ÞðXÞ: ð2:39Þ

(iii) Point-switch symmetries:
If the fields J and J0 coincide, then we obtain the

following point-switch identity

Hαði1Þα̇ðj1Þβði1Þβ̇ðj1Þγði3Þγ̇ðj3ÞðXÞ
¼ ð−1ÞϵðJÞHαði1Þα̇ðj1Þβði1Þβ̇ðj1Þγði3Þγ̇ðj3Þð−XÞ; ð2:40Þ

where ϵðJÞ is the Grassmann parity of J. Likewise, if
the fields J and J00 coincide, then we obtain the
constraint

H̃αði1Þα̇ðj1Þβðj2Þβ̇ði2Þγðj1Þγ̇ði1ÞðXÞ
¼ ð−1ÞϵðJÞHαðj1Þα̇ði1Þβðj2Þβ̇ði2Þγði1Þγ̇ðj1Þð−XÞ: ð2:41Þ

(iv) Reality condition:
If the fields in the correlation function belong to

the ðs; sÞ representation, then the three-point func-
tion must satisfy the reality condition

Hαði1Þα̇ði1Þβði2Þβ̇ði2Þγði3Þγ̇ði3ÞðXÞ
¼ H̄αði1Þα̇ði1Þβði2Þβ̇ði2Þγði3Þγ̇ði3ÞðXÞ: ð2:42Þ

Similarly, if the fields at J, J0 at x1 and x2
respectively possess the same spin and are conjugate
to each other, i.e. J0 ¼ J̄, we must impose a
combined reality/point-switch condition using the
following constraint

Hαði1Þα̇ðj1Þβðj1Þβ̇ði1Þγði3Þγ̇ðj3ÞðXÞ
¼ ð−1ÞϵðJÞH̄βði1Þβ̇ðj1Þαðj1Þα̇ði1Þγði3Þγ̇ðj3Þð−XÞ; ð2:43Þ

where ϵðJÞ is the Grassmann parity of J.
Working with the tensor formalism is quite messy and
complicated in general, hence, to simplify the analysis we
will utilize auxiliary spinors to carry out the computations.
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2. Generating function formalism

Analogous to the approach of [43] we utilize auxiliary
spinors to streamline the calculations. Consider a general
spin-tensor HA1A2A3

ðXÞ, where A1 ¼ fαði1Þ; α̇ðj1Þg,
A2 ¼ fβði2Þ; β̇ðj2Þg, A3 ¼ fγði3Þ; γ̇ðj3Þg represent sets
of totally symmetric spinor indices associated with the
fields at points x1, x2 and x3 respectively. We introduce sets
of commuting auxiliary spinors for each point; U ¼ fu; ūg
at x1, V ¼ fv; v̄g at x2, and W ¼ fw; w̄g at x3, where the
spinors satisfy

u2 ¼ εαβuαuβ ¼ 0; ū2 ¼ εα̇ β̇ū
α̇ūβ̇ ¼ 0;

v2 ¼ v̄2 ¼ 0; w2 ¼ w̄2 ¼ 0: ð2:44Þ

Now if we define the objects

UA1 ≡ Uαði1Þα̇ðj1Þ ¼ uα1…uαi1 ūα̇1…ūα̇j1 ; ð2:45aÞ

VA2 ≡ Vβði2Þβ̇ðj2Þ ¼ vβ1…vβi2 v̄β̇1…v̄β̇j2 ; ð2:45bÞ

WA3 ≡Wγði3Þγ̇ðj3Þ ¼ wγ1…wγi3 w̄γ̇1…w̄γ̇j3 ; ð2:45cÞ

then the generating polynomial for H is constructed as
follows:

HðX;U;V;WÞ ¼ HA1A2A3
ðXÞUA1VA2WA3 : ð2:46Þ

The tensorH can then be extracted from the polynomial by
acting on it with the following partial derivative operators:

∂

∂UA1
≡ ∂

∂Uαði1Þα̇ðj1Þ ¼
1

i1!j1!
∂

∂uα1
…

∂

∂uαi1
∂

∂ūα̇1
…

∂

∂ūα̇j1
;

ð2:47aÞ

∂

∂VA2
≡ ∂

∂Vβði2Þβ̇ðj2Þ
¼ 1

i2!j2!
∂

∂vβ1
…

∂

∂vβi2
∂

∂v̄β̇1
…

∂

∂v̄β̇j2
;

ð2:47bÞ

∂

∂WA3
≡ ∂

∂Wγði3Þγ̇ðj3Þ ¼
1

i3!j3!
∂

∂wγ1
…

∂

∂wγi3

∂

∂w̄γ̇1
…

∂

∂w̄γ̇j3
:

ð2:47cÞ

The tensor H is then extracted from the polynomial as
follows:

HA1A2A3
ðXÞ ¼ ∂

∂UA1

∂

∂VA2

∂

∂WA3
HðX;U;V;WÞ: ð2:48Þ

The polynomial H, (2.46), is now constructed out of scalar
combinations of X, and the auxiliary spinors U, V, and W
with the appropriate homogeneity. Such a polynomial can
be constructed out of the following monomials:

P1 ¼ εαβvαwβ; P2 ¼ εαβwαuβ; P3 ¼ εαβuαvβ;

ð2:49aÞ

P̄1 ¼ εα̇ β̇v̄
α̇w̄β̇; P̄2 ¼ εα̇ β̇w̄

α̇ūβ̇; P̄3 ¼ εα̇ β̇ū
α̇v̄β̇;

ð2:49bÞ

Q1 ¼ X̂αα̇vαw̄α̇; Q2 ¼ X̂αα̇wαūα̇; Q3 ¼ X̂αα̇uαv̄α̇;

ð2:49cÞ

Q̄1 ¼ X̂αα̇wαv̄α̇; Q̄2 ¼ X̂αα̇uαw̄α̇; Q̄3 ¼ X̂αα̇vαūα̇;

ð2:49dÞ

Z1 ¼ X̂αα̇uαūα̇; Z2 ¼ X̂αα̇vαv̄α̇; Z3 ¼ X̂αα̇wαw̄α̇:

ð2:49eÞ

To construct linearly independent structures for a given
three-point function, one must also take into account
the following linear dependence relations between the
monomials:

Z2Z3 þ P1P̄1 −Q1Q̄1 ¼ 0; ð2:50aÞ

Z1Z3 þ P2P̄2 −Q2Q̄2 ¼ 0; ð2:50bÞ

Z1Z2 þ P3P̄3 −Q3Q̄3 ¼ 0; ð2:50cÞ

Z1P1 þP2Q̄3 þP3Q2 ¼ 0; Z1P̄1 þ P̄2Q3 þ P̄3Q̄2 ¼ 0;

ð2:51aÞ

Z2P2 þP3Q̄1 þP1Q3 ¼ 0; Z2P̄2 þ P̄3Q1 þ P̄1Q̄3 ¼ 0;

ð2:51bÞ

Z3P3 þP1Q̄2 þP2Q1 ¼ 0; Z3P̄3 þ P̄1Q2 þ P̄2Q̄1 ¼ 0:

ð2:51cÞ

Z1Q1 þ P̄2P3 − Q̄2Q̄3 ¼ 0; Z1Q̄1 þP2P̄3 þQ2Q3 ¼ 0;

ð2:52aÞ

Z2Q2 þ P̄3P1 − Q̄3Q̄1 ¼ 0; Z2Q̄2 þP3P̄1 þQ3Q1 ¼ 0;

ð2:52bÞ

Z3Q3 þ P̄1P2 − Q̄1Q̄2 ¼ 0; Z3Q̄3 þP1P̄2 þQ1Q2 ¼ 0:

ð2:52cÞ

These allow elimination of the combinations ZiZj, ZiPi,
ZiP̄i, ZiQi, ZiQ̄i. There are also the following relations
involving triple products:
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P1P̄2P̄3 þ P̄1Q2Q̄3 þ P̄2Q̄3Q̄1 þ P̄3Q1Q2 ¼ 0; ð2:53aÞ

P2P̄3P̄1 þ P̄2Q3Q̄1 þ P̄3Q̄1Q̄2 þ P̄1Q2Q3 ¼ 0; ð2:53bÞ

P3P̄1P̄2 þ P̄3Q1Q̄2 þ P̄1Q̄2Q̄3 þ P̄2Q3Q1 ¼ 0; ð2:53cÞ

P̄1P2P3 þ P1Q̄2Q3 þ P2Q3Q1 þ P3Q̄1Q̄2 ¼ 0; ð2:54aÞ

P̄2P3P1 þ P2Q̄3Q1 þ P3Q1Q2 þ P1Q̄2Q̄3 ¼ 0; ð2:54bÞ

P̄3P1P2 þ P3Q̄1Q2 þ P1Q2Q3 þ P2Q̄3Q̄1 ¼ 0; ð2:54cÞ

P̄1P2Q̄3 − P1P̄2Q3 þ Q̄1Q̄2Q̄3 −Q1Q2Q3 ¼ 0; ð2:55aÞ

P̄2P3Q̄1 − P2P̄3Q1 þ Q̄1Q̄2Q̄3 −Q1Q2Q3 ¼ 0; ð2:55bÞ

P̄3P1Q̄2 − P3P̄1Q2 þ Q̄1Q̄2Q̄3 −Q1Q2Q3 ¼ 0; ð2:55cÞ

which allow for elimination of the products PiP̄jP̄k,
P̄iPjPk, P̄iPjQ̄k. These relations (which appear to be
exhaustive) are sufficient to reduce any set of structures
in a given three-point function to a linearly independent set.
The task now is to construct a complete list of possible

(linearly independent) solutions for the polynomial H for a
given set of spins. This process is simplified by introducing
a generating function,F ðX;U;V;WjΓÞ, defined as follows:

F ðX;U;V;WjΓÞ ¼ Pk1
1 P

k2
2 P

k3
3 P̄

k̄1
1 P̄

k̄2
2 P̄

k̄3
3 Q

l1
1 Q

l2
2 Q

l3
3 Q̄

l̄1
1 Q̄

l̄2
2

× Q̄l̄3
3 Z

r1
1 Z

r2
2 Z

r3
3 ; ð2:56Þ

where the non-negative integers, Γ ¼ ∪i∈ f1;2;3gfki; k̄i;
li; l̄i; rig, are solutions to the following linear system:

k2 þ k3 þ r1 þ l3 þ l̄2 ¼ i1; k̄2 þ k̄3 þ r1 þ l̄3 þ l2 ¼ j1;

ð2:57aÞ

k1 þ k3 þ r2 þ l1 þ l̄3 ¼ i2; k̄1 þ k̄3 þ r2 þ l̄1 þ l3 ¼ j2;

ð2:57bÞ

k1 þ k2 þ r3 þ l2 þ l̄1 ¼ i3; k̄1 þ k̄2 þ r3 þ l̄2 þ l1 ¼ j3:

ð2:57cÞ

Here i1, i2, i3, j1, j2, j3 are fixed integers corresponding to
the spin representations of the fields in the three-point
function. From here it is convenient to define

Δs ¼ 1

2
ði1 þ i2 þ i3 − j1 − j2 − j3Þ: ð2:58Þ

Using the system of equations (2.57), we obtain

Δs ¼ k1 þ k2 þ k3 − k̄1 − k̄2 − k̄3; ð2:59Þ

in addition to

k1 þ k2 þ k3 ≤ minði1 þ i2; i1 þ i3; i2 þ i3Þ; ð2:60aÞ

k̄1 þ k̄2 þ k̄3 ≤ minðj1 þ j2; j1 þ j3; j2 þ j3Þ: ð2:60bÞ

Hence, the conditions for a given three-point function to be
nonvanishing are

−minðj1 þ j2; j1 þ j3; j2 þ j3Þ
≤ Δs ≤ minði1 þ i2; i1 þ i3; i2 þ i3Þ: ð2:61Þ

Indeed, this is the same condition found in [16]. Now given a
finite number of solutions ΓI , I ¼ 1;…; N to (2.57) for a
particular choice of i1, i2, i3, j1, j2, j3, the most general
ansatz for the polynomial H in (2.46) is as follows:

HðX;U;V;WÞ ¼ XΔ3−Δ2−Δ1

XN
I¼1

aIF ðX;U;V;WjΓIÞ;

ð2:62Þ

where aI are a set of complex constants. Hence, constructing
the most general ansatz for the generating polynomial H is
now equivalent to finding all non-negative integer solutions
ΓI of (2.57). Once this ansatz has been obtained, the linearly
independent structures can be found by systematically
applying the linear dependence relations (2.50)–(2.55).
Let us now recast the constraints on the three-point

function into the auxiliary spinor formalism. Recalling
that s1 ¼ 1

2
ði1 þ j1Þ, s2 ¼ 1

2
ði2 þ j2Þ, s3 ¼ 1

2
ði3 þ j3Þ, first

we define:

Js1ðx1;UÞ ¼ Jαði1Þα̇ðj1Þðx1ÞUαði1Þα̇ðj1Þ; ð2:63aÞ

J0s2ðx2;VÞ ¼ J0αði2Þα̇ðj2Þðx2ÞVαði2Þα̇ðj2Þ; ð2:63bÞ

J00s3ðx3;WÞ ¼ J00γði3Þγ̇ðj3Þðx3ÞWγði3Þγ̇ðj3Þ; ð2:63cÞ

where, to simplify notation, we denote Jðs;qÞ ≡ Js. The
general ansatz can be converted easily into the auxiliary
spinor formalism, and is of the form

hJs1ðx1;UÞJ0s2ðx2;VÞJ00s3ðx3;WÞi

¼ I ði1;j1Þðx13;U; ŨÞI ði2;j2Þðx23;V; ṼÞ
ðx213ÞΔ1ðx223ÞΔ2

×HðX12; Ũ; Ṽ;WÞ; ð2:64Þ

where Δi ¼ si þ 2. The generating polynomial, HðX;U;
V;WÞ, is defined as
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HðX;U;V;WÞ ¼ Hαði1Þα̇ðj1Þβði2Þβ̇ðj2Þγði3Þγ̇ðj3Þ

× ðXÞUαði1Þα̇ðj1ÞVβði2Þβ̇ðj2ÞWγði3Þγ̇ðj3Þ;

ð2:65Þ

where

I ði;jÞðx;U;ŨÞ≡I ði;jÞ
x ðU;ŨÞ

¼UαðiÞα̇ðjÞIαðiÞα̇
0ðiÞðxÞĪ α̇ðjÞα

0ðjÞðxÞ ∂

∂Ũα0ðjÞα̇0ðiÞ ;

ð2:66Þ

is the inversion operator acting on polynomials degree ði; jÞ
in ð ˜̄u; ũÞ. It should also be noted that Ũ has index structure
conjugate to U. Sometimes we will omit the indices ði; jÞ to
streamline the notation. After converting the constraints
summarized in the previous subsection into the auxiliary
spinor formalism, we obtain:

(i) Homogeneity:
Recall that H is a homogeneous polynomial

satisfying the following scaling property:

Hðλ2X;Uði1; j1Þ; Vði2; j2Þ;Wði3; j3ÞÞ
¼ ðλ2ÞΔ3−Δ2−Δ1HðX;Uði1; j1Þ; Vði2; j2Þ;Wði3; j3ÞÞ;

ð2:67Þ

where we have used the notationUði1; j1Þ, Vði2; j2Þ,
Wði3; j3Þ to keep track of homogeneity in the
auxiliary spinors ðu; ūÞ, ðv; v̄Þ, and ðw; w̄Þ. For
compactness we will suppress the homogeneities
of the auxiliary spinors in the results.

(ii) Differential constraints:
First, define the following three differential oper-

ators:

D1 ¼ ∂
αα̇
X

∂

∂uα
∂

∂ūα̇
; D2 ¼ ∂

αα̇
X

∂

∂vα
∂

∂v̄α̇
;

D3 ¼ ∂
αα̇
X

∂

∂wα

∂

∂w̄α̇ : ð2:68Þ

Conservation on all three points may be imposed
using the following constraints:

Conservation at x1∶ D1HðX;U;V;WÞ ¼ 0;

ð2:69aÞ

Conservation at x2∶ D2HðX;U;V;WÞ ¼ 0;

ð2:69bÞ

Conservation at x3∶ D3H̃ðX;U;V;WÞ ¼ 0;

ð2:69cÞ

where, in the auxiliary spinor formalism, H̃ is
computed as follows:

H̃ðX;U;V;WÞ¼ðX2ÞΔ1−Δ3IXðV;ṼÞHcðX;U;Ṽ;WÞ:
ð2:70Þ

Using the properties of the inversion tensor, it can be
shown that this transformation is equivalent to the
following replacement rules for the building blocks:

P1 → Q1; P2 → −P̄2; P3 → −Q̄3 ð2:71aÞ

P̄1 → Q̄1; P̄2 → −P2; P̄3 → −Q3 ð2:71bÞ

Q1 → −P1; Q2 → Q̄2; Q3 → P̄3 ð2:71cÞ

Q̄1 → −P̄1; Q̄2 → Q2; Q̄3 → P3 ð2:71dÞ

Z1 → Z1; Z2 → −Z2; Z3 → Z3: ð2:71eÞ

(iii) Point switch symmetries:
If the fields J and J0 coincide (hence i1 ¼ i2,

j1 ¼ j2), then we obtain the following point-switch
constraint

HðX;U;V;WÞ ¼ ð−1ÞϵðJÞHð−X;V;U;WÞ; ð2:72Þ

where ϵðJÞ is the Grassmann parity of J. Similarly, if
the fields J and J00 coincide (hence i1 ¼ i3, j1 ¼ j3)
then we obtain the constraint

H̃ðX;U;V;WÞ ¼ ð−1ÞϵðJÞHð−X;W;V;UÞ: ð2:73Þ

(iv) Reality condition:
If the fields in the correlation function belong to

the ðs; sÞ representation, then the three-point func-
tion must satisfy the reality condition

H̄ðX;U;V;WÞ ¼ HðX;U;V;WÞ: ð2:74Þ

Similarly, if the fields at J, J0 at x1 and x2
respectively possess the same spin and are conjugate
to each other, i.e. J0 ¼ J̄, we must impose a
combined reality/point-switch condition using the
following constraint

HðX;U;V;WÞ ¼ ð−1ÞϵðJÞH̄ð−X;V;U;WÞ; ð2:75Þ

where ϵðJÞ is the Grassmann parity of J.

3. Inversion transformation

In general, whenever parity is a symmetry of a CFT, so too
is invariance under inversions. An inversion transformation
I maps fields in the ði; jÞ representation onto fields in the
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complex conjugate representation, ðj; iÞ.3 Hence, inversions
map correlation functions of fields onto correlation functions
of their complex conjugate fields. In particular, if the fields in
a given three-point function belong to the ðs; sÞ representa-
tion then it is possible to construct linear combinations of
structures for the three-point function which are eigenfunc-
tions of the inversion operator. We denote these as parity-
even and parity-odd solutions respectively. Indeed, given a
tensorHA1A2A3

ðXÞ ¼ XΔ3−Δ2−Δ1ĤA1A2A3
ðXÞ, the following

inversion formula holds:

Ĥc
Ā1Ā2Ā3

ðXÞ ¼ Ī ð1Þ
Ā1

A1ðXÞĪ ð2Þ
Ā2

A2ðXÞĪ ð3Þ
Ā3

A3

ðXÞĤA1A2A3
ð−XÞ: ð2:76Þ

Hence, we notice that under I, H transforms into the
complex conjugate representation. An analogous formula
can be derived using the auxiliary spinor formalism. Given
a polynomial HðX;U;V;WÞ ¼ XΔ3−Δ2−Δ1ĤðX;U;V;WÞ,
the following holds:

ĤcðX;U;V;WÞ ¼ IXðU; ŨÞIXðV; ṼÞIXðW; W̃Þ
× Ĥð−X; Ũ; Ṽ; W̃Þ: ð2:77Þ

It is easy to understand this formula as the monomials (2.49)
have simple transformation properties under I :

Pi →
I

− P̄i; Qi →
I

Q̄i; Zi →
I

Zi; ð2:78Þ

with analogous rules applying for the building blocks P̄i, Q̄i.
Since, for primary fields in the ðs; sÞ representation the
three-point maps onto itself under inversion, it is possible to
classify the parity-even and parity-odd structures inH using
(2.77). By letting ĤðXÞ ¼ ĤðþÞðXÞ þ Ĥð−ÞðXÞ, we have

Ĥð�ÞðX;U;V;WÞ ¼ �IXðU; ŨÞIXðV; ṼÞIXðW; W̃Þ
× Ĥð�Þð−X; Ũ; Ṽ; W̃Þ: ð2:79Þ

Structures satisfying the above property are defined as
parity-even/odd for overall sign þ=−. This is essentially
the same approach used to classify parity-even and parity-
odd three-point functions in 3D CFT [43], which proves to
be equivalent to the classification based on the absence/
presence of the Levi-Civita pseudotensor. However, it is
crucial to note that in three dimensions the linearly
independent basic monomial structures comprising H are
naturally eigenfunctions of the inversion operator. The same
is not necessarily true for three-point functions in four
dimensions due to (2.78), as the monomials (2.49) now map
onto their complex conjugates. Hence, we are required to

take non-trivial linear combinations of the basic structures
and use the linear dependence relations (2.50)–(2.55) to
form eigenfunctions of the inversion operator. Our classi-
fication of parity-even/odd solutions obtained this way is in
complete agreement with the results found in [13].

III. THREE-POINT FUNCTIONS
OF CONSERVED CURRENTS

In the next subsections we analyze the structure of three-
point functions involving conserved currents in 4D CFT.
We classify, using computational methods, all possible
three-point functions involving the conserved currents
Jðs;qÞ, J̄ðs;qÞ for si ≤ 10. In particular, we determine the
general structure and the number of independent solutions
present in the three-point functions (1.3). As pointed out in
the introduction, the number of independent conserved
structures generically grows linearly with the minimum
spin and the solution for the function HðX;U;V;WÞ
quickly becomes too long and complicated even for
relatively low spins. Thus, although our method allows
us to find HðX;U;V;WÞ in a very explicit form for
arbitrary spins (limited only by computer power), we find
it practical to present the solutions when there is a small
number of structures. Such examples involving low spins
are discussed in Sec. III A. In Sec. III B we state the
classification for arbitrary spins. Some additional examples
are presented in Appendix B.

A. Conserved low-spin currents

We begin our analysis by considering correlation func-
tions involving conserved low-spin currents such as the
energy-momentum tensor, vector current, and “supersym-
metry-like” currents in 4D CFT. Many of these results are
known throughout the literature, but we derive them again
here to demonstrate our approach.

1. Energy-momentum tensor and vector
current correlators

The fundamental bosonic conserved currents in any
conformal field theory are the conserved vector current,
Vm, and the symmetric, traceless energy-momentum tensor,
Tmn. The vector current has scale dimension ΔV ¼ 3 and
satisfies ∂

mVm ¼ 0, while the energy-momentum tensor
has scale dimension ΔT ¼ 4 and satisfies the conservation
equation ∂

mTmn ¼ 0. Converting to spinor notation using
the conventions outlined in Appendix A, we have:

Vαα̇ðxÞ ¼ ðσmÞαα̇VmðxÞ;
Tðα1α2Þðα̇1α̇2ÞðxÞ ¼ ðσmÞðα1ðα̇1ðγnÞα2Þα̇2ÞTmnðxÞ: ð3:1Þ

These objects possess fundamental information associated
with internal and spacetime symmetries, hence, their
three-point functions are of great importance. The possible

3For a more detailed discussion of parity transformations in 4D
CFT, see [16].
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three-point functions involving the conserved vector
current and the energy-momentum tensor are:

hVαα̇ðx1ÞVββ̇ðx2ÞVγγ̇ðx3Þi;
hVαα̇ðx1ÞVββ̇ðx2ÞTγð2Þγ̇ð2Þðx3Þi; ð3:2aÞ

hTαð2Þα̇ð2Þðx1ÞTβð2Þβ̇ð2Þðx2ÞVγγ̇ðx3Þi;
hTαð2Þα̇ð2Þðx1ÞTβð2Þβ̇ð2Þðx2ÞTγð2Þγ̇ð2Þðx3Þi: ð3:2bÞ

Let us first consider hVVVi. By using the notation for the
currents Jðs;qÞ, J̄ðs;qÞ, this corresponds to the general three-
point function hJð1;0ÞJ0ð1;0ÞJ00ð1;0Þi.

Correlation function hJð1;0ÞJ0ð1;0ÞJ00ð1;0Þi. The general ansatz
for this correlation function, according to (2.34) is

hJαα̇ðx1ÞJ0ββ̇ðx2ÞJ00γγ̇ðx3Þi

¼ Iα
α̇0 ðx13ÞĪ α̇

α0 ðx13ÞIβ
β̇0 ðx23ÞĪ β̇

β0 ðx23Þ
ðx213Þ3ðx223Þ3

Hα0α̇0β0β̇0γγ̇ðX12Þ:

ð3:3Þ

Using the formalism outlined in Sec. II B 2, all information
about this correlation function is encoded in the following
polynomial:

HðX;U;V;WÞ ¼ Hαα̇ββ̇γγ̇ðXÞUαα̇Vββ̇Wγγ̇: ð3:4Þ

Using Mathematica we solve (2.57) for the chosen spin
representations of the currents and substitute each solution
into the generating function (2.56). This provides us with
the following list of (linearly dependent) polynomial
structures:

fQ1Q2Q3; Z1Z2Z3; P3Q2P̄1; P1Z1P̄1; P1Q3P̄2; P2Z2P̄2;

× P2Q1P̄3; P3Z3P̄3; Q1Z1Q̄1; P3P̄2Q̄1; Q2Z2Q̄2;

× P1P̄3Q̄2; Q3Z3Q̄3; P2P̄1Q̄3; Q̄1Q̄2Q̄3g: ð3:5Þ

Next, we systematically apply the linear dependence
relations (2.50) to these lists, reducing them to the follow-
ing sets of linearly independent structures:

fQ1Q2Q3; P3Q2P̄1; P1Q3P̄2; P2Q1P̄3; Q̄1Q̄2Q̄3g: ð3:6Þ

Note that application of the linear-dependence relations
eliminates all terms involving Zi in this case. Since this
correlation function is composed of fields in the ðs; sÞ
representation, the solutions for the three-point function
may be split up into parity-even and parity-odd contribu-
tions. To do this we construct linear combinations for the
polynomial ĤðX;U;V;WÞ which are even/odd under
inversion in accordance with (2.79):

A1ðQ̄1Q̄2Q̄3 þQ1Q2Q3Þ þ A2ðP3Q2P̄1 − Q̄1Q̄2Q̄3Þ
þ A3ðP1Q3P̄2 − Q̄1Q̄2Q̄3Þ þ A4ðP2Q1P̄3 − Q̄1Q̄2Q̄3Þ
þ B1ðQ1Q2Q3 − Q̄1Q̄2Q̄3Þ: ð3:7Þ

We note here (and in all other examples) that the parity-
even contributions possess the complex coefficients Ai,
while the parity-odd solutions possess the complex coef-
ficients Bi. It can be explicitly checked that these structures
possess the appropriate transformation properties. Next,
since the correlation function is overall real, we must
impose the reality condition (2.74). As a result, we find that
the parity-even coefficients Ai are purely real, i.e., Ai ¼ ai,
while the parity-odd coefficients Bi are purely imaginary,
i.e., Bi ¼ ibi.
We must now impose the conservation of the currents.

Following the procedure outlined in Sec. II B 2 we obtain a
linear system in the coefficients ai, bi which can be easily
solved computationally. We find the following solution for
HðX;U;V;WÞ consistent with conservation on all three
points:

a1
X3

ðQ1Q2Q3 þ 2P1Q3P̄2 − Q̄1Q̄2Q̄3Þ

þ a2
X3

ðP3Q2P̄1 − 3P1Q3P̄2 þ P2Q1P̄3 þ Q̄1Q̄2Q̄3Þ

þ ib1
X3

ðQ1Q2Q3 − Q̄1Q̄2Q̄3Þ: ð3:8Þ

The only remaining constraints to impose are symmetries
under permutations of spacetime points, which apply when
the currents in the three-point function are identical, i.e.
when J ¼ J0 ¼ J00. After imposing (2.72) and (2.73), only
the structure corresponding to the coefficient b1 survives.
However, the a1, a2 structures can exist if the currents are
non-Abelian. This is consistent with the results of [1,2,13].4

The next example to consider is the mixed correlator
hVVTi. To study this case we may examine the correlation
function hJð1;0ÞJ0ð1;0ÞJ00ð2;0Þi.

Correlation function hJð1;0ÞJ0ð1;0ÞJ00ð2;0Þi. Using the general
formula, the ansatz for this three-point function is

hJαα̇ðx1ÞJ0ββ̇ðx2ÞJ00γð2Þγ̇ð2Þðx3Þi

¼ Iα
α̇0 ðx13ÞĪ α̇

α0 ðx13ÞIβ
β̇0 ðx23ÞĪ β̇

β0 ðx23Þ
ðx213Þ3ðx223Þ3

×Hα0α̇0β0β̇0γð2Þγ̇ð2ÞðX12Þ: ð3:9Þ

4The coefficient b1 is related to the chiral anomaly of the CFT
under consideration when it is coupled to a background vector
field [2]. This anomaly exists in chiral theories which are not
invariant under parity and, thus, admit a parity-odd contribution.
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All information about this correlation function is encoded in the following polynomial:

HðX;U;V;WÞ ¼ Hαα̇ββ̇γð2Þγ̇ð2ÞðXÞUαα̇Vββ̇Wγð2Þγ̇ð2Þ: ð3:10Þ

After solving (2.57), we find the following linearly dependent polynomial structures:

fP1P2P̄1P̄2; P2Q1Q2P̄1; P3Q2Z3P̄1; P3Z2
3P̄3; Q3Z2

3Q̄3; Z1Z2Z2
3; P1Q3Z3P̄2; P2Z2Z3P̄2; Q1Q2Q3Z3; P2Q1Z3P̄3;

Q1Z1Z3Q̄1; P2Q1P̄2Q̄1; P3Z3P̄2Q̄1; Q2Z2Z3Q̄2; P1Q2P̄1Q̄2; P1Z3P̄3Q̄2; Q1Q2Q̄1Q̄2; P1P̄2Q̄1Q̄2; P1Z1Z3P̄1;

P2Z3P̄1Q̄3; Z3Q̄1Q̄2Q̄3g: ð3:11Þ

We now systematically apply the linear dependence relations (2.50)–(2.55) to obtain the linearly independent structures

fP2Q1Q2P̄1; P1P2P̄1P̄2; P2Q1P̄2Q̄1; P1Q2P̄1Q̄2; Q1Q2Q̄1Q̄2; P1P̄2Q̄1Q̄2g: ð3:12Þ

Next, we construct the following parity-even and parity-odd linear combinations which comprise the polynomial
ĤðX;U;V;WÞ:

A1ðP2Q1Q2P̄1 þ P1P̄2Q̄1Q̄2Þ þ A2P1P2P̄1P̄2 þ A3P2Q1P̄2Q̄1 þ A4P1Q2P̄1Q̄2 þ A5Q1Q2Q̄1Q̄2

þ B1ðP2Q1Q2P̄1 − P1P̄2Q̄1Q̄2Þ: ð3:13Þ

We now impose conservation on all three points to obtain the final solution for HðX;U;V;WÞ

a1
X2

�
P2Q1Q2P̄1 þ P1Q2P̄1Q̄2 þ P2Q1P̄2Q̄1 þ P1P̄2Q̄1Q̄2 −

2

3
Q1Q2Q̄1Q̄2

�

þ a2
X2

�
−
1

2
P2Q1P̄2Q̄1 −

1

2
P1Q2P̄1Q̄2 þ P1P2P̄1P̄2 þ

1

3
Q1Q2Q̄1Q̄2

�
þ ib1

X2
ðP2Q1Q2P̄1 − P1P̄2Q̄1Q̄2Þ: ð3:14Þ

In this case, only the parity-even structures (proportional to a1 and a2) survive after setting J ¼ J0. Hence, this correlation
function is fixed up to two independent parity-even structures with real coefficients.
The number of polynomial structures increases rapidly for increasing si, and for the three-point functions hTTVi, hTTTi

we will present only the linearly independent structures and the final results after imposing parity, reality, and conservation
on all three points. For hTTVi we may consider the correlation function hJð2;0ÞJ0ð2;0ÞJ00ð1;0Þi, which is constructed from the

following list of linearly independent structures:

fP3Q1Q2Q3P̄3; P2
3Q2P̄1P̄3; P2P3Q1P̄2

3; Q1Q2Q2
3Q̄3; P1Q2

3P̄2Q̄3; P3Q2Q3P̄1Q̄3; P2Q1Q3P̄3Q̄3;

P3P̄3Q̄1Q̄2Q̄3; Q3Q̄1Q̄2Q̄2
3g: ð3:15Þ

We now construct linearly independent parity-even and parity-odd solutions consistent with (2.79). Then, after imposing all
the constraints due to reality and conservation, we obtain the final solution for HðX;U;V;WÞ:

a1
X5

�
3P1Q2

3P̄2Q̄3 þP3Q1Q2Q3P̄3 þ 2P3Q2Q3P̄1Q̄3 þ 2P2Q1Q3P̄3Q̄3 þP3P̄3Q̄1Q̄2Q̄3 þ
7

2
Q1Q2Q2

3Q̄3 −
7

2
Q3Q̄1Q̄2Q̄2

3

�

þ a2
X5

�
P2
3Q2P̄1P̄3 þP2P3Q1P̄2

3 − 6P3Q2Q3P̄1Q̄3 − 2P3P̄3Q̄1Q̄2Q̄3 − 7P1Q2
3P̄2Q̄3 − 6P2Q1Q3P̄3Q̄3

þ 17

2
Q3Q̄1Q̄2Q̄2

3 −
21

2
Q1Q2Q2

3Q̄3

�
þ ib1

X5

�
P3Q1Q2Q3P̄3 −P3P̄3Q̄1Q̄2Q̄3 −

3

2
Q1Q2Q2

3Q̄3 þ
3

2
Q3Q̄1Q̄2Q̄2

3

�
: ð3:16Þ

After setting J ¼ J0 and imposing the required symmetries under the exchange of x1 and x2 we find that b1 ¼ 0, while a1,
a2 remain unconstrained. Hence, the correlation function hTTVi is fixed up to two parity-even structures with real
coefficients.
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The final fundamental three-point function to study is hTTTi, and for this we analyze the correlation function
hJð2;0ÞJ0ð2;0ÞJ00ð2;0Þi. In this case there are 15 linearly independent structures to consider:

fQ2
1Q

2
2Q

2
3; P3Q1Q2

2Q3P̄1; P2
3Q

2
2P̄

2
1; P1Q1Q2Q2

3P̄2; P2
1Q

2
3P̄

2
2; P2Q2

1Q2Q3P̄3;

P3Q1Q2P̄3Q̄1Q̄2; P2Q1Q3P̄2Q̄1Q̄3; P1Q2Q3P̄1Q̄2Q̄3; Q1Q2Q3Q̄1Q̄2Q̄3;

P2
2Q

2
1P̄

2
3; P3Q2P̄1Q̄1Q̄2Q̄3; P1Q3P̄2Q̄1Q̄2Q̄3; P2Q1P̄3Q̄1Q̄2Q̄3; Q̄2

1Q̄
2
2Q̄

2
3g: ð3:17Þ

From these structures we construct linear combinations that are even/odd under parity, analogous to the previous examples.
Then, after imposing reality and conservation on all three points we obtain the following solution for HðX;U;V;WÞ:

a1
X4

ðQ2
1Q

2
2Q

2
3 þ 2P2

1Q
2
3P̄

2
2 − 2Q1Q2Q3Q̄1Q̄2Q̄3 þ 2P1Q1Q2Q2

3P̄2 − 2P1Q3P̄2Q̄1Q̄2Q̄3 þ Q̄2
1Q̄

2
2Q̄

2
3Þ

þ a2
X4

�
P2Q2

1Q2Q3P̄3 þ P3Q1Q2
2Q3P̄1 −

17

3
P1Q1Q2Q2

3P̄2 þ 2P2Q1Q3P̄2Q̄1Q̄3

þ 3Q1Q2Q3Q̄1Q̄2Q̄3 þ P2Q1P̄3Q̄1Q̄2Q̄3 −
20

3
P2
1Q

2
3P̄

2
2 − 3Q̄2

1Q̄
2
2Q̄

2
3

þ 2P1Q2Q3P̄1Q̄2Q̄3 þ P3Q2P̄1Q̄1Q̄2Q̄3 þ
23

3
P1Q3P̄2Q̄1Q̄2Q̄3

�

þ a3
X4

�
P2
3Q

2
2P̄

2
1 þ

19

3
P2
1Q

2
3P̄

2
2 þ

16

3
P1Q1Q2Q2

3P̄2 − 2Q1Q2Q3Q̄1Q̄2Q̄3

þ P2
2Q

2
1P̄

2
3 − 2P2Q1Q3P̄2Q̄1Q̄3 − 2P1Q2Q3P̄1Q̄2Q̄3 −

22

3
P1Q3P̄2Q̄1Q̄2Q̄3

− 3P3Q1Q2P̄3Q̄1Q̄2 − 2P3Q2P̄1Q̄1Q̄2Q̄3 − 2P2Q1P̄3Q̄1Q̄2Q̄3 þ 3Q̄2
1Q̄

2
2Q̄

2
3

�

þ ib1
X4

ðQ2
1Q

2
2Q

2
3 þ 2P1Q1Q2Q2

3P̄2 þ Q̄2
1Q̄

2
2Q̄

2
3 − 2Q1Q2Q3Q̄1Q̄2Q̄3 − 2P1Q3P̄2Q̄1Q̄2Q̄3Þ

þ ib2
X4

ðP2Q2
1Q2Q3P̄3 þ P3Q1Q2

2Q3P̄1 − 3P1Q1Q2Q2
3P̄2 þQ1Q2Q3Q̄1Q̄2Q̄3

− P2Q1P̄3Q̄1Q̄2Q̄3 − P3Q2P̄1Q̄1Q̄2Q̄3 þ 3P1Q3P̄2Q̄1Q̄2Q̄3 − Q̄2
1Q̄

2
2Q̄

2
3Þ: ð3:18Þ

In this case only three of the structures (corresponding to
the real coefficients a1, a2, a3) survive the point-switch
symmetries upon exchange of x1, x2 and x3. Hence, hTTTi
is fixed up to three parity-even structures with real
coefficients.
In all cases we note that the number of independent

structures (prior to imposing exchange symmetries) is
2 minðs1; s2; s3Þ þ 1 in general, where minðs1;s2;s3Þþ1
are parity-even and minðs1; s2; s3Þ are parity-odd. These
results are in agreement with [1,13–15,18] in terms of the
number of independent structures, however, our construc-
tion of the three-point function is quite different.

2. Spin-3=2 current correlators

In this section we will evaluate three-point functions
involving conserved fermionic currents. The most impor-
tant examples of fermionic conserved currents in 4D CFT
are the supersymmetry currents, Qm;α, Q̄m;α̇, which appear
in N -extended superconformal field theories. Such fields
are primary with dimension ΔQ ¼ ΔQ̄ ¼ 7=2, and satisfy

the conservation equations ∂
mQm;α ¼ 0, ∂mQ̄m;α̇ ¼ 0. In

spinor notation, we have:

Qαα̇;βðxÞ ¼ ðσmÞαα̇Qm;βðxÞ; Q̄αα̇;β̇ðxÞ ¼ ðσmÞαα̇Q̄m;β̇ðxÞ:
ð3:19Þ

The correlation functions involving supersymmetry cur-
rents, vector currents, and the energy-momentum tensor are
of fundamental importance. The four possible three-point
functions involving Q, V and T which are of interest in
N ¼ 1 superconformal field theories are

hQαð2Þα̇ðx1ÞQβð2Þβ̇ðx2ÞVγγ̇ðx3Þi;
hQαð2Þα̇ðx1ÞQβð2Þβ̇ðx2ÞTγð2Þγ̇ð2Þðx3Þi; ð3:20aÞ

hQαð2Þα̇ðx1ÞQ̄ββ̇ð2Þðx2ÞVγγ̇ðx3Þi;
hQαð2Þα̇ðx1ÞQ̄βð2Þβ̇ðx2ÞTγð2Þγ̇ð2Þðx3Þi: ð3:20bÞ
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These three-point functions were analyzed in [17] using
a similar approach, but we present them again here for
completeness and to demonstrate our general formalism.
Note that in the subsequent analysis we assume only
conformal symmetry, not supersymmetry.
We now present an explicit analysis of the general

structure of correlation functions involving Q, Q̄, V, and T
that are compatible with the constraints of conformal
symmetry and conservation equations. Using our conven-
tions for the currents, we recall that Q≡ Jð3=2;1Þ,
Q̄≡ J̄ð3=2;1Þ. Let us first consider hQQVi, for which we
may analyze the general structure of the correlation
function hJð3=2;1ÞJ0ð3=2;1ÞJ00ð1;0Þi.

Correlation function hJð3=2;1ÞJ0ð3=2;1ÞJ00ð1;0Þi. Using the
general formula, the ansatz for this three-point function:

hJαð2Þα̇ðx1ÞJ0βð2Þβ̇ðx2ÞJ00γγ̇ðx3Þi

¼ Iαð2Þα̇
0ð2Þðx13ÞĪ α̇

α0 ðx13ÞIβð2Þβ̇
0ð2Þðx23ÞĪ β̇

β0 ðx23Þ
ðx213Þ7=2ðx223Þ7=2

×Hα0α̇0ð2Þβ0β̇0ð2Þγγ̇ðX12Þ: ð3:21Þ

Using the formalism outlined in Sec. II B 2, all information
about this correlation function is encoded in the following
polynomial:

HðX;U;V;WÞ¼Hαα̇ð2Þββ̇ð2Þγγ̇ðXÞUαα̇ð2ÞVββ̇ð2ÞWγγ̇: ð3:22Þ

After solving (2.57), we find the following linearly
dependent polynomial structures in the even and odd
sectors respectively:

fQ2Z1Z2P̄1;Q2Q3Z2P̄2;Q1Q2Q3P̄3;Z1Z2Z3P̄3;P3Q2P̄1P̄3;P1Z1P̄1P̄3;P1Q3P̄2P̄3;P2Z2P̄2P̄3;

P2Q1P̄2
3;P3Z3P̄2

3;P1P̄2
3Q̄2;Q1Z1P̄3Q̄1;P3P̄2P̄3Q̄1;Q2Z2P̄3Q̄2;Z1Z2P̄2Q̄1;Q2Q3P̄1Q̄3;Q3Z3P̄3Q̄3;

P2P̄1P̄3Q̄3;Z1P̄1Q̄1Q̄3;Q3P̄2Q̄1Q̄3;P̄3Q̄1Q̄2Q̄3g: ð3:23Þ

Next we systematically apply the linear dependence
relations (2.50)–(2.55) and obtain the following linearly
independent structures:

fQ1Q2Q3P̄3; P3Q2P̄1P̄3; P2Q1P̄2
3; Q2Q3P̄1Q̄3;

Q3P̄2Q̄1Q̄3; P̄3Q̄1Q̄2Q̄3g: ð3:24Þ

We now impose conservation on all three points and find
that the solution for HðX;U;V;WÞ is unique up to a
complex coefficient, A1 ¼ a1 þ iã1:

A1

X4

�
Q1Q2Q3P̄3þ

5

9
P2Q1P̄2

3þ
5

9
P3Q2P̄1P̄3

−
1

9
P̄3Q̄1Q̄2Q̄3−

2

9
Q2Q3P̄1Q̄3−

2

9
Q3P̄2Q̄1Q̄3

�
: ð3:25Þ

However, this three-point function is not compatible with
the point-switch symmetry associated with setting J ¼ J0.

Therefore we conclude that the three-point function hQQVi
must vanish in general.

Correlation function hJð3=2;1ÞJ̄0ð3=2;1ÞJ00ð1;0Þi. Using the
general formula we obtain the following ansatz:

hJαð2Þα̇ðx1ÞJ0ββ̇ð2Þðx2ÞJ00γγ̇ðx3Þi

¼ Iαð2Þα̇
0ð2Þðx13ÞĪ α̇

α0 ðx13ÞIβ
β̇0 ðx23ÞĪ β̇ð2Þβ

0ð2Þðx23Þ
ðx213Þ7=2ðx223Þ7=2

×Hα0α̇0ð2Þβ0ð2Þβ̇0γγ̇ðX12Þ: ð3:26Þ

The tensor three-point function is encoded in the following
polynomial:

HðX;U;V;WÞ¼Hαα̇ð2Þβð2Þβ̇γγ̇ðXÞUαα̇ð2ÞVβð2Þβ̇Wγγ̇: ð3:27Þ

After solving (2.57), we find the following linearly
dependent polynomial structures:

fQ1Q2Z1Z2; P3Q2Z2P̄2; P1Z1Z2P̄2; P3Q1Q2P̄3; P1Q1Z1P̄3; P1P3P̄2P̄3; Q1Q2Q3Q̄3; Z1Z2Z3Q̄3;

P3Q2P̄1Q̄3; P1Z1P̄1Q̄3; P1Q3P̄2Q̄3; P2Z2P̄2Q̄3; P2Q1P̄3Q̄3; P3Z3P̄3Q̄3; Q1Z1Q̄1Q̄3; P3P̄2Q̄1Q̄3;

Q2Z2Q̄2Q̄3; P1P̄3Q̄2Q̄3; Q3Z3Q̄2
3; P2P̄1Q̄2

3; Q̄1Q̄2Q̄2
3g: ð3:28Þ

Next we systematically apply the linear dependence relations (2.50) to this list, which results in the following linearly
independent structures:

fP3Q1Q2P̄3; Q1Q2Q3Q̄3; P3Q2P̄1Q̄3; P1Q3P̄2Q̄3; P2Q1P̄3Q̄3; Q̄1Q̄2Q̄2
3g: ð3:29Þ
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We now construct the ansatz for this three-point function using the linearly independent structures above. After imposing
conservation on all three points the final solution is

A1

X4

�
P3Q1Q2P̄3 þ

3

2
P1Q3P̄2Q̄3 −

3

4
Q̄1Q̄2Q̄2

3

�
þ A2

X4
ðP1Q3P̄2Q̄3 − Q̄1Q̄2Q̄2

3 þQ1Q2Q3Q̄3Þ

þ A3

X4

�
P3Q2P̄1Q̄3 −

1

2
P1Q3P̄2Q̄3 þ P2Q1P̄3Q̄3 þ

3

4
Q̄1Q̄2Q̄2

3

�
: ð3:30Þ

Therefore we see that the correlation function hJð3=2;1ÞJ̄0ð3=2;1ÞJ00ð1;0Þi and, hence, hQQ̄Vi, is fixed up to three independent

complex coefficients. After imposing the combined point-switch/reality condition on Q and Q̄, we find that the complex
coefficients Ai must be purely imaginary, i.e., Ai ¼ iãi. Hence, the correlation function hQQ̄Vi is fixed up to three
independent real parameters.
Next we determine the general structure of hQQTi and hQQ̄Ti, which are associated with the correlation functions

hJð3=2;1ÞJ0ð3=2;1ÞJ00ð2;0Þi, hJð3=2;1ÞJ̄0ð3=2;1ÞJ00ð2;0Þi respectively using our general formalism. Since the number of structures grows

rapidly with spin, we will simply present the final results after conservation. For hJð3=2;1ÞJ0ð3=2;1ÞJ00ð2;0Þi we obtain a single

independent structure (up to a complex coefficient):

A1

X3

�
Q1Q3Q2

2P̄1 þ
7

4
P3Q2

2P̄
2
1 þ

1

2
P1Q3Q2P̄1P̄2 −

5

4
Q1Q3Q2P̄2Q̄1 − 5Q1Q2P̄3Q̄1Q̄2 −

7

2
Q2P̄1Q̄1Q̄2Q̄3

þ 1

2
P1Q3P̄2

2Q̄1 þ
7

4
P2Q1P̄2P̄3Q̄1 −

5

4
P̄2Q̄2

1Q̄2Q̄3

�
: ð3:31Þ

This solution is manifestly compatible with the point-switch symmetry resulting from setting J ¼ J0, hence, hQQTi is
unique up to a complex parameter. On the other hand, for hJð3=2;1ÞJ̄0ð3=2;1ÞJ00ð2;0Þi we obtain four independent conserved

structures proportional to complex coefficients

A1

X3

�
Q2

1Q3Q2
2 þ

6

7
P1Q2P̄1Q̄2Q̄3 þ

6

7
P2Q1P̄2Q̄1Q̄3 þ

6

7
P1P̄2Q̄1Q̄2Q̄3 −

10

7
Q1Q2Q̄1Q̄2Q̄3

�

þ A2

X3
ðP2Q2Q2

1P̄3 þ P3Q2
2Q1P̄1 − P2Q1P̄2Q̄1Q̄3 − P1Q2P̄1Q̄2Q̄3 − P1P̄2Q̄1Q̄2Q̄3 þQ2Q1Q̄1Q̄2Q̄3Þ

þ A3

X3

�
P1Q1Q2Q3P̄2 −

3

7
P2Q1P̄2Q̄1Q̄3 −

13

14
P1P̄2Q̄1Q̄2Q̄3 −

3

7
P1Q2P̄1Q̄2Q̄3 þ

3

14
Q1Q2Q̄1Q̄2Q̄3

�
þ A4

X3
P2
1Q3P̄2

2:

ð3:32Þ

After imposing the combined point-switch/reality condi-
tion, we find that the complex coefficients Ai must be
purely real. Hence, the three-point function hQQ̄Ti is fixed
up to four independent real parameters. The results (3.25)
and (3.30)–(3.32) are in agreement with those found
in [17].

B. General structure of three-point functions
for arbitrary spins

In four dimensions, three-point correlation functions of
bosonic higher-spin conserved currents have been analyzed
in the following publications [13,18] (see [20,24,34] for
supersymmetric results). For three-point functions involv-
ing bosonic currents Jðs;0Þ ¼ JαðsÞα̇ðsÞ, the general structure
of the three-point function hJðs1;0ÞJ0ðs2;0ÞJ00ðs3;0Þi was found to
be fixed up to the following form [18,37,38]:

hJðs1;0ÞJ0ðs2;0ÞJ00ðs3;0Þi ¼
X2 minðs1;s2;s3Þþ1

I¼1

aIhJðs1;0ÞJ0ðs2;0ÞJ00ðs3;0ÞiI;

ð3:33Þ

where aI are real coefficients and hJðs1;0ÞJ0ðs2;0ÞJ00ðs3;0ÞiI are
linearly independent conserved structures.5 Among these
2 minðs1; s2; s3Þ þ 1 structures, minðs1; s2; s3Þ þ 1 are
parity-even while minðs1; s2; s3Þ are parity odd. For
correlation functions involving identical fields we must
also impose point-switch symmetries. The following
classification holds:

5Note that if the reality condition is not imposed, the three-
point function is fixed up to 2 minðsiÞ þ 1 structures with
complex coefficients.
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(i) For three-point functions hJðs;0ÞJ0ðs;0ÞJ00ðs;0Þi there are
2sþ 1 conserved structures, sþ 1 being parity even
and s being parity odd. When the fields coincide,
i.e. J ¼ J0 the number of structures is reduced to
the sþ 1 parity-even structures in the case when the
spin s is even, or to the s parity-odd structures in the
case when s is odd.

(ii) For three-point functions hJðs1;0ÞJ0ðs1;0ÞJ00ðs2;0Þi, there
are 2 minðs1; s2Þ þ 1 conserved structures,
minðs1; s2Þ þ 1 being parity even and minðs1; s2Þ
being parity odd. For J ¼ J0, the number of struc-
tures is reduced to the minðs1; s2Þ þ 1 parity-even
structures in the case when the spin s2 is even, or to
the minðs1; s2Þ parity-odd structures in the case
when s2 is odd.

Note that the above classification is consistent with the
results of [13], and we have explicitly reproduced them
up to si ¼ 10 in our computational approach.
Now let us discuss three-point functions involving

currents with q ¼ 1, which define “supersymmetrylike”
fermionic higher-spin currents. The possible correlation
functions that we can construct from these are
hJðs1;1ÞJ0ðs2;1ÞJ00ðs3;0Þi and hJðs1;1ÞJ̄0ðs2;1ÞJ00ðs3;0Þi. Note that for

s1 ¼ s2 ¼ 3=2 and s3 ¼ 1, 2 we obtain the familiar three-
point functions (3.20). Based on our computational analysis
we found that the three-point function hJðs1;1ÞJ0ðs2;1ÞJ00ðs3;0Þi
is fixed up to a unique structure after conservation in
general. On the other hand, we found that three-point
functions of the form hJðs1;1ÞJ̄0ðs2;1ÞJ00ðs3;0Þi are fixed up to

2 minðs1; s2; s3Þ þ 1 independent conserved structures.
It’s important to note that for these three-point functions
there is no notion of parity-even/odd structures.
We now dedicate the remainder of this section to

classifying the number of independent structures in the
general three-point functions

hJðs1;q1ÞJ0ðs2;q2ÞJ00ðs3;q3Þi; hJðs1;q1ÞJ̄0ðs2;q2ÞJ00ðs3;q3Þi; ð3:34Þ

for arbitrary ðsi; qiÞ. We investigated the general structure
of these three-point functions up to si ¼ 10. Provided that
the inequalities (2.61) are satisfied, we conjecture that the
following classification holds in general:

(i) For three-point functions hJðs1;q1ÞJ0ðs2;q2ÞJ00ðs3;q3Þi,
hJðs1;q1ÞJ̄0ðs2;q2ÞJ00ðs3;q3Þi with q1 ≠ q2 ≠ q3, there is a

unique solution in general. Similarly, the three-point
function is also unique for the cases: (i) q1 ¼ 0,
q2 ≠ q3, and (ii) q1 ¼ q2 ¼ 0 with q3 ≠ 0.

(ii) For three-point functions hJðs1;qÞJ0ðs2;qÞJ00ðs3;0Þi there is
a unique solution up to a complex coefficient.
However, for the case where s1 ¼ s2 (fermionic or
bosonic) and J ¼ J0, the structure survives the
resulting point-switch symmetry only when s3 is
an even integer.

(iii) For three-point functions hJðs1;qÞJ̄0ðs2;qÞJ00ðs3;0Þi we

obtain quite a nontrivial result which we will now
explain. The number of structures, Nðs1; s2; s3; qÞ,
obeys the following formula:

Nðs1; s2; s3;qÞ ¼ 2 minðs1; s2; s3Þ þ 1

−max

�
q
2
− js3 −minðs1; s2Þj;0

�
;

ð3:35Þ

where s1, s2 are simultaneously integer/half-integer,
for integer s3. This formula can be arrived at using
the following method. Let us fix s1, s2 and let q ≥ 2.
By varying s3 and computing the resulting con-
served three-point function, one can notice that if s3
lies within the interval

minðs1; s2Þ−
q
2
< s3 <minðs1; s2Þ þ

q
2
; ð3:36Þ

then the number of structures is decreased from
2 minðs1; s2; s3Þ þ 1 by

δNðs1; s2; s3; qÞ ¼
q
2
− js3 −minðs1; s2Þj: ð3:37Þ

For s3 outside the interval (3.36) there is
always 2 minðs1; s2; s3Þ þ 1 structures in general.
It should also be noted that (3.35) is also valid
for q ¼ 0, 1 (by virtue of the maxðÞ function). In
these cases the additional term does not contribute
and we obtain Nðs1; s2; s3; 0Þ ¼ Nðs1; s2; s3; 1Þ ¼
2 minðs1; s2; s3Þ þ 1.

As examples, below we tabulate the number of
structures in the conserved three-point functions
hJðs1;qÞJ̄0ðs2;qÞJ00ðs3;0Þi for some fixed s1, s2 while
varying q and s3. Let us recall that q is necessarily
even/odd when s is integer/half-integer valued. In
addition, since Jðs;qÞ ≔ Jαðsþq

2
Þα̇ðs−q

2
Þ it follows that

the maximal allowed value of q in the above
correlation function is 2 minðs1; s2Þ − 2. Explicit
solutions for particular cases are presented in
Appendix B.

The highlighted values are within the interval
(3.36) defined by s1, s2, and q, and we have used
color to identify the pattern in the number of
structures. Analogous tables can be constructed
for any choice of s1, s2 and it is easy to see that
the results are consistent with the general for-
mula (3.35), which appears to hold for all such
correlators within the bounds of our computational
limitations ðsi ≤ 10Þ.

(iv) For three-point functions hJðs1;qÞJ̄0ðs1;qÞJ00ðs2;0Þi the
number of structures adheres to the formula (3.35).
However, for J ¼ J0, we must impose the combined
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point-switch/reality condition. After imposing this
constraint we find that the free complex parameters
must be purely real/imaginary for s2 even/odd.

The above classification appears to be complete, and we
have not found any other permutations of fields/spins
which give rise to new results.
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APPENDIX A: 4D CONVENTIONS
AND NOTATION

Our conventions closely follow that of [50]. For the
Minkowski metric ηmn we use the “mostly plus” conven-
tion: ηmn ¼ diagð−1; 1; 1; 1Þ. Spinor indices on spin-tensors
are raised and lowered with the SLð2;CÞ invariant spinor
metrics

εαβ ¼
�
0 −1
1 0

�
; εαβ ¼

�
0 1

−1 0

�
; εαγε

γβ ¼ δα
β;

ðA1aÞ

εα̇ β̇ ¼
�
0 −1
1 0

�
; εα̇ β̇ ¼

�
0 1

−1 0

�
; εα̇ γ̇ε

γ̇ β̇ ¼ δα̇
β̇:

ðA1bÞ

Given the spinor fields ϕα, ϕ̄α̇, the spinor indices α ¼ 1, 2,
α̇ ¼ 1̄; 2̄ are raised and lowered according to the following
rules:

ϕα ¼ εαβϕ
β; ϕα ¼ εαβϕβ;

ϕ̄α̇ ¼ εα̇ β̇ϕ̄
β; ϕ̄α̇ ¼ εα̇ β̇ϕ̄β̇: ðA2Þ

It is also useful to introduce the complex 2 × 2 σ-matrices,
defined as follows:

σ0 ¼
�
1 0

0 1

�
; σ1 ¼

�
0 1

1 0

�
;

σ2 ¼
�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
: ðA3Þ

The σ-matrices span the Lie group SLð2;CÞ, the universal
covering group of the Lorentz group SOð3; 1Þ. Now let
σm ¼ ðσ0; σ⃗Þ, we denote the components of σm as ðσmÞαα̇,
and define:

ðσ̃mÞα̇α ≔ εα̇ β̇εαβðσmÞββ̇: ðA4Þ

It can be shown that the σ-matrices possess the following
useful properties:

ðσmσ̃n þ σnσ̃mÞαβ ¼ −2ηmnδ
β
α; ðA5aÞ

ðσ̃mσn þ σ̃nσmÞα̇β̇ ¼ −2ηmnδ
α̇
β̇
; ðA5bÞ

Trðσmσ̃nÞ ¼ −2ηmn; ðA5cÞ

ðσmÞαα̇ðσ̃mÞβ̇β ¼ −2δβαδβ̇α̇: ðA5dÞ

The σ-matrices are then used to convert spacetime indices
into spinor ones and vice versa according to the following
rules:

Xαα̇ ¼ ðσmÞαα̇Xm; Xm ¼ −
1

2
ðσ̃mÞα̇αXαα̇: ðA6Þ

For imposing conservation equations on three-point
functions, one must act on the generating function (2.56)
with the operators (2.68). For this, the following identities
for the derivatives of the monomials Qi, Zi are useful:

∂
αα̇
X Q1 ¼ −

1

X
ð2vαw̄α̇ þ X̂α̇αQ1Þ; ðA7aÞ

∂
αα̇
X Q2 ¼ −

1

X
ð2wαūα̇ þ X̂α̇αQ2Þ; ðA7bÞ

∂
αα̇
X Q3 ¼ −

1

X
ð2uαv̄α̇ þ X̂α̇αQ3Þ; ðA7cÞ

∂
αα̇
X Z1 ¼ −

1

X
ð2uαūα̇ þ X̂α̇αZ1Þ; ðA8aÞ

∂
αα̇
X Z2 ¼ −

1

X
ð2vαv̄α̇ þ X̂α̇αZ2Þ; ðA8bÞ

∂
αα̇
X Z3 ¼ −

1

X
ð2wαw̄α̇ þ X̂α̇αZ3Þ: ðA8cÞ

Analogous identities for derivatives of Q̄i may be
obtained by complex conjugation.

APPENDIX B: EXAMPLES OF THREE-POINT
FUNCTIONS hJðs1;qÞJ̄0ðs2;qÞJ00ðs3;0Þi

In this appendix we provide some examples of three-
point functions hJðs1;qÞJ̄0ðs2;qÞJ00ðs3;0Þi. In particular, we com-

pute two of the examples presented in Tables I and II to
illustrate the decrease in the number of independent
conserved structures for particular values of q. Due to

THREE-POINT FUNCTIONS OF CONSERVED CURRENTS IN 4D … PHYS. REV. D 108, 086017 (2023)

086017-17



the large size of the solutions for increasing si, we only
present the simplest cases.
First let us consider the three-point function

hJðs1;qÞJ̄0ðs2;qÞJ00ðs3;0Þi with s1 ¼ 5, s2 ¼ 6, q ¼ 8 and

s3 ¼ 2. Using our formalism, all information about this
correlation function is encoded in the following polynomial:

HðX;U;V;WÞ ¼ Hαð1Þα̇ð9Þβð10Þβ̇ð2Þγð2Þγ̇ð2Þ

ðXÞUαð1Þα̇ð9ÞVβð10Þβ̇ð2ÞWγð2Þγ̇ð2Þ: ðB1Þ

There are 13 possible linearly independent structures that
can be constructed in this case:

fP1P3Q2
1Q2P̄2

3Q̄
6
3; P1Q2

1Q2Q3P̄3Q̄7
3; P3Q1Q2P̄1Q̄1Q̄8

3; P3Q2
1Q2P̄3Q̄1Q̄7

3; P1Q1Q2Q3P̄1Q̄8
3; P1P3Q1Q2P̄1P̄3Q̄7

3;

P1Q1Q3P̄2Q̄1Q̄8
3; P2Q2

1P̄3Q̄1Q̄8
3; P1P̄1Q̄1Q̄2Q̄9

3; Q1Q̄2
1Q̄2Q̄9

3; P1P3Q2P̄2
1Q̄

8
3; Q

2
1Q2Q3Q̄1Q̄8

3; P
2
1Q3P̄1P̄2Q̄8

3g: ðB2Þ

We now impose conservation on all three points. The following solution is obtained:

A1

X11

�
22

189
Q1Q̄2

1Q̄2Q̄9
3 −

11

63
P1P̄1Q̄1Q̄2Q̄9

3 þ
11

56
P2
1Q3P̄1P̄2Q̄8

3 −
121

378
Q2

1Q2Q3Q̄1Q̄8
3

−
143

756
P1Q1Q3P̄2Q̄1Q̄8

3 −
11

14
P1Q2

1Q2Q3P̄3Q̄7
3 þ

1

2
P3Q2

1Q2P̄3Q̄1Q̄7
3 þ P1P3Q2

1Q2P̄2
3Q̄

6
3

�

þ A2

X11

�
31

54
Q1Q̄2

1Q̄2Q̄9
3 −

11

18
P1P̄1Q̄1Q̄2Q̄9

3 þ
11

16
P2
1Q3P̄1P̄2Q̄8

3 −
10

27
Q2

1Q2Q3Q̄1Q̄8
3 −

143

216
P1Q1Q3P̄2Q̄1Q̄8

3

−
1

4
P2Q2

1P̄3Q̄1Q̄8
3 −

1

4
P1Q2

1Q2Q3P̄3Q̄7
3 þ P1P3Q1Q2P̄1P̄3Q̄7

3 −
3

4
P3Q2

1Q2P̄3Q̄1Q̄7
3

�

þ A3

X11

�
2

3
Q1Q̄2

1Q̄2Q̄9
3 − P1P̄1Q̄1Q̄2Q̄9

3 þ P1Q1Q2Q3P̄1Q̄8
3 þ P2

1Q3P̄1P̄2Q̄8
3 −

2

3
Q2

1Q2Q3Q̄1Q̄8
3 −

2

3
P1Q1Q3P̄2Q̄1Q̄8

3

�

þ A4

X11

�
43

27
Q1Q̄2

1Q̄2Q̄9
3 −

8

9
P1P̄1Q̄1Q̄2Q̄9

3 þ P1P3Q2P̄2
1Q̄

8
3 þ P2

1Q3P̄1P̄2Q̄8
3 −

97

54
Q2

1Q2Q3Q̄1Q̄8
3 − 2P3Q1Q2P̄1Q̄1Q̄8

3

−
44

27
P1Q1Q3P̄2Q̄1Q̄8

3 −
1

2
P2Q2

1P̄3Q̄1Q̄8
3

�
; ðB3Þ

where Ai are complex coefficients. Hence we see that this three-point function is fixed up to four independent conserved
structures. Recall that for q ¼ 0, the three-point function hJðs1;qÞJ̄0ðs2;qÞJ00ðs3;0Þi reduces to a three-point function of vectorlike

currents. Hence, we should expect 2 minðs1; s2; s3Þ þ 1 ¼ 5 independent structures. Similar results can be obtained for
other values of q and s3, which are contained in Table I.
Next, let us consider the three-point function hJðs1;qÞJ̄0ðs2;qÞJ00ðs3;0Þi with s1 ¼ 9=2, s2 ¼ 11=2, q ¼ 7 and s3 ¼ 2. All

information about this correlation function is encoded in the following polynomial:

HðX;U;V;WÞ ¼ Hαð1Þα̇ð8Þβð9Þβ̇ð2Þγð2Þγ̇ð2ÞðXÞUαð1Þα̇ð8ÞVβð9Þβ̇ð2ÞWγð2Þγ̇ð2Þ: ðB4Þ

In this case there are also 13 possible linearly independent structures:

TABLE II. No. of structures in hJðs1;qÞJ̄0ðs2;qÞJ00ðs3;0Þi for
s1 ¼ 9=2, s2 ¼ 11=2.

s3

q 1 2 3 4 5 6 7 8

1 3 5 7 9 10 10 10 10
3 3 5 7 8 9 10 10 10
5 3 5 6 7 8 9 10 10
7 3 4 5 6 7 8 9 10

• δN ¼ 1; • δN ¼ 2; • δN ¼ 3.

TABLE I. No. of structures in hJðs1;qÞJ̄0ðs2;qÞJ00ðs3;0Þi for s1 ¼ 5,
s2 ¼ 6.

s3

q 1 2 3 4 5 6 7 8 9

0 3 5 7 9 11 11 11 11 11
2 3 5 7 9 10 11 11 11 11
4 3 5 7 8 9 10 11 11 11
6 3 5 6 7 8 9 10 11 11
8 3 4 5 6 7 8 9 10 11

• δN ¼ 1; • δN ¼ 2; • δN ¼ 3; • δN ¼ 4.
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fP1P3Q2
1Q2P̄2

3Q̄
5
3;P1Q2

1Q2Q3P̄3Q̄6
3;P1P3Q2P̄2

1Q̄
7
3;P3Q2

1Q2P̄3Q̄1Q̄6
3;P1Q1Q2Q3P̄1Q̄7

3;P1Q1Q3P̄2Q̄1Q̄7
3;

Q2
1Q2Q3Q̄1Q̄7

3;P3Q1Q2P̄1Q̄1Q̄7
3;P1P3Q1Q2P̄1P̄3Q̄6

3;P2Q2
1P̄3Q̄1Q̄7

3;P1P̄1Q̄1Q̄2Q̄8
3;P

2
1Q3P̄1P̄2Q̄7

3;Q1Q̄2
1Q̄2Q̄8

3g: ðB5Þ

We now impose conservation on all three points, and the following solution is obtained:

A1

X10

�
5

36
Q1Q̄2

1Q̄2Q̄8
3 −

5

24
P1P̄1Q̄1Q̄2Q̄8

3 þ
5

21
P2
1Q3P̄1P̄2Q̄7

3 −
25

72
Q2

1Q2Q3Q̄1Q̄7
3

−
115

504
P1Q1Q3P̄2Q̄1Q̄7

3 −
5

6
P1Q2

1Q2Q3P̄3Q̄6
3 þ

1

2
P3Q2

1Q2P̄3Q̄1Q̄6
3 þ P1P3Q2

1Q2P̄2
3Q̄

5
3

�

þ A2

X10

�
7

12
Q1Q̄2

1Q̄2Q̄8
3 −

5

8
P1P̄1Q̄1Q̄2Q̄8

3 þ
5

7
P2
1Q3P̄1P̄2Q̄7

3 −
3

8
Q2

1Q2Q3Q̄1Q̄7
3 −

115

168
P1Q1Q3P̄2Q̄1Q̄7

3

−
1

4
P2Q2

1P̄3Q̄1Q̄7
3 −

1

4
P1Q2

1Q2Q3P̄3Q̄6
3 þ P1P3Q1Q2P̄1P̄3Q̄6

3 −
3

4
P3Q2

1Q2P̄3Q̄1Q̄6
3

�

þ A3

X10

�
2

3
Q1Q̄2

1Q̄2Q̄8
3 − P1P̄1Q̄1Q̄2Q̄8

3 þ P1Q1Q2Q3P̄1Q̄7
3 þ P2

1Q3P̄1P̄2Q̄7
3 −

2

3
Q2

1Q2Q3Q̄1Q̄7
3 −

2

3
P1Q1Q3P̄2Q̄1Q̄7

3

�

þ A4

X10

�
19

12
Q1Q̄2

1Q̄2Q̄8
3 −

7

8
P1P̄1Q̄1Q̄2Q̄8

3 þ P1P3Q2P̄2
1Q̄

7
3 þ P2

1Q3P̄1P̄2Q̄7
3 −

43

24
Q2

1Q2Q3Q̄1Q̄7
3 − 2P3Q1Q2P̄1Q̄1Q̄7

3

−
13

8
P1Q1Q3P̄2Q̄1Q̄7

3 −
1

2
P2Q2

1P̄3Q̄1Q̄7
3

�
; ðB6Þ

where Ai are complex coefficients. Hence we see that this
three-point function is fixed up to four independent con-
served structures. Recall that for the q ¼ 1 case we expect
2 minðs1; s2; s3Þ þ 1 ¼ 5 independent structures. Similar
results are obtained for other values of q and s3, and with
further testing we obtain Table II.

APPENDIX C: THREE-POINT FUNCTIONS
INVOLVING SCALARS AND SPINORS

In this appendix we provide some examples of three-
point functions involving scalars, spinors and a conserved
tensor operator. The results here serve as a consistency
check against those presented in [1,16].

1. Correlation function hOO0Jðs;0Þi
Let O, O0 be scalar operators of dimension Δ1 and Δ2

respectively. We consider the three-point function
hOO0Jðs;0Þi. According to the formula (2.61), a three-point
function can be constructed only if J is in the ðs; sÞ
representation. Using the general formula, the ansatz for
this three-point function is:

hOðx1ÞO0ðx2ÞJγðsÞγ̇ðsÞðx3Þi ¼
1

ðx213ÞΔ1ðx223ÞΔ2
HγðsÞγ̇ðsÞðX12Þ:

ðC1Þ

All information about this correlation function is encoded
in the following polynomial:

HðX;WÞ ¼ HγðsÞγ̇ðsÞðXÞWγðsÞγ̇ðsÞ: ðC2Þ

We recall that H satisfies the homogeneity property
HðXÞ ¼ Xsþ2−Δ1−Δ2ĤðXÞ, where ĤðXÞ is homogeneous
degree 0. The only possible structure for ĤðXÞ is

ĤðX;WÞ ¼ AZs
3; ðC3Þ

where A is a complex coefficient. After imposing con-
servation on x3 using the methods outlined in Sec. II B 2,
we find

D3H̃ðX;WÞ¼AðΔ1−Δ2Þð−1Þsþ1sðsþ1ÞZs−1
3 XΔ1−Δ2−s−3:

ðC4Þ

Hence, we find that this three-point function is compatible
with conservation on x3 only for Δ1 ¼ Δ2. When the
scalars O, O0 coincide, then the solution satisfies the
point-switch symmetry associated with exchanging x1
and x2 only for even s. This result is in agreement with [16].

2. Correlation function hψψ̄ 0Jðs;qÞi
Let ψ , ψ̄ 0 be spinor operators of dimension Δ1 and Δ2

respectively. We now consider the three-point function
hψψ̄ 0Jðs;qÞi. According to the formula (2.61), a three-point
function can be constructed only if J belongs to the
representations ðs; sÞ, ðs − 1; sþ 1Þ or ðsþ 1; s − 1Þ

THREE-POINT FUNCTIONS OF CONSERVED CURRENTS IN 4D … PHYS. REV. D 108, 086017 (2023)

086017-19



(the latter two corresponding to q ¼ 2). First consider the
ðs; sÞ representation. Using the general formula, the ansatz
for this three-point function is

hψαðx1Þψ̄ 0̇
β
ðx2ÞJγðsÞγ̇ðsÞðx3Þi

¼ Iα
α̇0 ðx13ÞĪ β̇

β0 ðx23Þ
ðx213ÞΔ1ðx223ÞΔ2

Hα̇0β0γðsÞγ̇ðsÞðX12Þ: ðC5Þ

All information about this correlation function is encoded
in the following polynomial:

HðX;U;V;WÞ ¼ Hα̇βγðsÞγ̇ðsÞðXÞUα̇VβWγðsÞγ̇ðsÞ: ðC6Þ

We recall that H satisfies the homogeneity property
HðXÞ ¼ Xsþ2−Δ1−Δ2ĤðXÞ, where ĤðXÞ is homogeneous
degree 0. In this case there are two possible linearly
independent structures for ĤðXÞ:

ĤðX;U;V;WÞ ¼ A1P2P̄1Zs−1
3 þ A2Q1Q̄2Zs−1

3 ; ðC7Þ

where A1 and A2 are complex coefficients. After imposing
conservation on x3 using the methods outlined in Sec. II B
2, we find

D3H̃ðX;U;V;WÞ
¼ ðΔ1 − Δ2Þð−1Þsþ1fðA1 þ ðs2 þ s − 1ÞA2ÞQ2P̄1

þ ððs2 þ s − 1ÞA1 þ A2ÞP̄2Q̄1gZs−2
3 XΔ1−Δ2−s−3: ðC8Þ

Hence, we find that this three-point function is automati-
cally compatible with conservation on x3 for Δ1 ¼ Δ2.
ForΔ1 ≠ Δ2 it is simple to see that conservation is satisfied
only for s ¼ 1, which results in A1 ¼ −A2 and, hence,
the solution is unique. However, for s > 1 there is no
solution in general. In the case where ψ ¼ ψ 0, we also
have to impose the combined point-switch/reality con-
dition, which results in the coefficients Ai being purely

real/imaginary for s even/odd. This result is consistent
with [16].
Now let us consider the ðsþ 1; s − 1Þ representation,

with s > 1. Note that the analysis for ðs − 1; sþ 1Þ is
essentially identical and will be omitted. Using the general
formula, the ansatz for this three-point function is

hψαðx1Þψ̄ 0̇
β
ðx2ÞJγðsþ1Þγ̇ðs−1Þðx3Þi

¼ Iα
α̇0 ðx13ÞĪ β̇

β0 ðx23Þ
ðx213ÞΔ1ðx223ÞΔ2

Hα̇0β0γðsþ1Þγ̇ðs−1ÞðX12Þ: ðC9Þ

All information about this correlation function is encoded
in the following polynomial:

HðX;U;V;WÞ ¼ Hα̇βγðsþ1Þγ̇ðs−1ÞðXÞUα̇VβWγðsþ1Þγ̇ðs−1Þ:

ðC10Þ

We recall that H satisfies the homogeneity property
HðXÞ ¼ Xsþ2−Δ1−Δ2ĤðXÞ, where ĤðXÞ is homogeneous
degree 0. In this case there is only one possible structure for
ĤðXÞ:

ĤðX;U;V;WÞ ¼ AP2Q̄1Zs−1
3 ; ðC11Þ

where A is a complex coefficient. After imposing con-
servation on x3 using the methods outlined in Sec. II B 2,
we find

D3H̃ðX;U;V;WÞ ¼ AðΔ1 − Δ2 − 1Þð−1Þsþ1ðs2 þ s − 2Þ
× P̄1P̄2Zs−2

3 XΔ1−Δ2−s−3: ðC12Þ

Hence, we find that this three-point function is automati-
cally compatible with conservation on x3 for Δ2 ¼ Δ1 − 1.
For Δ2 ≠ Δ1 − 1 there is no solution in general (recall that
s > 1). This result is also consistent with [16].
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