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We consider quantum-gravitational corrections to the Oppenheimer-Snyder metric describing time-
dependent dust ball collapse. The interior metric also describes Friedmann-Lemaître-Robertson-Walker
cosmology and our results are interpreted in that context. The exterior corrections are an example of
quantum hair and are shown to persist throughout the collapse. Our results show that the quantum hair
survives throughout the horizon formation and the internal state of the resulting black hole is accessible to
outside observers.
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I. INTRODUCTION

The unique quantum-gravitational effective action pro-
gram allows model-independent calculations in quantum
gravity [1–9]. This approach has been used to study
quantum-gravitational corrections to a variety of cosmo-
logical [10–16] and astrophysical models [17–24]. A study
of quantum-gravitational corrections to a static dust ball
used to model a star [22,25] (see also [26] for earlier work)
revealed the existence of quantum hair. It was found that the
quantum-gravitational potential of a star depends on the
composition of the star at second order in the curvature
expansion of the effective action. In [25], we suggested that
the quantum hair would also apply to a collapsing star
model and thus to a black hole. The term quantum hair has
been used for some time [27]. Specifically, by quantum
hair we mean quantum corrections to classical solutions in
general relativity describing the exterior metric. These
quantum corrections can carry information about the
interior quantum state which would otherwise be forbidden
by the no-hair theorem, and hence play an important role in
the black hole information paradox [25,28,29].

The aim of the paper is to extend our previous work
on quantum hair. We first present a very generic result
that is independent of the chosen energy-momentum
tensor, proving that the quantum hair must exist for
any energy-momentum tensor Tμν. This result is fully
model independent: it does not depend on the matter
model (i.e., Tμν) or the high-energy completion of the
effective action.
We then study a specific model for the gravitational

collapse of a dust ball, namely, the Oppenheimer-Snyder
model of gravitational collapse [30], and demonstrate that
quantum hair is present in this dynamical model, calculable
from first principles. The corrections in r−3 and r−5 are
identical to those identified in [25] in the static case.
Moreover, the quantum hair persists throughout the gravi-
tational collapse of the star. Our work demonstrates that the
resulting black hole has quantum hair. These results are
also relevant to Friedmann-Lemaître-Robertson-Walker
(FLRW) cosmology, as the inside of the collapsing object
is described by the FLRW metric. We calculate for the first
time the complete leading-order quantum-gravitational
correction to FLRW, and comment on previous works
on FLRW quantum cosmology.
This paper is organized as follows. In Sec. II we present

a model-independent proof that quantum hair exists for
any energy-momentum tensor. In Sec. III we review the
Oppenheimer-Snyder model. In Sec. IV we compute
the leading quantum-gravitational corrections to the
interior and exterior metrics of this model. In the con-
clusions, we discuss some of the implications of our work
for black hole information and long-wavelength quantum
gravity.
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II. QUANTUM HAIR AND GENERIC
MATTER DISTRIBUTION

In this section, we use the results presented in [31] and
argue that there is quantum hair for any matter distribution.
Quantum hair can manifest itself as quantum corrections
to classical solutions in general relativity describing the
exterior metric of an astrophysical object. In the case of
black holes, these quantum corrections can carry informa-
tion about the interior quantum state, whereas the classical
no-hair theorem would forbid this. Hence, the existence of
quantum hair bears relevance to the black hole information
paradox.
The quantum corrections to classical solutions of gen-

eral relativity are reliably calculable using quantum-
corrected field equations obtained from the variation of
the Vilkovisky-DeWitt unique effective action of quantum
gravity as long as curvature invariants remain weak. At
second order in curvature, the effective action is given
by [2–6]

ΓQG ¼ ΓL þ ΓNL; ð1Þ

with a local part

ΓL¼
Z

d4x
ffiffiffiffiffi
jgj

p �
M2

P

2
ðR−2ΛÞþc1ðμÞR2þc2ðμÞRμνRμν

þc3ðμÞRμνρσRμνρσþc4ðμÞ□RþOðM−2
P Þ

�
; ð2Þ

where MP ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=GN

p
denotes the Planck mass, and a

nonlocal part

ΓNL ¼ −
Z

d4x
ffiffiffiffiffi
jgj

p �
αR ln

�
□

μ2

�
Rþ βRμν ln

�
□

μ2

�
Rμν

þγRμνρσ ln

�
□

μ2

�
Rμνρσ þOðM−2

P Þ
�
: ð3Þ

For simplicity, we set the cosmological constant to zero. In
addition, we ignore the boundary term associated with c4,
as it does not contribute to the field equations. Then, after
applying the local and nonlocal Gauss-Bonnet identities
[9], we obtain

ΓQG ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
M2

P

2
Rþ c̃1ðμÞR2 þ c̃2ðμÞRμνRμν

þ α̃R ln

�
□

μ2

�
Rþ β̃Rμν ln

�
□

μ2

�
Rμν þOðM−2

P Þ
�
;

ð4Þ

with c̃1 ¼ c1 − c3, c̃2 ¼ c2 þ 4c3, α̃ ¼ α − γ, and β̃ ¼
β þ 4γ.

The renormalization scale μ in the effective action is a
free parameter: it is the energy scale at which the effective
action is matched to a UV-complete theory of quantum
gravity. We take μ to be of the order of the Planck scale. We
note that, as always in quantum field theory, physical
observables should not depend on the renormalization
scale, even though the action depends on it.
The coefficients of the local part of the effective action

depend on the renormalization scale as

c1ðμÞ ¼ c1ðμ�Þ − α ln

�
μ2

μ2�

�
; ð5Þ

c2ðμÞ ¼ c2ðμ�Þ − β ln

�
μ2

μ2�

�
; ð6Þ

c3ðμÞ ¼ c3ðμ�Þ − γ ln
�
μ2

μ2�

�
; ð7Þ

where μ� is the scale at which the effective action is
matched to the UV-complete theory of quantum gravity [6];
see also [32]. We give the values of the Wilson coefficients
of the nonlocal part of the action in Table I.
The quantum-gravitational field equations to second

order in curvature can be derived from this action, and
are given by

Rμν −
1

2
Rgμν − 16πGNðHL

μν þHNL
μν Þ ¼ 8πGNTμν; ð8Þ

whereGN is Newton’s constant, Tμν is the energy-momentum
tensor,

HL
μν ¼ c̄1

�
2RRμν −

1

2
gμνR2 þ 2gμν□R − 2∇μ∇νR

�

þ c̄2

�
2Rα

μRνα −
1

2
gμνRαβRαβ þ□Rμν

þ 1

2
gμν□R −∇α∇μRα

ν −∇α∇νRα
μ

�
; ð9Þ

and

TABLE I. Nonlocal Wilson coefficients for different fields. All
numbers should be divided by 11520π2. Here, ξ denotes the value
of the nonminimal coupling for a scalar theory [6].

α β γ

Scalar 5ð6ξ − 1Þ2 −2 2
Fermion −5 8 7
Vector −50 176 −26
Graviton 250 −244 424
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HNL
μν ¼−2α

�
Rμν−

1

4
gμνRþgμν□−∇μ∇ν

�
ln

�
□

μ2

�
R

−β

�
2δαðμRνÞβ−

1

2
gμνRα

βþδαμgνβ□þgμν∇α∇β

−δαμ∇β∇ν−δαν∇β∇μ

�
ln

�
□

μ2

�
Rβ

α

−2γ

�
δαðμRνÞβστ−

1

4
gμνRαβ

στþðδαμgνσþδανgμσ

�
∇β∇τ

�

×ln

�
□

μ2

�
Rαβ

στ: ð10Þ

In the background of weak curvature invariants, pertur-
bation theory can be applied to solve these complicated
coupled partial differential equations. We obtain a con-
trolled approximation by expanding in curvature. We thus
set g̃μν ¼ gμν þ gqμν, where gμν is the classical solution and
gqμν is the quantum solution one is solving Eq. (8) for. The
log□Rμ…ν

α…β terms correspond to kernels that are integrated
over curvature terms, which are functions of the energy-
momentum tensor (see, e.g., the Appendix).
A generic astrophysical body has, relative to its surface

or horizon, an interior Tμν tensor and an exterior one. It is
clear that the quantum corrections of the outside metric due
to the HNL

μν terms must be dependent on Tμν and on the
higher-curvature terms in the effective action. This fact is
independent of the specific type of matter distribution, and
thus applies to, e.g., a static star, a collapsing star, or a real
astrophysical black hole (i.e., not a static vacuum solution)
[33]. Hence, the exterior metric will keep a memory [35] of
the interior of the matter distribution, which implies the
presence of quantum hair for any gravitational body and, in
particular, for realistic black holes. This hair is expressed in
terms of deviation from the 1=r Newtonian potential. These
deviations are due to quantum-gravitational corrections to
Newton’s law.
This is an explicit realization of the observation that the

asymptotic graviton state of an energy eigenstate source is
determined at leading order by the energy eigenvalue and
that the quantum-gravitational fluctuations (i.e., graviton
loops) produce corrections to the long-range potential
whose coefficients depend on the internal state of the
source [29]. We consider an explicit application of this
result to the Oppenheimer-Snyder gravitational collapse
model and calculate the leading-order quantum hair cor-
rection to that classical solution.

III. OPPENHEIMER-SNYDER MODEL:
CLASSICAL SOLUTION

We now consider the Oppenheimer-Snyder model of
gravitational collapse [30]. In the exterior region, the metric
is defined by the line element [36]

ds2 ¼ fðRÞdt2 − gðRÞ−1dR2 − R2dΩ2; ð11Þ

with

fðRÞ ¼ gðRÞ ¼
�
1 −

2GNM
R

�
; ð12Þ

where M is the total Arnowitt-Deser-Misner mass of the
ball [37] and R is the areal radius, with R∈ ½RsðtÞ;∞Þ. The
energy-momentum tensor vanishes: Tμν ¼ 0. In the interior
region, the metric is defined by the line element

ds2 ¼ dτ2 − aðτÞ2ðdr2 þ r2dΩ2Þ; ð13Þ

with r∈ ½0; rs�, where the scale factor is given by

aðτÞ ¼
�
1 −

τ

τs

�
2=3

; ð14Þ

with τ < τs and τs is the time at which the ball collapses to a
singularity. This time can be calculated and is given by

τs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rsð0Þ3
9GNM

s
: ð15Þ

The scale factor corresponds to a Hubble scale

HðτÞ ¼ ȧðτÞ
aðτÞ ¼

2

3ðτ − τsÞ
: ð16Þ

Furthermore, the energy-momentum tensor is that of a
perfect fluid:

Tμ
ν ¼ diagð−ρ; p; p; pÞ: ð17Þ

The dust ball model assumes p ¼ wρ, with w ¼ 0.

IV. QUANTUM CORRECTIONS

Our goal here is to describe the gravitational collapse of a
star, and to show that we can compute, in a controlled
approximation, the quantum gravity corrections to the
metric during the formation of a black hole. Note that
the initial formation of an astrophysical black hole (i.e.,
nonquantum black hole) does not require large curvatures
anywhere in the dust ball. Specifically, this means that we
can use the flat-space kernel function (see the Appendix) to
compute quantum corrections arising from the effective
action. The only region in the spacetime, sourced by the
dust ball collapse, with large curvature is the future black
hole singularity. In particular, the singularity does not affect
the result: the history that is integrated over by an outside
observer does not contain any regions with Planckian
curvature (for astronomical black holes), such that the
quantum corrections remain under control [38].
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Thus, we work again with the Vilkovisky-DeWitt unique
effective action of quantum gravity at second order in
curvature. However, to calculate the quantum correction to
the interior metric, it is easiest to use the Weyl basis, in
which case one has

ΓQG ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
M2

P

2
Rþ ĉ1ðμÞR2

þ ĉ2ðμÞCμνρσCμνρσ þ α̂R ln

�
□

μ2

�
R

þ β̂Cμνρσ ln
�
□

μ2

�
Cμνρσ þOðM−2

P Þ
�
; ð18Þ

with ĉ1 ¼ c̃1 þ 1
3
c̃2, ĉ2 ¼ 1

2
c̃2, α̂ ¼ α̃þ 1

3
β̃, and β̂ ¼ 1

2
β̃.

A. Interior corrections

In the interior we have an FLRW metric. For this metric
the Weyl tensor vanishes, and it is thus convenient to work
in the Weyl basis. Quantum corrections to this metric have
been studied before in the literature. Corrections due to the
R2 term have, for example, been studied in [11,40,41],
while nonlocal corrections due to the R logð□ÞR terms
have been studied in [8,10–13]. However, none of the
previous studies considered the local and nonlocal correc-
tions together. We will explain that this is crucial for
obtaining a consistent result. By considering the local
corrections to the action, one obtains the modified
Friedmann equation [11]

H2 þ 96πt2Pc1ðμÞ
M2

P
ð2HḦ þ 6H2Ḣ − Ḣ2Þ ¼ 8πGN

3
ρ; ð19Þ

where tP is the Planck time. We solve this perturbatively,
i.e., we set H ¼ Hc þHL, where HL ¼ Oðt2PÞ and Hc
solves the classical Friedman equation. It is thus given by
(16) and

H2
c ¼

8πGN

3
ρ: ð20Þ

Solving for HL then yields

HLðτÞ ¼
32πt2Pĉ1ðμÞ
ðτ − τsÞ3

þOðt4PÞ: ð21Þ

To obtain the nonlocal corrections, one must evaluate
the log□R term in the field equations, which is discussed
in the Appendix. This leads to the modified Friedmann
equation [11] given by

H2ðτÞ − 256πt2Pα̂
3ðτs − τÞ4

�
lnðμτÞ þ ln

�
1 −

τ

τs

�
−

2τ

3τs

�

¼ 8πGN

3
ρðτÞ: ð22Þ

Solving this perturbatively yields

HNLðtÞ ¼
64πt2Pα̂
ðτ − τsÞ3

�
−

2τ

3τs
þ ln

�
1 −

τ

τs

�
þ lnðμτÞ

�
þOðt4PÞ: ð23Þ

Gathering the local and nonlocal corrections, we find

HðτÞ ¼ 2

3ðτ − τsÞ
�
1þ 48πt2P

ðτ − τsÞ2
�
ĉ1ðμÞ

þ 2α̂

�
ln

�
μτ

�
1 −

τ

τs

��
−

2τ

3τs

��
þOðt4PÞ

�
: ð24Þ

This equation is renormalization group invariant because
we have considered the local and nonlocal corrections
together. This had not been done previously in the
literature, implying that previous studies of FLRW cosmol-
ogy within this framework were flawed. We can now solve
for aðτÞ. We find

aðτÞ ¼ exp

�Z
τ

0

HðsÞds
�

¼
�
1 −

τ

τs

�
2=3

�
1þ 16πt2P

ðτs − τÞ2
�
ĉ1ðμÞ

τ

τs

�
τ

τs
− 2

�

þ 2α̂

�
τ2

6τ2s
þ τ

τs

�
τ

τs
− 2

�
lnðμτÞ

−
�
τ2

τ2s
−
2τ

τs
þ 2

�
ln

�
1 −

τ

τs

���
þOðt4PÞ

�
; ð25Þ

where τ∈ ½0; τsÞ. This is the quantum correction to the
interior metric. Note that it depends on both the nonlocal
and local Wilson coefficients. The latter are not calculable
within the effective theory approach that we have used, as it
depends on the UV completion of the effective action.
Because we have considered the full effective action to

second order in curvature, our result differs from previous
studies of quantum cosmology within this framework,
such as that in [10] where only the nonlocal contributions
were considered. The phenomenology clearly needs to be
considered again and the question of a big bounce should
be investigated anew. We now turn our attention to the
exterior solution and its quantum-gravitational corrections.

B. Exterior corrections

We discuss the kernel in spherically symmetric coor-
dinates in the Appendix. The calculation follows the
methodology of that presented in [22] with the notable
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complication that we now have a spacetime-dependent
problem. In the Appendix we show that lnð□ÞR can be
approximated by Eq. (A15),

ln
�
□

μ2

�
RðxÞ ¼ −

2GNM
3Rsð0Þ3

�
2RsðtrÞ

r
þ ln

�
r − RsðtrÞ
rþ RsðtrÞ

��
þOðṘsÞ;

where

ṘsðtrÞ ¼
dRsðtrÞ
dtr

ð26Þ

denotes a derivative with respect to the retarded time
coordinate as measured by a distant observer. As this
derivative remains small during the formation of the black
hole at t → ∞, the corrections encapsulated in the term
OðṘsÞ remain subleading throughout the collapse. We note
that, at this order in the derivative expansion, one can
easily obtain similar expressions for the corrections due to
lnð□ÞRμν and lnð□ÞCμνρσ, cf., e.g., [22].
Using these results, the quantum-corrected Einstein

equations (8) can be solved perturbatively. This yields a
correction to the functions fðRÞ and gðRÞ defined in
Eq. (12). At leading order, these corrections are given by

δfðtr;RÞ¼ ðαþβþ3γÞ192πl
2
PGNM

Rsð0Þ3

×

�
2RsðtrÞ

R
þ ln

�
R−RsðtrÞ
RþRsðtrÞ

��
þOðṘsÞ; ð27Þ

δgðtr; RÞ ¼ ðα − γÞ 384πl
2
PGNM

Rsð0Þ3
RsðtrÞ3

R½R2 − RsðtrÞ2�
þOðṘsÞ; ð28Þ

which coincides with the results for the static dust ball given
in Ref. [25] after making the replacement Rs → RsðtrÞ. In
the above, lP ¼ ffiffiffiffiffiffiffiffiffi

ℏGN
p

is the Planck length.
Let us focus on the tt component of the metric and

expand the result for R ≫ Rs making the different expan-
sion parameters explicit. We obtain

fðtr;RÞ¼1−
2GNM

R
−128π2ðαþβþ3γÞ l

2
P

R2

�
GNM
R

RsðtrÞ3
Rsð0Þ3

×

�
1þ3RsðtrÞ2

5R2
þO

�
RsðtrÞ
R

�
4
�
þOðṘsÞ

�

þO
�
lP
R

�
4

: ð29Þ

The expansion in lP=R reflects the truncation of the
effective action at second order in curvature.

Taking these expansion parameters into account, we
have calculated the leading-order corrections to the metric.
Our main result is as follows: we have computed the
coefficient of a (fully quantum-mechanical) correction to
the exterior metric which behaves as R−5 asymptotically far
from the black hole. The R−5 correction can be seen
explicitly by expanding the brackets. At this order, the
coefficient of this term depends on the density distribution
of the dust ball from which the black hole was formed.
Corrections to this result are suppressed by factors of order
lP=Rs and Ṙs. A distant observer could in principle measure
these deviations from the classical gravitational potential.
Our result implies that the quantum hair identified in [25]

is present in the collapse (i.e., spacetime-dependent) model
considered here. This correction survives throughout the
gravitational collapse. Our result is further evidence that
black holes have quantum hair.
Our calculations show explicitly that the quantum hair

persists throughout the history of the system. As we are
considering large black holes (i.e., black holes with masses
much larger than the Planck mass), the only region of large
curvature is near the singularity of the hole, at the center.

V. CONCLUSIONS

In this paper, we have revisited the question of quantum
hair and quantum memory in quantum gravity. Within
the context of the unique effective action, we have shown
that quantum hair and quantum memory are very generic
features of quantum gravity and that any nonzero energy-
momentum tensor will produce quantum hair in the form of
quantum corrections to the classical spacetime resulting
from the Einstein equations. While the general proof is
model independent, we have illustrated this result with a
direct calculation in the case of the Oppenheimer-Snyder
collapse model. We have shown by explicit calculation that
the quantum corrections to the Oppenheimer-Snyder
classical solution are sensitive to the density of the matter
distribution. The outside gravitational field contains infor-
mation about the collapse process that is stored in the
quantum hair. In principle, a distant observer could measure
the deviation from the Newton potential. This work is a
further demonstration that all classical solutions in general
relativity, including black holes, are hairy in quantum
gravity.

This manuscript has no associated data. Data sharing not
applicable to this article as no datasets were generated or
analysed during the current study.
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APPENDIX

We are interested in evaluating the expression

ln

�
□

μ2

�
RðxÞ; ðA1Þ

which we can write asZ
d4x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jgðx0Þj

p
Lðx − x0ÞRðx0Þ: ðA2Þ

As we are working at second order in curvature, we
approximate the kernel L by its flat-space kernel Lflat that
is given in Eq. (55) of Ref. [17],

Lflatðx − x0Þ ¼ lim
δ→0

�
i
π2

�
ΘðΔtÞΘððx − x0Þ2Þ

½ðΔtþ iδÞ2 − ðx⃗ − x⃗0Þ2�2

−
ΘðΔtÞΘððx − x0Þ2Þ

½ðΔt − iδÞ2 − ðx⃗ − x⃗0Þ2�2
�

− 2δð4Þðx − x0Þ lnðδμÞ
�
; ðA3Þ

with Δt ≔ t − t0. We are interested in evaluating this kernel
in two regimes:
(1) the interior of the collapsing star described by the

FLRW metric (13);
(2) the exterior of the collapsing star described by the

Schwarzschild metric (11).

1. Interior

In the interior coordinate system ðτ; r; θ;ϕÞ, the Ricci
scalar is given by

RðxÞ ¼ −
4Θðrs − rÞ
3τ2saðτÞ3

: ðA4Þ

Using this expression, we can perform the spatial integrals
in Eq. (A2). This yields

ln

�
□

μ2

�
RðxÞ ¼ 4

3τ2s

Z
τ−ðrs−rÞ

τ−ðrsþrÞ

�
1

τ − τ0
−
1

r

�
dτ0

þ 8

3τ2s
lim
δ→0

�Z
t−δ

t−ðrs−rÞ

1

τ − τ0
dτ0 þ lnðδμÞ

�
;

ðA5Þ

which reduces to the results obtained in Refs. [10,11] in
the limit rs → ∞. In deriving this result we have approxi-
mated the function lnð□Þ by its kernel in flat spacetime
(A3), which is a valid approximation at second order in
curvature.

2. Exterior

In the exterior coordinate system ðt; R; θ;ϕÞ, the Ricci
scalar (A4) can be written as

RðxÞ ¼ −
6GNMΘðRsðtÞ − RÞ

Rsð0Þ3aðtÞ3
: ðA6Þ

Using this expression, we can perform the spatial integrals
in Eq. (A2). This yields

ln

�
□

μ2

�
RðxÞ¼6GNM

Rsð0Þ3
Z

t

−∞
Θ½Rsðt0Þþt0−tþR�

×Θ½Rsðt0Þ−t0þt−R�
�

1

t−t0
−
1

R

�
dt0: ðA7Þ

As was the case for the interior calculation, this result
relies on approximating the function lnð□Þ by its flat-space
kernel (A3), which is valid in the coordinate frame of a
distant observer, where the collapse remains slow.
Corrections to the result appear at OðṘ2

s ; R̈sRsÞ, where
the derivatives are taken with respect to the retarded time
coordinate tr.
We can further evaluate the time integral in Eq. (A7). The

domain of integration of this expression in t0 is determined
by the two Heaviside functions, which require

t − R − Rsðt0Þ ≤ t0 ≤ t − Rþ Rsðt0Þ: ðA8Þ

We note that RsðtÞ¼rsaðτÞ, where τ¼τðtÞ and rs ¼ Rsð0Þ.
However, at leading order in the derivative expansion the
task becomes much simpler. In general, the integration
domain (A8) will be given by

T−ðtr;RsðtrÞ;ṘsðtrÞÞ≤ t0≤Tþðtr;RsðtrÞ;ṘsðtrÞÞ<t; ðA9Þ

where we explicitly showed that the end points T� depend
on both the retarded time tr and the radius of the star
evaluated at the retarded time RsðtrÞ. We note that the
integration bounds may also depend on higher derivatives,
but these terms are suppressed, as they appear at higher
order in the derivative expansion.
At this order in the derivative expansion, we can Taylor

expand Rsðt0Þ, which yields
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Rsðt0Þ ¼ RsðtrÞ þ ṘsðtrÞðt0 − trÞ þOðR̈sÞ: ðA10Þ

Using this expansion, we find that the range of integration
in t0 is explicitly determined by

T− ¼ tr − RsðtrÞ þ trṘsðtrÞ
1þ ṘsðtrÞ

≲ t0 ≲ tr þ RsðtrÞ − trṘsðtrÞ
1 − ṘsðtrÞ

¼ Tþ: ðA11Þ

Hence, up to first-order time derivatives, we obtain

tr−RsðtrÞ½1− ṘsðtrÞ�≲ t0≲ trþRsðtrÞ½1þ ṘsðtrÞ�: ðA12Þ

Therefore, Eq. (A7) simplifies to

ln

�
□

μ2

�
RðxÞ ¼ 6GNM

Rsð0Þ3
Z

trþRsðtrÞ½1þṘsðtrÞ�

tr−RsðtrÞ½1−ṘsðtrÞ�

�
1

t − t0
−
1

R

�
dt0:

ðA13Þ

Evaluating this integral, we find our result,

ln

�
□

μ2

�
RðxÞ ¼ −

6GNM
Rsð0Þ3

�
2RsðtrÞ

R

þ ln

�
R − RsðtrÞ½1þ ṘsðtrÞ�
Rþ RsðtrÞ½1 − ṘsðtrÞ�

��
þOðṘ2

s ; R̈sRsÞ; ðA14Þ

which reduces to the result obtained in Ref. [22] for a
constant radius RsðtrÞ ¼ Rs. We can further approximate
this result by

ln

�
□

μ2

�
RðxÞ ¼ −

6GNM
Rsð0Þ3

�
2RsðtrÞ

R
þ ln

�
R − RsðtrÞ
Rþ RsðtrÞ

��
þOðṘsÞ; ðA15Þ

which is the result applied in Sec. IV B.
Let us emphasize that all expressions hold throughout

the formation of a black hole at t → ∞. In this regime,
jṘsj ≲ 1

6
, implying that the perturbative expansion is under

control. Further corrections can be calculated reliably, but
the calculations are rather complicated and the results are
difficult to display.
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