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We propose a general hydrodynamic framework for systems with spontaneously broken approximate
symmetries. The second law of thermodynamics naturally results in relaxation in the hydrodynamic
equations and enables us to derive a universal relation between damping and diffusion of pseudo-
Goldstones. We discover entirely new physical effects sensitive to explicitly broken symmetries. We focus
on systems with approximate U(1) and translation symmetries, with direct applications to pinned
superfluids and charge density waves. We also comment on the implications for chiral perturbation theory.
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Symmetry has proved to be a powerful organizational
tool in physics for characterizing and classifying phases of
matter. Knowledge about the symmetries of a physical
system, and whether these are spontaneously broken by
the low-energy ground state, is often sufficient to develop
an effective theory describing its long-distance late-
time behavior. Symmetries are useful even when they
are only approximate. The canonical example of this is
the extremely successful effective theory for pions as
Goldstones of spontaneously broken SU(2) chiral sym-
metry. In this context, due to nonzero quark masses, the
symmetry is only approximate and the effective theory can
be systematically corrected to account for the pion mass.
In this paper, we draw general lessons about effective

theories featuring this pseudospontaneous pattern of sym-
metry breaking. We are interested in physical systems
where an approximate global symmetry is spontaneously
broken by the low-energy ground state, which can be
modeled by a slightly massive pseudo-Goldstone field
ϕðxÞ. The explicitly broken symmetry also means that
the associated Noether charge conservation is weakly
violated, giving rise to physical effects such as relaxation,
damping, and pinning. Pseudospontaneous symmetry
breaking is common across the phase space of matter

due to inherent defects, inhomogeneities, and impurities in
materials. Examples include pinned crystals [1,2], charge
density waves [3–6], pinned superfluids [7,8], electrons in
graphene [9], pinned nematics [10,11], and pions in chiral
perturbation theory [12–16], among many others.
In recent years, there have been several efforts toward

developing hydrodynamic techniques for systems with
spontaneously broken approximate symmetries, aimed at
explaining experimental and holographic results; see, e.g.,
[5,6,17–27]. The goal of this paper is to formulate a
complete hydrodynamic theory for thermal systems exhib-
iting pseudospontaneous symmetry breaking based on the
second law of thermodynamics. A similar entropic con-
struction appeared in [14,15] for chiral perturbation theory,
however, the authors only focused on the pion mass and did
not consider more general dissipative effects induced by
explicitly broken SU(2) chiral symmetry.
The key accomplishment of our construction is to show

that damping of pseudo-Goldstones and charge (or momen-
tum) relaxation follow from the second law of thermody-
namics. In particular, we derive the relation Ω ¼ Dϕk20
among the pseudo-Goldstone damping rate Ω, attenuation
Dϕ, and correlation length 1=k0, first noted in holographic
models [18,20,22]. We emphasize that our derivation only
relies on the second law; see [11] for a derivation using the
Schwinger-Keldysh effective field theory or locality of the
equations of motion [28].
Surprisingly, we find that dissipative effects also lead to

certain new transport coefficients in the hydrodynamic
theory that have not been identified in past literature. Most
significantly, the well-known Josephson relation for a U(1)
superfluid ∂tϕ ¼ cϕμþ � � � [31–34], where μ is the chemi-
cal potential and cϕ is the charge of the condensate,
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modifies to ∂tϕ ¼ λcϕμþ � � � when the U(1) symmetry is
explicitly broken. The charge renormalization factor λ is a
dissipative transport coefficient that is an artifact of explicit
symmetry breaking. In particular, λ is a physical parameter
and can be measured by its own Kubo formula. Similar
physics also arise in the context of pinned crystals, where
the Josephson equation for the displacement field δϕi

takes the form ∂tδϕ
i ¼ λcϕui þ � � �, where ui is the fluid

velocity and cϕ signifies the inverse lattice spacing scale.
Another such coefficient λT enters the entropy/heat flux of
pinned crystals at leading order as si ¼ ðsþ λTÞui þ � � �.
Physically, the coefficients of this type result in a modi-
fication of the speed of sound dependent on the strength of
explicit symmetry breaking.

I. PINNED SIMPLE DIFFUSION

To highlight the striking features of our construction, we
start with a simple toy model with a conserved density n
associatedwith a globalU(1) symmetry. In a phasewhere the
symmetry is spontaneously broken, the low-energy equilib-
rium configurations of the system can be described by the
free energy F ¼ R ddxðF ðϕÞ − KextϕÞ, written as a func-
tional of the Goldstone field ϕðxÞ. Here Kext is an external
source coupled to ϕ. The free energy obeys a shift symmetry
ϕðxÞ → ϕðxÞ − cϕΛ, where cϕ denotes the charge of the
condensate. This forbids a mass term like F ∼ 1

2
m2ϕ2 in the

free energy, rendering the Goldstone massless.
The situation is qualitatively different when the U(1)

symmetry is only approximate, because the shift symmetry
need not be respected. In practice, we find it convenient to
artificially manifest the symmetry by introducing a back-
ground field ΦðxÞ that transforms as ΦðxÞ → ΦðxÞ − Λ.
We can say that the background explicitly breaks the U(1)
symmetry by picking out a preferred phase Φ. We can now
write a mass term in F , i.e.,

F ¼ −pþ 1

2
fs∂iϕ∂iϕþ 1

2
l2m2ðϕ − cϕΦÞ2; ð1Þ

where l is a bookkeeping parameter that controls the
strength of explicit symmetry breaking. The thermody-
namic pressure p and superfluid density fs can generically
depend on the thermodynamic parameters such as temper-
ature and chemical potential. The free energy F with (1)
can be understood as a generalized Ginzburg-Landau
model that accounts for explicit symmetry breaking with
an arbitrary source Φ; see, e.g., [35]. The mass term can be
thought of as an “elastic potential” that tends to align the
phase ϕ with the background phase Φ. Varying (1) results
in a configuration equation for ϕ, i.e.,

fsð∂i∂iϕ − k20ϕÞ þ cϕm2l2Φþ Kext ¼ 0; ð2aÞ
where k0 ¼ lm=

ffiffiffiffiffi
fs

p
is the finite inverse correlation length

for ϕ, demoting it to a massive pseudo-Goldstone.

Typically, this massive field can be integrated out from
the long-wavelength effective theory. However, if the sym-
metry is still approximately preserved, i.e., l is sufficiently
small, the pseudo-Goldstone can still affect the long-
wavelength spectrum. The static Ward identity associated
with the restored U(1) symmetry in (1) reads

∂iji ¼ cϕKext − cϕm2l2ðϕ − cϕΦÞ; ð2bÞ

where ji ¼ −cϕfs∂iϕ. This can be derived using the usual
Noether procedure or coupling the system to an external
U(1) gauge field; see the Appendix for further details. As
expected, the mass term results in a violation of charge
conservation even in the absence of external sources.
When we leave thermal equilibrium, we can no longer

start with a free energy and must rely on the framework of
hydrodynamics to proceed. First, we have a Josephson
equation giving dynamics to ϕwhich, generalizing (2a), we
take to have the schematic form

K þ Kext ¼ 0; ð3aÞ

for some yet-unknown operator K. We also have a U(1)
conservation equation, generalizing (2b), describing the
dynamics of charge density n, i.e.,

∂tnþ ∂iji ¼ −cϕK − lL; ð3bÞ

where L is some operator causing explicit symmetry
breaking. We will also need a new energy conservation
equation implementing the first law of thermodynamics,

∂tϵþ ∂iϵ
i ¼ −K∂tϕ − lL∂tΦ; ð3cÞ

where ϵ; ϵi are the energy density and flux, respectively. A
derivation of these conservation laws can be found in the
Appendix. To complete these equations, we must give a set
of constitutive relations for ji; ϵi; K; L in terms of n; ϵ;ϕ;Φ,
arranged order by order in gradients. We implement the
gradient counting scheme where ϕ ∼Oð∂−1Þ, making its
gradients Oð∂0Þ; see [36,37]. We ascribe the scaling Oð∂Þ
to the symmetry breaking parameter l and require that all
dependence on the background phaseΦmust appear with a
factor of l, so that setting l ¼ 0 restores the symmetry.
It is also convenient to define the phase misalignment
ψ ¼ lðϕ − cϕΦÞ ∼Oð∂0Þ.
An important ingredient in hydrodynamics is the local

second law of thermodynamics. It necessitates the existence
of an entropy density st and flux si such that

∂tst þ ∂isi ≥ 0; ð4Þ

is satisfied for every solution of the conservation equations;
see [38]. Despite being an inequality, this requirement is
extremely powerful and is known to give strong constraints
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on the constitutive relations [39]. At leading order in
gradients, we simply have st ¼ sðϵ; n; ∂iϕ∂iϕ;ψÞ. We
can define the temperature T, chemical potential μ, “super-
fluid density” fs, pseudo-Goldstone mass parameterm, and
the grand-canonical free-energy density F via

Tds ¼ dϵ − μdn −
1

2
fsdð∂iϕ∂iϕÞ −m2ψdψ ;

F ¼ ϵ − Tst − μn: ð5Þ

The entropy density will, in general, admit gradient correc-
tions. We consider these in the Appendix.
For clarity, let us assume the dynamics to be isothermal,

i.e., T ¼ T0, so that energy conservation decouples from
the charge conservation and Josephson equations. In this
case, the second law constraints result in

ji ¼ −cϕfs∂iϕ − σn∂
iμ;

K ¼ ∂iðfs∂iϕÞ − lm2ψ − σϕð∂tϕ − cϕμÞ − lσ×ð∂tΦ − μÞ;
L ¼ cϕm2ψ − lσΦð∂tΦ − μÞ − σ×ð∂tϕ − cϕμÞ: ð6Þ

Setting μ ¼ μ0 and ∂tϕ=cϕ ¼ ∂tΦ ¼ μ0, at leading order in
gradients, we recover the equilibrium version of these
equations derived from (1). We also find four dissipative
coefficients σn; σϕ; σΦ; σ× that satisfy the inequality rela-
tions σn; σϕ ≥ 0 and σΦ ≥ σ2×=σϕ. We provide a detailed
derivation in the Appendix.

II. LINEARIZED FLUCTUATIONS

To highlight the physical implication of this model, we
set Φ ¼ μ0t, Kext ¼ 0, and linearly expand the equations
around the solution μ ¼ μ0, ϕ ¼ cϕμ0t. We find

ji ¼ −cϕfs∂iδϕ −Dn∂
iδn;

∂tδϕ ¼ λcϕ
χ

δn −ΩδϕþDϕ∂i∂
iδϕ;

lL ¼ χ

λcϕ
ω2
0δϕþ Γδnþ cϕð1 − λÞfs∂i∂iδϕ: ð7aÞ

We have defined the susceptibility χ, sound speed vs,
pinning frequency ω0, charge attenuation Dn, charge
relaxation Γ, pseudo-Goldstone attenuation Dϕ, damping
Ω, and a new coefficient λ as

χ ¼ ∂n
∂μ

; v2s ¼ λ2c2ϕ
fs
χ
; ω2

0 ¼ λ2c2ϕ
l2m2

χ
;

Dn ¼
σn
χ
; Γ ¼ l2

χ

�
σΦ −

σ2×
σϕ

�
;

Dϕ ¼ fs
σϕ

; Ω ¼ l2m2

σϕ
; λ ¼ 1þ lσ×

cϕσϕ
: ð7bÞ

Solving the equations and assuming l ∼OðkÞ, we find a
damped sound mode with dispersion relations

ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ v2sk2

q
−
i
2
ðk2ðDn þDϕÞ þ ΓþΩÞ: ð8Þ

The second law constraints imply that Dn;Dϕ;Ω;Γ ≥ 0,
ensuring that the sound mode remains stable.
From (7), it is possible to make a few interesting

observations. For instance, we have proved the damping-
attenuation relation

Ω ¼ Dϕk20; ð9Þ

where k0 ¼ ω0=vs [40]. We also see that our model
naturally gives rise to charge relaxation Γ, without needing
to introduce it by hand. Interestingly, we also find a new
coefficient λ ≠ 1 appearing in front of the δn term in the
Josephson equation. It renormalizes the Goldstone charge
cϕ and modifies the speed of sound in the presence of small
explicit symmetry breaking.
Since λ renormalizes the charge cϕ, it might be tempting

to brush it off as unphysical by rescaling cϕ → cϕ=λ.
However, the flux ji in (7) depends on the bare charge
cϕ directly and hence retains information about λ following
the rescaling. This can be culminated into an independent
Kubo formula for λ, i.e.,

λ2 ¼ −v2s
GR

nnðω ¼ 0; k ¼ 0Þ
GR

jxjxðω ¼ 0; k ¼ 0Þ ; ð10Þ

where vs is read off using the singularity structure of the
dispersion relations (8). Therefore, λ is a physical observ-
able for a U(1) superfluid with explicit symmetry breaking.
More details regarding the correlation functions can be
found in the Appendix.
This discussion can be extended to account for temper-

ature and momentum fluctuations, leading to a theory of
explicitly broken superfluids. This theory was recently
considered in the holographic context in [8]. It will be
interesting to revisit their results in the view of our new λ
coefficient, along with other similar coefficients that can
appear in the energy flux and stress tensor. We will discuss
this in more detail in another publication.

III. PINNED VISCOELASTIC CRYSTALS

The hydrodynamic theory for pinned crystals can be
constructed similar to the U(1) case. In d spatial dimen-
sions, a static configuration of a crystal can be described by
the spatial distribution of its lattice sites ϕI¼1;…;dðxÞ, called
the “crystal fields.” We can define the strain tensor as
uIJ ¼ 1

2
ðhIJ − δIJ=c2ϕÞ, where hIJ is the inverse of hIJ ¼

∂
iϕI

∂iϕ
J and cϕ is a constant parametrizing the “inverse

lattice spacing.”
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When the crystal is homogeneous, the theory obeys a
global spatial shift symmetry ϕIðxÞ → ϕIðxÞ þ cϕaI, and
ϕI can be understood as Goldstones of spontaneously
broken translations. However, when the crystal has slight
inhomogeneities, possibly due to defects or impurities,
this shift symmetry can be violated. Analogous to the U(1)
case, we artificially manifest the symmetry by introducing
a set of background fields ΦIðxÞ, shifting as ΦIðxÞ →
ΦIðxÞ þ aI . In the present case, ΦIðxÞ can be interpreted as
describing the spatial configuration of a fixed background
lattice coupled to our physical crystal of interest. This
allows us to introduce a mass term in the free-energy
density

F ¼ −pþ 1

2

�
B −

2

d
G

�
ðuIIÞ2 þ GuIJuIJ þ

m2

2
ψ Iψ

I;

ð11Þ

where ψ I ¼ lðϕI − cϕΦIÞ is the “misalignment tensor.”
Here p is the thermodynamic pressure, while B and G are
bulk and shear moduli, respectively; all these coefficients
can arbitrarily depend on the thermodynamic parameters
such as temperature and chemical potential. I; J;… indices
are raised/lowered using hIJ, hIJ.
To describe the dynamical evolution of this system,

we need to formulate the theory of pinned viscoelastic
hydrodynamics following the construction of [36,37]. First,
analogous to (3a), we have a set of Josephson equations for
the crystal fields

KI þ Kext
I ¼ 0; ð12aÞ

where KI is an unknown operator and Kext
I are sources

coupled to ϕI . Assuming the crystal to exhibit Galilean
symmetry, we also have momentum conservation and
continuity equations

∂tπ
i þ ∂jτ

ij ¼ KI∂
iϕI þ lLI∂

iΦI;

∂tρþ ∂iπ
i ¼ 0; ð12bÞ

where πi is the momentum density, τij is the stress tensor, ρ
is the mass density, and LI is an operator causing explicitly
broken translations. These have to be supplemented with
the energy conservation equation arising from the first law
of thermodynamics,

∂tϵþ ∂iϵ
i ¼ −KI∂tϕ

I − lLI∂tΦI: ð12cÞ

We can now proceed and derive a set of constitutive
relations for τij; ϵi; KI; LI in terms of πi; ϵ; ρ;ϕI;ΦI ,
arranged in a gradient expansion, and obtain constraints
due to the second law of thermodynamics.
At leading order in gradients, the entropy density is given

by st ¼ sðε; ρ; hIJ;ψ IÞ, where ε ¼ ϵ − 1
2
ρu⃗2 is the “internal

energy density” and ui ¼ πi=ρ is the fluid velocity. We
can define the temperature T, chemical potential μ, elastic
stress tensor rIJ, pseudo-Goldstone mass m, and free-
energy F via

Tds ¼ dε − μdρþ 1

2
rIJdhIJ −m2ψ Idψ I;

F ¼ ε − Tst − μρ: ð13Þ

The entropy density can also admit first order gra-
dient corrections, which we consider in detail in the
Appendix.
Similar to the U(1) case, restricting to an isothermal

regime, i.e., T ¼ T0, energy conservation decouples and we
obtain the allowed set of constitutive relations,

τij ¼ ρuiuj − Fδij − rIJeIieIj − 2η∂hiuji − ζ∂kukδij;

KI ¼ −∂iðrIJeJiÞ − lm2ψ I − σϕhIJ
dϕJ

dt
− lσ×hIJ

dΦJ

dt
;

LI ¼ cϕm2ψ I − lσΦhIJ
dΦJ

dt
− σ×hIJ

dϕJ

dt
; ð14Þ

where eIi ¼ ∂iϕ
I , d=dt ¼ ∂t þ ui∂i, and angular brackets

denote a symmetric-traceless combination of indices.
The five dissipative coefficients η; ζ; σϕ; σΦ; σ× follow
the inequalities η; ζ; σϕ ≥ 0 and σΦ ≥ σ2×=σϕ. A detailed
derivation relaxing the isothermal assumption appears in
the Appendix.

IV. LINEAR PINNED CRYSTALS

In the small strain regime, the equation of state of
the crystal can be written as (11), except that cϕ in the
definition of uIJ should be replaced by a thermodynamic
coefficient αðT; μÞ, such that αðT0; μ0Þ ¼ cϕ. The thermo-
dynamic derivatives of α play an important role as
expansion coefficients [37]. Setting ΦI ¼ xI and Kext

I ¼ 0,
and expanding around ϕI ¼ cϕxI, μ ¼ μ0, ui ¼ 0, we can
obtain

τij ¼ ðpþ BαmδμÞδij − 2η∂hiuji − ζ∂kukδij

−
B
cϕ

∂kδϕ
kδij −

2G
cϕ

∂
hiδϕji;

∂tδϕ
i ¼ λcϕui −Ωδϕi þ γm∂

iμ

þ 2D⊥
ϕ ∂k∂

½kδϕi� þDk
ϕ∂

i
∂kδϕ

k;

lLi ¼ −
ρ

λcϕ
ω2
0δϕ

i − Γπi − ðλ − 1ÞBαm∂iμ

þ λ − 1

cϕ
ðB∂i∂kδϕk þ 2G∂k∂hjδϕiiÞ; ð15aÞ

where δϕi ¼ −δiIδϕI . We have defined pinning frequency
ω0, mass expansion coefficient αm, pseudo-Goldstone
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attenuation D⊥;k
ϕ , damping Ω, momentum relaxation Γ, and

coefficients λ; γm as

ω2
0 ¼ λ2

l2m2

ρ
; αm ¼ −d

∂ ln α
∂μ

; γm ¼ −cϕ
Bαm
σϕ

;

D⊥
ϕ ¼ G

σϕ
; Dk

ϕ ¼ Bþ 2 d−1
d G

σϕ
; Ω ¼ l2m2

σϕ
;

Γ ¼ l2

ρc2ϕ

�
σΦ −

σ2×
σϕ

�
; λ ¼ 1þ lσ×

cϕσϕ
: ð15bÞ

Looking at the mode spectrum, we obtain a damped sound
mode in the longitudinal and transverse sectors similar to (8).
We also find a crystal diffusion mode in the longitudinal
sector. These are given in the Appendix. Lifting the iso-
thermal assumption leads to an energy diffusion mode
coupled with crystal diffusion; see, e.g., [37].
Analogous to the U(1) case, using (15) we recover the

damping-attenuation relation from [18,20,22]

Ω ¼ D⊥
ϕk

2
0; ð16Þ

where k0 ¼ ω0=v⊥ with v2⊥ ¼ λ2G=ρ. The momentum
relaxation Γ also arises naturally in our model, along with
the coefficient λ affecting the Josephson equation. Upon
including thermal fluctuations, we find another damping-
attenuation relation similar to (16) in the energy flux.We also
find a newpinning-sensitive coefficient λT in the energy flux;
see the Appendix for more details.

V. DISCUSSION

In this paper we introduced a general hydrodynamic
framework for dissipative systems with spontaneously
broken approximate symmetries. Our construction builds
upon the technology of forced fluid dynamics from [41,42],
by systematically coupling the hydrodynamic equations to
pseudo-Goldstone fields ϕðxÞ and fixed background phase
fields ΦðxÞ, responsible for spontaneously and explicitly
breaking the symmetries, respectively [43]. We illustrated
how the interplay between the two field ingredients gives
rise to physical effects such as damping, pinning, and
relaxation. In particular, we showed that the elusive relation
between the damping Ω and attenuation Dϕ of pseudo-
Goldstones follows simply by imposing the second law of
thermodynamics in the presence of background fields
ΦðxÞ. The second law also requires the relaxation coef-
ficient Γ to be non-negative.
In addition to providing a rigorous mathematical

language for systems with pseudospontaneously broken
symmetries, we also found entirely new physical effects
that have not been discussed in previous literature.
Namely, we discovered new transport coefficients sensi-
tive to the explicit nature of symmetry breaking that
modify the hydrodynamic and Josephson equations at

the thermodynamic level. These coefficients result in a
modification of the speed of the damped sound mode and
affect the hydrodynamic correlators in a nontrivial way.
We primarily focused on systems with approximate U(1)

or approximate spatial translation symmetry. However,
the framework developed here is equally relevant for
other physical situations exhibiting a pseudospontaneous
pattern of symmetry breaking. For instance, a hydrody-
namic theory for pions recently appeared in [14], featuring
a pseudospontaneously broken SU(2) chiral symmetry
[12,13,49]. In particular, [14] noted that the damping-
attenuation relation (9) for pions follows from the second
law of thermodynamics. However, their analysis does not
include additional pinning-sensitive coefficients such as λ.
It is straightforward to generalize the U(1) case analyzed
here to an SU(2) pion field ϕa coupled to a fixed back-
ground SU(2) phase Φa, where a; b;… denote SU(2) Lie
algebra indices. The linearized Josephson equation will
take the schematic form

∂tδϕ
a ¼ λabδμ

b −Ωa
bδϕ

b þDϕ
a
b∂i∂

iδϕb; ð17Þ

with the damping-attenuation relation Ωa
b ¼ Dϕ

a
bk

2
0. The

coefficient λab is equal to δab in the absence of explicit
symmetry breaking, but can acquire corrections when the
symmetry is weakly broken, modifying the mode spectrum
of chiral perturbation theory.
Holographic models with pseudospontaneous pattern of

symmetry breaking have been discussed in multiple works;
see, e.g., [18–27]. It would be interesting to develop the
relativistic versions of the hydrodynamic theories formu-
lated in this paper and revisit their holographic applications
in light of the new transport coefficients that we have
identified. We leave this direction for future work.
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APPENDIX

1. Details of pinned simple diffusion

In this appendix we provide details of the second law
analysis in the pinned simple diffusion model, including the
coupling of conserved currents to external sources. We do
not assume the system to be isothermal as in the bulk of
the paper.

APPROXIMATE SYMMETRIES, PSEUDO-GOLDSTONES, AND … PHYS. REV. D 108, 086011 (2023)

086011-5



Static Ward identities.—We start with a quick derivation
of the static U(1) Ward identity (2b). We can gauge the
restored U(1) symmetry in the free energy (1) by intro-
ducing a spatial gauge field Ai transforming as usual, i.e.
Ai → Ai þ ∂iΛ. The gauged free energy is given by

F ¼ −pþ 1

2
fsξiξi þ

1

2
m2ψ2; ðA1Þ

where ξi ¼ ∂iϕþ cϕAi. The U(1) flux ji can be read off as
the response of the free energy F ¼ R ddxðF − KextϕÞ to
fluctuations in the background gauge field, ji ¼ −δF=δAi,
which reduces to −cϕfs∂iϕ used in (2b) when the gauge
field is switched off.
More generally, we can parametrise the infinitesimal

variation of the free energy density F as

δ

Z
ddxF ¼ −

Z
ddxðjiδAi þ Kδϕþ lLδΦÞ; ðA2Þ

which defines the operators K and L. Accounting for the
source term Kextϕ, it immediately follows that the con-
figuration equation for ϕ is simply

K þ Kext ¼ 0: ðA3Þ

The Ward identity (2b) follows from requiring the
variation (A2) to vanish under a symmetry transformation
δAi ¼ ∂iΛ, δϕ ¼ −cϕΛ, and δΦ ¼ −Λ. This results in

∂iji ¼ −cϕK − lL; ðA4Þ

which leads to (2b) after using the configuration equations
and substituting the explicit form of L.
Conservation laws.—Next, let us derive the conservation

laws (3) in the presence of explicit symmetry breaking, in
particular the energy conservation equation that is absent in
equilibrium. Let us consider that our system of interest is
described by an effective action S½ϕ;Φ�. We couple the
action to the external gauge field At, Ai to gauge the U(1)
symmetry. Using this, we can define the gauge covariant
derivatives of ϕ and Φ as

ξt ¼ ∂tϕþ cϕAt; ξi ¼ ∂iϕþ cϕAi;

Ξt ¼ ∂tΦþ At; Ξi ¼ ∂iΦþ Ai: ðA5Þ

We also introduce the “clock form” nt, ni to gauge the time-
translation symmetry. The clock form is the non-relativistic
analogue of the time-component of the relativistic metric
field gtt, gti; see e.g. [50,51] for a detailed discussion. In flat
space, the clock form takes the values nt ¼ 1, ni ¼ 0.
These external sources couple to the charge, energy

densities and the respective fluxes via the action variation

δS ¼
Z

dtddxðnδAt þ jiδAi − ϵδnt − ϵiδni

þ Kδϕþ lLδΦÞ: ðA6Þ

We have included the variation with respect to ϕ and Φ for
completeness, which defines the non-equilibrium versions
of the operators K and L. The action is required to be
invariant under infinitesimal gauge transformations

δAt ¼ ∂tΛ; δAi ¼ ∂iΛ;

δϕ ¼ −cϕΛ; δΦ ¼ −Λ: ðA7aÞ

It is also required to be invariant under infinitesimal time-
translations parametrised by some parameter χt, i.e.

δAt ¼ χt∂tAt þ At∂tχ
t;

δAi ¼ χt∂tAi þ At∂iχ
t;

δnt ¼ χt∂tnt þ nt∂tχt;

δni ¼ χt∂tni þ nt∂iχt;

δϕ ¼ χt∂tϕ;

δΦ ¼ χt∂tΦ: ðA7bÞ

These are nothing but Lie derivatives of the respective
fields along the diffeomorphism vector χt∂t. The invariance
of S under the gauge transformations (A7) result in the U(1)
conservation equation

∂tnþ ∂iji ¼ −cϕK − lL: ðA8Þ

On the other hand, the invariance under (A7b) results in the
energy conservation equation

∂tϵþ ∂iϵ
i ¼ Eiji − Kξt − lLΞt; ðA9Þ

where we have identified the background electric field
Ei ¼ ∂iAt − ∂tAi, and tuned the background to flat space-
time by setting nt ¼ 1, ni ¼ 0.
Finally, adding the source term Kextϕ to the action, the

classical equation of motion for ϕ reads

K þ Kext ¼ 0: ðA10Þ

Second law constraints.—Let us parametrise the entropy
density as

st ¼ sþ S; ðA11Þ

where S represent the possible gradient corrections. Using
the thermodynamic relations (5) and the conservation
equations, we find
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∂tst þ ∂isi ¼ −
1

T2
Ei
∂iT − J i

�
∂i
μ

T
−
Ei

T

�

−
1

T
Kðξt − cϕμÞ −

l
T
LðΞt − μÞ þ ∂tS þ ∂iSi;

ðA12Þ

where we have identified the constitutive relations

ϵi ¼ −fsξiξt þ Ei;

ji ¼ −cϕfsξi þ J i;

K ¼ ∂iðfsξiÞ − lm2ψ þK;

L ¼ cϕm2ψ þ L;

si ¼ 1

T
Ei −

μ

T
J i þ Si: ðA13Þ

The right-hand side of (A12) is required to be a positive
semi-definite quadratic form. Truncating at first order in
gradients, there are two kinds of solutions to (A12). First,
we have the “non-hydrostatic sector”, where S, Si are
identically zero and we simply have

0
BBB@

1
T E

i
nhs

J i
nhs

Knhs

Lnhs

1
CCCA ¼ −

0
BBBBB@

1
T κ

ij γij γiϵϕ γiϵΦ

γ0ij σijn γinϕ γinΦ

γ0iϵϕ γ0inϕ σϕ σ×

γ0iϵΦ γ0inΦ σ0× σΦ

1
CCCCCA

0
BBB@

∂jT

T∂j
μ
T − Ei

ξt − cϕμ

lðΞt − μÞ

1
CCCA:

ðA14Þ

The objects appearing in the matrix here have to be
constructed out of the zero-gradient structures δij, ϵij…,
and ξi, supplemented with coefficients that are arbitrary
functions of T, μ, ∂iϕ∂iϕ, ψ . If we were only interested in
the terms that contribute linearly to the constitutive rela-
tions, we can ignore any dependence on ξi, ∂iϕ∂iϕ, and ψ .
Further imposing parity-symmetry, we have the allowed
coefficients

κij ¼ κδij; σijn ¼ σnδ
ij; γij ¼ γδij; γ0ij ¼ γ0δij;

σϕ; σΦ; σ×; σ0×; ðA15Þ

while all vector coefficients vanish. All coefficients are
functions of T and μ. Onsager’s reciprocity relations
[52,53] further impose the off-diagonal coefficients to be
the same, γ0 ¼ γ and σ0× ¼ σ×. The entropy production rate
(or the dissipative function) can be obtained by substituting
(A14) into (A12); we find

∂tst þ ∂isi ¼
κ

T2
∂iT∂iT þ 2γ∂iT

�
∂i
μ

T
−
Ei

T

�

þ Tσn

�
∂i
μ

T
−
Ei

T

��
∂
i μ

T
−
Ei

T

�

þ σϕ
T
ðξt − cϕμÞ2 þ

2lσ×
T

ðξt − cϕμÞðΞt − μÞ

þ l2σΦ
T

ðΞt − μÞ2 ≥ 0: ðA16Þ

The second law results in the inequality relations

κ; σϕ ≥ 0; σn ≥ γ2=κ; σΦ ≥ σ2×=σϕ: ðA17Þ

In addition, we have the “hydrostatic sector” that does
not contribute to entropy production. It is characterised by
corrections to the entropy density

S ¼ f1∂iξi −
lf̄s
T

ξiΞi: ðA18Þ

In equilibrium, these terms show up as corrections to the
free energy density F given in (1). The factor of l in front
of f̄s is necessary because all dependence on Φ must
be expressible as a combination involving ψ . Indeed
cϕlΞi ¼ lξi − ∂iψ . The coefficient f̄s characterises the
response of the system due to a background superfluid
velocity due to the presence of Φ. Note that we could
include another similar term in the entropy/free energy
density that goes as

S ∼ −
l2f̄0s
T

ΞiΞi: ðA19Þ

However this term comes with two powers of l, one for
each occurrence of Φ, and hence is counted at second
derivative order in our counting scheme. Hence, we will
drop it in our following discussion.
If we only focus on linear corrections to the constitutive

relations, (A12) means that we only need to consider the
entropy density up to quadratic order in fields. Therefore,
without loss of generality, we can take the coefficient f̄s to
be constant, while f1 can be taken to be a linear function of
ϵ and n. Plugging (A18) into (A12), we derive the hydro-
static constitutive relations

Ei
hs ¼ −cϕTμ∂if1 − lμf̄sðξi þ cϕΞiÞ

J i
hs ¼ −cϕT∂if1 − lf̄sðξi þ cϕΞiÞ

Khs ¼ T∂i∂if1 þ cϕTσϕ

�
μ
∂f1
∂ϵ

þ ∂f1
∂n

�
∂iξ

i þ lf̄s∂iΞi;

Lhs ¼ f̄s∂iξi; ðA20Þ

along with
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Si ¼ −f1∂tξi þ
�
∂if1 þ

lf̄s
T

Ξi

�
ðξt − cϕμÞ

þ lf̄s
T

ξiðΞt − μÞ; ðA21Þ

where we have used the first-order equations of motion

∂tϵ¼ cϕμσϕðξt − cϕμÞ; ∂tn¼ cϕσϕðξt − cϕμÞ: ðA22Þ

Demanding S to be invariant under time-reversal sym-
metry, the coefficient f1 is not allowed. Additionally, it
can be checked that the coefficient f̄s does not contribute to
the linearised equations of motion, when coupled to a
homogeneous background Φ ¼ μ0t. Note also that, lin-
early, these coefficients can be removed by a redefinition of
the pseudo-Goldstone field ϕ → ϕþ ðTf1 þ f̄sψ=cϕÞ=fs
and are only physical if one has an unambiguous macro-
scopic notion of the pseudo-Goldstone field. For these
reasons, we have not considered these coefficients in the
remainder of our discussion.
Modes.—Focusing on isothermal fluctuations and

employing the definitions in (7), we can obtain the damped
sound modes

ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ v2sk2 −

1

4

�
Γ −Ωþ ðDn −DϕÞk2

�
2

r

−
i
2

�
k2ðDn þDϕÞ þ ΓþΩ

�
: ðA23Þ

Expanding this expression for k2 ≪ 1, we find

ω¼−
i
2
ðΓþΩÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0−

1

4
ðΓ−ΩÞ2

r

−
i
2
k2
 
DnþDϕ� i

v2s − 1
2
ðΓ−ΩÞðDn−DϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0− 1

4
ðΓ−ΩÞ2

q
!
: ðA24Þ

The sound modes (8) in the main text can be obtained from
here by ignoring the Oðl4;l2k2Þ corrections, i.e. assuming
ω0 ≫ Γ;Ω.
Correlation functions.—We now consider the hydro-

dynamic predictions for the retarded correlation functions
of various observables. To this end, we consider the
equations of motion following from (7), but turning on
the gauge field At, Ai. Using (3b), we can then obtain the
equations

∂tδn ¼ −ΓδnA þDnð∂i∂iδnA þ χ∂t∂iAiÞ

þ v2sχ
λcϕ

ð∂i∂iδϕþ cϕ∂iAiÞ − χ

λcϕ
ω2
0δϕ;

∂tδϕ ¼ λcϕ
χ

δnA − ΩδϕþDϕð∂i∂iδϕþ cϕ∂iAiÞ; ðA25Þ

where δnA ¼ χðδμ − AtÞ. Note that in (A25), the Goldstone
charge cϕ only enters via its renormalised combination λcϕ,
except for the terms coupling to the background gauge field
Ai. This means that in the absence of sources, one could
have simply considered λcϕ as the “new” charge of the
Goldstone, and concluded that the renormalisation factor λ
is not independently physical. However, we can probe the
original bare charge cϕ of the Goldstone by coupling the
system to background sources, in which case the renorm-
alisation factor λ does acquire a physical meaning of
its own.
To be more concrete, let us compute the retarded

correlation functions of various observables by varying
with respect to the respective background sources. As a
function of frequency ω and zero wavevector k, we find

GR
nnðωÞ ¼ χ

�
−1þ ωðωþ iΩÞ

ðωþ iΓÞðωþ iΩÞ − ω2
0

�
;

GR
ϕϕðωÞ ¼

λ2c2ϕ
χω2

0

�
−1þ ωðωþ iΓÞ

ðωþ iΓÞðωþ iΩÞ − ω2
0

�
;

GR
nϕðωÞ ¼

−iωλcϕ
ðωþ iΓÞðωþ iΩÞ − ω2

0

;

GR
jijjðωÞ ¼ c2ϕfsδ

ij − iσnωδij; ðA26Þ

while all other correlators vanish. Since the flux correlator
is obtained by performing variations with respect to the
background gauge field Ai, we see that it is sensitive to bare
charge cϕ, while the other correlators are only sensitive to
the renormalised charge λcϕ. This allows us to isolate the
Kubo formula for λ in (10).

2. Second law constraints in pinned
viscoelastic hydrodynamics

We now give details about the second law analysis
for pinned viscoelastic hydrodynamics. We introduce a
gauge field At, Ai, which can be used to compute the
correlations of n, πi respectively. For technical simplicity,
we will omit introducing sources for τij, ϵt, ϵi, which would
require using Newton-Cartan geometry; see e.g. [54]. The
energy and momentum conservation equations take the
form

∂tϵþ ∂iϵ
i ¼ Eiji − KI∂tϕ

I − lLI∂tΦI;

∂tπ
i þ ∂jτ

ij ¼ Eiρþ Fijjj þ KI∂
iϕI þ lLI∂

iΦI;

∂tnþ ∂iπ
i ¼ 0; ðA27Þ

while the Josephson and continuity equations remains the
same as (12a)–(12b). We parametrise the entropy density
to be

st ¼ sþ S; ðA28Þ
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where the thermodynamic entropy density s is defined in
(13) and S denotes gradient corrections. Using the thermo-
dynamic relations in (13), we can obtain

∂tst þ ∂isi ¼ −
1

T2
Ei
∂iT −

1

T
T ij

∂iuj

−
1

T
KI

dϕI

dt
−
l
T
LI

dΦI

dt
þ d
dt
Sþ ∂iSi; ðA29Þ

where we have identified the constitutive relations

ϵi ¼ ðϵ − F Þui þ rIJeIieJt þ T ijuj þ Ei;

τij ¼ ρuiuj − Fδij − rIJeIieJj þ T ij;

KI ¼ −∂iðrIJeJiÞ − lm2ψ I þKI;

LI ¼ cϕm2ψ I þ LI;

si ¼ stui þ 1

T
Ei þ Si: ðA30Þ

Here eIi ¼ ∂iϕ
I and eIt ¼ ∂tϕ

I .
Similarly to the U(1) case, the right-hand side of (A29) is

required to be a positive semi-definite quadratic form. This
results in the “non-hydrostatic” constitutive relations

0
BBBBB@

1
T E

i
nhs

T ij
nhs

Knhs
I

Lnhs
I

1
CCCCCA ¼ −

0
BBBBB@

σijϵ χikl −γϕiJ −γΦi
J

χijk ηijkl χϕ
ij
I χΦ

ij
I

γϕ
k
I χϕ

kl
I σϕIJ σ×IJ

γΦ
k
I χΦ

kl
I σ×IJ σΦIJ

1
CCCCCA

0
BBBBB@

∂kT

∂ðkulÞ
d
dtϕ

J

l d
dtΦ

J

1
CCCCCA;

ðA31Þ

where all the objects in the coefficient matrix have to be
made out of δij, ϵij…, ∂iΦI , supplemented with arbitrary
transport coefficients that are functions of T, μ, hIJ, ψ I . We
have already imposed the Onsager’s reciprocity relations in
the matrix above. Assuming the crystal to be isotropic and
parity-preserving, and focusing only on the terms that
contribute to the linearised constitutive relations, we find

σijϵ ¼ σϵδ
ij; ηijkl ¼ ηðδikδjl − δilδjkÞ þ

�
ζ −

2

d
η

�
δijδkl;

σϕIJ ¼ σϕhIJ; σΦIJ ¼ σΦhIJ;

γϕ
i
J ¼ γϕeiJ; γΦ

i
J ¼ γΦeiJ; σ×IJ ¼ σ×hIJ; ðA32Þ

and all others zero. All coefficients are functions of T and μ.
The second law results in a set of inequality constraints on
these coefficients

η; ζ; σϵ; σϕ ≥ 0; σΦ ≥ σ2×=σϕ: ðA33Þ

For the “hydrostatic sector”, we need to consider the
most general first order gradient corrections in S. It was

already found in [36,37] that, assuming the crystal to be
isotropic, there are no allowed terms in the absence of the
background field ΦI . However, in the presence of ΦI we
can include the term

S ¼ 1

T
f̄IJγIJ; ðA34Þ

where

γIJ ¼ 1

2
ð−2∂kϕðI

∂
kψJÞ þ lhIJ − lc2ϕδ

IJÞ; ðA35Þ

is defined so that, linearly, we have γIJ ≈ lc2ϕ∂
ðIδΦJÞ. We

can further require that f̄IJ is at least linear in fluctuations,
because the constant contribution can be removed using a
total derivative term ∂iδΦi. We hence have

f̄IJ ¼ ᾱhIJ þ C̄IJKLuKL: ðA36Þ

where ᾱðT0; μ0Þ ¼ 0. This coefficient can be understood as
the response of the crystal to a background strain due to the
presence of the background lattice. Ignoring non-linear
terms in the constitutive relations, we have

Ei
hs ¼ 0;

T ij
hs ¼ −ðlf̄IJ − γKLC̄KLIJÞ∂iϕI

∂
jϕJ

−
�
ðTsþ μρÞ ∂ᾱ

∂ϵ
þ ρ

∂ᾱ

∂ρ

�
hIJγIJδij;

Khs
I ¼ ∂iðC̄KLIJγ

KL
∂
iϕJÞ;

Lhs
I ¼ −cϕ∂iðf̄IJ∂iϕJÞ; ðA37Þ

along with

Si ¼ 1

T
f̄IJ

�
∂
iψJ dϕ

I

dt
− cϕl∂iϕJ dΦ

I

dt

�

−
1

T
C̄KLIJγ

KL
∂
iϕJ d

dt
ϕI: ðA38Þ

We can remove one component of C̄IJKL using the
redefinition of pseudo-Goldstone fields ϕI → ϕI þ aψ I .

3. Linear pinned viscoelastic crystals

Linearising the equations on a homogeneous background
ΦI ¼ xI, we can obtain the Josephson equation

∂tδϕ
i ¼ λcϕui −Ωδϕi þ γm∂

iμþ γT∂
iT

þ 2D⊥
ϕ ∂j∂

½jδϕi� þDk
ϕ∂

i
∂kδϕ

k; ðA39Þ

where
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γm ¼ −
cϕ
σϕ

Bαm; γT ¼ cϕ
σϕ

ðγϕ − BαTÞ;

αm ¼ −d
∂ ln α
∂μ

; αT ¼ −d
∂ ln α
∂T

: ðA40Þ

Here αm is the mass expansion coefficient, while αT is
the thermal expansion coefficient. For the conservation
equations, we find

ϵi ¼ ðϵþ pþ TλTÞui þ TΩsδϕ
i − κm∂

iμ − κ∂iT

−
Tγϕ
cϕ

ðDk
ϕ∂

i
∂kδϕ

k þ 2D⊥
ϕ ∂j∂

½jδϕi�Þ;

τij ¼ pmδ
ij −

2λG
cϕ

∂
hiδϕji −

λB
cϕ

δij∂kδϕ
k

− 2η∂hiuji − ζ∂kukδij − lX ij;

lLi ¼ −
ρ

λcϕ
ω2
0δϕ

i − Γπi − λT∂
iT − l∂jX ij; ðA41Þ

where we have further defined the mechanical pressure pm,
mass conductivity κm, thermal conductivity κ, heat damping
coefficient Ωs, and a new coefficient λT as

pm ¼ p − λBdδ ln α;

κm ¼ −
Tγϕ
σϕ

Bαm; κ ¼ Tσϵ þ
Tγϕ
σϕ

ðγϕ − BαTÞ;

Ωs ¼
γϕl2m2

cϕσϕ
; λT ¼ l

cϕ

�
γΦ −

σ×
σϕ

γϕ

�
; ðA42Þ

as well as

cϕX ij ¼ 2

�
Ḡ −

σ×
cϕσϕ

G

�
∂
hiδϕji

þ δij

��
B̄ −

σ×
cϕσϕ

B

�
ð∂kδϕk þ dδαÞ þ cϕδᾱ

�
:

ðA43Þ

Note that X ij identically drops out from the equations of
motion, and is the only contribution that contains f̄IJ.
However, X ij still non-trivially affects the stress tensor and
respective correlation functions. For the record, let us also
note the heat/entropy flux

si ¼ ðsþ λTÞui þ Ωsδϕ
i −

κm
T

∂
iμ −

κ

T
∂
iT

−
γϕ
cϕ

ðDk
ϕ∂

i
∂kδϕ

k þ 2D⊥
ϕ ∂j∂

½jδϕi�Þ: ðA44Þ

From here, we derive another damping-attentuation
relation in energy/entropy/heat flux

Ωs ¼
γϕ
cϕ

D⊥
ϕk

2
0; ðA45Þ

where k20 ¼ l2m2=G. This relation recently appeared in
[11], where the authors derived it using the locality of
hydrodynamic constitutive relations. We also find a new
coefficient λT that modifies the energy and entropy flux at
thermodynamic level, and contributes to sourcingmomenta.

4. Mode spectrum of pinned viscoelastic crystals

We can use the linearised equations of motion to derive
the mode spectrum of pinned viscoelastic hydrodynamics.
In the transverse sector, we find a phonon sound mode with
the dispersion relation similar to the U(1) case, namely

ω¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ v2⊥k2

q
−
i
2
ðk2ðD⊥

π þD⊥
ϕ Þ þ ΓþΩÞ; ðA46Þ

where

v2⊥ ¼ λ2G
ρ

; D⊥
π ¼ η

ρ
: ðA47Þ

The longitudinal sector is considerably more involved.
Focusing on isothermal configurations, we find a damped
sound mode and a crystal diffusion mode

ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ v2kk

2
q

−
i
2

�
Dk

sk2 −
ρ2m
v2kχ

2

Ωk2

ω2
0 þ v2kk

2
þ Γþ Ω

�
;

ω ¼ −
ik2ρ=χ

ω2
0 þ v2kk

2
ðDk

ϕk
2 þΩÞ; ðA48Þ

where we have defined

v2k ¼
ρ2m=χ þ λ2ðBþ 2 d−1

d GÞ
ρ

;

Dk
s ¼

ρðv2k − ρm=χÞ2
σϕv2k

þ ζ þ 2 d−1
d η

ρ
; ðA49Þ

along with mechanical mass density ρm ¼ ρþ λBαm and
susceptibility χ ¼ ∂ρ=∂μ. We have taken l ∼Oð∂Þ in the
expressions above. We again note that λ non-trivially
affects the various speeds of mode propagation. While
solving the linearised equations, it is useful to note that in
the isothermal limit, χδμ ¼ δρ − Bαm=cϕ∂kδϕk.
Turning back on the background fields, we can compute

the following correlation functions at zero momentum
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GR
πiπj

ðω; k¼ 0Þ ¼ ρδij
�
−1þ ωðωþ iΩÞ

ðωþ iΓÞðωþ iΩÞ−ω2
0

�
;

GR
ϕiϕjðω; k¼ 0Þ ¼ δijλ2c2ϕ

ρω2
0

�
−1þ ωðωþ iΓÞ

ðωþ iΓÞðωþ iΩÞ−ω2
0

�
;

GR
πiϕjðω; k¼ 0Þ ¼ iωλcϕδij

ðωþ iΓÞðωþ iΩÞ−ω2
0

: ðA50Þ

Computing τij correlators is beyond the scope of this work
and would require coupling the system to curved space.
Note that the coefficients (A36) do not affect these three
correlators above.

5. Comparison with previous works

In the previous version of our paper, we pointed out
certain discrepancies with the work of [11]. These have
now been resolved by the authors of [11] in an updated
version of their paper; we present a detailed comparison
below.
Let us start with the U(1) model. Our constitutive

relations in (7) trivially reduce to those in [11] upon setting
the transport coefficients σ× ¼ f̄s ¼ 0 (resulting in λ ¼ 1)
and matching the conventions ϕ→−ϕ, At→−At, Ai→−Ai
and cϕ ¼ 1. Our results also match with [8] in this limit
upon matching the conventions ϕ → −ϕ. In an updated
version of their paper, the authors of [11] verified that their
formalism does allow for nonzero σ× and f̄s in the presence
of background gauge fields. We find the new mapping
between various coefficients

χ̂nn ¼ χ; ĉ2s ¼
fs þ 2lf̄s

χ
; ω̂2

0 ¼
l2m2

χ
;

D̂n ¼
σ

χ
; D̂ϕ ¼ ð1 − lσ×=σϕÞðfs þ 2lf̄sÞ

σϕ
;

Γ̂ ¼ l2

χ

�
σΦ −

σ2×
σϕ

�
;

κ̂ ¼ −lf̄s
fs þ 2lf̄s

; σ̂ ¼ lσ×
σϕ

¼ λ − 1: ðA51Þ

For clarity, we have denoted all the coefficients in [11] with
a hat and kept cϕ ¼ 1.
To compare our results with [11] in the pinned crystal

case, we need to perform the following transformations to
the constitutive relations

τij → τij þ lX ij þ 2λGð∂jδϕi − δij∂kδϕ
kÞ;

Li → Li þ ∂jX ij; ðA52Þ

which leave the equations of motion invariant at the
linearised level. X ij was defined in (A43) and we have
set cϕ ¼ 1. Note, however, that the transformed quantities
should not be used to reliably predict the hydrodynamic
correlation functions involving stress. Focusing on d ¼ 2
spatial dimensions, this results in

si ¼ ðsþ λTÞui þΩsδϕ
i −

κm
T

∂
iμ −

κ

T
∂
iT

− γϕD
k
ϕ∂

i
∂kδϕ

k − 2γϕD⊥
ϕ ∂j∂

½jδϕi�;

τij ¼ pmδ
ij − 2λG∂½iδϕj� − λðBþGÞδij∂kδϕk

− 2η∂hiuji − ζ∂kukδij;

∂tδϕ
i ¼ λui −Ωδϕi þ γm∂

iμþ γT∂
iT

þ 2D⊥
ϕ ∂j∂

½jδϕi� þDk
ϕ∂

i
∂kδϕ

k: ðA53Þ

These should be compared to [11] in the Galilean setting,
i.e. upon setting ji ¼ πi. Note that the displacement field ui

of [11] is identified with our δϕi, their fluid velocity vi is
our ui, their heat current jiQ is our Tsi. Firstly, the Galilean
constraint implies for their transport coefficients

n̂ ¼ χ̂ππ; γ̂3c ¼ −χ̂nλk ξ̂ðBþ GÞ;
Ω̂n ¼ σ̂0 ¼ α̂0 ¼ ˆ̄α0 ¼ γ̂1l ¼ 0: ðA54Þ

We have again used a hat for the coefficients in [11] to
avoid confusion. The mapping between the remaining
coefficients follows as

p̂ ¼ pm; χ̂ππ ¼ ρ;

χ̂nλk ¼
Bαμ
Bþ G

; χ̂sλk ¼
BαT
Bþ G

;

ˆ̄κ0 ¼ κ þ TγϕBαT
σϕ

; γ̂2l ¼
γϕ
σϕ

;

ξ̂ ¼ 1

σϕ
; γ̂3h ¼ γT: ðA55Þ

With these identifications, we find that the results of [11]
exactly match our (A53), modulo the new coefficients λ and
λT due to explicit symmetry breaking.
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