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Dual resonance is one of the great miracles of string theory. At a fundamental level, it implies that the
particles exchanged in different channels are subtly equivalent. Furthermore, it is inextricably linked to the
property of exceptionally tame high-energy behavior. In this paper, we present explicit, closed-form
expressions for a new class of dual resonant amplitudes describing an infinite tower of spins for an arbitrary
mass spectrum. In particular, the input of our construction is a user-defined, fully customizable choice of
masses. The resulting “bespoke” amplitudes are well behaved in the ultraviolet and analytic except at
simple poles whose residues are polynomial in the momentum transfer, in accordance with locality. The
absence of branch cuts can be seen using Newton’s identities, but can also be made manifest by expressing
the amplitudes as a simple d log integral of the Veneziano amplitude that remaps the linear Regge
trajectories of the string to a tunable spectrum. We identify open regions of parameter space that firmly
deviate from string theory but nevertheless comport with partial wave unitarity. Last but not least, we
generalize our construction to the scattering of any number of particles in terms of a d log transform of the
Koba-Nielsen worldsheet integral formula.
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I. INTRODUCTION

The perturbative scattering amplitudes of string theory
are extraordinary mathematical objects. They seamlessly
exhibit an array of miraculous properties that are logically
intertwined. At the heart of these exceptional attributes is
the famously tame behavior of string scattering at high
energies. In particular, in the high-energy Regge limit
defined by s → ∞ at some fixed t, perturbative string
amplitudes actually vanish, so

Aðs → ∞; tÞ ¼ 0: ð1Þ
This behavior is far softer than would be typically
expected from scattering amplitudes in a local quantum
field theory.
Improved high-energy behavior places strong constraints

on the spectrum and interactions of the corresponding

theory [1,2]. This is evident from the unsubtracted
dispersion relation,

Aðs; tÞ ¼ 1

2πi

I
s0¼s

ds0

s0 − s
Aðs0; tÞ ¼

X∞
n¼0

Rðn; tÞ
μðnÞ − s

þ A∞ðtÞ;

ð2Þ

which recasts the original amplitude as a sum over s-channel
discontinuities arising from tree-level exchanges, plus a
boundary term,

A∞ðtÞ ¼
1

2πi

I
s¼∞

ds
s
Aðs; tÞ: ð3Þ

Note that we have assumed that Aðs; tÞ is a planar amplitude,
and thus only exhibits singularities in the s and t channels.
For any t for which Eq. (1) holds, the boundary term is

zero and we can write

Aðs; tÞ ¼
X∞
n¼0

Rðn; tÞ
μðnÞ − s

; ð4Þ

where μðnÞ denotes the spectrum of squared masses and
Rðn; tÞ is the residue at each level. The representation of
Aðs; tÞ in Eq. (4) implies that the amplitude can be rewritten
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as a sum over contributions in the s channel alone, even
when the scattering process also exhibits singularities in
the t channel. This extraordinary property is known as dual
resonance. Notably, the very existence of dual resonant
scattering amplitudes immediately implies that any
fundamental distinction between s- and t-channel singu-
larities is artificial.
In the case that the s channel describes a finite range of

spins, Rðn; tÞ will have bounded degree in t. The sum
in Eq. (4) then implies that the amplitude is a polynomial
in t and thus cannot exhibit t-channel singularities.
Conversely, for dynamics with spinning states exchanged
in both the s and t channels—e.g., in crossing-symmetric
amplitudes—dual resonance requires unboundedly high
powers in both variables, corresponding to an infinite tower
of spinning particles.1

Famously, this trio of extraordinary properties—tame
high-energy behavior, dual resonance, and an infinite spin
tower—are all hallmarks of string theory. The avatar of
these coincident miracles is the Veneziano amplitude [3],
which was discovered more than half a century ago in the
quest to understand the experimentally measured spectrum
of mesons. Arguably, this work marked the initial con-
ception of string theory. Shortly thereafter, it was under-
stood how dual resonance is a manifestation of the
deformability of the string worldsheet to exhibit exchanges
purely in the s or t channel alone.
Dual resonance imposes an exceedingly nontrivial con-

straint on the dynamics. Somehow, the scattering amplitudes
of string theorymagically accommodate this property.But are
they the unique mathematical objects that can achieve this
feat? In this paper we revisit this question, only to encounter a
vast and unexplored space of newamplitudes that exhibit dual
resonance for a tunable spectrum. Importantly, our setup
offers the tremendous freedom to fix the masses of any finite
number of states to any values of our choice. Hence, our
amplitudes are “bespoke,” in the sense that they exhibit a
spectrum that is fully customizable via the user-defined input
of μðnÞ. Like string amplitudes, our bespoke amplitudes
describe an infinite tower of higher-spin states, exhibit
softened ultraviolet behavior, and are analytic but for simples
poles with local polynomial residues.
The basic mathematical building block of our construc-

tion is the Veneziano amplitude,

AVðs; tÞ ¼
Γð−sÞΓð−tÞ
Γð−s − tÞ ; ð5Þ

defined here modulo unimportant polynomial prefactors
in s and t, which will not matter much for our analysis.
Clearly, the pole structure of this function can be modified
simply by mapping s and t to some alternative, possibly

nonlinear, functions of s and t. The key obstacle then
becomes how to do this remapping without introducing
horribly nonanalytic kinematic structures. As we will show,
this can be achieved using a strikingly compact d log
transform of the Veneziano amplitude,

Aðs; tÞ ¼
I

d log fðs; σÞ
2πi

I
d log fðt; τÞ

2πi
AVðσ; τÞ; ð6Þ

which defines a contour integral over σ and τ, with s and t
to be treated as constants. Here f is a polynomial whose
zeros, fðs; σÞ ¼ fðt; τÞ ¼ 0, define a set of multibranched
functions, σ and τ, which depend on s and t, respectively. In
particular, the contour of integration encircles the roots of f
in the σ and τ planes. As we will see later, the zero locus
of fðμ; νÞ ¼ 0 also gives an implicit definition of the
spectrum of the theory, μðνÞ. For example, in the case of
fðs; σÞ ¼ σ − s and fðt; τÞ ¼ τ − t, the contour integral is
trivial and we simply obtain the Veneziano amplitude.
Furthermore, in this case the zeros of fðμ; νÞ ¼ ν − μ
dictate the corresponding string spectrum, μðνÞ ¼ ν.
On the other hand, when f is a nonlinear function, we

discover scattering amplitudes that are far richer in struc-
ture. Indeed, Eq. (6) a priori allows for drastic departures
from a stringy spectrum, e.g., even allowing for an
asymptotically Kaluza-Klein spectrum. However, we will
see that partial wave unitarity disfavors extreme asymptotic
deviations, in accordance with known general results on the
asymptotic uniqueness of the Veneziano amplitude [1].
Importantly, for many choices of f, the amplitude in Eq. (6)
is still relatively well behaved in the high-energy Regge
limit. In these cases, the boundary term A∞ðtÞ in Eq. (3) is
well defined and calculable, and it can actually be reab-
sorbed as polynomial s-dependence in the residue, yielding

Aðs; tÞ ¼
X∞
n¼0

Rðn; s; tÞ
μðnÞ − s

: ð7Þ

As advertised, our bespoke amplitudes are dual resonant, in
the sense that they can be expressed as an infinite sum over
contributions in a single channel.
Unfortunately, we do not yet have an analytic under-

standing of the full set of necessary or sufficient conditions
for which bespoke amplitudes satisfy partial wave unitarity.
Rather famously, even for standard string amplitudes, a
rigorous derivation of unitarity from the point of view
of scattering amplitudes has only recently emerged [4].
Nevertheless, it is straightforward to numerically study
partial wave unitarity in a broad class of examples, where
we establish open regions that appear to be fully consistent.
Last but not least, we extend our construction to include

any number of external particles using the natural gener-
alization of the d log transform in Eq. (6) to higher-point
scattering amplitudes. Applying this mapping to the Koba-
Nielsen formula, we derive explicit integral representations

1A trivial exception is a theory of only scalars, which can of
course always be written as in Eq. (2), with t-independent
numerators.
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for bespoke amplitudes at higher point, which potentially
offers a hope for some exotic worldsheet formulation of
dual resonant scattering for an arbitrary spectrum.
It is worthwhile to contrast the results of the present

paper to prior efforts. Notably, the bespoke construction
described here goes far beyond the original bootstrap
approach of Ref. [2], which derived new dual resonant
amplitudes, but still with the usual linear spectrum of string
theory. Furthermore, our bespoke amplitudes are free from
peculiar branch-cut singularities, as found in amplitudes
with accumulation-point spectra [5,6], and free from non-
polynomial residues, as found in certain product-form
amplitudes [7].
Our methodology stands firmly in the spirit of a bottom-

up amplitudes bootstrap. As such, it is far from clear
whether these new dual resonant amplitudes actually
correspond to fully consistent physical theories. From a
maximally optimistic perspective, these results suggest the
enticing possibility of a vast space of theories that achieve
the same miracles as string theory but with a different
spectrum. On the other hand, a more sober viewpoint might
simply be that scattering amplitudes constraints are not that
restrictive, and hence it is just not exceedingly difficult to
construct functions that satisfy the bootstrap conditions.
The overarching question of which mathematical criteria
uniquely pick out string amplitudes from the set of all
possible functions remains open.

II. REVIEW OF THE VENEZIANO AMPLITUDE

As a warm-up, let us briefly summarize some of the
special properties of the Veneziano amplitude, which
will be a central mathematical building block in our
construction.

A. Masses and poles

As is well known, the gamma functions Γð−sÞ and Γð−tÞ
in the numerator of the Veneziano amplitude in Eq. (5)
encode an infinite sequence of poles at s ¼ n and t ¼ n for
non-negative integers n. Here, the spectrum μðnÞ ¼ n
describes the familiar linear Regge trajectory of the string.
Furthermore, the residue at each level is a polynomial in t,

RVðn; tÞ ¼ lim
s→n

ðn − sÞAVðs; tÞ ¼
1

n!
Γðtþ nþ 1Þ
Γðtþ 1Þ : ð8Þ

It is straightforward to expand each residue in powers of t,

RVðn; tÞ ¼
1

n!

Xn
k¼0

�
nþ 1

kþ 1

�
tk; ð9Þ

where the quantity in square brackets is the unsigned
Stirling number of the first kind. The formula in Eq. (9) will
be especially useful for our later analysis.

B. Asymptotics and dual resonance

Many of the miraculous properties of the Veneziano
amplitude follow directly from its exceptionally soft
behavior at high energies. Taking the Regge limit, defined
by s → ∞ at fixed t, we obtain

lim
s→∞

AVðs; tÞ ∼ st; ð10Þ

dropping all prefactors. Thus, for any t < 0, the amplitude
exponentially vanishes in the Regge limit. Note that the
inclusion of any additional polynomial factors of s and t
will simply shift the exponent in Eq. (10) by a constant
factor. In this case, the amplitude will still have vanishing
Regge behavior for t less than some finite number.
Vanishing Regge behavior implies that the amplitude

satisfies the unsubtracted dispersion relation in Eq. (2),
since the boundary term is zero. Hence, it follows that the
Veneziano amplitude can be expressed purely in terms of
poles in a single channel,

AVðs; tÞ ¼
X∞
n¼0

RVðn; tÞ
n − s

: ð11Þ

For the Veneziano amplitude, the boundary integral A∞ðtÞ
in Eq. (3) vanishes for t < 0 on account of the Regge
behavior defined in Eq. (10).

III. DUAL RESONANCE FOR A KALUZA-KLEIN
SPECTRUM

Rather unintuitively, we can now use the Veneziano
amplitude to engineer a dual resonant scattering amplitude
that exhibits a distinctly nonstringy spectrum. As a toy
model, consider the case of a Kaluza-Klein spectrum,

μðνÞ ¼ ðνþ δÞ2; ð12Þ

where ν is a non-negative integer and δ is an offset
characterizing the mass gap. As we will see, this model
is not actually realistic. However, it will cleanly illustrate
the underlying mechanics of our framework.
At first pass, there is an obvious way to deform the

singularities of the Veneziano amplitude onto a mass
spectrum of our choice: simply apply a nonlinear function
to s and t before plugging them into the amplitude. For
example, consider

AVð−δþ
ffiffiffi
s

p
;−δþ ffiffi

t
p Þ; ð13Þ

which now includes factors of Γð−δþ ffiffiffi
s

p Þ and Γð−δþ ffiffi
t

p Þ
that exhibit simple poles at s ¼ ðnþ δÞ2 and t ¼ ðnþ δÞ2
for non-negative integer n. While this transformation does
the trick, the resulting expression now has dangerous
branch-cut singularities on account of the newly introduced
square roots. While branch cuts are not intrinsically
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inconsistent—indeed, they typically signal the appearance
of multiparticle thresholds—we will opt for a path that
ensures that the amplitude only exhibits simple poles.2 One
path forward is to simply sum over distinct branches of the
square root. The resulting expression is

Aðs; tÞ ¼ AVð−δþ
ffiffiffi
s

p
;−δþ ffiffi

t
p Þ

þ AVð−δ −
ffiffiffi
s

p
;−δþ ffiffi

t
p Þ

þ AVð−δþ
ffiffiffi
s

p
;−δ −

ffiffi
t

p Þ
þ AVð−δ −

ffiffiffi
s

p
;−δ −

ffiffi
t

p Þ; ð14Þ

which has no branch-cut singularities. As we will see, this
prescription is not a singular accident, but rather a specific
instance of a very general procedure for constructing dual
resonant amplitudes.

A. Masses and poles

At this point, it will be convenient to introduce the
spectral curve, which is a polynomial fðμ; νÞ in two
complex numbers μ, ν, and which implicitly defines the
spectrum. Physically, we should think of μ as a “kinematic
variable” of the likes of s, t, or some mass-squared
parameter. On the other hand, ν is a “level variable,” which
we can think of as the label indexing each mass resonance.
In particular, while we will sometimes set ν to an integer—
in which case it is literally the discrete label for the
spectrum—it should be thought of as an analytic continu-
ation of this label to the complex numbers.
For the case of a Kaluza-Klein spectrum, the spectral

curve is

fðμ; νÞ ¼ ðνþ δÞ2 − μ: ð15Þ

We can solve for the zero locus of this function,
fðμ; νÞ ¼ 0, in terms of either μ or ν. Solving for the
former, we obtain

μðνÞ ¼ ðνþ δÞ2; ð16Þ

which by construction exactly reproduces the Kaluza-Klein
spectrum of the theory. Solving for the latter, on the other
hand, we obtain two branches of solutions,

ν�ðμÞ ¼ −δ� ffiffiffi
μ

p
: ð17Þ

These are precisely the functions summed over in Eq. (14),
which we now recognize as simply

Aðs; tÞ ¼ AVðνþðsÞ; νþðtÞÞ þ AVðνþðsÞ; ν−ðtÞÞ
þ AVðν−ðsÞ; νþðtÞÞ þ AVðν−ðsÞ; ν−ðtÞÞ: ð18Þ

On account of the spectrum of poles, we will refer to
Eq. (18) as the Kaluza-Klein amplitude.
Mathematically speaking, Eq. (18) sums over orbits of

the Galois group defined by roots of the spectral curve, so
we will refer to it as a Galois sum. As we will see, this sum
effectively removes all branch cuts, leaving only simple
poles. As advertised, Eq. (18) only exhibits singularities at
ν�ðsÞ ¼ n and ν�ðtÞ ¼ n, which correspond to the Kaluza-
Klein resonances at s ¼ ðnþ δÞ2 and t ¼ ðnþ δÞ2.
We can reexpress Eq. (18) in terms of a contour integral,3

Aðs; tÞ ¼ 1

2πi

�I
dσ

σ − νþðsÞ
þ
I

dσ
σ − ν−ðsÞ

�

×
1

2πi

�I
dτ

τ − νþðtÞ
þ
I

dτ
τ − ν−ðtÞ

�
× AVðσ; τÞ;

ð19Þ

where each contour encircles the simple pole in its
corresponding integrand. Combining terms and using the
fact that

fðμ; νÞ ¼ ðν − νþðμÞÞðν − ν−ðμÞÞ; ð20Þ

we obtain precisely the d log form in Eq. (6), where the
contour of integration is the union of loops encircling all the
roots of fðs; σÞ and fðt; τÞ in the σ and τ planes.

B. Asymptotics and dual resonance

Amusingly, we can apply the Galois sum to each term in
the dual resonant representation of the Veneziano ampli-
tude in Eq. (11), yielding a dual resonant representation for
the Kaluza-Klein amplitude,

Aðs; tÞ ¼
X∞
n¼0

�
1

n − νþðsÞ
þ 1

n − ν−ðsÞ
�

×
�
RVðn; νþðtÞÞ þ RVðn; ν−ðtÞÞ

�
; ð21Þ

where the sums each run over the pair of conjugate of roots
in Eq. (17). The Galois sum over the s-channel pole gives

1

n − νþðsÞ
þ 1

n − ν−ðsÞ
¼ 1

μðnÞ − s
× 2ðnþ δÞ; ð22Þ2The Coon amplitude [5] is a deformation of the Veneziano

amplitude that exhibits a branch cut that terminates at the
accumulation point of the spectrum. Recent work indicates
possible pathologies very close to the branch point in these
amplitudes [8]. At the same time, amplitudes with asymptotic
behavior similar to that of the Coon amplitude have also been
constructed in explicit, self-consistent string constructions [9].

3Such a contour integral form is possible only because our
planar amplitudes have poles that only depend on s or t
individually, but not both [10].
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which has the desired simple pole at s ¼ μðnÞ, times a
constant, s-independent Jacobian.
Plugging this expression into Eq. (21), we immediately

discover that the Kaluza-Klein amplitude has a dual
resonant representation,

Aðs; tÞ ¼
X∞
n¼0

Rðn; tÞ
μðnÞ − s

; ð23Þ

where the residue, Rðn; tÞ, is given by the Jacobian
times the Galois sum over the residue of the Veneziano
amplitude,

Rðn; tÞ ¼ lim
s→μðnÞ

ðμðnÞ − sÞAðs; tÞ

¼ 2ðnþ δÞðRVðn; νþðtÞÞ þ RVðn; ν−ðtÞÞÞ: ð24Þ

By explicit calculation we see that

Rð0; tÞ ¼ 4δ;

Rð1; tÞ ¼ 4ð1þ δÞð1 − δÞ;
Rð2; tÞ ¼ 2ð2þ δÞ½ð1 − δÞð2 − δÞ þ t�;

Rð3; tÞ ¼ 2

3
ð3þ δÞð2 − δÞ½ð1 − δÞð3 − δÞ þ 3t�; ð25Þ

and so on. All branch cuts in s and t have canceled in
each term in the dual resonant sum, and thus also in the
final amplitude.
Strictly speaking, the dual resonant representation in

Eq. (23) is meaningful only if the sum converges. This
convergence is intimately connected with the Regge
behavior of the Kaluza-Klein amplitude, which we trivially
obtain from the Galois sum over the asymptotic behavior of
the Veneziano amplitude,

A∞ðtÞ ¼ lim
s→∞

Aðs; tÞ
∼ lim

s→∞
νþðsÞνþðtÞ þ νþðsÞν−ðtÞ þ ν−ðsÞνþðtÞ þ ν−ðsÞν−ðtÞ

∼ lim
s→∞

ð ffiffiffi
s

p Þ−δþ
ffiffi
t

p
þ ð ffiffiffi

s
p Þ−δ−

ffiffi
t

p
; ð26Þ

dropping terms that are subleading at large s. We empha-
size that in calculating the asymptotic behaviors we have
dropped all prefactors that either vanish or do not diverge
at large s. Consequently, the relative coefficients sitting in
front of each term on the right-hand side should not be
considered meaningful.
For physical kinematics, corresponding to t < 0, the

exponents in Eq. (31) are complex. If δ ¼ 0, then the large-
s scaling is oscillatory, so the asymptotic behavior of the
amplitude is ill defined. Mechanically, this implies that the
boundary term A∞ðtÞ in Eq. (2) is ambiguous and the dual
resonant sum is nonconvergent. On the other hand, if δ > 0,
then the asymptotic behavior is damped, and A∞ðtÞ actually

vanishes. Conversely, the case of δ < 0 is pathological
because the amplitude diverges. These behaviors can be
verified numerically.
Irrespective of these choices, the Kaluza-Klein spectrum

asymptotes to μðνÞ ∼ ν2 at large ν, which is of course
an exceedingly drastic departure from the linear Regge
spectrum of the Veneziano amplitude. Thus, on general
grounds [1] we expect that the Kaluza-Klein amplitude is
inconsistent with partial wave unitarity, and we refer the
reader to Appendix for details. For this reason, we will not
consider this toy model further.

IV. DUAL RESONANCE FOR AN
ARBITRARY SPECTRUM

It is straightforward to generalize the procedure
described above to a customizable spectrum interpolating
through any finite number of points of our choosing. This
approach will yield closed-form expressions for bespoke
scattering amplitudes exhibiting dual resonance for an
arbitrary spectrum.

A. Spectral curve

We begin by defining the spectral curve fðμ; νÞ, which is
a polynomial whose zero locus,

fðμ; νÞ ¼ 0; ð27Þ

implicitly defines the spectrum of the theory. Here μ should
be interpreted as a “kinematic” argument, which naturally
takes on continuous values and corresponds to different
choices of s or t, depending on the context. In contrast, ν
should be interpreted as a “level” argument, which at non-
negative integer values labels the discrete spectrum of the
theory, but can otherwise be analytically continued to any
real value.
For simplicity, this paper will focus solely on the case in

which fðμ; νÞ is linear in μ,

fðμ; νÞ ¼ PðνÞ − μQðνÞ; ð28Þ

where P andQ are polynomials. Note that the Kaluza-Klein
amplitude in Sec. III is described by this class of functions.
Of course, Eq. (28) restricts to a small subset of the vast
space of possible choices for the spectral curve. We leave
more thorough analysis of this landscape for future work.
The zero locus in Eq. (27) can be solved for either μ or ν.

If we opt to solve in terms of the variable μ, then the
resulting single-branch solution defines the mass spectrum,

μðνÞ ¼ PðνÞ
QðνÞ ; ð29Þ

provided ν is set to a non-negative integer, which is a
discrete label for the spectrum at each level. Obviously, if P
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andQ are of sufficiently high degree, they can be chosen so
that the spectrum interpolates through an arbitrarily large
but finite number of masses of our choice. As we will see
later, the level number ν will control the maximal possible
spin exchanged at a given level in our bespoke amplitudes,
so the spectral curve can be viewed as a parametrization of
a general nonlinear Regge trajectory. Note that for more
elaborate spectral curves than Eq. (28), the spectrum itself
can be multibranched.
What are sensible choices for P and Q? To answer this

question, the asymptotic behavior of the spectrum at large
level ν is relevant,

lim
ν→∞

μðνÞ ∼ νjPj−jQj; ð30Þ

where jPj and jQj are the polynomial degrees of
each function. Let us consider various choices for these
relative degrees.
If jPj ≤ jQj, then the spectrum has an accumulation

point since Eq. (30) asymptotes to a constant. Such a
spectrum is not a priori inconsistent, and in fact amplitudes
exhibiting such a structure have been studied previously
[5,6,8,9,11]. That said, we will see later that our framework
for building dual resonant amplitudes simply does not
apply to such spectra.
If instead jPj > jQj, then the spectrum diverges. As we

will soon see, our formulation accommodates any spectrum
of this type. However, recall the analysis of Ref. [1], which
argued that any theory of higher spins that is free from
accumulation points must asymptote to a linear Regge
spectrum, under some suitable assumptions. For simplicity,
we hereafter make the assumption that jPj − jQj ¼ 1 to
comport with that restriction. For later convenience, we
define the coefficients of these polynomials by

PðνÞ ¼
Xh
k¼0

pkν
h−k and QðνÞ ¼

Xh−1
k¼0

qkþ1ν
h−k−1; ð31Þ

where h ¼ jPj ¼ jQj þ 1 denotes the degree of the spectral
curve. In addition, we also take P andQ to be monic, which
means that they are polynomials whose leading powers
have a unit coefficient, so p0 ¼ q1 ¼ 1. This choice implies
fixing our unit conventions so that the asymptotic Regge
slope is α0 ¼ limν→∞μðνÞ=ν ¼ 1.

B. Galois meets Veneziano

If we instead solve for the zeros of the spectral curve in
Eq. (27) in terms of ν, we obtain multiple solutions, which
we denote by ναðμÞ where α ¼ 0;…; h − 1. By folding
these functions into the arguments of the Veneziano
amplitude, we obtain a general expression for our bespoke
dual resonant amplitude,

Aðs; tÞ ¼
X
α;β

AVðναðsÞ; νβðtÞÞ; ð32Þ

where α and β each run over all zeros of the spectral curve.
We refer to Eq. (32) as a bespoke dual resonant amplitude,
since its spectrum of resonances is customizable. Since the
summation in Eq. (32) runs over the orbits of the Galois
group defined by the spectral curve, we again call this
expression a Galois sum.
As before, it is possible to rewrite the amplitude in

Eq. (32) via the residue theorem,

Aðs; tÞ ¼ 1

2πi

I X
α

dσ
σ − ναðsÞ

×
1

2πi

I X
β

dτ
τ − νβðtÞ

× AVðσ; τÞ; ð33Þ

where the contour of integration is simply the sum of
infinitesimal loops encircling the singularity in each denom-
inator. Using that the spectral function factorizes into

fðμ; νÞ ¼
Y
α

ðν − ναðμÞÞ; ð34Þ

we can then reconstitute the sum over poles in Eq. (33) into a
d log integration measure, yielding the compact expression
in Eq. (6).
The bespoke dual resonant amplitude in Eq. (32) has

factors of Γð−ναðsÞÞ and Γð−νβðtÞÞ, which for some α and
β will exhibit singularities when ναðsÞ ¼ n and νβðtÞ ¼ n
for non-negative integer n. This is guaranteed to occur for
some α and β since the vanishing of the spectral curve
implies that at least one factor of Eq. (34) vanishes.
The bespoke dual resonant amplitude in Eq. (32) is

nothing more than a sum of Veneziano amplitudes evalu-
ated at transformed kinematics. Thus, one might naively
expect that Eq. (32) automatically has the following dual
resonant form:

Aðs; tÞ ¼
X∞
n¼0

�X
α

1

n − ναðsÞ
��X

β

RVðn; νβðtÞÞ
�
; ð35Þ

which is simply the corresponding sum of the dual
resonant representation of the Veneziano amplitude.
However, the caveat in this logic is that the above sum
need not converge. More concretely, the unsubtracted
dispersion relation in Eq. (2) is only well defined if the
sum, together with the boundary term A∞ðtÞ, is well
defined. Since the bespoke dual resonant amplitude is
constructed from Veneziano amplitudes evaluated at modi-
fied kinematics, the convergence of these boundary terms
is not guaranteed and must be checked explicitly. We will
now examine this issue in detail.
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C. Asymptotics

It will be illuminating to study our bespoke amplitudes
further in various kinematic limits, specifically the Regge,
high-energy fixed-angle, and low-energy effective field
theory regimes. As we will see, the corresponding behav-
iors can differ from those of the Veneziano amplitude.

1. Regge limit

Let us start by computing the Regge limit, which
corresponds to s → ∞ at fixed t. The Regge behavior is
controlled by the zeros of the spectral curve, fðs; σÞ ¼
PðσÞ − sQðσÞ ¼ 0, as s goes to infinity. Since jPj ¼ h and
jQj ¼ h − 1, the spectral curve is an h-degree polynomial
in σ, and thus its zero locus defines precisely h roots. Using
our earlier notation, we define the roots of fðs; σÞ ¼ 0 by
the set of functions σ ¼ ναðsÞ, which are s-dependent
on account of the explicit factor of s in the spectral curve.
For later convenience, we also define the roots of
the separate curves PðσÞ ¼ 0 and QðσÞ ¼ 0 by the

functions σ ¼ νðPÞα and σ ¼ νðQÞ
α , respectively, which are

s-independent numbers.
At large s, exactly one of the roots of the spectral curve

asymptotes to s itself. Without loss of generality, we label
this branch by α ¼ 0. Meanwhile, the remaining h − 1 roots
of the spectral curve asymptote to the roots of Q and are
thus s-independent, so

lim
s→∞

ναðsÞ ¼
	
s; α ¼ 0;

νðQÞ
α ; α ¼ 1;…; h − 1:

ð36Þ

To determine the Regge behavior of the bespoke dual
resonant amplitude, we simply compute the Galois sum of
the Regge behavior of the Veneziano amplitude,

A∞ðtÞ ¼ lim
s→∞

Aðs; tÞ
∼ lim

s→∞

X
α;β

ναðsÞνβðtÞ

∼ lim
s→∞

X
β

�
sνβðtÞ þ

X
α≠0

ðνðQÞ
α ÞνβðtÞ

�
; ð37Þ

where we have split the sum according to whether a given
root diverges with s or not. Again we emphasize that the
relative coefficients between terms on the right-hand side
should be ignored, since we have implicitly dropped the
prefactors in front of each term that do not diverge at
large s.
Now we will impose the condition that Eq. (37) is

convergent for some value of t. This is required in order for
the unsubtracted dispersion relation in Eq. (2), and thus the
dual resonant form of the amplitude, to mathematically
exist. Since the second term in the final expression of
Eq. (37) only involves s-independent roots, it does not
diverge in the Regge limit, so we need not worry about it.

On the other hand, the first term is manifestly s-dependent.
Consequently, in order to ensure convergence for some t,
we require that

ReðνβðtÞÞ < 0 for all β; ð38Þ

so that the exponent of each of these contributions has a
negative real component.
Assuming Eq. (38), the first term in the final expression

in Eq. (37) is zero. Furthermore, we recognize the second
term as simply a partial Galois sum over the Regge
behavior of the Veneziano amplitude. We can therefore
write the boundary term in Eq. (37) as an explicit closed-
form expression in terms of t,

A∞ðtÞ ¼
X
α≠0

X
β

AVðνðQÞ
α ; νβðtÞÞ: ð39Þ

Note that the right-hand side is manifestly independent of s.
As we will see later, we can use the above formula to check
the unsubtracted dispersion relation in Eq. (2).
We have only stipulated the very conservative condition

that Eq. (38) applies for some value or range of t. Only for
this value of t will the boundary term be well defined and
will the dual resonant representation of the amplitude
exist. This is not dissimilar from the case in string theory,
where a dual resonant representation requires that t be
sufficiently negative.
More generally, the negative real condition in Eq. (38) is

a central concept in control theory, and in mathematical
parlance is known as Hurwitz stability of fðt; νÞ as a
polynomial in ν. Imposing this condition for all t < 0 is
equivalent to requiring stability of all convex combinations
of P and Q and is related to Kharitonov’s theorem [12,13].
A useful set of necessary and sufficient conditions in terms
of the Hurwitz matrix is given in Ref. [14].4

2. Hard scattering limit

Next, we compute the hard scattering limit of the
amplitude, defined by the function

4The threshold condition on each root ναðtÞ of fðt; νÞ ¼ 0 can
similarly be shifted by multiplying the amplitude by a crossing-
symmetric polynomial in s and t before Galois summing,
resulting in a weaker stability condition [15]. In any case, one
can first characterize the space of stable spectral functions f via
the canonical stability problem, first imposing ReðνÞ < 0 for
t < 0 and then shifting t or ν, or both, after the fact. Then the
generalized version of Eq. (38) is that there exists some value of t
for which all ReðνÞ are upper bounded by some constant.
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Ahardðs; tÞ ¼ lim
s;t→∞

Aðs; tÞ

¼ lim
s;t→∞

AVðs; tÞ þ
X
α≠0



lim
s→∞

AVðs; νðQÞ
α Þ

þ lim
t→∞

AVðνðQÞ
α ; tÞ

�
þ

X
α;β≠0

AV



νðQÞ
α ; νðQÞ

β

�
;

ð40Þ

where we have used Eq. (36) in order to take the limits
of ναðsÞ and νβðtÞ. Here it will be important to consider
separately the cases of negative and positive t, which
exhibit different asymptotic behaviors.
For t > 0, corresponding to unphysical kinematics,

the hard scattering limit of the Veneziano amplitude takes
the form

AVðs; tÞ ∼ eBðs;tÞ;

Bðs; tÞ ¼ ðsþ tÞ logðsþ tÞ − s log s − t log tþ � � � ;
ð41Þ

which controls the scaling of the first term in Eq. (46). The
second and third terms in Eq. (46) are effectively Regge
limits, with s taken large and t fixed, or vice versa. These
contributions scale as powers of s and t, which are
subdominant to the leading contributions in Eq. (41).
Since the fourth term in Eq. (40) is a constant, it is also
subdominant. We therefore learn that the hard scattering
limit of our bespoke amplitude is the same as for the
Veneziano amplitude,

Ahardðs; tÞ ∼ eBðs;tÞ for t > 0; ð42Þ

which is in accordance with the general arguments
of Ref. [1].
For t < 0, hard scattering corresponds to a physical high-

energy process occurring at a fixed scattering angle θ that
satisfies cos θ ¼ 1þ 2t

s−m2
ext
, where m2

ext is the mass squared

of each external. In this kinematic region, the leading
scaling of Bðs; tÞ is negative, so the Veneziano amplitude
exhibits its trademark exponential softness. Suppose now
that the amplitude obeys dual resonance for all t below
some threshold, so the stability condition in Eq. (38) holds

as t → −∞. This implies that ReðνðQÞ
α Þ < 0 for all the roots

of Q, so the Regge-like sums in Eq. (40) become

lim
t→∞

X
α≠0

AVðνðQÞ
α ; tÞ ∼ lim

t→∞

X
α≠0

tν
ðQÞ
α ¼ 0;

lim
s→∞

X
β≠0

AVðs; νðQÞ
β Þ ∼ lim

s→∞

X
β≠0

sν
ðQÞ
β ¼ 0: ð43Þ

Thus, in the physical regime of high-energy fixed-angle
scattering, our bespoke amplitude limits to a constant,

Ahardðs; tÞ ¼
X
α;β≠0

AVðνðQÞ
α ; νðQÞ

β Þ for t < 0: ð44Þ

In principle, it may be possible to choose the spectral curve
such that the right-hand side is zero. In this case, the
resulting amplitude would exponentially vanish in the
physical limit of high-energy fixed-angle scattering.

3. Low-energy limit

Last but not least, let us compute the amplitude at low
energies, corresponding to the leading behavior as s; t → 0.
In this limit, the roots of the spectral curve asymptote to
the roots of P and are thus s-independent. Taking the low-
energy limit, we obtain the effective field theory amplitude,

AEFTðs; tÞ ¼ lim
s;t→0

Aðs; tÞ ¼
X
α;β

AVðνðPÞα ; νðPÞβ Þ; ð45Þ

dropping terms that are higher order in the derivative
expansion. Note that Eq. (45) is sensible only if none

of the roots νðPÞα are non-negative integers. Otherwise, the
expression involves a gamma function evaluated on a
singularity, yielding a formal divergence.
We must therefore treat separately the physically inter-

esting case in which our spectral curve produces a massless
state. In particular, let us assume that there is a single zero
in the spectrum, μðn�Þ ¼ 0 for some level n�, in which case
there is a vanishing root, νðPÞ� ¼ 0. Let us further assume
that the spectral curve does not have double poles, so this
zero root is unique. Expanding about zero, we have
ν�ðsÞ ¼ 0þ sν0�ð0Þ þ 1

2
s2ν00�ð0Þ þ � � �, and we use the

identity for derivatives of inverse functions to write ν0�ð0Þ ¼
1=μ0ðn�Þ and ν00�ð0Þ ¼ −μ00ðn�Þ=ðμ0ðn�ÞÞ3. Assuming that

none of the remaining roots νðPÞα≠� are non-negative integers,
we obtain the low-energy expansion for the amplitude
when there is a massless mode,

AEFT ¼ −hμ0ðn�Þ
�
1

s
þ 1

t

�
−
hμ00ðn�Þ
μ0ðn�Þ

− 2
X
α≠�

H


−1− νðPÞα

�

þ
X
α;β≠�

AV



νðPÞα ;νðPÞβ

�
þ � � � ; ð46Þ

where HðnÞ ¼ γ þ ψðnþ 1Þ is the analytically continued
harmonic number, and the ellipses denote higher-derivative
corrections. The first line of Eq. (55) describes the
exchange of a massless scalar. On the other hand, the
second line shows that the low-energy expansion generi-
cally includes a quartic contact term, which thus differs
from the Veneziano amplitude.

D. Dual resonance

As long as the roots of the spectral curve satisfy the
negative real condition in Eq. (38), then the Regge limit of
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the amplitude will be convergent. In this case we can
compute the bespoke dual resonant amplitude by comput-
ing the Galois sum on the dual resonant representation of
the Veneziano amplitude directly, as shown in Eq. (35).
As before, we can use the fundamental theorem of

algebra to write the Galois sum of the s-dependent part
of Eq. (35) as a d log form,

X
α

1

n − ναðsÞ
¼ ∂n log fðs; nÞ ¼

∂nfðs; nÞ
fðs; nÞ : ð47Þ

Crucially, by performing the Galois sum in this way, we do
not have to explicitly derive the roots of the spectral curve.
This is not merely a convenience. Indeed, the Abel-Ruffini
theorem famously implies that it is literally impossible to
construct a closed-form expression for the roots of quintic
or higher polynomials in terms of radicals. Plugging the
formula for the spectral curve in Eq. (28) into Eq. (47), we
obtain a more explicit expression,

X
α

1

n − ναðsÞ
¼ μ0ðnÞ

μðnÞ − s
þQ0ðnÞ

QðnÞ ; ð48Þ

which by construction exhibits a simple pole at s ¼ μðnÞ,
together with a contact term.
The normalization of the simple pole fixes the normali-

zation of the residue of the bespoke dual resonant ampli-
tude in Eq. (35), so

Rðn; tÞ ¼ lim
s→μðnÞ

ðμðnÞ − sÞAðs; tÞ ¼ μ0ðnÞ
X
β

RVðn; νβðtÞÞ:

ð49Þ

The Galois sum of the t-dependent residue in Eq. (49) is
much more complicated to evaluate. In what follows,
we describe two independent methods for performing this
calculation. In the first approach, we evaluate the sum using
Newton’s identities, while the second utilizes Cauchy’s
theorem. We will find that the residues Rðn; tÞ are indeed
polynomials in t and thus consistent with locality.

1. Residue from Newton’s identities

Plugging Eq. (9) into the residue of the dual resonant
amplitude defined in Eq. (49), we obtain the explicit
formula

Rðn; tÞ ¼ μ0ðnÞ
n!

Xn
k¼0

�
nþ 1

kþ 1

�
dkðtÞ; ð50Þ

where we have defined the power sum of roots,

dkðtÞ ¼
X
α

ðναðtÞÞk: ð51Þ

At this stage we invoke a powerful result from
Galois theory. In particular, the fundamental theorem of
symmetric polynomials says that any polynomial that is
symmetric in its variables can itself be written as a
polynomial in a set of elementary symmetric polynomials.
Applied to the present context, we interpret each power
sum dkðtÞ as a polynomial in the variables defined by the
roots ναðtÞ. Consequently, any power sum can be rewritten
in terms of the elementary symmetric polynomials ekðtÞ,
which are defined by

e0ðtÞ ¼ 1;

e1ðtÞ ¼
X
α1

να1ðtÞ;

e2ðtÞ ¼
X
α1<α2

να1ðtÞνα2ðtÞ;

e3ðtÞ ¼
X

α1<α2<α3

να1ðtÞνα2ðtÞνα3ðtÞ;

..

.

enðtÞ ¼ να1ðtÞνα2ðtÞ � � � ναnðtÞ; ð52Þ

where ekðtÞ ¼ 0 for k > h. Since the power sum dkðtÞ
is a symmetric polynomial, we can write it in terms of
elementary symmetric polynomials ekðtÞ using Newton’s
identities,

dk ¼
Xk−1
i¼k−h

ð−1Þk−1þiek−idi for k > h;

dk ¼ ð−1Þk−1kek þ
Xk−1
i¼1

ð−1Þk−1þiek−idi for k ≤ h: ð53Þ

Conveniently, even though Newton’s identities are
defined recursively, they have a closed-form solution
known as the Girard-Waring formula, given in determinant
form in Ref. [16],
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dkðtÞ ¼ ð−1Þk

���������������

−e1ðtÞ þe0ðtÞ 0 � � � 0

þ2e2ðtÞ −e1ðtÞ þe0ðtÞ � � � 0

−3e3ðtÞ þe2ðtÞ −e1ðtÞ � � � ..
.

..

. ..
. ..

. . .
. þe0ðtÞ

ð−1ÞkkekðtÞ ð−1Þk−1ek−1ðtÞ ð−1Þk−2ek−2ðtÞ � � � −e1ðtÞ

���������������

: ð54Þ

The coefficients of any monic polynomial are directly
related to the elementary symmetric polynomials built from
the roots of that polynomial, specifically,

fðt; τÞ ¼
Xh
k¼0

ð−1Þh−keh−kðtÞτk: ð55Þ

This identity implies that the elementary symmetric
polynomials can be extracted directly from the spectral
curve via

ekðtÞ ¼
ð−1Þk
ðh − kÞ! ∂

h−k
τ fðt; τÞjτ¼0: ð56Þ

Consequently, the residue of the bespoke dual resonant
amplitude in Eq. (50) can be explicitly evaluated by writing
the power sums dkðtÞ in terms of the coefficients of the
spectral curve via Eqs. (54) and (56). By definition, fðt; τÞ
is a monic polynomial in τ with coefficients that are
themselves linear polynomials in t. As such, Eq. (56) then
implies that the functions ekðtÞ are also polynomials in t,
and hence so too is dkðtÞ, on account of Eq. (54).
Plugging into Eq. (56) our explicit formulas for the

spectral curve in Eqs. (28) and (31), we obtain a simple
expression for the elementary symmetric polynomials,

ekðtÞ ¼ ð−1Þkðpk − tqkÞ; ð57Þ
where q0 ¼ 0. Since ekðtÞ is of degree one, Eq. (54) implies
that dkðtÞ is a polynomial of degree k. Hence, we learn that
Eq. (50), the residue Rðn; tÞ, is a polynomial in t of degree
n, corresponding to a maximal spin of n on the pole at

s ¼ μðnÞ. This is an important check, since the presence of
residues that are not exponentially suppressed or zero at
arbitrarily high spin is a sign of nonlocality [7,17], which
we wish to avoid.

2. Residue from Cauchy’s theorem

There is an alternative method for computing the residue
of the dual resonant amplitude defined in Eq. (49) using
Cauchy’s theorem. In particular, Eq. (49) can be recast into
the form of a d log integral,

Rðn; tÞ ¼ 1

2πi
μ0ðnÞ

I
d logðfðt; τÞÞRVðn; τÞ

¼ −μ0ðnÞRes
τ¼∞

½RVðn; τÞ∂τ log fðt; τÞ�; ð58Þ

where, in the first line, the contour of integration is the sum
of loops encircling the zeros of the spectral function. In the
second line, we have applied Cauchy’s theorem to blow up
that contour to the boundary at infinity.
By expanding the residue at infinity as a series in t,

we can write the residue as an explicit polynomial,

Rðn; tÞ ¼
Xn
k¼0

bkðnÞtk; ð59Þ

where the sum truncates at k ¼ n since Rðn; tÞ has degree at
most n, as follows from the definition of the spectral curve
in Eqs. (28) and (31). The coefficients of the residue
polynomials are given by the closed-form expression

bkðnÞ ¼ −μ0ðnÞRes
τ¼∞

½RVðn; τÞ∂τ∂kt log fðt; τÞjt¼0�

¼ ð−1Þn−kμ0ðnÞ
k!ðn − kÞ! lim

τ→∞
½τn−kþ1

∂
n−k
τ ðRVðn; τÞ∂τ∂kt log fðt; τÞjt¼0Þ�; ð60Þ

which yields the same results computed using Newton’s
identities in the previous section.

3. Summary of results

For later convenience, let us briefly summarize the
results of the above calculation. We have evaluated the

Galois sums in the dual resonant form of the amplitude in
Eq. (35) to obtain

Aðs; tÞ ¼
X∞
n¼0

�
1

μðnÞ − s
þ Q0ðnÞ
μ0ðnÞQðnÞ

�
Rðn; tÞ: ð61Þ
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Here the s-dependent factor was computed in Eq. (48),
while the t-dependent residue was computed via Newton’s
identities in Eqs. (50), (54), and (57), and via Cauchy’s
theorem in Eqs. (59) and (60).
Since the second term in Eq. (61) is independent of s, it

corresponds to the boundary term in the unsubtracted
dispersion relation in Eq. (2), so

A∞ðtÞ ¼
X∞
n¼0

Rðn; tÞQ0ðnÞ
μ0ðnÞQðnÞ : ð62Þ

Alternatively, we can also reabsorb this boundary term
into the numerator by defining an s-dependent residue.
In particular, we can write the bespoke dual resonant
amplitude as

Aðs; tÞ ¼
X∞
n¼0

Rðn; s; tÞ
μðnÞ − s

where

Rðn; s; tÞ ¼ Rðn; tÞ
�
1þ ðμðnÞ − sÞQ0ðnÞ

μ0ðnÞQðnÞ
�
: ð63Þ

Here Rðn; s; tÞ and Rðn; tÞ are equal on the pole at
s ¼ μðnÞ. Thus we arrive at a central conclusion of this
paper: a closed-form, dual resonant representation for a
new infinite class of scattering amplitudes with a custom-
izable spectrum.
Note that for the case of the Kaluza-Klein amplitude, the

spectral curve in Eq. (15) corresponds to PðνÞ ¼ ðνþ δÞ2
andQðνÞ ¼ 1, for which the contact and boundary terms in
Eqs. (61), (62), and (63) all vanish. In this case, these
formulas accord with those derived earlier for the Kaluza-
Klein amplitude.

4. Constraint of polynomial residues

Let us briefly comment on the constraint of polynomial
residues, which is simply the requirement that the residue
on each pole, Rðn; tÞ, is a polynomial in t. When this
condition fails, the exchanged mode exhibits partial waves
of arbitrarily high spin, indicating some intrinsic non-
locality in the theory.
In our discussion thus far, we have focused on the case in

which the spectral curve, defined in Eq. (28), is monic. This
requires that jPj > jQj, in which case the residues Rðn; tÞ
are polynomial. What happens when jPj ≤ jQj?
It is easiest to see why this other choice is pathological

with a concrete example. To this end, let us consider an
accumulation-point spectrum, defined by fðμ; νÞ ¼ 1 − μν,
corresponding to PðνÞ ¼ 1 and QðνÞ ¼ ν. In this case,
the spectrum is μðνÞ ¼ 1=ν, which accumulates to zero. For
this choice of spectrum, the dual resonant amplitude in
Eq. (32) effectively maps s → 1=s and t → 1=t in the

Veneziano amplitude. This leads to residues that are not
polynomials in t, but rather in 1=t, violating locality.5

Our constructions using Newton’s identities or Cauchy’s
theorem do not apply to the spectrum described above,
simply because the spectral curve is not monic: the highest
power of ν in fðμ; νÞ has coefficient −μ. Hence, while the
fundamental theorem of symmetric polynomials guarantees
that the Rðn; tÞ are polynomial in the elementary symmetric
polynomials ei, the violation of the monic condition
implies that the ei are no longer simply a remapping of
the coefficients of the spectral curve up to signs as given
in Eq. (55). The residue Rðn; tÞ therefore need not be
polynomial for spectral curves that are not monic.

V. EXAMPLES

We now turn to some concrete examples in order to
illustrate how our construction works in explicit detail. In
particular, for these cases we will compute the residues and
asymptotics for the corresponding bespoke amplitudes and
determine the parameter regions that are consistent with
partial wave unitarity. The latter requirement mandates
positivity of the coefficient an;l ≥ 0 of the spin-l partial
wave of the resonance at level n. For the sake of brevity, we
will not recapitulate the familiar story of unitarity bounds,
but refer the interested reader to a review of those details in
the Appendix.

A. Simplest nonlinear model

The degree h of the spectral curve in Eq. (28) bounds the
maximal complexity of the spectrum. For h ¼ 1, the spectral
curve is linear, and our construction simply corresponds to
an affine transformation acting on the kinematic arguments
of the Veneziano amplitude. Hence, the first nontrivial case
occurs when the spectral curve becomes nonlinear at h ¼ 2,
which we now consider. In this case, the spectral curve is
defined by the following polynomials:

PðνÞ ¼ ν2 þ p1νþ p2 and QðνÞ ¼ νþ q2: ð64Þ
This class of models has asymptotically linear Regge
behavior, since limν→∞μðνÞ=ν ¼ 1, but exhibits a nonlinear
spectrum at finite ν.
The zero locus of the spectral function, fðμ; νÞ ¼ 0,

defines the roots

ν�ðμÞ ¼
1

2

�
μ − p1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 − 4p2 − 2ðp1 − 2q2Þμþ μ2

q �
;

ð65Þ

5A similar issue arises for the Coon amplitude, where a log-
dependent prefactor cures the inverse powers of t in the residues,
though at the expense of introducing potential issues with
unitarity [8]. While it would be interesting to see if similar
prefactors can allow for consistent accumulation-point ampli-
tudes using our Galois sum construction, we will not pursue this
idea here.
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so the corresponding bespoke dual resonant amplitude is
given by Eq. (32). In order to ensure convergence of the
asymptotic behavior, we impose the negative real condition
in Eq. (38), so Reðν�ðtÞÞ < 0. Demanding this constraint
for all t < 0 implies that

p1; p2; q2 > 0: ð66Þ

On the other hand, if we merely demand that there exists
some real value of t for which the asymptotics are
convergent, then we obtain

q2 > 0 or p2 > p1q2; ð67Þ

which is a weaker sufficient condition. For any choice
of parameters conforming with these conditions, the
scattering amplitude in Eq. (32) will have a dual resonant
representation.
Alternatively, we can employ a more physical para-

metrization in which the variables p1, p2, and q2 are
remapped onto the values of the first three masses in the
spectrum, μð0Þ, μð1Þ, and μð2Þ. We can then impose the
constraints of partial wave unitarity on the physical mass
spectrum. In Fig. 1, we have computed the range of masses
consistent with partial wave unitarity up through n ≤ 6,
together with the weaker dual resonance condition in
Eq. (67). Here we have considered the cases in which
the mass squared for the external states is m2

ext ¼ 0 or −1.
Among the simplest nonlinear models, there is a par-

ticularly nice choice of parameters, p1 ¼ p2 ¼ δ and
q2 ¼ 1, which yields a scattering amplitude with several
exceptional properties. For these parameters, we obtain a
spectrum of the form

μðνÞ ¼ ν2

νþ 1
þ δ; ð68Þ

which enjoys the curious duality invariance

νþ 1 ↔
1

νþ 1
: ð69Þ

The conditions in Eqs. (66) and (67) imply that dual
resonance holds for all t < minð0; δÞ. Plugging these
special parameters into Eq. (39), we obtain an incredibly
simple, t-independent expression for the boundary term at
infinity,

A∞ðtÞ ¼
X
β

AVð−1; νβðtÞÞ ¼ −
X
β

1

νβðtÞ
¼ 1; ð70Þ

which also agrees with numerical evaluation of the Regge
limit. As one can check, this result agrees with Eq. (62),
with the factor of μ0ðnÞ in the denominator canceling that in
Rðn; tÞ in Eq. (50). Including this contact term, we obtain
the corresponding amplitude,

Aðs; tÞ ¼ 1þ
X∞
n¼0

Rðn; tÞ
μðnÞ − s

; ð71Þ

which can be written in the dual resonant form in
Eq. (63) simply by reabsorbing the contact term into the
s-channel sum.
For this special model, we have computed the bounds

from particle wave unitarity up to level n ≤ 40, assuming
m2

ext ¼ 0 in D ¼ 4 dimensions. These constraints imply
that −1=2 ≤ δ≲ −0.3541. Remarkably, for this family of
amplitudes, the state at n ¼ 0 has a vanishing partial wave
coefficient, a0;0 ¼ 0, so there is no associated pole, and the
n ¼ 0 state can be excised from the spectrum. In contrast, at
level n ≥ 1 the associated partial waves an;l for 0 ≤ l ≤ n
are all nonzero. Finally, we note that the particular choice of

FIG. 1. Parameter regions consistent with partial wave unitarity and the weaker dual resonance condition in Eq. (67) for the simplest
nonlinear models. Here, the left and right panels correspond to m2

ext ¼ 0 and −1, respectively, working in spacetime dimension D ¼ 4.
We have displayed constraints from all partial waves through n ≤ 6, beyond which the allowed region does not appreciably change. The
value of the lightest particle, μð0Þ, is apparently not constrained by unitarity for arbitrarily negative values.
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δ ¼ −1=2 is interesting, since it sets μð1Þ ¼ 0, so the
lightest exchanged states are a massless scalar and vector,
where the former can in principle be identified with the
external state.

B. Post-Regge expansion

Next, let us consider a family of amplitudes defined by a
spectral curve of arbitrary degree h. In order to reduce the
parameter space to a manageable size, we will assume a
particularly simple form for the spectral curve, defined by

PðνÞ¼
Xh
i¼0

κiðν−ν�Þh−i and QðνÞ¼ðν−ν�Þh−1; ð72Þ

where κ0 ¼ 1 to keep the spectral curve monic. From the
discussion in Sec. IV C, we saw that dual resonance for
some sufficiently negative value of t requires that the roots
of Q all have negative real components. This is ensured
provided we assume that ν� < 0. Note that κ0 ¼ 1 so that
the spectral curve is monic.
By construction, the spectrum of this class of theories is

controlled by the function

μðνÞ ¼ PðνÞ
QðνÞ

¼
Xh
i¼0

κiðν − ν�Þ1−i

¼ ðν − ν�Þ þ κ1 þ
κ2

ν − ν�
þ κ3
ðν − ν�Þ2

þ � � � ; ð73Þ

describing a series expansion in inverse powers of ν − ν�.
The leading term is simply the asymptotic linear Regge
behavior familiar from string theory. However, our
construction now allows for customizable post-Regge

corrections to this leading behavior. For this reason, we
will refer to this spectrum as a post-Regge expansion.
Let us now turn to the question of partial wave unitarity.

A priori, these amplitudes have hþ 1 free parameters given
by ν� and κi. The enormous size of this parameter space,
even for modest values of h, will require ad hoc choices
of parameters simply in order to visually depict any
bounds. For this reason we will cut down the parameter
space to h − 1 variables by imposing the constraint that
a0;0 ¼ a1;1 ¼ 0. This choice is not entirely random. Rather,
it has the advantage of completely excising the n ¼ 0
resonance from the spectrum μðnÞ, allowing us to con-
template large negative μð0Þ values with impunity.
Furthermore, it removes the l ¼ 1 partial wave at n ¼ 1,
so we are safe from spinning tachyons at that level [18,19].
We will assume this choice of parameters for the remainder
of this section.
There are many ways to visualize the bounds on this

restricted parameter space. In our first approach, we
consider the case in which we set the external masses to
mext ¼ 0 and the spacetime dimension to D ¼ 4, while
eliminating κh−1 and κh via the conditions a0;0 ¼ a1;1 ¼ 0.
We then compute the constraints from partial wave unitarity
up to n ≤ 8. For h ¼ 2, this leaves a one-parameter space of
theories, constrained by −1.2293≲ ν� < 0. Meanwhile, for
h ¼ 3 and h ¼ 4, we plot the regions consistent with partial
wave unitarity in Fig. 2.
In a second approach, we rewrite the hþ 1 free param-

eters of the spectral curve in terms of the first h masses in
the spectrum, along with ν�. In principle, these physical
masses can be freely chosen. However, again to reduce the
parameter space to a reasonable size, we constrain the first
h masses to a line of arbitrary slope and intercept, so

μðνÞ ¼ λνþ μð0Þ for ν ¼ 0;…; h − 1: ð74Þ

FIG. 2. Parameter regions of the amplitudes in the post-Regge expansion consistent with partial wave unitarity up to n ≤ 8 for the
h ¼ 3 (left) and h ¼ 4 (right) models, where κh−1 and κh are fixed by requiring a0;0 ¼ a1;1 ¼ 0. Furthermore, we have set m2

ext ¼ 0

and D ¼ 4.

BESPOKE DUAL RESONANCE PHYS. REV. D 108, 086009 (2023)

086009-13



We now eliminate ν� and μð0Þ via the conditions a0;0 ¼
a1;1 ¼ 0. In the end, we obtain a family of amplitudes
controlled by just two parameters, λ and m2

ext. These
variables are particularly nice because they transparently
characterize how much the low-lying states can deviate
from a linear spectrum with unit slope. In particular, Fig. 3
depicts the regions of parameter space consistent with
partial wave unitarity up to n ≤ 5 for h ¼ 2, 3, 4, 5, 6.
Notice that λ is restricted to a relatively narrow range of
values, demonstrating that partial wave unitarity disfavors
large deviations from the linear Regge spectrum of string
theory. This apparent stiffness under the simultaneous
constraints of dual resonance and partial wave unitarity
comports with the results of asymptotic uniqueness [1].

VI. HIGHER-POINT SCATTERING

Up to this point, our analysis has focused solely on the
case of four-point scattering. Perhaps surprisingly, our
construction has a mechanical generalization to higher-
point scattering, which we now discuss. In particular, the
resulting higher-point amplitudes have a customizable
spectrum, exhibit an integral representation reminiscent
of a worldsheet, and pass some basic consistency checks on
factorization. Nonetheless, we emphasize here that the full
consistency of these higher-point bespoke scattering ampli-
tudes is far from established.

A. Remapping the spectrum

As a warmup, let us revisit the higher-point string
amplitudes, which we denote by AVðfsIgÞ. These objects

are most easily formulated using the Koba-Nielsen
formula [20]. Here fsIg denotes the minimal basis of
planar kinematic invariants, which are labeled by an index
I running over choices of contiguous sets of the external
momentum labels. For example, for low-point amplitudes
this basis is

four-point∶ fs12; s23g;
five-point∶ fs12; s23; s34; s45; s51g;
six-point∶ fs12; s23; s34; s45; s56; s61; s123; s234; s345g; ð75Þ

and so on, where si1���ik ¼ −ðpi1 þ � � � þ pikÞ2. In general,
for the scattering of N particles, the minimal planar basis
will have NðN − 3Þ=2 invariants. See Ref. [21] for more
details. The advantage of utilizing a basis of planar
invariants follows from the fact that planar amplitudes
only exhibit factorization channels among adjacent sets of
legs. As a result, factorization in a channel labeled by I
simply corresponds to setting sI equal to the mass squared
of the corresponding intermediate state.
To generalize to higher-point scattering, we still define a

spectral curve fðμ; νÞ of the form in Eqs. (28) and (31),
whose zeros dictate the spectrum μðνÞ of the theory, as well
as a family of inverse roots ναðμÞ. It is then natural to define
a new higher-point bespoke amplitude,

AðfsIgÞ ¼
�Y

I

X
αI

�
AVðfναIðsIÞgÞ; ð76Þ

which simply folds each planar invariant sI with a function
ναI ðsIÞ, and then sums over all branches of roots labeled by
αI . To be very explicit, at four-point Eq. (76) yields our
original formula from Eq. (32),

Aðs12; s23Þ ¼
X
α12;α23

AVðνα12ðs12Þ; να23ðs23ÞÞ; ð77Þ

while at five-point we obtain the analogous expression

Aðs12; s23; s34; s45; s51Þ
¼

X
α12 ;α23 ;α34 ;

α45 ;α51

AVðνα12ðs12Þ; να23ðs23Þ; να34ðs34Þ;

να45ðs45Þ; να51ðs51ÞÞ; ð78Þ

and so on. As before, we can recast the sum over roots into
the form of a d log contour integral over the higher-point
string amplitude,

AðfsIgÞ ¼
�Y

I

I
d log fðsI; σIÞ

2πi

�
AVðfναIðσIÞgÞ; ð79Þ

where each contour of integration is simply given by the
sum of loops wrapping the poles defined by fðsI; σIÞ ¼ 0.

FIG. 3. Parameter regions of the amplitudes in the post-Regge
expansion consistent with partial wave unitarity up to n ≤ 5 for
the h ¼ 2 (yellow), h ¼ 3 (green), h ¼ 4 (pink), h ¼ 5 (blue),
and h ¼ 6 (purple) models. Here we fix ν� and μð0Þ via a0;0 ¼
a1;1 ¼ 0 and setD¼4 and μðνÞ ¼ λνþ μð0Þ for ν ¼ 0;…; h − 1.
The shaded gray region to the left of the red line is forbidden by
requiring that μð2Þ ≥ 0 in order to avoid spinning tachyons.
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Since the higher-point bespoke amplitude in Eq. (76) is
simply a Galois sum of the higher-point Veneziano ampli-
tude, the former will automatically inherit many properties
of the latter. One such property is invariance under the
various relabeling symmetries of the original string ampli-
tude. For example, any cyclic permutation on the labels of
the external particles will correspond to some permutation
of the sI among themselves, which is in turn equivalent to
the action of the inverse permutation on the αI , on account
of the underlying cyclic symmetry of AV itself. Since all
possible choices of the αI appear democratically in the
Galois sum, this relabeling leaves the bespoke amplitude
invariant as well. The same statements apply to the flip
symmetry of the string amplitude.
Another inherited property is dual resonance. In par-

ticular, any dual resonant representation of the higher-point
Veneziano amplitude [22] can be inserted into the Galois
sum to produce a corresponding dual resonant representa-
tion of the higher-point bespoke amplitude. Then one need
only check that this sum is convergent, which we suspect is
ensured for amplitudes with sufficiently tame ultraviolet
behavior. We leave a full analysis of this important question
to future work.

B. Worldsheet representations

Given that the higher-point bespoke amplitude in Eq. (76)
is a sum over all roots of the spectral curve, it is natural to
anticipate that it is free of branch cuts. Indeed, we can verify
that this is the case by constructing an integral representation
for these objects. As usual, our approach here will be to
simply compute the Galois sum over the existing worldsheet
representation for the higher-point string amplitudes.
To begin, recall the integral representation of the

Veneziano amplitude,

AVðs12; s23Þ ¼
Z

1

0

dx x−s12−1ð1 − xÞ−s23−1; ð80Þ

which in string theory is derived from an integral over
worldsheet moduli after gauge fixing. Plugging this expres-
sion into Eq. (77), we obtain the bespoke four-point
amplitude,

Aðs12; s23Þ ¼
Z

1

0

dx
X
α12

x−να12 ðs12Þ−1
X
α23

ð1 − xÞ−να23 ðs23Þ−1:

ð81Þ
For convenience, let us define a special function,

ρðx; sÞ ¼
X
α

x−ναðsÞ; ð82Þ

which is analytic in s since it is manifestly a sum over roots.6

Our next task will be to rewrite our amplitudes in terms of ρ.
In particular, the bespoke four-point amplitude is

Aðs12; s23Þ ¼
Z

1

0

dx
ρðx; s12Þρð1 − x; s23Þ

xð1 − xÞ ; ð83Þ

which is analytic in the kinematic invariants except at simple
poles. All branch cuts have canceled in the above expression.
We emphasize that this cancellation was only possible
because each planar kinematic invariant occurs in a distinct
multiplicative factor in Eq. (80).
As one might anticipate, the same phenomenon occurs in

the five-point string amplitude [23], whose worldsheet
representation can be written as

AVðs12;s23;s34;s45;s51Þ

¼
Z

1

0

Z
1

0

dxdy
x−s12ð 1−x

1−xyÞ−s23y−s45ð 1−y1−xyÞ−s34ð1−xyÞ−s51
xð1−xÞyð1−yÞ :

ð84Þ

We therefore have a worldsheet representation for the five-
point bespoke amplitude,

Aðs12; s23; s34; s45; s51Þ ¼
Z

1

0

Z
1

0

dx dy
ρðx; s12Þρð 1−x1−xy ; s23Þρðy; s45Þρð 1−y1−xy ; s34Þρð1 − xy; s51Þ

xð1 − xÞyð1 − yÞ : ð85Þ

As before, the dependence on each planar kinematic
invariant factorizes multiplicatively, in which case the
amplitude can be written in a form that is manifestly free
of branch cuts. This factorization property occurs for any
number of external particles. To understand why, recall that
any string amplitude is computed from a product of vertex
operators that introduce kinematic dependence through
factors of the form ðxi − xjÞ−sij , where xi and xj are moduli
variables and the indices label external legs. Crucially, we
can always decompose any kinematic invariant into the
planar basis, so

sij ¼
X
I

cijIsI: ð86Þ

As a result, we can recast any product of vertex operator
contributions as

6One can verify that this is the case by expanding x about any
nonzero point, yielding a series whose coefficients are power
sums dkðsÞ over the roots, which as before can be computed via
Newton’s identities.
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Y
i<j

ðxi − xjÞ−sij ¼
Y
i<j

ðxi − xjÞ−
P

I
cijIsI

¼
Y
I

�Y
i<j

ðxi − xjÞcijI
�
−sI

: ð87Þ

The latter is manifestly a factorized product of terms, each
of which depends on a different planar kinematic invariant.
Applying the sum over roots to a given factor on the right-
hand side, we obtain

X
αI

�Y
i<j

ðxi−xjÞcijI
�
−ναI ðsIÞ ¼ρ

�Y
i<j

ðxi−xjÞcijI ;sI
�
; ð88Þ

which is expressed purely in terms of the analytic
function ρ. All branch cuts thus cancel in our higher-point
bespoke amplitudes.
We should pause to emphasize that while the above

integral representations are strongly reminiscent of a
worldsheet, we have not actually constructed a full theory
in this regard. In particular, it remains to be seen if there
exist consistent vertex operators whose insertions generate
the integral forms above.

C. Factorization

In our analysis of four-point scattering, we considered
the constraint of partial wave unitarity but ignored factori-
zation altogether. This was not simply an omission. Rather,
the relevant three-point amplitudes are tautologically
defined to be those which arise in the factorization channels
of the four-point amplitude. Thus, by construction factori-
zation does not impose any meaningful constraint in going
from four-point to three-point. At higher-point, however,
the condition of factorization is no longer automatic.
Proper factorization of higher-point string amplitudes—

including exchanges of arbitrarily high mass and spin—is a
mathematical property that has yet to be proven directly
using amplitudes methods. Instead, results in this area have
centered primarily on factorization channels involving just
the lightest states of the theory. Here we will do the same
and only consider factorization on the lowest-lying mode,
which in our case is the single scalar residing at the n ¼ 0
level. We leave the far more difficult question of factori-
zation at general n to future work.
For the higher-point Veneziano amplitude, factorization

onto the massless scalar at level n ¼ 0 corresponds
to s� ¼ 0, where s� is the planar kinematic invariant
corresponding to the factorization channel in question.
Consistency mandates that, on this factorization channel,
the amplitude degenerates into a product of lower-point
Veneziano amplitudes,

lim
s�→0

s�AVðfsIgÞ ¼
X
L⊥R

AVðfsILgÞAVðfsIRgÞ: ð89Þ

Here, L and R are two mutually exclusive, contiguous
subsets of the external labels whose union forms the full set
of N external particles. The sum in Eq. (89) runs over the
partitions of all N particles into the sets L and R.
Meanwhile, the sets fsILg and fsIRg denote the minimal

bases of planar invariants for the lower-point amplitudes
that appear in the factorization channel. Crucially, for scalar
exchange we know that the factorization channel cannot
allow any dependence on kinematic invariants built from
momenta that lie in different lower-point amplitudes.
Hence the union of planar kinematic invariants that appear
in the left and right amplitudes is a proper subset of the full
set of planar kinematic invariants in the original amplitude,
specifically,

fsILg ∪ fsIRg ¼ fsIgnfs�g; ð90Þ

where s� disappears on the factorization channel since it
has been set to zero.
Next, let us ask what happens when this same analysis is

applied to the higher-point bespoke amplitude. Here
we consider the factorization channel onto the scalar at
level n ¼ 0, which is defined by s� ¼ μð0Þ. Assuming the
spectral function does not have any double zeros, it exhibits
a single root labeled by ν�ðs�Þ ¼ 0, whose vanishing
corresponds to the factorization channel. To take the
residue, we change variables from s� to ν�ðs�Þ at the
expense of a Jacobian, lims�→μð0Þðs� − μð0ÞÞ=ν�ðs�Þ ¼
μ0ð0Þ, yielding

lim
s�→μð0Þ

ðs� − μð0ÞÞAðfsIgÞ

¼ μ0ð0Þ lim
ν�ðs�Þ→0

�Y
I

X
αI

�
ν�ðs�ÞAVðfναIðsIÞgÞ

¼ μ0ð0Þ
�Y

I≠�

X
αI

�
lim

ν�ðs�Þ→0
ν�ðs�ÞAVðfναIðsIÞgÞjα�¼�

¼ μ0ð0Þ
�Y

I≠0

X
αI

�X
L⊥R

AVðfναIL ðsILÞgÞAVðfναIR ðsIRÞgÞ:

ð91Þ

Note that in the second line, we have dropped the sum over
α�, which labels the roots folding the factorizing invariant
s�. The only term from this sum that is included is the one
in which s� is folded into ν�ðs�Þ. For all the other terms,
the resulting contribution will not have a singularity at
s� ¼ μð0Þ, so they vanish when taking the residue. In the
third line, we have simply used the factorization condition
on the Veneziano amplitude in Eq. (89).
At this point, it is useful to consider the counting of

kinematic invariants. The total number of external legs is
partitioned according to N ¼ jLj þ jRj. The left-hand side
of Eq. (91) is the factorization limit of a higher-point
amplitude with N external particles, so it depends on
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NðN − 3Þ=2 − 1 kinematic invariants. Meanwhile, the
right-hand side has lower-point amplitudes with jLj þ 1
and jRj þ 1 external particles, corresponding to ðjLj þ
1ÞðjLj − 2Þ=2 and ðjRj þ 1ÞðjRj − 2Þ=2 invariants. The
difference between these numbers is ðjLj − 1ÞðjRj − 1Þ,
which corresponds to the number of Galois sums in

Eq. (91) that act trivially, since there is no dependence
on their corresponding kinematic invariants on the factori-
zation channel. Since these sums run over h roots, they
introduce a trivial multiplicity factor of hðjLj−1ÞðjRj−1Þ. By
splitting this factor between the lower-point amplitudes,
we obtain

lim
s�→μð0Þ

ðs� − μð0ÞÞAðfsIgÞ ¼ μ0ð0Þ
X
L⊥R

�
hðjLj−1Þ

�Y
IL

X
αIL

�
AVðfναIL ðsILÞgÞ

��
hðjRj−1Þ

�Y
IR

X
αIR

�
AVðfναIR ðsIRÞgÞ

�
; ð92Þ

where we have rearranged the original sum over I into sums over IL and IR. We immediately recognize the objects in
brackets as lower-point bespoke amplitudes, so

lim
s�→μð0Þ

ðs� − μð0ÞÞAðfsIgÞ ¼ μ0ð0Þ
X
L⊥R

hðjLj−1ÞAðfναIL ðsILÞgÞhðjRj−1ÞAðfναIR ðsIRÞgÞ: ð93Þ

Thus, our bespoke amplitudes have factorized from higher-
point to lower-point, modulo a multiplicative constant that
depends on the numbers of external particles. While the
latter may seem peculiar, we emphasize that these factors
can be trivially eliminated. For example, μ0ð0Þ can be
reabsorbed into the normalization of the n ¼ 0 state.
Meanwhile, the factor of hðjLj−1ÞðjRj−1Þ will not arise if
each Galois sum in Eq. (76) is replaced with a Galois
average, by which we mean the Galois sum divided by the
multiplicity of roots h.

VII. DISCUSSION

In this paper, we have derived analytic expressions for a
new family of scattering amplitudes that simultaneously
exhibit a litany of remarkable properties:
(a) Arbitrary spectrum: The spectrum of masses is de-

scribed by a rational polynomial of arbitrary degree.
This function can be specified to interpolate through
any finite collection of masses and exhibit any type of
polynomial growth.

(b) Infinite spin tower: The spectrum describes states of
arbitrarily high spin. However, to maintain locality,
only a finite number of spins are exchanged at each
resonance.

(c) Tame ultraviolet behavior: The high-energy Regge
behavior, s → ∞, is not just polynomial bounded, but
either vanishing or constant at some fixed t.

(d) Dual resonance: The amplitude has a closed-form
representation in terms of an infinite sum over purely
s-channel or t-channel exchanges.

(e) Meromorphicity: The amplitude is analytic but for
simple poles. In particular, there are no branch-cut
singularities in the kinematic variables.

(f) Integral representations: The amplitude can be
represented as an integral over moduli, strongly

reminiscent of a worldsheet construction. As a bonus,
the amplitude can also be expressed as an elegant d log
transform of existing string amplitudes.

(g) Higher-point generalization: Our construction has a
natural generalization to higher-point, which produces
candidate amplitudes with the above properties.

The scattering amplitudes of string theory are the only
objects hitherto known to possess almost all of these
properties, of course with the exception of (a). The recently
constructed class of hypergeometric amplitudes [2] does
not yet have a generalization to (g) and, with a spectrum
matching string theory, does not exhibit property (a).
Meanwhile, the Coon amplitude [5] and its generalizations
[2,6] do not satisfy conditions (a), (e), or (f).
That the properties above can all be satisfied at once

is both surprising and compelling. Fundamentally, this
miracle is possible because our bespoke amplitudes are
directly constructed from a Galois sum—or equivalently, a
d log integral transform—of the Veneziano amplitude. For
this reason, the bespoke amplitudes inherit many of the
wondrous properties of the string, albeit without a stringy
spectrum. The constraints of partial wave unitarity are
substantial, but they leave open a broad region of putatively
consistent amplitudes.
The possible avenues for future work are numerous.

Most pressingly, there is the critical question of whether our
bespoke amplitudes possess a bona fide, underlying physi-
cal description. While this is far from guaranteed—and the
space of amplitudes we have constructed is not a theory—
the integral representations presented in Sec. VI B offer
enticing hope. That said, it is clear that if such a theory
exists, it will likely require some unusual dynamics.
Furthermore, it would be interesting to pursue other,

broader applications of our construction. For example,
while the present paper utilizes the Veneziano amplitude
of the bosonic string as its basic building block, it would be
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straightforward to instead use the amplitudes of the super-
string. Such an approach would yield dual resonant
amplitudes that reduce to Yang-Mills theory at low energies
but support a customizable spectrum. Another question of
more phenomenological interest would be to apply these
ideas to the strong interactions. Perhaps one can construct a
dual resonant scattering amplitude that interpolates through
the spectrum of mesons.
Last but not least is the open question of gravity. In

particular, one can ask whether there is an analogue of our
construction that is applicable to the amplitudes of the
closed string. Here an immediate difficulty arises from the
fact that graviton scattering exhibits full crossing symmetry
among s, t, and u. The on-shell condition, sþ tþ u ¼ 0,
cannot be preserved under any nonlinear, permutation
invariant remapping of the kinematic variables, since
νðsÞ þ νðtÞ þ νðuÞ ≠ 0. This basic problem may be a hint
that gravitational amplitudes are inherently less amenable
to modification than their gauge theory cousins.
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APPENDIX: PARTIAL WAVE UNITARITY

For completeness, let us review here the formalism of
partial wave unitarity. We decompose the residue of an
amplitude at level n in terms of partial waves,

Rðn; tÞ ¼
X
l

an;lG
ðDÞ
l ðxÞ; ðA1Þ

where x ¼ cos θ is related to the scattering angle and GðDÞ
l

is the Gegenbauer polynomial in D ≥ 4 spacetime dimen-
sions. In a unitary theory, the coefficients of the partial
waves on each pole must have all positive coefficients, so
an;l ≥ 0. On the residue, t is related to the scattering angle
in terms of x via

t ¼ 1

2
ðx − 1ÞðμðnÞ − 4m2

extÞ; ðA2Þ

where m2
ext gives the mass squared of the four

external particles, which we take to be equal. In order

to compute an;l it will be convenient to use the
monomial identity,

xk ¼
Xbk=2c
j¼0

k!
h
1þ 2ðk−2jÞ

D−3

i
Γ


D−1
2

�

2kj!Γ


D−1
2

þ k − j
� GðDÞ

k−2jðxÞ: ðA3Þ

By expressing the residue as Rðn; tðxÞÞ and replacing
each power in x via Eq. (A3), we can directly read off
the partial wave coefficients an;l.
An amusing mathematical fact is that the Gegenbauer

polynomials in D dimensions are always expressible
as non-negative sums of the Gegenbauer polynomials in
D0 ≤ D dimensions. In other words, the connection coef-
ficients associated with the Gegenbauer polynomials in
different dimensions are non-negative [24]. This observa-
tion has the profound physical implication that unitarity is
preserved under dimensional reduction. On the other hand,
an amplitude may cease to be unitary if the dimensionality
of the spacetime is increased. For the Veneziano amplitude,
this fact is a tree-level manifestation of the critical dimen-
sion of string theory [4]. One can indeed verify that, for
example, with m2

ext ¼ 0, the residues of the Veneziano
amplitude in Eq. (8) are non-negative in D ≤ 10, while for
m2

ext ¼ −1 they are non-negative for D ≤ 26, correspond-
ing to the superstring and bosonic string, respectively.
On the other hand, it appears that there are always

negative residues in the Kaluza-Klein amplitude defined in
Eq. (25). Concretely, we find that for arbitrary δ, m2

ext, and
D ≥ 4, there exists some partial wave for which an;l < 0

for n ≤ 3. This is consistent with the no-go result of
Ref. [1]. In particular, Ref. [1] considered a class of
crossing-symmetric, meromorphic amplitudes satisfying
(i) partial wave unitarity, (ii) Regge boundedness,
(iii) Regge behavior in the eikonal hard scattering limit
(small fixed t=s with s; t → ∞), and (iv) a spectrum free of
accumulation points. For such objects, they showed that the
Veneziano amplitude is asymptotically unique: μðnÞ ∼ n at
large n, and the hard scattering limit takes the form given in
Eq. (41). However, such a conclusion hinges on an addi-
tional technical assumption made in Ref. [1], namely that
certain “excess zeros” in the s-plane at fixed t must lie in a
particular ellipse. While some arguments and numerical
evidence for this assumption were given in Ref. [1], a
rigorous proof was not provided, and new results [25] have
indicated that it can be violated. We therefore take the
asymptotic uniqueness result as simply motivation for our
requirement that P and Q differ in degree by one, but this
stipulation is unimportant for our formalism. As we have
seen, our bespoke construction straightforwardly allows for
dual resonant amplitudes with spectra of arbitrary degree.
As always, however, one must numerically check partial
wave unitarity ex post facto.
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