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Recently, we proposed that the one-loop tadpole diagram in perturbative nonsupersymmetric heterotic
string vacua that contain an anomalous Uð1Þ symmetry, leads to an analog of the Fayet-Iliopoulos D-term
in N ¼ 1 supersymmetric models, and may uplift the vacuum energy from negative to positive value. In
this paper, we extend this analysis to new types of vacua, including those with stringy Scherk-Schwarz
(SSS) spontaneous supersymmetry breaking versus those with explicit breaking. We develop a criteria that
facilitates the extraction of vacua with Scherk-Schwarz breaking. We develop systematic tools to analyze
the T-duality property of some of the vacua and demonstrate them in several examples. The extraction of
the anomalous Uð1ÞD-terms is obtained in two ways. The first utilizes the calculation of the Uð1Þ-charges
from the partition function, whereas the second utilizes the free fermionic classification methodology
to classify large spaces of vacua and analyze the properties of the massless spectrum. The systematic
classification method also ensures that the models are free from physical tachyons. We provide a systematic
tool to relate the free fermionic basis vectors and one-loop generalized GSO phases that define the string
models, to the one-loop partition function in the orbifold representation. We argue that a D-term uplift,
while rare, is possible for both the SSS class of models, as well as in those with explicit breaking. We
discuss the steps needed to further develop the arguments presented here.
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I. INTRODUCTION

The Standard Model (SM) of particle physics provides
an effective parametrization for all observational subatomic
data to date. It is even possible that it remains viable up to
the grand unified theory (GUT) scale, or Planck scale,
where gravitational effects become prominent. In this case,
gaining insight into the fundamental origin of the SM
parameters can only be gleaned by fusing it with gravity.
String theory provides the most advanced contemporary
framework to pursue the synthesis of gravity with the
subatomic gauge interactions. For that purpose, Standard-
like Models were constructed in the free fermionic formu-
lation of the heterotic string and provide a laboratory to
study how the Standard Model parameters may arise in a
theory of quantum gravity [1–7]. The free fermionic
heterotic string models are Z2 × Z2 orbifolds of six

dimensional tori at enhanced symmetry points in the
moduli space [8–12].
While the majority of phenomenological string models

constructed to date possess N ¼ 1 spacetime supersym-
metry (SUSY), absence of SUSY at observable energy
scales mandates that it has to be broken. Spacetime SUSY
in string models can be broken by nonperturbative effects
in the effective field theory limit of the string vacua, or it
may be broken directly at the string scale. In the string
constructions, we may distinguish between explicit and
spontaneous breaking, where, in the former, the remaining
gravitino is projected from the spectrum, whereas sponta-
neous breaking can arise through the Scherk-Schwarz
mechanism [13–17], in which case the gravitino mass is
proportional to the inverse of an internal radius of the six
dimensional compactified torus.
It is clear that addressing many of the questions in string

phenomenology mandates the breaking of SUSY. In
particular when it comes to the cosmological evolution
and string dynamics near the Planck scale. The non-SUSY
string vacua typically contain physical tachyons in their
spectra that indicate that they are unstable. However, also
those configurations that are free of physical tachyons, in
general have nonvanishing tadpoles and vacuum energy
that in general lead to instability.
One of the recurring features in supersymmetric string

derived models is the existence of an anomalous Uð1Þ
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(Uð1ÞA) symmetry. The Uð1ÞA is canceled by an analogue
of the Green-Schwarz mechanism, which generates a
Fayet-Iliopoulos (FI) D-term that breaks SUSY near the
Planck scale [18,19]. The nonvanishing D-term gives rise
to a nonvanishing vacuum energy at two-loop [20]. SUSY
can be restored by assigning nonvanishing Vacuum
Expectation Values (VEV) to some Standard Model singlet
fields along F- and D-flat directions. The anomalous Uð1Þ
symmetry in string construction plays a pivotal role in
many of the phenomenological studies of string compacti-
fications [21–24].
An anomalous Uð1Þ symmetry is a recurring feature also

in non-SUSY string vacua. The same diagram in string
perturbation theory that generates the FI term in the SUSY
configurations is also present in the non-SUSY configu-
rations, i.e., both in those with explicit SUSY breaking, as
well as those in which it is broken by the SSS mechanism.
Similarly, the two-loop diagram contributing to the vacuum
energy is also present in the case of non-SUSY vacua,
either with explicit or SSS SUSY breaking. Thus, it
imperative to take into account this contribution to the
vacuum energy also in these cases.
This contribution to the vacuum energy is particularly

pertinent to the question of the existence of a de-Sitter
vacuum in string theory. Astrophysical and cosmological
data indicate that the universe is accelerating. The existence
of a positive vacuum energy is one of the possible
explanations. However, the existence of string vacua with
positive vacuum energy and stable moduli is currently
under intense scrutiny and doubt. For instance, for the non-
SUSY heterotic constructions examined through effective
field theory methods in Ref. [25] only AdS vacua are
found to be possible. However, through exact world sheet
evaluation of the one-loop potentials of non-SUSY heter-
otic string orbifolds, Florakis and Rizos demonstrated the
existence of string vacua with positive vacuum energy [26].
However, many open issues remain in the study of string
vacua without SUSY and with respect to (related) issues
around moduli stabilization. Additionally, it remains
important for this analysis to be extended to models in
which more phenomenological criteria are satisfied.
One direction in which progress can be made to the

evaluation of vacuum energy for non-SUSY heterotic string
vacua is through exploring the contribution of the would-be
FI D-term. Since this contribution is positive definite it may
uplift an a priori negative vacuum energy to a positive one,
an idea discussed in [27]. Recently, we demonstrated this
possibility in a particular string vacuum [28]. The analysis
utilizes the free fermionic classification methodology to
extract tachyon free non-SUSY string vacua. It then calcu-
lates the traces of the Uð1Þ gauge symmetries and extracts
the tachyon free vacua with a Uð1ÞA. The one-loop vacuum
amplitude was analyzed in comparison to the Uð1ÞA would-
be D-term contribution. Following Refs. [26,29,30], a
numerical analysis of the potential and its dependence on

the moduli in specific string models was performed in the
neighborhood of the a local minimum. It was then found that
a D-term uplift to a positive value may indeed be possible in
a model with explicit supersymmetry breaking.
In this paper we extend the analysis of [28]. We develop a

criteria to distinguish the models with SSS supersymmetry
breaking that allow for the vacuum energy to be exponen-
tially suppressed provided that the number of massless
bosons and fermions is equal. We then proceed to analyze
the vacuum energy and potential of a range of models with
both explicit and SSS SUSY breaking. We demonstrate that
a D-term uplift may indeed be possible in models with SSS
breaking as well as in models with explicit breaking. We
further provide some statistical measure for the frequency of
tachyon free models with SSS breaking, and provide further
examples of cases where a minimum of potential is not
obtained for finite value of the moduli.
Our paper is organized as follows: in Sec. II we review

some general aspects of the free fermion construction that are
particularly relevant for the analysis in this paper, and refer
to the literature for more details. In Sec. III we review the
calculation of the Fayet-Iliopoulos term inN ¼ 1 supersym-
metric string vacua and discuss its adaptation to the N ¼ 0
case. In Sec. IV we discuss the analysis of the one-loop
partition function and potential, as well as the derivation of
the anomalousUð1Þ from the partition function that serves as
a countercheck on its derivation from the massless spectrum.
In Sec. V we elaborate on explicit SUSY breaking versus
spontaneous SUSY breaking by the SSS-mechanism. We
derive conditions that facilitate the extraction of the string
vacua that utilize the SSS-mechanism and provide examples
that demonstrate their utilization in Appendix B. Similarly, in
Sec. V we identify the conditions on the world sheet phases
that exhibit the T-duality property of the string vacua and
supplement these with examples in Appendix B. In Sec. VI
we discuss the conditions for the extraction of tachyon free
configurations in the space of vacua, and Sec. VII elaborates
on the analysis of the chiral sectors and extraction of the
anomalous Uð1ÞA symmetry from the massless spectrum.
Section VIII presents our results that include examples of
uplift models with SSS supersymmetry breaking as well as
explicit breaking. Section IX contains our conclusions and
discussion on further steps that can be taken to improve the
rigour of the analysis presented in this paper as well as its
predictability. In Appendix A we discuss in detail how to
relate a free fermion model which is specified in term of
the set of boundary condition basis vectors and one-loop
GGSO phases, to the one-loop partition function in a bosonic
representation. The art in this regard is in the translation of
the GGSO projection coefficients to the modular invariant
phase that appears in the one-loop partition function. This
tool therefore facilitates the writing of the partition function,
which provides access to the entire string spectrum, for any
string model, which is specified in terms of the boundary
condition basis vectors and one-loop phases.
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II. MODEL BUILDING IN THE FREE FERMIONIC
FORMULATION

In the free fermionic formulation of [31–33], all degrees
of freedom are realized as free fermions propagating on
the string world sheet. For the heterotic string in four

dimensions, we consider holomorphic fields that realize a
supersymmetric c ¼ 10 conformal algebra and antiholo-
morphic fields that realize a nonsupersymmetric conformal
algebra. Along with the spacetime bosons Xμðz; z̄Þ we
denote the fermionic fields as

Holomorphic∶ ψμ¼1;2; χ1;…;6; y1;…;6; w1;…;6 ðzÞ
Antiholomorphic∶ ȳ1;…;6; w̄1;…;6; ψ̄1;…;5; η̄1;2;3; ϕ̄1;…;8 ðz̄Þ; ð2:1Þ

where:
(i) ψμ is the superpartner of the bosonic spacetime field

XμðzÞ in the lightcone gauge.
(ii) χ1;…;6 are the superpartners of the six compact

directions of the bosonic coordinate fields.
(iii) fyi; wijȳi; w̄ig realize the conformal field theory

associated to the six dimensional compact geometry.
(iv) Currents associated to fψ̄1;…;5; η̄1;2;3g can realize a

gauge c ¼ 8 conformal algebra containing an
SOð10Þ GUT from the ψ̄1;…;5 that may contain
Standard Model like gauge fields.

(v) Currents associated to fϕ̄1;…;8g can be associated to
a gauge c ¼ 8 conformal algebra relating to the
hidden sector of the theory.

Consistent model building requires that a N ¼ 1 super-
conformal algebra on the string world sheet is realized

among the holomorphic degrees of freedom. This can be
achieved via the world sheet supercurrent

TFðzÞ ¼ iψμ
∂XμðzÞ þ i

X6
I¼1

χIyIwI; ð2:2Þ

which has conformal weight ð3=2; 0Þ. This results in a local
enhanced symmetry group SUð2Þ6, the adjoint representa-
tion of which is given by the six SUð2Þ-triplets from
fχI; yI; wIg.
Models in the free fermionic formalism are then defined

by considering a one-loop torus and defining a set of N
boundary condition basis vectors, vi ∈B, specifying how
each free fermion, f, propagates around the two non-
contractible loops of the torus. An element β of the space
Ξ ¼ spanfBg can then be written as

β¼ fβðψμÞ;βðχ12Þ;βðχ34Þ;βðχ56Þ;βðy1Þ;…βðw6Þjβðȳ1Þ;…;βðw̄6Þ;βðψ̄1Þ;…;βðψ̄5Þ;βðη̄1Þ;βðη̄2Þ;βðη̄3Þ;βðϕ̄1Þ;…;βðϕ̄8Þg;
ð2:3Þ

such that βðfÞ∈ ð−1; 1� and Ramond (R) boundary con-
ditions correspond to βðfÞ ¼ 1, while Neveu-Schwarz
(NS) is given by βðfÞ ¼ 0.
The partition function in the fermionic formulation can

be written as

Z ¼ ZB

X
α;β∈Ξ

C
�
α

β

�
Z
�
α

β

�
; ð2:4Þ

where ZB ¼ 1=η2η̄2 is the bosonic partition function and
C½αβ� are generalized GSO (GGSO) phases which respect
modular invariance. The Z½αβ� represent the world sheet
fermions and are thus products of Jacobi theta functions.
The partition function for the models we explore in this
work is discussed in Sec. IV.
Aside from the partition function we can also view the

spectrum through the modular invariant Hilbert space, H,
of states, jSβi. This is constructed through implementing the
one-loop GGSO projections on each sector according to:

H ¼ ⨁
β∈Ξ

YN
i¼1

�
eiπvi·Fβ jSβi ¼ δβC

�
β

vi

��
jSβi

�
Hβ; ð2:5Þ

where Fβ is the fermion number operator and δβ is the spin-
statistics index.
The sectors, β, in the model can be characterized

according to their holomorphic (H) and antiholomorphic
(A) moving vacuum separately

M2
H ¼ −

1

2
þ βH · βH

8
þ NH

M2
A ¼ −1þ βA · βA

8
þ NA; ð2:6Þ

where NH and NA are sums over left and right moving
oscillator frequencies, respectively

NH ¼
X
λ

νλ þ
X
λ�

νλ� ð2:7Þ
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NA ¼
X
λ̄

νλ̄ þ
X
λ̄�

νλ̄� ; ð2:8Þ

where λ is a holomophic oscillator and λ̄ is an antiholo-
morphic oscillator and the frequency is defined through the
boundary condition in the sector β

νλ ¼
1þ βðλÞ

2
; νλ� ¼

1 − βðλÞ
2

: ð2:9Þ

Physical states must satisfy the Virasoro matching con-
dition, M2

H ¼ M2
A, such that massless states are those with

M2
H ¼ M2

A ¼ 0 and on-shell tachyons arise for sectors
with M2

H ¼ M2
A < 0.

A. Symmetric Z2 × Z2 SOð10Þ models

For this work we explore the one-loop cosmological
constant andUð1ÞA tadpole calculations for models defined
through the basis set

1 ¼ fψμ; χ1;…;6; y1;…;6;ω1;…;6 j ȳ1;…;6; ω̄1;…;6; η̄1;2;3; ψ̄1;…;5; ϕ̄1;…;8g;
S ¼ fψμ; χ1;…;6g;
ei ¼ fyi; wi j ȳi; w̄ig; i ¼ 1;…; 6;

b1 ¼ fχ34; χ56; y34; y56 j ȳ34; ȳ56; ψ̄1;…;5; η̄1g;
b2 ¼ fχ12; χ56; y12; y56 j ȳ12; ȳ56; ψ̄1;…;5; η̄2g;
z1 ¼ fϕ̄1;…;4g;
z2 ¼ fϕ̄5;…;8g: ð2:10Þ

Such a basis can be associated with symmetric Z2 × Z2

orbifolds [8–12] extensively classified in previous works
[7,34–41]. The NS sector of the models associated to this
basis produce spacetime vector bosons generating the
gauge group

SOð10Þ × Uð1Þ1 ×Uð1Þ2 ×Uð1Þ3 × SOð8Þ2; ð2:11Þ

where we note that Uð1Þ1;2;3 are generated by the anti-
holomorphic currents η̄kη̄k�. With respect to the basis (2.10)
it is useful to identify the important linear combination

x ¼ 1þ Sþ
X6
i¼1

ei þ z1 þ z2 ¼ fη̄1;2;3; ψ̄1;…;5g ð2:12Þ

and b3¼b1þb2þx¼fχ12;χ34;y12;y34jȳ12; ȳ34;ψ̄1;…;5; η̄3g,
which spans the third twisted plane of the Z2 × Z2 orbifold
and facilitates the analysis of the observable spinorial and
vectorial representations as first developed in [34,35].
Models may then be defined through the choice of GGSO

phases C½vivj�. There are 66 free phases for this basis, with all

others specified by modular invariance. The full space of
models is thus of size 266 ∼ 1019.9. The N ¼ 1 super-
symmetric subset of which is defined by those satisfying

C

�
S

ei

�
¼ C

�
S

z1

�
¼ C

�
S

z2

�
¼ −1; ð2:13Þ

in order to preserve one gravitino. Furthermore, we note that
the phases C½1S� andC½ Sbk�, k ¼ 1, 2, 3, determine the chirality

of the degenerate Ramond vacuum jSi and the gravitino is
retained so long as

C

�
1

S

�
¼ C

�
S

b1

�
C

�
S

b2

�
C

�
S

b3

�
; ð2:14Þ

which can, without loss of generality, be fixed to

C

�
1

S

�
¼ C

�
S

b1

�
¼ C

�
S

b2

�
¼ −1; ð2:15Þ

for a scan of N ¼ 1 vacua.
Since we are interested in non-SUSY vacua in this work

we will be considering the complement to this space of
N ¼ 1 vacua. In previous work on non-SUSY heterotic
string vacua from Z2 × Z2 orbifolds [42–44] tachyon free
configurations satisfying various phenomenological require-
ments and their one-loop cosmological constants are
explored. In Sec. VI we will detail how we ensure that
only those models free from physical tachyons are explored.
In the next section we show how the Uð1ÞA gauge

transformation manifests in a 4 dimensional theory and
how the Green-Schwarz mechanism deals with it. We then
compute the FI term through a string theory computation at
1-loop and we conjecture how this term can lift the vacua
from an anti–de Sitter to a de Sitter.

III. FAYET-ILIOPOULOS D-TERM
CALCULATION

Anomalies arise whenever one, or some, of the classical
symmetries are broken by quantum effects. Some global
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symmetries need to be broken by anomalies in order to
reproduce observable phenomenology, however a break-
down of a local symmetry indicates a symmetry current
is no longer conserved and longitudinal, nonphysical
modes of the gauge fields no longer may decouple from
the S-matrix. This can result in the loss of unitarity and
appearance of unphysical divergences.
In a four dimensional heterotic string theory the anoma-

lies come from the one-loop triangle diagram, where the
external lines can be gauge fields, gravitons or a mixture of
each. In the following, for simplicity, we will consider
purely Uð1Þ gauge anomalies. We start from the four
dimensional effective action in the Einstein frame

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffiffi
−G

p �
−
κ2e−2Φ

2g2
FμνFμν −

e−4Φ

12
HμνρHμνρ

�

ð3:1Þ

with H the field strength of the B field such that

H ¼ dB−
κ2

g2
ΩYM

3 ¼ dB−
κ2

g2
Tr

�
A ∧ dA−

2i
3
A ∧ A ∧ A

�
:

ð3:2Þ

Under a Gauge transformation, the gauge fields transform
as Aμ → Aμ þ ∂μΛ and the effective action varies as follows

δSone-loop ¼
1

4

1

96π2

Z
d4xTr½Q3�ϵμνρσΛFμνFρσ: ð3:3Þ

When the sum of these Uð1Þ charges is not zero this
anomalous triangle diagram contribution will be present,
with massless particles circulating in the loop. The Green-
Schwarz mechanism [45] provides a way to cancel these
one loop anomalies through the introduction of an anti-
symmetric 2-form coupled at one loop to the Uð1Þ 2-form
field strength in the effective Lagrangian

−
ζ

2
ϵμνρσBμνFρσ; ð3:4Þ

imposing the B field to vary under the Uð1Þ Gauge
transformation as δB ¼ κ2

g2 ΛF, with the condition

4Tr½Q3� ¼ Tr½Q�, such that it compensates the anomalous
triangle diagram. The action can also be written in terms of
the axion field, a, dual to the antisymmetric B field. The
axion field is introduced as a Lagrange multiplier term into
the Lagrangian

1ffiffiffiffiffiffiffi
−G

p L ¼ −
e−2Φ

4g2
FμνFμν −

e−4Φ

24κ2
HμνρHμνρ −

ζ

2
ϵμνρσBμνFρσ

þ a
6
ϵμνρσ∂μHνρσ þ

a
4

κ2

g2
ϵμνρσFμνFρσ; ð3:5Þ

such that its equations of motion give the definition of the
H tensor

1

6
ϵμνρσ∂μHνρσ þ

κ2

4g2
ϵμνρσFμνFρσ ¼ 0

⇒ H ¼ dB −
κ2

g2
A ∧ F: ð3:6Þ

Using this result and integrating out the H tensor in the
Lagrangian (3.5) gives

1ffiffiffiffiffiffiffi
−G

p L ¼ −
e−4Φ

4g2
FμνFμν − κ2e4Φð∂μaþ 2ζAμÞ2

þ a
4

κ2

g2
ϵμνρσFμνFρσ; ð3:7Þ

while the gauge transformation of the axion field can be
found through the gauge invariance of H to give

δa ¼ −2ζΛ; ð3:8Þ

such that when ζ ≠ 0 the anomalous gauge field acquires a
mass and the gauge symmetry is spontaneously broken.
In order to compute the FI coefficient ζ we have to

evaluate the 2-point function of the antisymmetric B field
and the Uð1ÞA gauge boson at one loop, where only chiral
fermions with odd spin structure give a nonvanishing
contribution.
For the ghosts b, c their zero modes are saturated by

inserting hbb̄cc̄i into the path integral. For the ghost
superpartners β, γ in order to project out of integration
their zero modes one of the vertex operators has to be put in
the 0 picture, the other in the −1 and an insertion of the
picture changing operator eϕTF is needed, where the scalar
ϕ arises by the bosonization of the β − γ fields

β ¼ e−ϕ∂ξ; γ ¼ eϕη: ð3:9Þ

The amplitude then reads

Z
dτ1dτ2
2τ2

Z
d2zd2w

D
bð0Þb̄ð0Þcð0Þc̄ð0ÞeϕTFð0Þ

× Vμ
A;0ðzÞVνρ

B;−1ðwÞ
E

ð3:10Þ

with the denominator needed to fix the translation Killing
symmetries of the torus and the residual discrete symmetry
z → −z. The vertex operators for the gauge boson and
the antisymmetric field in the −1 and 0 pictures are the
following
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Vμ;i
A;−1 ¼ gck̂

−1=2ψμJ̄ieik·X

Vμ
A;0 ¼

ffiffiffiffi
2

α0

r
gck̂

−1=2
�
i∂Xμ þ α0

2
k · ψψμ

�
J̄eik·X

Vμν
B;−1 ¼ i

ffiffiffiffi
2

α0

r
gc∂Xμe−ϕψνeip·X

Vμν
B;0 ¼

2i
α0
gc∂Xμ

�
i∂Xν þ α0

2
p · ψψν

�
eik·X; ð3:11Þ

with gc ¼ κ=2π and k̂ ¼ 1=2. These normalizations are
chosen such that the string amplitudes match with the
field theory calculation and with the vertex operators in the
two pictures related via Vqþ1ðzÞ ¼ limw→z eϕTFðwÞVqðzÞ,
where the matter supercurrent takes the form

TF ¼ i

ffiffiffiffi
2

α0

r
ψμ

∂Xμ: ð3:12Þ

We note that we included the α0 dependence and that the
supercurrent is composed of only the uncompactified fields
since vertex operators do not involve internal lattice
excitations. When N ≥ 2 the amplitude vanishes due to
the fermion zero modes. However, for N ¼ 1 they can be

soaked up by the fermion correlator. To see this, we can
take the OðpÞ linear approximation of the amplitude

−
kα
α01=2

g2c

Z
dτ1dτ2
τ2

Z
d2zd2whbb̄cc̄ihψσψαψμψρi

× hJ̄iih∂Xγ
∂Xνiheϕe−ϕiησγ; ð3:13Þ

where the fermion correlator can be written in terms of the
fermion current correlator

hψ iψ ji ¼ hJiji ¼ ϵij

2πi
∂νTr½ð−1ÞFe2πiνJij �ν¼0; ð3:14Þ

such that the hψσψαψμψρi term acts as follows on the four
noncompact fermions

hψσψαψμψρi ¼ ϵσαμρ
∂ν

2πi
∂ω

2πi

�
−
1

2

ϑ1ðνÞ
η2

ϑ1ðωÞ
η

�

¼ 1

2
ϵσαμρη4; ð3:15Þ

making use of ∂νϑ1ðνÞ ¼ 2πη3. The other one-loop corre-
lators are the following

hbb̄cc̄i ¼ η2η̄2

hXγðw; w̄ÞXνð0Þi ¼
�
−
α0

2
ln ϑ1

�
w
2π

�
ϑ̄1

�
w̄
2π

�
þ α0

4πτ2
ðImzÞ2

�
ηγν

heϕe−ϕi ¼ 1

η2
; ð3:16Þ

and for the current

hJ̄ii ¼ ∂ν

2πi
Tr½ð−1ÞFqHq̄H̄e2πiνJ̄i �jν¼0 ¼ η̄2

× Tr½ð−1ÞFqHq̄H̄− 1
12qi�; ð3:17Þ

where the derivative acts on the states charged under Uð1Þi,
i ¼ 1, 2, 3. In the massless limit only chiral fermions
contribute with ðH; H̄Þ ¼ ð0; 1

12
Þ so we get

hJ̄ii ¼ η̄2Tr½ð−1ÞFqi� ¼ η̄2TrQi; ð3:18Þ

with TrQi ¼
P

nqih summed over all states in the spec-
trum such that n, qi and h are the number of massless
fermions, their Uð1Þi charges and their chirality, respec-
tively. Note that the anomalous Uð1ÞA charge is given as
combination of the three Uð1Þ1;2;3 produced by the world-
sheet currents ∶η̄i�η̄i∶ , i ¼ 1, 2, 3, according to

Uð1ÞA ¼
X3
i¼1

aU1 þ bU2 þ cU3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2

p ð3:19Þ

where ða;b; cÞ ¼ 1
k ðTrU1;TrU2;TrU3Þ and k ¼ gcdðTrU1;

TrU2;TrU3Þ. Adding the contribution of the four non-
compact bosons from the partition function and their zero
modes allows us to write the amplitude as

ig2c
256π5α03=2

kαϵναμρTrQA

Z
dτ1dτ2
τ42

Z
d2zd2w

¼ ig2c
12α03=2

kαϵναμρTrQA; ð3:20Þ

using that
R
d2z ¼ 2ð2πÞ2τ2 and π=3 is the volume of the

fundamental domain. Reducing the constants and doing
further contractions of this N ¼ 1 amplitude allows us to
finally write the FI term as
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ζ ¼ M2
s
TrQA

192π2
; ð3:21Þ

such that, when TrQA ≠ 0, there is an additional positive
contribution in the effective D-term potential

VD ¼ 1

2
g2sζ2 ð3:22Þ

that corresponds to a two-loop dilaton tadpole. This addi-
tional term was originally computed both from the low
energy effective action in Ref. [18], as well as through
explicit two-loop string calculations [20].
As stated above, only for N ¼ 1 unbroken supersym-

metry is the FI term nonvanishing. In the free fermionic
models, the breaking N ¼ 4 → N ¼ 1 is achieved by the
introduction of the b1 and b2 vectors (2.10) associated to
Z2 × Z2 orbifold twists. The breaking of the last super-
symmetryN ¼ 1 → N ¼ 0 is achieved by setting properly
the GGSO phases as delineated in Sec. II. We will discuss
the contribution of the FI D-term associated with TrUð1ÞA
in these N ¼ 0 models in the following sections.
Our statement is that once the last supersymmetry is

broken, either spontaneously or explicitly, the D-term
contribution (3.22) will still be present. The same tadpole
diagram leading to the FI term in the N ¼ 1 supersym-
metric case is also present in the N ¼ 0 case. The analysis
outlined above follows through irrespective of whether the
model has N ¼ 1 or N ¼ 0 supersymmetry. The super-
symmetric case does guarantee a measure of stability
whereas the nonsupersymmetric case is fraught with further
uncertainties. For example, nonsupersymmetric string
vacua contain additional tadpole diagrams for the dilaton,
which indicate that the string equations of motion are
not satisfied in Minkowski four dimensional spacetime
with constant dilaton, and the computational stability from
higher loops is not preserved. Furthermore, in the follow-
ing, analysis of the potential is performed with respect to a

single internal moduli and all other internal moduli are set
at the free fermionic point but are not fixed. One direction
of improvement on the analysis that we present here is to
use the Kiritsis-Kounnas modular invariant regularization
scheme [46] that can regulate the infrared divergences.
We note that these caveats are relevant in general in
nonsupersymmetric string vacua that have been of some
old and recent interest in the literature [47–55]. For our
purposes here we note that the contribution of Eq. (3.22),
when nonzero, which has the same mass dimension,M4

s , as
the cosmological constant, will destabilize the vacua adding
a positive contribution and lift the minima of the one-loop
potential.
For the purpose of getting numerical results we fix the

string coupling OðgsÞ ∼ 1, which corresponds to α0 ¼
gs=4π ∼ 0.1. This order of magnitude can be justified by
reference to work on gauge coupling unification from string
model building, for example in Ref. [56]. We observe that
the D-term contribution goes with g2s so smaller values will
quickly make an uplift less likely. In Sec. VIII, we will see
that we obtain an uplift from AdS to dS only very rarely in
our setup and so choosing this order of magnitude for the
string coupling, rather than a smaller one, helps provide a
proof of concept.
In the next sections we study some heterotic string

models through the analysis of the partition function and its
potential behavior and we explicitly show how the FI term
is used in order to uplift the minima.

IV. PARTITION FUNCTION AND ONE-LOOP
POTENTIAL

The generic form of the partition function is given in
Eq. (2.4) applied to the models defined through the basis
(2.10). Using the techniques developed in Appendix A, the
partition function written in the free fermionic construction
can then be written in the following form

Z ¼ 1

η10η̄22
1

22

X
a;k
b;l

1

26

X
Hi
Gi

1

24

X
h1 ;h2 ;Pi
g1 ;g2 ;Qi

ð−1Þ
aþbþP1Q1þP2Q2þΦ

�
a k Hi h1 h2 Pi

b l Gi g1 g2 Qi

�

× ϑ

�
a

b

�
ψμ

ϑ

�
aþ h1
bþ g1

�
χ12
ϑ

�
aþ h2
bþ g2

�
χ34
ϑ

�
a − h1 − h2
b − g1 − g2

�
χ56
Γð1Þ
2;2

�
H1 H2

G1 G2

				 h1g1
�

Tð1Þ; Uð1Þ�

× Γð2Þ
2;2

�
H3 H4

G3 G4

				 h2g2
�

Tð2Þ; Uð2Þ�Γð3Þ

2;2

�
H5 H6

G5 G6

				 h1 þ h2
g1 þ g2

�

Tð3Þ; Uð3Þ�

× ϑ̄

�
k

l

�
5

ψ̄1−5
ϑ̄

�
kþ h1
lþ g1

�
η̄1
ϑ̄

�
kþ h2
lþ g2

�
η̄2
ϑ̄

�
k − h1 − h2
l − g1 − g2

�
η̄3
ϑ̄

�
kþ P1

lþQ1

�
4

ϕ̄1−4
ϑ̄

�
kþ P2

lþQ2

�
4

ϕ̄5−8
: ð4:1Þ
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For symmetric Z2 × Z2 orbifolds the moduli space is generally parametrized by three complex structure and three Kähler
moduli, one for each torus associated to the Γ2;2 lattices. The moduli space is then SOð2; 2Þ=SOð2Þ × SOð2Þ. At the
maximally symmetric (free fermionic) point ðT�; U�Þ, at which bosonic degrees of freedom can be fermionized, the lattices
admit a factorized form which can be written entirely in terms of theta functions

Γð1Þ
2;2

�
H1 H2

G1 G2

				 h1g1
��

Tð1Þ
� ; Uð1Þ

�

¼

				ϑ
�
H1

G1

�
ϑ

�
H1 þ h1
G1 þ g1

�
ϑ

�
H2

G2

�
ϑ

�
H2 þ h1
G2 þ g1

�				
Γð2Þ
2;2

�
H3 H4

G3 G4

				 h2g2
��

Tð2Þ
� ; Uð2Þ

�

¼

				ϑ
�
H3

G3

�
ϑ

�
H3 þ h2
G3 þ g2

�
ϑ

�
H4

G4

�
ϑ

�
H4 þ h2
G4 þ g2

�				
Γð3Þ
2;2

�
H5 H6

G5 G6

				 h1 þ h2
g1 þ g2

��
Tð3Þ
� ; Uð3Þ

�

¼

				ϑ
�
H5

G5

�
ϑ

�
H5 − h1 − h2
G5 − h1 − h2

�
ϑ

�
H6

G6

�
ϑ

�
H6 − h1 − h2
G6 − h1 − h2

�				: ð4:2Þ

We furthermore note that the modular invariant phase

Φ
h a k Hi h1 h2 Pi

b l Gi g1 g2 Qi

i
in (4.1) implements the

various GGSO projections. A choice of phase is equivalent
to a choice of GGSO matrix and hence there is a unique
one-to-one map between them. The factor of aþ b ensures
correct spin statistics, while the explicit inclusion of the
extra phase P1Q1 þ P2Q2 means that Φ ¼ 0 is a valid
modular invariant choice.
The summation indices used to write the fermionic

partition function (4.1) correspond to various features
of the model. The indices a, b correspond to the spin
structures of the spacetime fermions ψμ, while k, l are
associated to the 16 right-moving complex fermions giving
the gauge degrees of freedom of the heterotic string. The
nonfreely acting Z2 × Z2 orbifold twists are associated to
the parameters h1, g1 and h2, g2. One of the key features
of models defined by the basis (2.10) is the inclusion of
the basis vectors ei which generate freely acting orbifold
shifts in the internal dimensions of the compact torus. In
the partition function, these are realized by the indices Hi,
Gi parametrizing each of the six independent shifts. The
additional twists Pi, Qi correspond to the basis vectors z1
and z2 acting on the hidden sector of our model.
The moduli-dependent form of the twisted/shifted lattice

requires closer attention. We know that all dependence on
the geometric moduli is contained in the untwisted sector of
the model and hence

Γ2;2

�
H1 H2

G1 G2

				 hg
�
ðT;UÞ

			
h;g≠0

¼ Γ2;2

�
H1 H2

G1 G2

				 hg
�
ðT�; U�Þ: ð4:3Þ

This means that for nonzero twists the lattice is precisely
given by its factorized form in (4.2). In the case of the
untwisted sector, the shifted lattice can be written in a
Poisson resummed Hamiltonian form as

Γ2;2

�
H1 H2

G1 G2

				00
�
ðT;UÞ

¼
X

mi;ni∈Z

q
1
2
jPLðT;UÞj2 q̄1

2
jPRðT;UÞj2eiπ

P
i
ððmiþniþHiÞGi ; ð4:4Þ

where the left and right-moving momenta are

PL ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2T2U2

p
�
U
2
ðm1 þ n1Þ −

1

2
ðm2 þ n2Þ

þ Tðm1 − n1 þH1Þ þ TUðm2 − n2 þH2Þ
�

PR ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2T2U2

p
�
U
2
ðm1 þ n1Þ −

1

2
ðm2 þ n2Þ

þ T̄ðm1 − n1 þH1Þ − TUðm2 − n2 þH2Þ
�
: ð4:5Þ

Written in this form, it is easy to extract the q-expansion of
the partition function at any given point in the moduli space
which is crucial for calculating the one-loop potential. It
can be shown that the twisted/shifted lattice sums (4.3)
and (4.4) evaluated at the special point ðT�; U�Þ ¼ ði=2; iÞ
indeed reproduce the free fermionic form of the partition
function (4.2).
Given the fermionic partition function (4.1), the one-loop

potential is evaluated by summing over all inequivalent
world sheet tori via the modular invariant integral

Vone-loopðTðiÞ; UðiÞÞ ¼ −
1

2

M4
s

ð2πÞ4
Z
F

d2τ
τ22

Z


τ; τ̄; TðiÞ; UðiÞ�;

ð4:6Þ

where in Zðτ; τ̄; TðiÞ; UðiÞÞ we include the spacetime
bosonic degrees of freedom arising from the world sheet.
In models with a Uð1ÞA, an additional contribution to the
potential VD is generated as discussed in Sec. III. Since this
term is independent of the geometric moduli it provides a
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constant shift of the potential throughout moduli space.
Hence we use this to write the vacuum energy as

V total ¼ Vone-loopðTðiÞ; UðiÞÞ þ VD; ð4:7Þ

where VD is given in term of the trace of the anomalous
Uð1ÞA via (3.22).
In order to calculate the one-loop potential of our models

we must be able to move away from this special point in
the moduli space. The details of the translation of a free
fermionic model into a ZN

2 orbifold was developed in [57]
and used in [26,29] to calculate one-loop potentials. Some
details of this translation are given in Appendix A.
The motivation for this procedure is that it enables us to

move away from the free fermionic point in the moduli
space. Although being fixed at this point allows for a
generic analysis of many important features of a string
model, for issues such as SUSY breaking and one-loop
stability, analysis across the moduli space is required.
In general, we can perturb away from the free fermionic

point using marginal operators given by the Thirring
interactions [58] which take the form JiðzÞJ̄jðz̄Þ≕
yiwi∶ ∶ȳjȳj∶. Writing these currents in bosonized form
we identify the geometric moduli JiðzÞJ̄jðz̄Þ ¼ ∂Xi

∂Xj.
For symmetric Z2 × Z2 orbifolds we parametrize the
moduli space by a complex structure and Kähler modulus
for each torus associated to the Γ2;2 lattices: ðTð1Þ; Uð1ÞÞ,
ðTð2Þ; Uð2ÞÞ and ðTð3Þ; Uð3ÞÞ. These moduli span the familiar
SOð2; 2Þ=SOð2Þ × SOð2Þ moduli space of Z2 × Z2 sym-
metric orbifolds.
Once we have installed this moduli dependence and

followed the translation procedure we can calculate the
one-loop potential numerically at specific moduli values
using

Vone-loopðTðiÞ; UðiÞÞ ¼ −
1

2

M4
s

ð2πÞ4
Z
F

d2τ
τ22

Z


τ; τ̄; TðiÞ; UðiÞ�

ð4:8Þ

where we integrate over the fundamental domain

F ¼ fτ∈Cjjτj > 1; jτ1j < 1=2g: ð4:9Þ

Calculating the one-loop potential is then an exercise in
solving modular integrals.
One important observation is that we have 6 complex

moduli inside this integral rendering an analysis of the
potential in all directions impractical. A logical approach
used in [26,29], is to take the volume of the first torus
associated to ImðTð1ÞÞ ¼ T2 and analyze the potential
solely in this direction, with the other moduli all fixed at
their values at the free fermionic point. This choice is
somewhat arbitrary except in the case of an SSS breaking
(discussed further in the Sec. V) where an internal shift in
the first torus means that T2 parametrizes the SUSY-
breaking and SUSY will be restored in the large volume
limit T2 → ∞.

A. Calculating TrUð1ÞA from the partition
function

In Sec. III we discussed how the FI D-term contributed
at 2-loop to the potential of our model. Its magnitude
depended on the trace of the fields charged under theUð1ÞA
in our model, that propagate in the anomalous triangle
diagram in four dimensions. There are two equivalent ways
to calculate this trace. One way is to extract those states of
the massless spectrum charged under Uð1ÞA and add up
their charges. This approach utilizes free fermionic clas-
sification tools that are easily computerized. The details of
this approach are given in Sec. VII. The second way to
calculate TrUð1ÞA is directly from the partition function,
which will be explained in this subsection. In order to
perform this calculation it helps to rewrite the partition
function (4.1) as follows

Z̃ ¼ 1

η11η̄22
1

22

X
a;k
b;l

1

26

X
Hi
Gi

1

24

X
h1 ;h2 ;Pi
g1 ;g2 ;Qi

ð−1Þ
aþbþP1Q1þP2Q2þΦ

�
a k Hi h1 h2 Pi

b l Gi g1 g2 Qi

�

× ϑ

�
a

b

�
ðνÞψμϑ

�
a

b

�
ðωÞψμ

�
1

η2

�
ϑ

�
aþ h1
bþ g1

�
χ12
ϑ

�
aþ h2
bþ g2

�
χ34
ϑ

�
a − h1 − h2
b − g1 − g2

�
χ56

× Γð1Þ
2;2

�
H1 H2

G1 G2

				 h1g1
�

Tð1Þ; Uð1Þ�Γð2Þ

2;2

�
H3H4

G3G4

				 h2g2
�

Tð2Þ; Uð2Þ�Γð3Þ

2;2

�
H5H6

G5G6

				 h1 þ h2
g1 þ g2

�

Tð3Þ; Uð3Þ�

× ϑ̄

�
k

l

�
5

ψ̄1−5
ϑ̄

�
kþ h1
lþ g1

�
ðu1Þη̄1 ϑ̄

�
kþ h2
lþ g2

�
ðu2Þη̄2 ϑ̄

�
k − h1 − h2
l − g1 − g2

�
ðu3Þη̄3 ϑ̄

�
kþ P1

lþQ1

�
4

ϕ̄1−4
ϑ̄

�
kþ P2

lþQ2

�
4

ϕ̄5−8
: ð4:10Þ
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where we have reinserted the orthogonal component of ψμ

and its ghost contribution and the theta functions corre-
sponding to the η̄i fields acquire a nonzero argument ui.
The total Uð1Þi¼1;2;3 traces will then be given as

TrUð1Þi ¼
∂ν

2π

∂ω

2π

∂ui

2π
Z̃
			
ν;ω;ui¼0

ð4:11Þ

where the derivatives ∂ν∂ω correspond to the correlator
hψψψψi, while ∂ui corresponds to theUð1Þi contribution of
hJ̄ii in (3.13) acting on the partition function. The total
anomalous Uð1ÞA will be the combination of the three
Uð1Þi according to (3.19).

V. EXPLICIT VS SPONTANEOUS SUSY
BREAKING

The SUSY breaking N ¼ 1 → 0 can happen in two
ways: explicit or spontaneous (SSS) breaking. In the latter
case, the GGSO phases can be set such that the gravitino
acquires a mass and supersymmetry is broken spontane-
ously. The requirement is that the partition function,
which will be nonzero in any point in the T2 moduli
space, vanishes when T2 → ∞ such that the potential in
that limit vanishes and supersymmetry is restored.
Spontaneous breaking certainly has attractive features
compared with the explicit case. As discussed in various
works [13–15,54,59–61], when accompanied by massless
Bose-Fermi degeneracy at some point in the moduli space,
N0

b ¼ N0
f, we have the so-called “super no-scale”models in

which the cosmological constant is exponentially sup-
pressed according to [62]

Λ ∝


N0

b − N0
f

� 1

T2
2

þO


e−c

ffiffiffiffi
T2

p �
; ð5:1Þ

We note that without the N0
b ¼ N0

f condition, SSS models
have polynomial, rather than exponential, suppression of
their one-loop cosmological constant. However, as noted
in [26,29,30] such super no-scale conditions are merely
necessary, not sufficient, conditions on the global structure
of the effective potential, which will be crucially dependent
on the full mass tower of states, including the non level-
matched ones around special self-dual points in moduli
space.
Despite the attractive features of such super no-scale

models, we note that the cosmological constant problem
remains an issue, also in these models. Even in the case
of spontaneous SUSY-breaking, there are sectors in the
additive group Ξ generated by the basis vectors that
produce equal numbers of bosons and fermions [53]. The
states from these sectors do not reside in supermultiplets as
supersymmetry is broken. As usual the respective bosonic
and fermionic states arise from the generic sectors, e.g.,
α∈Ξ and Sþ α∈Ξ, and the bosonic and fermionic states

from these sectors differ in some of their Uð1Þ charges,
reflecting the fact that supersymmetry is broken. However,
the phenomenological requirement still demands that the
bosonic states from these sectors, that may, for example,
correspond to the would be superpartners of the chiral
generations, receive mass of the order of 1 TeV. Generating
this mass splitting between will produce a cosmological
constant. Similarly, the other mass scales in the Standard
Model, e.g., the QCD scale, will contribute to the cosmo-
logical constant. The cosmological constant problem is
therefore much more profound, indicating a fundamental
dichotomy between quantum field theories expectations
and gravitational observations, and it is naive to expect
that the suppression observed in Eq. (5.1) can address the
problem. We would ideally also consider higher loop
contributions, e.g., the two-loop cosmological constant
that should ideally be incorporated into this analysis.
The fact is that the cosmological constant problem remains
regardless of the SUSY-breaking mechanism. For this
reason, we also explore some models with explicitly broken
supersymmetry in our analysis. However, we also detail in
the following how to identify the SSS models, which have
their distinct phenomenological characteristics.
In the SSS SUSY-breaking the gravitino acquires a mass

proportional to 1
T2
, such that SUSY is restored at the border

of the moduli space when T2 → ∞ and the partition
function vanishes. For this to happen, we require that in
that limit the modular block in the partition function
relating to the fψμ; χ12; χ34; χ56g fermions gives rise to
the Jacobi identity. To explore when this can happen, we set
ðhi; giÞ indices to zero since for all cases when SUSY is
restored fromN ¼ 0 toN → 1, 2, 4, the partition function
Z will vanish.
The momenta in (4.5), through a redefinition of the

summation variables ni → ni þmi þHi and fixing T1, U1

andU2 at the free fermionic point, can be written as follows

PL ¼ 1ffiffiffiffiffiffiffiffi
2T2

p
��

m1 þ
n1
2
þH1

2
− n1T2

�

þ i

�
m2 þ

n2
2
þH2

2
− n2T2

��

PR ¼ 1ffiffiffiffiffiffiffiffi
2T2

p
��

m1 þ
n1
2
þH1

2
þ n1T2

�

þ i
�
m2 þ

n2
2
þH2

2
þ n2T2

��
: ð5:2Þ

We can now observe that when T2 → ∞ the only nonzero
term in the moduli-dependent lattice sum (4.4) is for ni ¼ 0
and in this limit it contributes according to

Γð1Þ
2;2

�
H1 H2

G1 G2

				h1g1
�

Tð1Þ
2 →∞;Tð1Þ

1� ;U
ð1Þ
�
�
→

X
mi∈Z

1; ð5:3Þ

AVALOS DIAZ, FARAGGI, MATYAS, and PERCIVAL PHYS. REV. D 108, 086007 (2023)

086007-10



where the sum, up to a normalization that will not affect our discussion, can be set to 1. Then the partition function (4.1) will
factorize as

Z


Tð1Þ
2 → ∞; Tð1Þ

1� ; U
ð1Þ
�
� ¼ 1

η10η̄22
1

212

X
k;Hi;Pi
l;Gi;Qi

ð−1ÞP1Q1þP2Q2 ϑ̄

�
k

l

�
8

ϑ̄

�
kþ P1

lþQ1

�
4

ϑ̄

�
kþ P2

lþQ2

�
4

Γð2Þ
2;2

�
H3 H4

G3 G4

				 00
�

Tð2Þ
� ; Uð2Þ

�
�

× Γð3Þ
2;2

�
H5 H6

G5 G6

				 00
�

Tð3Þ
� ; Uð3Þ

�
�
0
B@ð−1Þ

Φ

�
0 k Hi 0 0 Pi

0 l Gi 0 0 Qi

�
ϑ43

þ ð−1Þ
1þΦ

�
1 k Hi 0 0 Pi

0 l Gi 0 0 Qi

�
ϑ42 þ ð−1Þ

1þΦ

�
0 k Hi 0 0 Pi

1 l Gi 0 0 Qi

�
ϑ44

1
CA: ð5:4Þ

The SSS condition requires

ZðTð1Þ
2 → ∞; Tð1Þ

1� ; U
ð1Þ
� Þ ¼ 0 ð5:5Þ

In order to vanish the phase has to satisfy

X
H1 ;H2
G1 ;G2

ð−1Þ
Φ

�
0 k Hi 0 0 Pi

0 l Gi 0 0 Qi

�
¼

X
H1 ;H2
G1 ;G2

ð−1Þ
Φ

�
1 k Hi 0 0 Pi

0 l Gi 0 0 Qi

�
¼

X
H1 ;H2
G1 ;G2

ð−1Þ
Φ

�
0 k Hi 0 0 Pi

1 l Gi 0 0 Qi

�
ð5:6Þ

which translates into a set of intricate conditions and
relations between the GGSO phases. In Appendix B we
will show explicitly two examples, one satisfying the SSS
conditions and the other with explicit SUSY breaking.

A. T-duality

For our choice of models specified by the basis set (2.10)
T-duality is not always preserved. In particular, the sym-
metric shifts represented by the ei basis vectors may spoil
the original SLð2;ZÞT symmetry associated to the moduli
T. We will now show how, for an SSS model, T-duality can
be broken. As already specified in Sec. IV, we will vary T2

only associated to the first 2-torus.
The left and right momenta of the shifted lattice in (4.5)

are left invariant under the following transformation

T → −
1

4T
↔ T2 →

1

4T2

: ð5:7Þ

However, the phase in the lattice (4.4) gets an additional
term according to

eiπ
P

i
ððmiþniþHiÞGi → eiπ

P
i



ðmiþniþHiÞGi × eiπðH1G1þH2G2

�
;

ð5:8Þ

which will generally break T-duality. The same result can
also be obtained following the discussion of Sec. V. In the
T2 → 0 limit, with the other moduli fixed, the only nonzero
contributions from the lattice (4.4) are 1, setting mi ¼ ni ¼
Hi ¼ 0 in the lattice sum,

P
mi
1, setting ni ¼ −2mi;

Hi ¼ 0, and eiπðH1G1þH2G2Þ with mi ¼ 0; ni ¼ −Hi. The
first two terms correspond, up to a normalization constant,
to (5.3) which for an SSS model give a vanishing
contribution. Meanwhile, the third contribution generates
an additional phase

Γð1Þ
2;2

�
H1 H2

G1 G2

				h1g1
�

Tð1Þ
2 → 0; Tð1Þ

1� ;U
ð1Þ
�
�
→ eiπðH1G1þH2G2Þ;

ð5:9Þ

In order to impose T-duality (5.7), in addition to (5.5) for
the SSS condition, we must then require

Z


Tð1Þ
2 → ∞; Tð1Þ

1� ; U
ð1Þ
�
� ¼ Z



Tð1Þ
2 → 0; Tð1Þ

1� ; U
ð1Þ
�
� ¼ 0;

ð5:10Þ

with
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Z


Tð1Þ
2 → 0; Tð1Þ

1� ;U
ð1Þ
�
�¼ 1

η10η̄22
1

212

X
k;Hi;Pi
l;Gi;Qi

ð−1ÞP1Q1þP2Q2þH1G1þH2G2 ϑ̄

�
k

l

�
8

ϑ̄

�
kþP1

lþQ1

�
4

ϑ̄

�
kþP2

lþQ2

�
4

× Γð2Þ
2;2

�
H3 H4

G3 G4

				00
�

Tð2Þ
� ;Uð2Þ

�
�
Γð3Þ
2;2

�
H5 H6

G5 G6

				00
�

Tð3Þ
� ;Uð3Þ

�
�
0
B@ð−1Þ

Φ

�
0 k Hi 0 0 Pi

0 l Gi 0 0 Qi

�
ϑ43

þ ð−1Þ
1þΦ

�
1 k Hi 0 0 Pi

0 l Gi 0 0 Qi

�
ϑ42 þ ð−1Þ

1þΦ

�
0 k Hi 0 0 Pi

1 l Gi 0 0 Qi

�
ϑ44

1
CA: ð5:11Þ

As in (5.6), T-duality now requires

X
H1 ;H2
G1 ;G2

ð−1Þ
Φ

�
0 k Hi 0 0 Pi

0 l Gi 0 0 Qi

�
þH1G1þH2G2

¼
X
H1 ;H2
G1 ;G2

ð−1Þ
Φ

�
1 k Hi 0 0 Pi

0 l Gi 0 0 Qi

�
þH1G1þH2G2

¼
X
H1 ;H2
G1 ;G2

ð−1Þ
Φ

�
0 k Hi 0 0 Pi

1 l Gi 0 0 Qi

�
þH1G1þH2G2

; ð5:12Þ

which again will correspond to specific constraints on the
GGSO phases.
Models which satisfy (5.10) will then exhibit a SSS

SUSY breaking with unbroken T-duality and the one-loop
potential will then have the following behavior

Vone-loopðT2Þ ¼ Vone-loop

�
1

4T2

�
ð5:13Þ

In particular the extrema of the potential, either a maximum
or a minimum, will lie at the self-dual point T2 ¼ 1

2
.

We note that if instead of having ei in our basis, we
had Tj ¼ e2j−1 þ e2j, j ¼ 1, 2, 3, as used in [26,29],
the additional phase in (5.8) is modified according to
eiπðH1G1þH2G2Þ → eiπðH1G1þH1G1Þ ¼ 1. Thus for these mod-
els, with the indices Hi;Gi ∈Z, T-duality (5.7) will always
be satisfied. In Appendix B we will show how for an SSS
model the T-duality conditions can be implemented.

VI. TACHYON PROJECTION

The tachyonic sectors in the models defined by the basis
(2.10) and their projection conditions are much the same as
detailed in Refs. [42,43]. The sectors and their mass levels
are summarized in Table I.
In order to determine whether a sector survives the

GGSO projections and remains in the spectrum we can
construct a projector. For example, taking a sector with no
oscillators, jβi, the survival/projection condition is encap-
sulated in the generalized projector

Pβ ¼
Y

ξ∈ϒðβÞ

1

2

�
1þ δβC

�
β

ξ

��
; ð6:1Þ

where

δβ ¼
�þ1 if βðψμÞ ¼ 0 ⇔ sector is bosonic

−1 if βðψμÞ ¼ 1 ⇔ sector is fermionic:
ð6:2Þ

TABLE I. Level-matched tachyonic sectors and their mass level, where i ≠ j ≠ k ¼ 1;…; 6 and λ̄m is any right-
moving complex fermion with NS boundary condition for the relevant tachyonic sector.

Mass level Vectorials Spinorials

ð−1=2;−1=2Þ fλ̄mgj0i z1; z2
ð−3=8;−3=8Þ fλ̄mgei ei þ z1; ei þ z2
ð−1=4;−1=4Þ fλ̄mgei þ ej ei þ ej þ z1; ei þ ej þ z2
ð−1=8;−1=8Þ fλ̄mgei þ ej þ ek ei þ ej þ ek þ z1; ei þ ej þ ek þ z2
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The ϒðβÞ is defined as a minimal linearly independent set
of vectors ξ such that ξ ∩ β ¼ ∅. To check whether the
sector β is projected simply amounts to checking Pβ ¼ 0.
In the presence of a single right-moving oscillator λ̄ with

νf ¼ 1
2
, the generalized projector is modified to

Pβ ¼
Y

ξ∈ϒðβÞ

1

2

�
1þ δβδ

λ̄
ξC

�
β

ξ

��
; ð6:3Þ

such that

δλ̄ξ ¼
�þ1 if λ̄∈ ξ

−1 if λ̄ ∉ ξ
: ð6:4Þ

In order to build tachyon-free models we simply require
that Pt ¼ 0 for all tachyonic sectors, t. This requires
defining the projection sets ϒðtÞ for each tachyonic sector
of Table I. For example, the tachyonic states from z1 have
the projection set

ϒðz1Þ ¼ fS; e1; e2; e3; e4; e5; e6; x; z2g: ð6:5Þ

Checking for the absence of tachyonic sectors then
amounts to checking the GGSO phases associated to such
projection sets for all tachyonic sectors.

VII. CHIRAL SECTOR ANALYSIS

Having explained how to get TrUð1ÞA directly from the
partition function in subsection (IVA) we now explain how
this can be calculated more efficiently by analysis of the
sectors that produce massless states that can be charged
under Uð1ÞA. This is equivalent to inspecting chiral sectors
giving rise to states that are charged under the complex
η̄1;2;3 world sheet fermion fields, where we recall that the
charge of a free fermion is given by

QðfÞ ¼ 1

2
αðfÞ þ FðfÞ; ð7:1Þ

and the action of the fermion number operator is

F∶

8>>>><
>>>>:

fj0iNS ¼ þ1

f�j0iNS ¼ −1
jþi ¼ 0

j−i ¼ −1

; ð7:2Þ

where we write the two helicities of the degenerate Ramond
vacuum as j�i.
The first sectors we can identify with nontrivial chirality

come from

F1
pqrs ¼ Sþ b1 þ pe3 þ qe4 þ re5 þ se6

¼ fψμ; χ1;2; ð1− pÞy3ȳ3; pw3w̄3; ð1− qÞy4ȳ4; qw4w̄4

ð1− rÞy5ȳ5; rw5w̄5; ð1− sÞy6ȳ6; sw6w̄6; η̄1; ψ̄1;…;5g
F2
pqrs ¼ Sþ b2 þ pe1 þ qe2 þ re5 þ se6

F3
pqrs ¼ Sþ b3 þ pe1 þ qe2 þ re3 þ se4; ð7:3Þ

which we note are the sectors that generate the spinorial
16=16’s of our SOð10Þ GUT, although we will not be
interested in this aspect of our models in this work.
Associated to these sectors are the projection sets

ϒðF1
pqrsÞ ¼ fz1; z2; e1; e2g

ϒðF2
pqrsÞ ¼ fz1; z2; e3; e4g

ϒðF3
pqrsÞ ¼ fz1; z2; e5; e6g; ð7:4Þ

which are used to determine whether a sector remains in
the Hilbert space of the model, just as explained for the
tachyonic sectors in the previous section.
Once we have checked the survival of a particular sector,

we can then determine the chirality of the η̄1;2;3 for the
resultant states through the chirality projections defined for
the three orbifold planes as follows

χðF1
pqrsÞ ¼ chðη̄1Þ ¼ −chðψμÞC

�
F1
pqrs

Sþ b2 þ xþ ð1 − rÞe5 þ ð1 − sÞe6

��

χðF2
pqrsÞ ¼ chðη̄2Þ ¼ −chðψμÞC

�
F2
pqrs

Sþ b1 þ xþ ð1 − rÞe5 þ ð1 − sÞe6

��

χðF3
pqrsÞ ¼ chðη̄3Þ ¼ −chðψμÞC

�
F3
pqrs

Sþ b1 þ xþ ð1 − rÞe3 þ ð1 − sÞe4

��
: ð7:5Þ

Without loss of generality we can choose chðψμÞ ¼ jþi since the CPT-conjugates are necessarily present with the opposite
chirality choice. This then fully determines the charges under the Uð1Þ1;2;3 for these sectors.
Along with these 3 groups of 16 sectors we have a further 12 such groups F4;5;6

pqrs;F7;8;9
pqrs and V1;2;3

pqrs but we relegate the
details of how to extract their charge contributions to Appendix C. As with the analysis of the tachyonic sectors, the
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projection conditions that determine the overall TrUð1ÞA
can then be computerized to allow for efficient scans of
large spaces of different GGSO phase configurations. The
results from such a scan is presented in the next section
along with the results of our analysis of theD-term uplifted
potentials.
As mentioned above, in this work we will not consider

extra phenomenological issues in our models such as the
number of spinorial 16’s or vectorial 10’s classified
in previous works for these symmetric Z2 × Z2 models
[7,34–41]. One may wonder about the relationship between
such characteristics and the value of TrUð1ÞA. Since viable
SOð10Þ phenomenology requires a condition such asN16 −
N16 ≥ 6 we could expect some relationship between the
trace values and the presence of an appropriate number of
these representations. However, since F4;5;6;7;8;9

pqrs are hidden
sectors and the vectorials V1;2;3

pqrs would only be constrained
by the presence of at least vectorial 10 we do not expect
there to be any significant change to whether we can find
D-term uplifted models once we incorporate such phe-
nomenological considerations into the analysis.

VIII. RESULTS

The methodology we use for the extraction of D-term
uplifted models defined through the basis (2.10) follows the
5 step procedure:
(1) Extract N ¼ 0 models, by checking whether

Eq. (2.13) and/or Eq. (2.14) are violated. Sub-
sequently, we check that the models are free from
physical tachyons by checking the projection con-
ditions outlined in Sec. VI.

(2) Compute the values of TrUð1ÞA using the efficient
analysis of chiral sectors explained in Sec. VII
and Appendix C for these N ¼ 0 tachyon-free
models.

(3) Extract out those models with larger TrUð1ÞA values
and satisfying the SSS SUSY breaking conditions
discussed in Sec. V.

(4) Perform the numerical analysis of the one-loop
potentials and check for an uplift from AdS to dS
for these SSS models with large TrUð1ÞA.

(5) The models with explicit SUSY breaking but large
TrUð1ÞA can then be analyzed and checked for an
uplift.

We note that the key bottleneck in this methodology is
performing the numerical analysis of the one-loop potential
integral(s). Depending on how many points with respect to
T2 are evaluated, the number of models we can analyze the
potentials for in reasonable computing time is approxi-
mately only Oð103Þ. This helps to motivate the 5 step
procedure above that seeks to maximize the probability we
find an uplifted model, with or without SSS breaking.

A. Distribution of TrUð1ÞA for N = 0 models

For our purpose of finding an uplifted model it was
sufficient in step 1. to take a random scan of 109 N ¼ 0
GGSO configurations and checking them for the absence
of physical tachyons using the conditions explained in
Sec. VI. This scan resulted in ∼1.6 × 107 tachyon-free
models. Following step 2. of the methodology, we then
calculated the values of TrUð1ÞA for these models. The
results for the distribution of these values are shown
in Fig. 1.

0

1 � 106

2 � 106

3 � 106

0 50 100 150 200

Trace of anomalous U(1)

F
re

qu
en

cy

FIG. 1. The distribution of Tr Uð1ÞA.
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B. Example Scherk-Schwarz models

Once the TrUð1ÞA’s for tachyon-free models were
founds, we moved to step 3. to begin the analysis of the
one-loop potential starting with those models that had a
larger value for TrUð1ÞA and also satisfied the SSS
condition derived in Sec. V. Then we perform step 4. to

search for the D-term uplift for these larger TrUð1ÞA SSS
models.
In a scan of approximately 103 such models we did

indeed find a single model that exhibited the desired uplift.
This model is defined through the following set of GGSO
phases

C

�
vi
vj

�
¼

1

S

e1

e2

e3

e4

e5

e6

b1

b2

z1

z2

1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z20
BBBBBBBBBBBBBBBBBBBBBBBB@

−1 −1 −1 1 −1 1 −1 1 −1 −1 −1 1

−1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1
−1 1 1 −1 −1 −1 1 1 1 −1 −1 −1
1 1 −1 −1 1 1 1 1 1 −1 −1 1

−1 −1 −1 1 1 1 1 −1 1 1 1 1

1 −1 −1 1 1 −1 1 −1 1 1 1 1

−1 −1 1 1 1 1 1 1 1 1 1 1

1 −1 1 1 −1 −1 1 −1 −1 −1 1 1

−1 −1 1 1 1 1 1 −1 −1 −1 −1 1

−1 1 −1 −1 1 1 1 −1 −1 −1 −1 1

−1 1 −1 −1 1 1 1 1 −1 −1 −1 1

1 −1 −1 1 1 1 1 1 1 1 1 1

1
CCCCCCCCCCCCCCCCCCCCCCCCA

ð8:1Þ

and has a one-loop cosmological constant value of Λ ¼
−0.000212496 at the free fermionic point and TrUð1ÞA ¼
72

ffiffiffi
2

p
, with a FI contribution of 0.00144365. Performing

the numerical analysis allowed us to graph the potential and
demonstrate its uplift, as shown in Fig. 2.
Through an analysis ofOð103Þ GGSO configurations, we

also evaluated the one-loop potential shapes for SSS broken
models. We summarize these possibilities in Figs. 3–8. We
find two examples of SSS models with unbroken T-duality,

see Figs. 3 and 4, and two with broken T-duality, see Figs. 5
and 6, where the difference can be clearly seen from the
behavior of the potential when the modulus approaches zero.
Figures 7 and 8 instead show two SSS models with broken
T-duality and with no minima or maxima.
The models we are especially interested in for our

purpose are the ones with a negative minima. In these
cases the additional D-term contribution (3.22) typically is
not sufficient to uplift the minima. It is only in very rare,

FIG. 2. One-loop potential of SSS example model with uplift.
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finely tuned, examples that this uplift is observed. Finally,
we note that although we projected out physical tachyons at
the free fermionic point, in general there may be tachyons
at other points in the moduli space. However, through
analysis across the range of the modulus T2 we find that
none of our potentials suffer tachyonic instabilities.

C. Explicitly broken model examples

Performing a similar scan of large TrUð1ÞA models but
with explicit breaking in step 5, we also find models in
which the FI D-term uplifts the one-loop potential. An
example of such a model with explicit SUSY-breaking is
given by the GGSO phases

FIG. 3. One-loop Scherk-Schwarz potential with local mini-
mum and unbroken T-duality.

FIG. 4. One-loop Scherk-Schwarz potential with local maxi-
mum and unbroken T-duality.

FIG. 5. One-loop Scherk-Schwarz potential with local mini-
mum and broken T-duality.

FIG. 6. One-loop Scherk-Schwarz potential with local maxi-
mum and broken T-duality.

FIG. 7. One-loop Scherk-Schwarz potential without any ex-
treme point and broken T-duality.

FIG. 8. One-loop Scherk-Schwarz potential without any ex-
treme point and broken T-duality.
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C
�
vi
vj

�
¼

1

S

e1

e2

e3

e4

e5

e6

b1

b2

z1

z2

1 S e1 e2 e3 e4 e5 e6 b1 b2 z1 z20
BBBBBBBBBBBBBBBBBBBBBBBB@

−1 −1 1 1 −1 1 −1 1 1 1 −1 1

−1 −1 −1 −1 −1 −1 −1 −1 1 −1 −1 1

1 −1 −1 −1 −1 1 1 1 1 1 −1 −1
1 −1 −1 −1 −1 −1 −1 −1 1 −1 1 1

−1 −1 −1 −1 1 −1 −1 −1 −1 −1 −1 −1
1 −1 1 −1 −1 −1 1 1 −1 −1 −1 −1
−1 −1 1 −1 −1 1 1 −1 1 −1 −1 1

1 −1 1 −1 −1 1 −1 −1 1 −1 −1 −1
1 −1 1 1 −1 −1 1 1 1 1 1 −1
1 1 1 −1 −1 −1 −1 −1 1 1 1 −1
−1 −1 −1 1 −1 −1 −1 −1 1 1 −1 −1
1 1 −1 1 −1 −1 1 −1 −1 −1 −1 1

1
CCCCCCCCCCCCCCCCCCCCCCCCA

ð8:2Þ

corresponding to a model with one-loop cosmological
constant Λ ¼ −0.000785598 and TrUð1ÞA ¼ 72

ffiffiffi
2

p
that

generates a FI contribution of 0.00144365 to the one-loop
potential, ensuring a positive minimum as depicted in Fig. 9.
Also in this case, through analysis of Oð103Þ models

with explicitly broken SUSY, we find only certain pos-
sibilities for the shapes of the potential. We summarize
these possibilities in Figs. 10–15. In all these graphs, when
the moduli T2 → ∞, the potential diverges so SUSY is
broken explicitly.
In particular in Figs. 10 and 12 the minima is positive

while in Fig. 11 only a negative maxima is present. In
Figs. 13 and 15 instead there are no extremal points at all.
These are not the cases we are interested in. Only the shapes
of the potential as in Fig. 13 present a negative minima
required for the uplift.

IX. DISCUSSION AND CONCLUSIONS

One important, and generic, issue with non-SUSY
theories is the issue of a nonvanishing dilaton tadpole
within such models with a nonzero cosmological constant.
This means that the string equations of motion are not
satisfied for our theory on a Minkowskian 4D spacetime
with a constant dilaton. If we want to find the true
perturbative quantum vacuum, we would need to solve
the string equations of motion to all loop levels. However,
for non-SUSY strings we generically lose computational
control at higher orders in the string loop expansion.
We note that in that respect the analysis performed in

this paper is rather heuristic. The dilaton VEV was fixed
by hand and most of the moduli are set at the free ferm-
ionic point but are not fixed, i.e., they can be varied away
from the free fermionic point. Similarly, the two-loop

FIG. 9. One-loop potential of example model with explicitly broken SUSY with uplift.
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contribution to the vacuum energy was adopted from the
SUSY cases and not carried our explicitly. We remark that
while our arguments here are, in these respects, not
conclusive, the analysis can be made more rigorous by
adopting the Kiritsis-Kounnas modular invariant regulari-
zation method of one-loop string amplitudes [46]. In that
scheme, the four dimensional spacetime curvature is used

as a infrared regulator, and is achieved by compactifying
the four dimensional spacetime on a Wess-Zumino-Witten
current algebra sigma model. The simplest solution is

obtained with the conformal theory Wð4Þ
k ¼ SUð2Þk×

Uð1Þ, which has the asymptotic (large k) geometry
S3 × Rþ. The heterotic string constructions with a mass
gap for the massless spectrum is then constructed by

FIG. 11. One-loop potential with explicitly broken SUSY and
local maximum.

FIG. 12. One-loop potential with explicitly broken SUSY and
local minima and maximum.

FIG. 13. One-loop potential with explicitly broken SUSY and
local minimum and maxima.

FIG. 14. One-loop potential with explicitly broken SUSY
without any extreme point.

FIG. 15. One-loop potential with explicitly broken SUSY
without any extreme point.

FIG. 10. One-loop potential with explicitly broken SUSY and
local minimum.
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substituting the world sheet coordinate and the spin-fields
of the uncompactified Minkowski spacetime conformal and
superconformal blocks of appropriate world sheet super-
symmetry and central charge. It should be noted that while
this regularization methodology was developed for vacua
with N ¼ 1 spacetime supersymmetry, its adaptation to
non-SUSY string vacua should be possible. This scheme
therefore provide the tools to construct non-SUSY string
solutions with regulated infrared divergences. Similarly,
while perhaps presenting a substantial technical challenge,
the two-loop costribution to the vacuum energy can in
principle be calculated directly in string theory [20,61].
Thus, the somewhat heuristic arguments made here can, in
principle, be put on firmer grounds.
We also remark that the question of moduli stabilization

can also be partially addressed directly in the heterotic
string world sheet constructions. String theory allows for
asymmetric boundary conditions of the left- and right-
moving world sheet internal fermions, which the corre-
sponding bosonic representation entail an asymmetric
action on the internal coordinates of the compactified six
dimensional space. As a consequence, some or even all of
the moduli fields that parametrize the properties of the
internal manifold can be projected out [63] and be frozen
at a specific value, typically at the self-dual point in the
moduli space. In that case, the space of unfixed moduli is
substantially reduced. One can envision that stabilization of
the remaining unfixed moduli and extraction of the global
minimum is possible. The question whether it is possible to
obtain a model with positive vacuum energy and fixed
moduli with or without a D-term uplift may be further
investigated.
In this paper we explored the contribution of the would

be FI D-term to the vacuum energy in non-SUSY heterotic
string vacua. This contribution can uplift the vacuum
energy from a negative to positive value and give rise to
a positive constant cosmological background. We distin-
guished in our analysis between string vacua with explicit
SUSY breaking versus vacua in which SUSY is broken
spontaneously by the Scherk-Schwarz mechanism. We
found that while rare, a D-term uplift to a positive
cosmological constant might indeed be possible.
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APPENDIX A: TRANSLATION OF FERMIONIC
PARTITION FUNCTION

The goal of this appendix is to find a one-to-one
correspondence between the partition functions written

in the free fermionic construction, (2.4), and in the orbifold
language. An outline of this procedure can be found in [57]
and is also presented in [64].
The aim of this procedure is to find an equality of the

form

ZF ¼ 1

2N

X
α;β

C

�
α

β

�
Z

�
α

β

�

¼
X
a;k;���
b;l;���

ð−1Þ
Ψ
h a k � � �
b l � � �

i
Z

�
a k � � �
b l � � �

�
; ðA1Þ

where the product over the fermions is now implicit and
contained within Z½αβ�. The right-hand side requires further

comments. The term Z
h a k � � �
b l � � �

i
represents the theta

functions in terms of the summation indices a; b; k; l;….

The phase ð−1Þ
Ψ
h a k � � �
b l � � �

i
is the analog of the GGSO

phase in this new formulation.

1. The modular invariant phase

To see all possible choices of indices, which in turn fix

the form of Z
h a k � � �
b l � � �

i
, we note that to represent a

partition function of a model with N basis vectors requires
the use of N summation indices. This can be seen by
matching the number of terms on each side of (A1). Thus,
the translation of the form of the partition function is
uniquely determined by the choice of a change of basis
matrix, S, which encodes the correspondence between the
basis vectors and the summation indices. For our choice of
models specified by the basis vectors (2.10) and the
summation indices in the partition function as in (4.1),
the S matrix is given by

S ¼

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 1 1 1

0 1 0 0 0 0 0 0 1 0 1 1

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCA

ðA2Þ
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All invertible N × N matrices whose entries take values in
Z2 are valid choices. However, the above choice is the one
which best illuminates the geometry of the underlying
compactification. Choosing S ¼ IN , the N-dimensional
identity matrix, would render the translation trivial and

the form of Z
h a k � � �
b l � � �

i
and ð−1Þ

Ψ
h a k � � �
b l � � �

i
would

match that of Z½αβ� and CðαβÞ, respectively, modulo some
subtleties we discuss in the following section.
Once S is specified, the partition function is written in its

index form and we can start making the connection
between the GGSO phases C½αβ� and the modular invariant
phase Ψ. We assume that Ψ can be expressed as a poly-
nomial in the summation variables. Then, two-loop modu-
lar invariance imposed on the GGSO phases via the rule

C

�
vi

vj þ vk

�
¼ δviC

�
vi
vj

�
C

�
vi
vk

�
; ðA3Þ

implies that Ψ
h a k Hi hi Pi

b l Gi gi Qi

i
is at most second

order in its variables. Moreover, the presence of δvi restricts
the first-order terms. That is Ψ must include a term a and
cannot contain other terms like it. More precisely, (A3)
implies

�Ψ∋a;

Ψ=∋ k; hi; Hi; Pi;
ðA4Þ

where we take “∈ ” to mean a term in the sum. These
conditions can be implemented in a compact form by
requiring the phase to be of the form

Ψ
�
a k Hi hi Pi

b l Gi gi Qi

�
¼ aþ βiΔi þ ΓiΩijΔj; ðA5Þ

where we defined

Γ ¼ ða; k; H1; H2; H3; H4; H5; H6; h1; h2; P1; P2Þ;
Δ ¼ ðb; l; G1; G2; G3; G4; G5; G6; g1; g2; Q1; Q2Þ; ðA6Þ

to be the vectors containing top and bottom indices
respectively.
We now impose one-loop modular invariance by requir-

ing that the partition function (A1) remains invariant under
S and T-transformations, under which the theta functions
transform as

S∶ ϑ

�
a

b

�
→ eiπab=2ϑ

�
b

−a

�
;

T∶ ϑ

�
a

b

�
→ eiπaða−2Þ=4ϑ

�
a

aþ b − 1

�
: ðA7Þ

By using a compact notation for the theta and eta function
terms as in (A1), i.e.

ZF ¼ 1

22

X
a;k
b;l

1

210

X
Hi;hi;Pi
Gi;gi;Qi

ð−1Þ
Ψ

�
a k Hi hi Pi

b l Gi gi Qi

�

× Z

�
a k Hi hi Pi

b l Gi gi Qi

�
; ðA8Þ

we can express the modular transformations more readily.
In particular, under modular transformations

Z

�
a k Hi hi Pi

b l Gi gi Qi

�
⟶
S

Z

�
b l Gi gi Qi

−a −k −Hi −hi −Pi

�
;

Z

�
a k Hi hi Pi

b l Gi gi Qi

�
⟶
T ð−1Þ1þaþP1þP2Z

�
a k Hi hi Pi

aþ b − 1 kþ l − 1 Hi þ Gi − 1 hi þ gi Pi þQi

�
;

where the extra factor of −1 in the T-transformation comes from the η-functions. By noting that the phase Ψ transforms
trivially, as it is just a constant factor, we can conclude that to be modular invariant the phase must satisfy

Ψ
�
a k Hi hi Pi

b l Gi gi Qi

�
¼S Ψ

�
b l Gi gi Qi

−a −k −Hi −hi −Pi

�
;

Ψ
�
a k Hi hi Pi

b l Gi gi Qi

�
¼T 1þ aþ P1 þ P2 þΨ

�
a k Hi hi Pi

aþ b − 1 kþ l − 1 Hi þ Gi − 1 hi þ gi Pi þQi

�
: ðA9Þ
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The first equation, i.e., S-invariance, shows that Ψ must be
symmetric under the exchange of lower and upper indices,
which together with (A5), implies that

Ψ
�
a k Hi hi Pi

b l Gi gi Qi

�
¼ aþ bþ ΓiΩijΔj; ðA10Þ

withΩij ¼ Ωji. Implementing the condition for T-invariance
in (A9) further restricts the form ofΩ imposing the conditions
on its elements

X8
j¼1
j≠i

Ωij ¼ 0 for i ¼ 2;…; 8;

X8
j¼1

Ωij ¼ Ωii for i ¼ 9; 10;

X8
j¼1

Ωij ¼ 1þ Ωii for i ¼ 11; 12; ðA11Þ

where all equalities are understood modulo 2. These fix a
further 11 components of Ωij. Together with the condition
from S-invariance Ωij ¼ Ωji, we are left with ð122=2þ
12=2Þ − 11 ¼ 67 independent choices for the Ωij. This
precisely matches the number of independent GGSO phases
for a 12 basis vector model.1

What we achieved here is precisely the derivation of the
modular invariance conditions, for the phase Ψ. These are
analogous to the well-known conditions on the GGSO
coefficients in the fermionic formulation. All remaining
independent components of Ω can be freely chosen as
Ωij ∈ f0; 1g with each choice giving a new consistent
model.

2. The translation

We have found a consistent modular invariant way of
representing a model in terms of a phaseΨ, what remains is
to find a translation between the GGSO phases and Ψ as set
out in (A1). With the above setup, this means finding a
correspondence between the independent GGSO phases
C½αβ� and the matrix elements Ωij. We have already
established that the number of these elements is in agree-
ment on both sides and both quantities perform the same
role so such a translation should be possible in principle.
To make the connection, one has to notice that the forms

of the theta functions on the left and right-hand sides
of (A1) do not match. In particular the expression

X
a;k;���
b;l;���

ð−1Þ
Ψ
h a k � � �
b l � � �

i
Z

�
a k � � �
b l � � �

�
ðA12Þ

involves theta functions which may take arguments such
as ϑ½ 1−1�; ϑ½30�;… not permitted on the free fermionic side
where the arguments are either 0 or 1. We can, however, use
the periodicity properties of the theta functions

ϑ

�
aþ 2

b

�
¼ ϑ

�
a

b

�

ϑ

�
a

bþ 2

�
¼ eiπaϑ

�
a

b

�
; ðA13Þ

to rewrite (A12) in terms of the standard theta functions.
This will allow for consistent term-by-term matching. By
denoting the “fundamental” form of the theta functions as

ϑf

�
a

b

�
≡ ϑ

�
a mod 2

b mod 2

�
; ðA14Þ

we can find equations using (A13) that help bring all theta
functions to this reduced form, e.g.,

ϑ

�
aþ h1
bþ g1

�
¼ ð−1Þðaþh1Þbg1ϑf

�
aþ h1
bþ g1

�

ϑ

�
a − h1 − h2
b − g1 − g2

�
¼ ð−1Þða−h1−h2Þðg1þg2þbg1þbg2þg1g2Þ

× ϑf

�
a − h1 − h2
b − g1 − g2

�
: ðA15Þ

These relations can always be found by writing

ϑ
h a …
b …

i
¼ ð−1ÞFða;b;���Þϑf

h a …
b …

i
, with Fða; b; � � �Þ a

suitably general polynomial, and restricting the form of F
by requiring (A13) to hold.
Utilizing these expressions, we can rewrite the right-

hand side of (A1), fully in terms of the reduced theta
functions as

ZF ¼
X
a;k;���
b;l;���

ð−1Þ
χ

h a k � � �
b l � � �

i
þΨ

h a k � � �
b l � � �

i

× Zf

�
a k � � �
b l � � �

�
; ðA16Þ

where we defined the compensating phase factor χ. For our
specific model it is given by

1We can either count 66 or 67 independent GGSO phases
depending on whether we specify that the unimportant phase
C½11�, generating an overall chirality, is fixed or not.
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χ

�
a k Hi hi Pi

b l Gi gi Qi

�
¼ ðaþ kÞðg1 þ g2 þ g1g2Þ

þ ðbþ lÞðh1g2 þ h2g1Þ; ðA17Þ

which enforces the rules (A15). Here, by Zf we denote that
all theta functions have been brought to their mod 2 form as
written in (A14). This compensating phase is crucial for the
matching of the partition functions.

We are now ready to make the connection between the
two formalisms. To compare the two sides of (A1) we must
reexpress the GGSO matrix C in the form

Cij ¼ ð−1ÞGij ; ðA18Þ

this allows for a direct comparison of Ψ and G.
Furthermore, it will be convenient to separate Ψ into its
first and second order terms, that is we define

Ψ
�
a k Hi hi Pi

b l Gi gi Qi

�
¼ aþ bþ ΓiΩijΔj ≔ aþ bþΦ

�
a k Hi hi Pi

b l Gi gi Qi

�
: ðA19Þ

We can now express the factor of aþ bþ χ in the basis formed by the basis vectors (2.10) as a matrix Pwhose elements are

Pij ¼
�
aþ bþ χ

�
a k � � �
b l � � �

�				Γk ¼ Sik and Δk ¼ Sjk

�
: ðA20Þ

All that remains is to express Φ, i.e., Ω, in the same basis so we can equate the two. We can do this by noticing that

�
Φ
�
a k � � �
b l � � �

�				Γk ¼ Sik and Δk ¼ Sjk

�
¼ SikΩklSjl ¼ SΩST; ðA21Þ

and so Ω̃ ¼ SΩST is the phase expressed in the basis
formed by the basis vectors of the free fermionic model.
Since all quantities are now expressed in the same basis we
can write down the equality which implements the trans-
lation, namely

Gþ P ¼ SΩST; ðA22Þ

where the equality is understood modulo 2. Solving the
above equation means finding values for all Ωij and so
fixing Ω. Once the solution is found to the linear system,
the final phase can be expressed using (A19), that is

Ψ
�
a k Hi hi Pi

b l Gi gi Qi

�
¼ aþ bþ ΓΩΔ: ðA23Þ

This gives a precise one-to-one correspondence between
the modular invariant phase and the GGSO matrix.
It is important to note that the above methods only cover

the case for real boundary conditions, i.e., Z2-models such
that the fermions are either R or NS. This, in turn, implies
that all GGSO phases are real. It is, however, possible to

generalize this construction to allow for more general
choices of boundary condition vectors and GGSO matrices.

APPENDIX B: SCHERK-SCHWARZ
AND T-DUALITY CONDITIONS

In this section we will explicitly show how the tech-
niques developed in Secs. Vand VA can be applied in order
to check for SSS and T-duality. In particular, we will use the
two models of section VIII, specified by the GGSO phase
configurations (8.1) and (8.2).
The condition for SSS is that for T2 → ∞ the partition

function vanishes so SUSY is restored, which can happen
only if a Jacobi identity is realized. This identity in (5.4)
must hold for all indices fixed, except for H1, H2, G1, G2

which do not appear as arguments in the theta functions,

since the moduli-dependent lattice Γð1Þ
2;2

hH1 H2

G1 G2

			 h1g1
i
is

set to 1. Given the GGSO phases, the phase Φ in the
partition function (4.1) can be calculated using (A23)
following the discussion of Appendix A. For the model
(8.1) this phase is given by

Φ
�
a k Hi h1 h2 Pi

b l Gi g1 g2 Qi

�
¼ bðaþH1 þ h2 þH2 þ P1Þ þ lðh2 þ kþP1Þ þG1ðaþ h1 þH2 þH3 þH4 þ P1 þP2Þ

þG2ðaþH1 þ h2 þH2 þP1Þ þG3ðH1 þH6Þ þG4ðH1 þH4 þH6Þ
þG6ðh1 þ h2 þH3 þH4 þH6Þ þ g1ðH1 þH6 þ P1Þ þ g2ðaþH2 þH6 þ kþ P1Þ
þQ1ðaþ h1 þH1 þ h2 þH2 þ kÞ þQ2ðH1 þ P2Þ: ðB1Þ
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Then, as stated in Sec. V, the Jacobi identity holds only if the following condition is satisfied

X
H1 ;H2
G1 ;G2

ð−1Þ
Φ

�
0 k Hi 0 0 Pi

0 l Gi 0 0 Qi

�
¼

X
H1 ;H2
G1 ;G2

ð−1Þ
Φ

�
1 k Hi 0 0 Pi

0 l Gi 0 0 Qi

�
¼

X
H1 ;H2
G1 ;G2

ð−1Þ
Φ

�
0 k Hi 0 0 Pi

1 l Gi 0 0 Qi

�
: ðB2Þ

Actually it is sufficient to prove just the first equality, since due to modular invariance the phase

Φ
h a k Hi h1 h2 Pi

b l Gi g1 g2 Qi

i
is the same by exchanging lower and upper indices. Then, by performing the lattice

sum, it is easy to check that the equality holds.

Alternatively, it can also be check directly by inspecting the phase Φ
h a k H1 H2 Hi 0 0 Pi

b l G1 G2 Gi 0 0 Qi

i
, where

we have distinguished H1, H2 from the other Hi’s to render the discussion clearer. For

Φ
h
0 k H1 H2 Hi 0 0 Pi

0 l G1 G2 Gi 0 0 Qi

i
set the indices H1 and H2 to zero. If there are some combinations of H�

1 and

H�
2 for Φ

h
1 k H�

1 H�
2 Hi 0 0 Pi

0 l G1 G2 Gi 0 0 Qi

i
such that the following equality holds

Φ
�
0 k 0 0 Hi 0 0 Pi

0 l G1 G2 Gi 0 0 Qi

�
¼ Φ

�
1 k H�

1 H�
2 Hi 0 0 Pi

0 l G1 G2 Gi 0 0 Qi

�
; ðB3Þ

then the condition (B2) will be satisfied and the Jacobi identity will hold. In particular, for the phase (B1) it is easy to check
that the equality is satisfied settingH�

1 ¼ 0,H�
2 ¼ 1. Once this holds, for all other combinations ofH1,H2 the equality will

hold according to

Φ
�
0 k 0þ i 0þ j Hi 0 0 Pi

0 l G1 G2 Gi 0 0 Qi

�
¼ Φ

�
1 k H�

1 þ i H�
2 þ j Hi 0 0 Pi

0 l G1 G2 Gi 0 0 Qi

�
: ðB4Þ

This second way of checking for SSS is particularly convenient in terms of time efficiency, being easy to implement in a
computational program.
We now check whether T-duality is preserved for this model, i.e., if condition (5.12) holds. To do this, we check that

X
H1 ;H2
G1 ;G2

ð−1Þ
Φ

�
0 k Hi 0 0 Pi

0 l Gi 0 0 Qi

�
þH1G1þH2G2

¼
X
H1 ;H2
G1 ;G2

ð−1Þ
Φ

�
1 k Hi 0 0 Pi

0 l Gi 0 0 Qi

�
þH1G1þH2G2

¼
X
H1 ;H2
G1 ;G2

ð−1Þ
Φ

�
0 k Hi 0 0 Pi

1 l Gi 0 0 Qi

�
þH1G1þH2G2

ðB5Þ

is satisfied. As discussed in Sec. VA, due to modular invariance, just the first equality is sufficient. Performing the sum, we
can see that the T-duality condition does not hold. Also using (B3) modified with the additional T-dual contribution

Φ
�
0 k 0 0 Hi 0 0 Pi

0 l G1 G2 Gi 0 0 Qi

�
¼ Φ

�
1 k H�

1 H�
2 Hi 0 0 Pi

0 l G1 G2 Gi 0 0 Qi

�
þH�

1G1 þH�
2G2 ðB6Þ

it is easy to check that there is no possible combination of H�
1; H

�
2 such that the equality is preserved.

We thus conclude that for this particular model defined by the GGSO phases (8.1) the potential will exhibit an SSS
breaking with broken T-duality, such that VðT2 → ∞Þ → 0 and VðT2 → 0Þ=!0. This behavior of the potential is
demonstrated in Fig. 2.
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For the second model specified by the GGSO phases (8.2), the phase Φ is given by

Φ
�
a k Hi h1 h2 Pi

b l Gi g1 g2 Qi

�
¼ bðaþ h2 þ P2Þ þ lðH2 þH3 þH5 þH6 þ P1Þ þ G1ðH1 þH2 þH3 þ P1 þ P2Þ

þ G2ðH1 þ h2 þH2 þH3 þH4 þH5 þH6 þ kÞ þ G3ðH1 þH2 þH4 þH5 þH6

þ kþ P1 þ P2Þ þG4ðh1 þ h2 þH2 þH3 þH4 þ P1 þ P2Þ þG5ðh1 þH2 þH3

þH6 þ kþ P1Þ þG6ðh2 þH2 þH3 þH5 þH6 þ kþ P1 þ P2Þ þ g1ðh2 þH4

þH5 þ P1Þ þ g2ðaþ h1 þH2 þH4 þH6 þ P1Þ þQ1ðh1 þH1 þ h2 þH3 þH4

þH5 þH6 þ kþ P2Þ þQ2ðaþH1 þH3 þH4 þH6 þ P1 þ P2Þ: ðB7Þ

For this model it can be checked that the SSS condition
(B2), or equivalently condition (B3), is not satisfied
which implies that the potential diverges at infinity,
VðT2 → ∞Þ → �∞. The shape of the potential in Fig. 9
shows what we expect.

APPENDIX C: CHIRAL SECTOR ANALYSIS

In addition to the sectors F1;2;3
pqrs discussed in Sec. VII, the

following sectors also give rise to massless states trans-
forming under spinorial representations with chirality
under the Uð1Þ1;2;3 gauge factors

F4
pqrs ¼ Sþ b1 þ xþ z1 þ pe3 þ qe4 þ re5 þ se6

F5
pqrs ¼ Sþ b2 þ xþ z1 þ pe1 þ qe2 þ re5 þ se6

F6
pqrs ¼ Sþ b3 þ xþ z1 þ pe1 þ qe2 þ re3 þ se4

F7
pqrs ¼ Sþ b1 þ xþ z2 þ pe3 þ qe4 þ re5 þ se6

F8
pqrs ¼ Sþ b2 þ xþ z2 þ pe1 þ qe2 þ re5 þ se6

F9
pqrs ¼ Sþ b3 þ xþ z2 þ pe1 þ qe2 þ re3 þ se4; ðC1Þ

which have the following projecting sets

ϒðF4
pqrsÞ ¼ fz2; e1; e2g

ϒðF5
pqrsÞ ¼ fz2; e3; e4g

ϒðF6
pqrsÞ ¼ fz2; e5; e6g

ϒðF7
pqrsÞ ¼ fz1; e1; e2g

ϒðF8
pqrsÞ ¼ fz1; e3; e4g

ϒðF9
pqrsÞ ¼ fz1; e5; e6g; ðC2Þ

and chirality operators

χðF4
pqrsÞ ¼ chðη̄2Þ þ chðη̄3Þ ¼ −C

�
F4
pqrs

Sþ b2 þ ð1 − rÞe5 þ ð1 − sÞe6

��
− C

�
F4
pqrs

Sþ b3 þ ð1 − pÞe3 þ ð1 − qÞe4

��

χðF5
pqrsÞ ¼ chðη̄1Þ þ chðη̄3Þ ¼ −C

�
F5
pqrs

Sþ b1 þ ð1 − rÞe5 þ ð1 − sÞe6

��
− C

�
F5
pqrs

Sþ b3 þ ð1 − pÞe1 þ ð1 − qÞe2

��

χðF6
pqrsÞ ¼ chðη̄1Þ þ chðη̄2Þ ¼ −C

�
F6
pqrs

Sþ b1 þ ð1 − rÞe3 þ ð1 − sÞe4

��
− C

�
F6
pqrs

Sþ b2 þ ð1 − pÞe1 þ ð1 − qÞe2

��

χðF7
pqrsÞ ¼ chðη̄2Þ þ chðη̄3Þ ¼ −C

�
F7
pqrs

Sþ b2 þ ð1 − rÞe5 þ ð1 − sÞe6

��
− C

�
F7
pqrs

Sþ b3 þ ð1 − pÞe3 þ ð1 − qÞe4

��

χðF8
pqrsÞ ¼ chðη̄1Þ þ chðη̄3Þ ¼ −C

�
F8
pqrs

Sþ b1 þ ð1 − rÞe5 þ ð1 − sÞe6

��
− C

�
F8
pqrs

Sþ b3 þ ð1 − pÞe1 þ ð1 − qÞe2

��

χðF9
pqrsÞ ¼ chðη̄1Þ þ chðη̄2Þ ¼ −C

�
F9
pqrs

Sþ b1 þ ð1 − rÞe3 þ ð1 − sÞe4

��
− C

�
F9
pqrs

Sþ b2 þ ð1 − pÞe1 þ ð1 − qÞe2

��
; ðC3Þ
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Further to these sectors, the following can give rise to
massless states when accompanied by one right-moving
Neveu-Schwarz oscillator given by

V1
pqrs ¼ Sþ b1 þ xþ pe3 þ qe4 þ re5 þ se6

V2
pqrs ¼ Sþ b2 þ xþ pe1 þ qe2 þ re5 þ se6

V3
pqrs ¼ Sþ b3 þ xþ pe1 þ qe2 þ re3 þ se4; ðC4Þ

which have the following projecting sets

ϒðV1
pqrsÞ ¼ fz1; z2; e1; e2g

ϒðV2
pqrsÞ ¼ fz1; z2; e3; e4g

ϒðV3
pqrsÞ ¼ fz1; z2; e5; e6g; ðC5Þ

and chirality operators

χðV1
pqrsÞ ¼ chðη̄2Þ þ chðη̄3Þ ¼ −C

�
V1

pqrs

Sþ b2 þ ð1 − rÞe5 þ ð1 − sÞe6

��
− C

�
V1

pqrs

Sþ b3 þ ð1 − pÞe3 þ ð1 − qÞe4

��

χðV2
pqrsÞ ¼ chðη̄1Þ þ chðη̄3Þ ¼ −C

�
V2

pqrs

Sþ b1 þ ð1 − rÞe5 þ ð1 − sÞe6

��
− C

�
V2

pqrs

Sþ b3 þ ð1 − pÞe1 þ ð1 − qÞe2

��

χðV3
pqrsÞ ¼ chðη̄1Þ þ chðη̄2Þ ¼ −C

�
V3

pqrs

Sþ b1 þ ð1 − rÞe3 þ ð1 − sÞe4

��
− C

�
V3

pqrs

Sþ b2 þ ð1 − pÞe1 þ ð1 − qÞe2

��
: ðC6Þ
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