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In classical dynamics, Eisenhart lift connects the dynamics of null geodesics in a Brinkmann spacetime
with a continuous family of Hamiltonian systems by means of a suitable projection. In this work we explore
the possibility of building a model for quantum dynamics of massless particles propagating inside a
Brinkmann spacetime from the Einsenhart lift. As a result, we describe spatial tunneling between regions
classically disconnected for a certain class of null geodesics because of curvature. Also we describe
entangled states arising from observers who have limited access to the whole Brinkmann space. Finally we
explore the possibility of finding a quantum field theory behind these quantum phenomena.
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I. INTRODUCTION

In a microscopic scale, mass particles in a scalar
potential evolve showing a collection of phenomena
characteristic of quantum mechanics as, for example,
quantum tunneling, barrier penetration, etc. As a particular
example we can choose the scalar potential of Newtonian
gravity and, therefore, we would expect that the micro-
scopic dynamics of a mass particle subjected to gravity
follows the rules of quantum mechanics as a response to
the Newtonian gravitational potential. However, gravity is
driven by curvature, not by means of a scalar potential. On
the other hand, in the framework of general relativity,
massless particles follow null geodesics that see curvature.
So a natural question arises: Do massless particles respond
to spacetime curvature, in a microscopic scale, following
the rules of quantum mechanics? Note that we are taking
about a scale in which particles behave following quantum
mechanics but gravity is still described by classical (i.e. no
quantum) general relativity.
The role of curvature in quantum mechanics has been

considered many times in literature. Early works explored
the generalization of quantum mechanics in Euclidean
space to Riemannian manifolds. In this way, in [1] the
role of the curvature was computed through the constraint
of the dynamics to curved submanifolds of Euclidean
space. On the other hand, in [2] the curvature was
incorporated in a natural way by means of a connection
in the fiber bundle of complex number over the space. Each
model brings different results and problems, and nowadays
it is not clear what the correct answer is. With respect to the

modeling of the quantum dynamics for geodesics in curved
spacetimes, it has been addressed both in the framework of
quantum geometry [3,4], where non-commutative spaces
serve as play model for quantum gravity, and in the context
of quantum correcting to gravity [5–10]. Finally, issues
concerning whether gravity sees quantum physics were
considered in [11] and, more recently, in [12,13].
In this work we propose an approach different from

the ones previously mentioned. Here we do not pretend to
develop any quantum model for gravity or to introduce
quantum corrections to gravity. Neither do we build a
covariant formulation of quantum mechanics. Our point of
view is to move in a scale where gravity is well described
by general relativity but particles exhibit quantum dynam-
ics, and describe this quantum dynamics for a selected set
of observers. For achieving this goal, our point of departure
is the Eisenhart lift.
The Eisenhart lift arises in classical dynamics as an

attempt to geometrize the dynamics of Hamiltonian systems
[14,15]. Being more specific, the Eisenhart mechanism
works lifting the dynamics of some Hamiltonian system
to a higher dimensional space by introducing two additional
coordinates. The key point is that the lifted trajectories
correspond to null geodesics in a pseudo-Riemannian
space with Lorentzian signature, such that the coupling
constant to scalar and vector potentials appearing in the
original Hamiltonian system corresponds to a conserved
quantity over null geodesics. This conserved quantity is
related to a covariantly conserved Killing vector and, thus,
the null geodesics are in a Brinkmann spacetime [16–19].
As a consequence, the inverse of the Eisenhart lift gives
a projection of the dynamics of null geodesics in a
Brinkamnn space over a continuous uniparametric family
of Hamiltonian systems depending on the coupling constant.
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Based on the connection previously mentioned between
null geodesics and a continuous family of Hamiltonian
systems, in this paper we propose to define quantum
dynamics for massless particles in Brinkmann space-
times by quantizing the dynamics in each one of the
Hamiltonian systems of the continuous family served by
the Eisenhart lift. In some way this is not a new idea, since
second quantization in quantum field theory is carried out
by decomposing the field in a continuum of modes and,
then, describing each mode by means of the quantum
harmonic oscillator.
The paper is organized as follow: In Sec. II we discuss

briefly the Eisenhart lift and its relation with null geodesics
in Brinkmann spacetimes, setting the connection between
null geodesics and a continuous family of reduced
Hamiltonian systems. In Sec. III, as a warmup exercise,
we pay some attention to the Eisenhart lift of autonomous
and natural Hamiltonian systems. In Sec. IV we define
quantum dynamics for massless particles in Brinkmann
spacetimes from this continuous family of reduced
Hamiltonian systems, giving special emphasis on stationary
Brinkamnn spacetimes. In Sec. V we extract some conse-
quences from the model previously developed, and we
describe quantum tunneling and entanglement for null
particles in Brinkmann spacetimes. Finally, in Sec. VI,
the possibility of finding a quantum field theory behind the
quantum mechanical model developed is explored, while in
Sec. VII some conclusions and future work are addressed.

II. EISENHART LIFT AND BRINKMANN SPACES

The Eisenhart lift connects the dynamics of
Hamiltonian systems with the dynamics of null particles
in a pseudo-Riemannian manifold. In this section we
show briefly how this is done and the connection with
Brinkmann spaces. Deeper details in the Eisenhart lift
can be found in Refs. [14,15] while, for Brinkamnn
spaces, canonical texts as Refs. [17,20] can serve as a
complete view of the subject.

A. The Eisenhart lift briefly

Let ðF;ω; HðλÞÞ be a Hamiltonian system, where
ω ¼ P

i dq
i ∧ dpi, i ¼ 1;…n, F ¼ T�Qn, and λ is the

coupling constant to external potentials. The Eisenhart lift
consists in building a new Hamiltonian system ðF ;Ω;HÞ,
with Ω ¼ ωþ du ∧ dpu þ dv ∧ pv, F ¼ T�Qnþ2 and,

H ¼ 1

2
ḡij

�
pi −

pv

2
Ai

��
pj −

pv

2
Aj

�
−
p2
v

2
Φþ pvpu;

ð1Þ

such that

Hλ ¼ HðλÞjt→u þ λpu; ð2Þ

where the subscript λ means “valued over pv ¼ λ.” In the
most general case, ðF;ω; HðλÞÞ is a non-autonomous
and non-natural Hamiltonian system with scalar potential
φðt; qÞ, vector potential Aiðt; qÞ, and kinetic metric gijðt; qÞ
given by

gij¼ ḡijju→t; φ¼−
1

2
Φju→t; Ai¼

1

2
Aiju→t: ð3Þ

We impose the condition that detðgÞ ≠ 0 for any value of t
and qi. Then, positiveness of the kinetic term fixes gij
as a uniparametric family of Riemannian metrics over the
configuration space Qn for each value of t. From now on
we shall call ðF ;Ω;HÞ the lifted Hamiltonian system,
while we shall call ðF;ω; HðλÞÞ the reduced Hamiltonian
system with coupling λ.
The “magic” of the Eisenhart lift is that the lifted

Hamiltonian covers the dynamics of the reduced
Hamiltonian. For showing this fact, note that v is a cyclic
coordinate in the lifted Hamiltonian Eq. (1) and, therefore,
there are curves from the lifted Hamiltonian flow that
satisfies pv ¼ λ. Then,

∂Hλ

∂qi
¼ ∂HðλÞ

∂qi

����
t→u

;
∂Hλ

∂pi
¼ ∂HðλÞ

∂pi

����
t→u

; ð4Þ

and the Hamiltonian system ðF ; Ω̂;HÞ includes the
dynamics of ðF;ω; HðλÞÞ for each value of the
coupling λ. For pv ¼ λ, the set of equations of motion is
completed with

u̇ ¼ λ;

v̇ ¼ −
1

4
ḡijAið2pj − λAjÞ − λΦþ pu;

ṗu ¼ −
1

8
∂uḡijð2pi − λAiÞð2pj − λAjÞ

þ λ

4
ḡij∂uAið2pj − λAjÞ þ

λ2

2
∂uΦ;

ṗv ¼ 0: ð5Þ

Note that the value of the momentum pv ¼ λ gives the
coupling of the reduced system to the scalar and vector
potentials Eq. (3) and, so, the coupling becomes dynamical
in the lifted system.
Obviously, not all curves of the Hamiltonian flow in

ðF ;Ω;HÞ project over the Hamiltonian flow of the
reduced system ðF;ω; Hðλ0ÞÞ for some fixed coupling
λ0, since we have to choose the curves with py ¼ λ0. In
a mathematical language, defining Γ̂λ0 as the set of curves
in Qnþ2 solving the lifted equations of motion for pv ¼ λ0,
the projection,

π∶Qnþ2→Qn; πðq1;…qn;u;vÞ¼ðq1;…qnÞ; ð6Þ
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induces a map,

π̂∶Γ̂λ0 → Γ; ð7Þ

where Γ is the set of curves in Qn solving the equations of
motion in ðF;ω; Hðλ0ÞÞ. Even under the restriction to the
sector pv ¼ λ0 of the lifted dynamics, the map Eq. (6) is not
a one-to-one map. Since the u coordinate replaces the time
in the original Hamiltonian system, the lifted Hamiltonian
is autonomous and, therefore,

εγ ¼ HjγðtÞ; ð8Þ

for any curve γðtÞ∈ Γ̂λ0 , is a conserved quantity. This
conserved quantity does not arise from the dynamics in the
configuration spaceQn and, therefore, it is a free parameter.
Thus, the inverse of the map Eq. (7) gives an infinite set
of curves in Γ̂λ0 for each curve in Γ, one curve for each
possible value of εγ. Fixing a value εγ gives a one-to-one
map. For simplicity we decide to fix εγ ¼ 0 and, then, we
get the bijection:

π̂∶Γ̂0
λ0
≃ Γ; ð9Þ

where Γ̂0
λ0

is the set of curves in Qnþ2 solving the lifted
equations of motion with pv ¼ λ0 and εγ ¼ 0.
The power of the Eisenhart lift resides on the fact that the

lifted Hamiltonian is homogeneous of second degree in
momenta. As a consequence the lifted Lagrangian formally
coincides with the lifted Hamiltonian, and a shortcompu-
tation gives

L ¼ 1

2
gijq̇iq̇j þ

Φ
2
u̇2 þ u̇

�
v̇þ 1

2
Aiq̇i

�
: ð10Þ

This Lagrangian can be reinterpreted as the one for affine-
parametrized geodesics in Qnþ2 with metric

ds2 ¼ 2dvduþ ðΦðu; qÞduþAiðu; qÞdqiÞdu
þ ḡijðu; qÞdqidqj: ð11Þ

In addition, a simple computation gives

detðGÞ ¼ −4 detðḡÞ; ð12Þ

and, thus, Gab equips Qnþ2 with a pseudo-Riemannian
geometry with Lorentzian signature. In this way we gets an
effective geometrization of the classical dynamics of the
set of reduced Hamiltonian systems ðF;ω; HðλÞÞ, λ∈R, by
means of the Eisenhart lift. Since the lifted Lagrangian
coincides formally with the lifted Hamiltonian, we have

εγ ¼ Lðγ; γ̇Þ ¼ γ̇aγ̇bGab: ð13Þ

On the other hand, the vector field ⃗l ¼ ∂v is a Killing field
of the line element Eq. (11) and

laγ̇bGab ¼ pv: ð14Þ

Thus,

Γ̂0
λ0
¼ fγðtÞ geodesics∶ γ̇aγ̇bGab ¼ 0; and laγ̇bGab ¼ λ0g:

ð15Þ

In other words, the curves solving the equations of motion
in the reduced system ðF;ω; Hðλ0ÞÞ have a one-to-one
correspondence with null geodesics in ðQnþ2; GabÞ satisfy-
ing laγ̇a ¼ λ0. Reversely, the set of all null geodesics in
ðQnþ2; GabÞ projects, by means of the map Eq. (6), over
the curves in Qn solving the equations of motion of the
continuous family of reduced Hamiltonian systems
ðF;ω; HðλÞÞ, ∀ λ∈R. So, there is a bridge between the
dynamics of the null geodesic in ðQnþ2; GabÞ and the set of
reduced Hamiltonian systems ðF;ω; HðλÞÞ.

B. Relation with Brinkmann spaces and pp-waves

Until now we have done some things that are well
know for the physicist who works in the area of classical
dynamics. However, thinking as a general relativity physi-
cist, ðQnþ2; GabÞ seems much more like some type of
spacetime. Indeed, the line element Eq. (11) appears in
the framework of general relativity and, also, string
theory [21], as the most general metric we can build from
a covariantly conserved null Killing vector field. In our
case, this covariantly conserved vector is the one in
Eq. (14):

∇alb ¼ 0: ð16Þ

Spaces with a metric of the form Eq. (11) are called
Binkmann spaces [16]. Every u ¼ u0 hypersurface collap-
ses to an n-dimensional submanifold which is called the
transverse space for u ¼ u0, and every transverse space
corresponds to the configuration space Qn equipped with
the transverse metric ḡijðq; u ¼ u0Þ.
Following from the point of view of a physicist working

in general relativity, the next issue calling our curiosity is
what about curvature. The first task is to compute the
inverse metric Gab. After some algebra,

Guu ¼ 0; Guv ¼ 1; Gui ¼ 0

Gvv ¼ −Φþ 1

ḡðn − 1Þ! ε
i1…inAi1 det½A⃗; g⃗i2 ;…; g⃗in �;

Gvi ¼ −
1

ḡðn − 1Þ! ε
ij2…jn det½A⃗; g⃗j2 ;…; g⃗jn �;

Gij ¼ ḡij; ð17Þ
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where g⃗k is the kth row of ḡij. Now, with some effort, the
Christoffel symbols and, later, the Ricci tensor components
can be computed. Fortunately, we can write them in terms
of geometrical objects living at Qn. Defining

Ci ¼ ḡik
�
∂uAk −

1

2
∂kΦ

�
;

Fij ¼ ∂iAj − ∂jAi;

Bij ¼
1

2
ð∂uḡij þ FijÞ; ð18Þ

the nonvanishing components of the Ricci tensor are

Ruu ¼ ∇ðḡÞ
i Ci þ 1

4
F2 −

1

2

�
ḡik∂2uḡik þ

1

2
∂uḡik∂uḡik

�
;

Rui ¼ ḡjk∇ðḡÞ
j Bik −

1

2
∂iðḡjk∂uḡjkÞ;

Rij ¼ RðḡÞ
ij ; ð19Þ

where the superscript ðḡÞ means “with respect to the
metric ḡij” for each value of u. Finally, from Eq. (17)
and Eq. (19),

R ¼ RðĝÞ: ð20Þ

So the scalar curvature is not affected by the scalar
and vector potentials in the set of reduced Hamiltonian
systems ðF;ω; HðλÞÞ, λ∈R.
The results in Eqs. (19) and (20) do not predict easy

Einstein field equations, even for empty spacetime.
However, for many Hamiltonian systems, the kinetic term
does not depend on the time t and, even more, the kinetic
metric gij is flat. In this case, the Einstein field equations
reduce to some like Riemannian Maxwell equations,

△ðḡÞΦ ¼ −ρþ 1

2
F2 þ 2∂u∂

kAk; ∇ðḡÞkFik ¼ Ji; ð21Þ

where the energy density and current are defined as

ρ ¼ 2κTuu; Ji ¼ 2κTui; ð22Þ

where κ ¼ 8πGD and GD is the D-dimensional Newtonian
gravitation constant. Additionally, R ¼ 0 implies traceless
stress tensor,

T ¼ GabTab ¼ 0: ð23Þ

The latter supposes a significant simplification from the
general case. Indeed, in this case, the Brinkmann metric
Eq. (11) reduces to the one of a pp-wave, revealing a
connection between pp-waves and classical Hamiltonian

systems. Under this connection, the scalar potential
φ ¼ −Φ=2 gives the profile of the wave, while Ai ≠ 0 is
related to the presence of wave helicity1 [22]. The energy
density ρ and current Ji we need to generate the pp-wave
can be read from the set of reduced Hamiltonian systems
ðF ;ω; HðλÞÞ by means of Eqs. (21) and (22), so the
spacetime and its matter content is entirely determined
from the characteristics of the set of reduced classical
mechanical system.
Finally with respect to Brinkmann spaces, they have a

gauge symmetry with respect to shifts in the v coordinate.
The Killing vector ⃗l means that we have symmetry under
translations v → vþ v0. However, this symmetry can be
gauged to

v → v̄ ¼ v −
1

2
fðu; qÞ: ð24Þ

Then, the line element Eq. (11) remains unchanged
provided that we transform Φ and Ai according to

Φ → Φ̄ ¼ Φþ ∂uf; Ai → Āi ¼ Ai þ ∂if: ð25Þ

In terms of the scalar potential φ ¼ −Φ=2 and the vector
potential Ai ¼ Ai=2, these are the gauge transformations
of electromagnetism.

III. EISENHART LIFT OF AUTONOMOUS
AND NATURAL SYSTEMS

As a special example of the previous section, let us
now consider the case in which ðF;ω; HðλÞÞ is a set of
autonomous and natural systems, and gij ¼ δij in standard
Cartesian coordinates xi. Then, Qnþ2 ¼ Q2 ×Rn, where
Q2 is a two-dimensional manifold spanned by u, v and Rn

is the transverse space, while the line element in Eq. (11)
reduces to

ds2 ¼ 2dvduþΦðxÞdu2 þ dx⃗2: ð26Þ

This line element can be also found for non-natural
systems by means of choosing a suitable null coordinate
v̄ in Eq. (24), such that the gauge transformations Eq. (25)
can be used to vanishing Ai in Eq. (11), as long as Ai
satisfies

∂½i∂j�Ak ¼ 0; ð27Þ

and the line element Eq. (26) is reachable provided that the
transformed Φ̄ does not depend on u and RðgÞ ¼ 0. In this
situation, by Eqs. (21)–(23), the line element Eq. (26) is

1Also known as gyratons, spacetimes describing the traveling
of ultrarelativistic energy bunches with helicity.
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sourced by a traceless stress tensor given by an energy
density ρ and vanishing current Ji, with field equation

∇2Φ ¼ −ρ: ð28Þ

The independence of Φ with u then implies ρ ¼ ρðxiÞ.
Under the conditions previously discussed, carrying to

the line element Eq. (11), the Brinkmann space ðQ2 ×Rn;
GabÞ has, at least, two Killing vectors: the vector field ⃗l in
Eq. (14) and ⃗t ¼ ∂u. Since

tatbGab ¼ Φ ¼ −2φ; ð29Þ

the vector field ⃗t will be timelike everywhere provided that
φ has a global positive minimum. Indeed, the existence of a
global minimum of φ is a desirable property we have to
protect if we want to keep the quantum stability of the
system, while the value of the minimum can be shifted to
have a positive value without any consequence. In this way,
always we can achieve to promote ðQ2 ×Rn; GabÞ to a
stationary spacetime, where ⃗t can be used to define an
observer u⃗p at each event p∈Q2 ×Rn as

u⃗p ¼ 1

jΦj1=2 ⃗t: ð30Þ

In addition, requiring

lim
xi→∞

Φ ¼ −1 ⇒ lim
xi→∞

φ ¼ 1

2
; ð31Þ

ðQ2 ×Rn; GabÞ becomes asymptotically flat and, from
Eq. (30) the vector field ⃗t defines the set of asymptotic
observers. These are the observers measuring the charge
and current defined in Eqs. (22).
The Killing vector field ⃗t introduces a new constant

of motion taγ̇a that must be related to the conservation of
energy in ðF;ω; Hðλ0ÞÞ, since u substitutes the time t in
Eq. (2). Indeed it is easy to compute that

pu ¼ taγ̇bGab: ð32Þ

Then, from Eq. (2),

taγ̇bGab ¼ −
Eðλ0Þ
λ0

; ∀ γ ∈ Γ̂0
λ0
ðEÞ; ð33Þ

where Γ̂0
λ0
ðEÞ ⊂ Γ̂0

λ0
is defined as the subset for trajectories

with energy E in the Hamiltonian system ðF;ω; Hðλ0Þ. The
value of pu in Eq. (32) is always measurable for the set of
asymptotic observers, so the energy of trajectories in each
reduced Hamiltonian system ðF;ω; HðλÞÞ is reachable for
the observers in the Brinkamnn space Eq. (26).

It is interesting to observe what happens with the
geodesics of Γ̂0

λ0
ðEÞ. In this case, the trajectories in the

reduced system are limited to a finite region of Rn. From
the point of view of the Brinkmann space, constant energy
E corresponds to the submanifold,

SEðλ0Þ¼fðu;v;xiÞ∈Q2×Rn∶ 2Eþλ20ΦðxÞ¼0g; ð34Þ

such that the geodesics Γ̂0
λ0
ðEÞ are limited to the interior

of SEðλ0Þ. Indeed the normal vector to SEðλ0Þ, na ¼
∂að2Eþ λ20ΦÞ satisfies

naγ̇a ¼ λ20ẋ
i
∂iΦjSEðλ0Þ ¼ 0; ∀ γ ∈ Γ̂0

λ0
ðEÞ: ð35Þ

So the geodesics of Γ̂0
λ0
ðEÞ reach SEðλ0Þ tangentially.

Also note that

nana ¼ ḡij∂iΦ∂jΦ > 0; ð36Þ

since ḡij is a Riemannian metric. Thus, SEðλ0Þ is a timelike
submanifold everywhere.
As an example, we can consider the isotropic harmonic

oscillator potential,

φHOðxiÞ ¼
x⃗2

2
: ð37Þ

The potential has a global minimum at xi ¼ 0, with

φðminÞ
HO ¼ 0, and SEðλÞ are timelike hypersurfaces wrapping

around Q2 × f0⃗g which project as concentric (n − 1)-
spheres in the transverse space Rn. The value of λ−1 scales
the radius of the hypersurfaces SEðλÞ and, for the same
energy E, geodesics with lower value of laγ̇bGab reach
further points in Rn. However, the potential violates
Eq. (31) and ðQ2 ×Rn; GabÞ fails to be asymptotically
flat, without a set of asymptotic observers. The situation
can be corrected by considering the Pöschl-Teller potential,

φPTðxiÞ ¼ −V0

�
1

2cosh2ðkjx⃗jÞ −
1

2

�
; k > 0: ð38Þ

This potential has a global minimum at xi ¼ 0, with

φðminÞ
PT ¼ 0, and also has a finite asymptotic behavior,

lim
xi→∞

φPTðx⃗Þ ¼
V0

2
: ð39Þ

Then, redefining coordinates u and v as

ffiffiffiffiffiffi
V0

p
u → u;

vffiffiffiffiffiffi
V0

p → v ð40Þ

also satisfies the asymptotic flatness condition Eq. (31).
Therefore, for fixed λ0 and energies 0 < E < λ20V0=2,
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the projection of the submanifolds SEðλ0Þ over Rn are
concentric (n − 1)-spheres, while for energies E > λ20V0=2
the null geodesics of Γ̂0

λ0
ðEÞ escape to infinity (see Fig. 1).

IV. QUANTUM DYNAMICS
FROM EISENHART LIFT

In the previous sections we have shown that the
projection of the sets of geodesics Γ̂0

λ , λ∈R, over the
transverse space of the Brinkmann space ðQnþ2; GabÞ
corresponds to the curves solving the equations of motion
of the set of reduced Hamiltonian systems ðF;ω; HðλÞÞ,
with the time t being the affine parameter of the curves in
Γ̂0
λ . In this section we propose to define quantum states for

null particles in ðQnþ2; GabÞ from quantum mechanics in
the transverse space, i.e. proposing that the space of quatum
states for null geodesics in ðQnþ2; GabÞ projects over the
Hilbert space of states in the transverse space ðQn; ḡijÞ for
each value of λ, such that the continuous set of reduced
Hamiltonian systems ðF;ω; HðλÞÞ governs the time evo-
lution of quatum null geodesics in ðQnþ2; GabÞ.
Time evolution must be related to a set of well-defined

observers. Thus, for simplicity, from now on we shall
constrain our analysis to Brinkmann spaces with a trans-
verse metric that does not depend on u and, also, such that
⃗t ¼ ∂u describes a set of well-defined asymptotic observers.
Under these conditions, the transverse space ðQn; ḡijÞ
corresponds to “time slices”—which do not change with
the timelike coordinate u—where quantum mechanics is
well posed and states can be built by means of measures
performed by the set of asymptotic observers. Then, in a
coordinate representation, we define operators p̂i as

q̂i ¼ qi; p̂i ¼ −i½∂i þ σiðqÞ� ð41Þ

where, following Ref. [2], σiðqÞ are the coefficients of the
connection on the bundle over Qn with fiber C, such that

wave functions are a section of this fiber bundle. They are
given by

ReðσiÞ ¼
1

4
ĝjk∂iĝjk: ð42Þ

The coefficients σiðqÞ are introduced to guarantee that p̂i
are self-adjoint and the commutation rules,

½q̂i; q̂j� ¼ 0; ½p̂i; q̂j� ¼ iδji ; ½p̂i; p̂j� ¼ 0 ð43Þ
are satisfied.2 In addition, in order to lift the quantum
dynamics from the transverse space to the Brinkmann space
we have to introduce also an operator p̂v such that

p̂vjΨλ0i ¼ λ0jΨλ0i; ð44Þ
where jΨλ0i is the state of a null particle following a
geodesic with pv ¼ λ0. In a coordinate representation,

p̂v ¼ −i∂v ⇒ Ψλ0ðv; qÞ ¼
1ffiffiffiffiffiffi
2π

p eiλ0vφðqÞ; ð45Þ

such that ½p̂v; v̂� ¼ i is satisfied. Here φðqÞ is a wave
function over the transverse space ðQn; ḡijÞ that, under
time evolution in the Schrödinger picture, obeys the
Hamiltonian Hðλ0Þ.
The states jΨλ0i span a Hilbert space,

Hλ0 ¼ jλ0i ⊗ H; ð46Þ
where H is the Hilbert space of states over the transverse
space ðQn; ḡijÞ and jλ0i is the state living over the line
spanned by v with p̂vjλ0i ¼ λ0jλ0i,

hvjλ0i ¼ eiλ0v; ð47Þ

FIG. 1. Left: Pöschl-Teller potential Eq. (38) for k ¼ 1. Right: Projection of surfaces SEðλÞ for E=λ2V0 ¼ 0.1, 0, 25, 0.4 in the
plane XY.

2See Ref. [23] for a modern introduction to the subject of
quantum mechanics in Riemannian manifolds.
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where jvi means “localized at v.” Now we build the bundle
ðB; π̄;RÞ, where

B ¼ ⋃
λ∈R

Hλ ≃R ×H; ð48Þ

such that π̄−1ðλ0Þ ¼ Hλ0 . Therefore, each fiber of the
bundle Eq. (48) is isomorphic to the Hilbert space H
but, with respect to time evolution, states in the fiber at λ0
are related to the Hamiltonian Hðλ0Þ. Then, finally we
define null particle states in a Brinkmann space as averaged
sections in ðB; π̄;RÞ over R, such that the projection of a
state jΨi over the transverse space is given by

hvjΨi ¼ 1ffiffiffiffiffiffi
2π

p
X
j

Z
R
dλCjðλÞeiλvjφjiλ; ð49Þ

where jφjiλ is a discrete basis of H subjected to time
evolution by means of the Hamiltonian HðλÞ. In this way,
jΨi lives at the space

jΨi∈ ⨁
λ∈R

Hλ: ð50Þ

The Hilbert product extends naturally to the kets jΨi as

hΨ1jΨ2i ¼
Z

∞

−∞
dv hΨ1jvihvjΨ2i

¼
X
j;k

Z
R
dλCð1Þ�

j ðλÞCð2Þ
k ðλÞhφjjφkiλ; ð51Þ

In particular, we recover the wave function Eq. (45) for
CjðλÞ ¼ δðλ − λ0Þ for some j. With respect to normaliza-
tion of kets,

hΨjΨi ¼
X
j;k

Z
R
dλC�

jðλÞCkðλÞhφjjφkiλ; ð52Þ

which fixes

X
j

Z
R
dλjCjðλÞj2 ¼ 1 ð53Þ

if the basis fjφjig of eachHλ is orthonormal. Finally, given
some observable ÔðvÞ,

hÔiΨ ¼ 1

2π

X
j;k

Z
∞

−∞
dv

Z
R2

dλ1dλ2C
ð1Þ�
j ðλ1ÞCð2Þ

k ðλ2Þ

× eiðλ2−λ1ÞvhφjjÔðvÞjφkiλ: ð54Þ

Note that, for ÔðvÞ changing slowly with v with character-
istic length Δv, this expected value can be approximated by

hÔiΨ ¼ 1

Δv

X
j;k

Z Δv
2

−Δv
2

dv
Z
R
dλCð1Þ�

j ðλÞCð2Þ
k ðλÞ hφjjÔðvÞjφkiλ

þF:O:T:; ð55Þ

where F:O:T means fast oscillating terms.
Together with pure states Eq. (49), mixed states can

be also considered. For a mixed state, the density operator
will be

ρ̄ ¼
X
j

Z
R
dλwjðλÞjΨjiλhΨjjλ; ð56Þ

where

hvjΨjiλ ¼ eiλvjφjiλ;
X
j

Z
R
dλwjðλÞ ¼ 1: ð57Þ

Thus,

ρ̄ ¼
X
j

Z
R
dλwjðλÞjφiλhφjλ: ð58Þ

For the special case that wjðλÞ factorizes as

wjðλÞ ¼ pjwðλÞ;
X
j

pj ¼ 1; ð59Þ

the density operators take the more simple form,

ρ̄¼
Z
R
dλwðλÞρλ; wðλÞ∈ ½0;∞Þ∶

Z
R
dλwðλÞ¼1; ð60Þ

where

ρλ ¼
X
j

pjjφiλhφjλ ð61Þ

is a density matrix on the Hilbert space H evolving
withHðλÞ, such that the state Eq. (60) projects over density
matrices ρλ with the same probabilities fpjg for each
value of λ.

A. Massless particle states in stationary
Brinkmann spacetimes

In general terms, we cannot add much more to the
quantumness of null geodesics in Brinkmann spaces only
subjected to the constrains of well-defined asymptotic
observers and the no u dependence of the transverse
metric ḡij. However, by adding the condition that
ðQnþ2; GabÞ is stationary, with t⃗ ¼ ∂u a time-like
Killing, we can also discuss ground states, stationary states,
and time evolution since, under these conditions, the set
fHðλÞg is a family of autonomous Hamiltonians.
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Naively we could think that the ground state for the QM
dynamics of null particles that we are constructing can be
defined from the ground state in each fiber of Eq. (48).
However, each fiber Hλ has a ground state j0iλ and, thus,
there is no way to define uniquely a ground state for the
Hilbert space (50). That makes sense since time evolution
in (50) does not come from one unique Hamiltonian,
but from the complete family of reduced Hamiltonians
fHðλÞ; λ∈Rg. For example, for any fixed λ0, the state
given by

hvjΩiλ0 ¼
1ffiffiffiffiffiffi
2π

p eivλ0 j0iλ0 ð62Þ

is a ground state, with definite momentum pv ¼ λ0, in the
sense that there is no possibility to connect it with a lower
energy state by means of operators in our model. In general,
any ground state of the model will respond to an expression
of the form:

hvjΩi ¼ 1ffiffiffiffiffiffi
2π

p
Z
R
dλC0ðλÞeiλvj0iλ; ð63Þ

such that Z
R
dλ jC0ðλÞj2 ¼ 1: ð64Þ

As an example, the expected value of p̂v over Eq. (63) is

hp̂viΩ ¼
Z
R
dλjC0ðλÞj2λ; ð65Þ

and, therefore, it is possible to build ground states with zero
expected value of p̂v providing jC0ðλÞj be a defined parity
function.
Together with the fact that, in our model, there is an

infinite number of ground states for the quantum dynamics
of null particles in Brinkmann spaces, the existence of a
continuous family of Hamiltonians fHðλÞg over the trans-
verse space ðQn; ḡijÞ also leads to different time evolution in
the Schrödinger picture for each λ component in Eq. (49).
For each state jΨλ0i of definite momentum pv ¼ λ0,

i∂thvjΨλ0i ¼
1ffiffiffiffiffiffi
2π

p eiλ0vĤðλ0Þjφi; ð66Þ

where t is the affine parameter over null geodesics satisfying
Eqs. (4) and (5). Now, since t runs with the coordinate u as
u̇ ¼ λ0,

i∂uhvjΨiλ0 ¼
1ffiffiffiffiffiffi
2π

p eiλ0v

λ0
Ĥðλ0Þjφi: ð67Þ

For the case that jφi be an eigenvector of Hðλ0Þ with
energy E0,

i∂uhvjΨiλ0 ¼
1ffiffiffiffiffiffi
2π

p eiλ0v

λ0
E0jφi ¼

E0

λ0
hvjΨiλ0 ; ð68Þ

and hvjΨλ0i describes a stationary state. As a particular
example, we can consider the ground state Eq. (62). Since
near a minimum of φðqiÞ, we can approximate the potential
by the harmonic oscillator one,

i∂uhvjΩiλ0 ¼
λ0ω0

2
hvjΩiλ0 ; ω2

0 ¼
Xn
i¼1

hi; ð69Þ

where hi are the eigenvalues of the Hessian of φðqiÞ=2 in the
minimum. In general, for a pure state responding to the
expression Eq. (49),

i∂uhvjΨi ¼
1ffiffiffiffiffiffi
2π

p
X
j

Z
R
dλ

CjðλÞ
λ

eiλvĤðλÞjφjiλ: ð70Þ

Therefore, for jφjiλ eigenvectors of ĤðλÞ satisfying

ĤðλÞjφjiλ ∼ λjφjiλ; ∀ λ∈R ð71Þ

the pure state Eq. (49) is stationary.

V. QUANTUM MECHANICAL PHENOMENA IN
STATIONARY BRINKMANN SPACETIMES

If the quantum dynamics of null particles in Brinkmann
spaces works according to the model developed in the
previous section, quantum phenomena would appear for
low enough energies. For the case of the Brinkmann space
given by Eq. (26), the only nonvanishing component of the
Ricci tensor Eq. (19), Ruu, scales as second derivatives
of Φ. Thus,

Tuu ∼Φ00=2κ: ð72Þ

On the other hand, near a minimum q0 of VðqÞ (therefore a
maximum of Φ), the energy in the transverse space of the
null geodesic with pv ¼ λ scales as

E2 ∼ λ2Φ00: ð73Þ

Therefore, in Planck units, the scale of the energy density to
observe quantum phenomena at an energy scale E in the
transverse space is

Tuu

ρp
∼

1

λ2

�
E
Ep

�
2

; ð74Þ

where ρp ∼ 1096 (SI) is the Planck density and Ep ∼ 109

(SI) the Planck energy. In terms of the energy density
defined in Eq. (22),
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ρ ∼ ρp
κ

λ2

�
E
Ep

�
2

; ð75Þ

or, alternatively, from the Ricci tensor in Eq. (19),

Ruu ∼ ρp
κ

λ2

�
E
Ep

�
2

: ð76Þ

So, for large enough λ, quantum phenomena for null
particles appears in a regime where the gravity can still
be classical.
With respect to quantum phenomena, there are two

characteristic phenomena of quantum mechanics we can
consider: quantum tunneling and entanglement.

A. Quantum tunneling

In Sec. III we showed the example of a stationary
Brinkmann space, with a well-defined set of asymptotic
observers, where null geodesics of Γ̂0

λ0
ðEÞ were trapped

inside the region bounded by the hypersurface SEðλ0Þ (see
Fig. 1). For that we propose the Pöschl-Teller potential
Eq. (38) for the set of reduced Hamiltonian systems
ðQn;ω; HðλÞÞ. A more interesting situation arises when
the case of the potential φ has several minima. In this case,
SEðλ0Þ could be a disconnected submanifold composed
of two or more hypersurfaces deppending on the energy E.
As an example, consider the double-well potential,

φ2PTðxiÞ ¼
1

2
½φPTðxi − xi0Þ þ φPTðxi þ xi0Þ�: ð77Þ

This potential satisfies the condition Eq. (31) and, for
kjx0!j ≫ 1, has two minima located at

xi� ≃�xi0; ð78Þ

such that

φ2PTðxi�Þ ¼
V0

2

�
1

2
−

1

2 coshð2kjx0!jÞ
�
≃
V0

4
: ð79Þ

Also, the potential has a maximum located between the two
minima, at x ¼ 0, with value,

φðmaxÞ
2PT ≃ V0=2; ð80Þ

for kjx0!j ≫ 1. Then, for fixed λ0 and energies satisfying
λ20V0=4 < E < λ20V0=2, SEðλ0Þ could split in two discon-
nected hypersurfaces, as is shown in Fig. 2, which
enclose separate regions, A and B of the Brinkmann space
ðQ2 × Rn;GabÞ. For two observers Eq. (30) located at
events p1 ∈A and p2 ∈B that pretend to communicate
through light signals, they cannot do so if they use the

“λ0-channel” (geodesics satisfying pv ¼ λ0) for energies

below some threshold E0 ¼ φðmaxÞ
2PT .

The classical behavior we have exposed changes in the
framework of the quantum mechanical model developed
in Sec. IV since, then, quantum tunneling between regions
A and B appears. Let us consider the case of a generic
double-well potential φðxÞ over a one-dimensional trans-
verse space ≃R, and such that φðxÞ possesses two
symmetric minima at �x0. Then, the tunneling between
the two minima for null particles with pv ¼ λ, in the
semiclassical approximation, can either be approached
from the paradigm of instanton physics or the WKB
method [24–26]. Choosing the first option, the penetration
factor of the classically forbidden region in a (Euclidean)
time T is given by

Δ ¼ e−λS0T; ð81Þ

where S0 is the one-instanton action minus the action of
the solution corresponding to the equilibrium (x ¼ �x0).

3

In terms of the uu-component of the metric Eq. (26),ΦðxÞ,
we have

S0 ¼
Z

x0

−x0
dx ½Φðx0Þ −ΦðxÞ�1=2: ð82Þ

Then, it is a known result that under the dilute instanton
gas condition and for large T,

h�x0je−HðλÞT j−x0i≃
1

2

�
λω

π

�
1=2

e−λωT=2

× ½expðKTe−λS0Þ∓ expð−KTe−λS0Þ�;
ð83Þ

where ω is given by

ω2 ¼ −
1

2
Φ00ðx0Þ; ð84Þ

and the constant factor K is computed from the one-
instanton solution,

t ¼ t0 þ
1

λ

Z
xðtÞ

0

dx ½Φðx0Þ −ΦðxÞ�−1=2 ð85Þ

as

K ¼
�
λS0
2π

�
1=2

���� det ð−∂2t þ λ2ω2Þ
det’ð−∂2t − λ2

2
Φ00ðx̄ÞÞ

����; ð86Þ

3Usually instantons in the double-well potential problem are
computed for potentials satisfying φð�x0Þ ¼ 0 and, thus,
S½x ¼ �x0� ¼ 0. That is not our case.
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where the prime determinant means it may be computed
excluding the zero eigenvalue.4

From Eq. (83) it is also possible to read the ground state
energy for each λ [25]. Naively, we could think that we have
a double degenerate ground state for each λ, since V2PT has
two symmetric minima. Let us call j0iR and j0iL the ground
states corresponding to each minima. However, because of
tunneling, this expected degeneracy breaks. By the sym-
metry �x0 ↔∓ x0, j0iR and j0iL combine into odd and
even states,

j−i ¼ 1ffiffiffi
2

p ðj0iR − j0iLÞ; jþi ¼ 1ffiffiffi
2

p ðj0iR þ j0iLÞ; ð87Þ

that correspond to the ground and first excited states,
with energies E�. On the other hand, in a (discrete) basis
of HðλÞ,

hþx0je−HðλÞT j − x0i ¼
X
n

e−EnðλÞThx0jnihnjx0i: ð88Þ

Thus, the leading-order term and the first next-to-leading-
order term in Eq. (88) are

hþx0je−HðλÞT j − x0i ≃ e−E−TΨ�
−ð−x0ÞΨ−ðx0Þ

þ e−EþTΨ�þð−x0ÞΨþðx0Þ: ð89Þ
Then, by comparing with Eq. (83), in the semiclassical limit
the ground state energy and first excited energy are

E�ðλÞ ≃
λω

2
� KTe−λS0 : ð90Þ

FIG. 2. Double well potential Eq. (77) (up) and projection of surfaces SE (down) for E=λ2V0 ¼ 0.45, 0.375, 0.3 in the plane XY for
x⃗0 ¼ ð1; 0Þ. Left column (k ¼ 3): observers in regions A and B cannot communicate by means of geodesics in Γ̂0

λðEÞ for any of the three
proposed values of E. Surfaces SE split in two pieces for any of the three values of energy. Right column (k ¼ 1.5): observers in regions
A and B can communicate by means of geodesics in Γ̂0

λðEÞ for E=λ2V0 ¼ 0.3, but they cannot for E=λ2V0 ¼ 0.375, 0.45. As a
consequence, regions A and B come together for E=λ2V0 ¼ 0.3.

4See Ref. [24] for more details.
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Thus, the energy splits because of tunneling between the
ground state and the first excited state for each λ is
proportional to the penetration factor in the classically
forbidden region.
As an example, we can compute the tunneling splitting

for the special case of the double-well potential given at
Eq. (77). The minima of the potential are given by the
zeroes of

Φ0ðxÞ ¼ −2kV0

(
sinh ½2kðx − x0Þ�

ðcosh ½2kðx − x0Þ� þ 1Þ2

þ sinh ½2kðxþ x0Þ�
ðcosh ½2kðxþ x0Þ� þ 1Þ2

)
: ð91Þ

For large kx0 ≫ 1, at x ¼ �x0 we have

Φ0ð�x0Þ ≃ −2kV0

tanhð�4kx0Þ
coshð4kx0Þ

¼ 0þOð1= coshð4kx0ÞÞ:

ð92Þ

So, we can take x ¼ �x0 as the minima until order
1= coshð4kx0Þ. Then

Φ00ð�x0Þ ¼ − ≃ k2V0

�
1

2
þ 4

coshð4kx0Þ
�
; ð93Þ

and, as a consequence,

ω2 ≃
V0k2

4
þOð1= coshð4kx0ÞÞ: ð94Þ

On the other hand, also for large kx0 ≫ 1, near x0,

ΦðxÞ≃V0

�
1

cosh½2kðx−x0Þ�þ1
−1þOð1=coshð2kx0ÞÞ

	
:

ð95Þ

Then, in a similar way to Eq. (94),

S0 ≃ 2V0

Z
x0

0

dx

�
3

2
−

1

cosh ½2kðx − x0Þ� þ 1

	
1=2

þOð1= coshð2kx0ÞÞ: ð96Þ

Then, substituting in Eq. (90),

E�ðλÞ ≃
λk

ffiffiffiffiffiffi
V0

p
4

� KT exp

�
−2λV0

Z
x0

0

dx

�
3

2
−

1

cosh ½2kðx − x0Þ� þ 1

	
1=2

	
þOð1= coshð2kx0ÞÞ: ð97Þ

B. Entanglement

Another typically quantum-mechanical phenomenon
that would appear in the context of the model for quantum
dynamics proposed in Sec. IV is entanglement. It must
appear as long as an asymptotic observer in Brinkmann
spacetime has limited access to the whole space. That could
be because they only know a patch of the whole Brinkmann
space. For a small enough patch, the observer effectively
lives in a lower dimensional timelike submanifold of the
Brinkmann space.
As an example, let us to start from the ground state given

in Eq. (63). For this state, the density matrix is

hv2jρ̄Ωjv1i

¼ 1

2π

Z
R
dλ1

Z
R
dλ2C0ðλ1ÞC�

0ðλ2Þeiλ1v1e−iλ2v2 j0iλ1h0jλ2 :

ð98Þ

Now, let us to consider an asymptotic observer who lives
in a region v0 − ε < v < v0 þ ε. For small enough ε, the
observer does not see the degrees of freedom related to

the v coordinate, and their spacetime is spanned by the
coordinates ðu; qiÞ. This observer sees a reduced density
matrix,

ρ̄Ωjv0 ¼
Z

v0−ε

−∞
dv hvjρ̄Ωjvi þ

Z
∞

v0þε
dv hvjρ̄Ωjvi: ð99Þ

Strictly, this equation only satisfies for ϵ → 0, but we are
going to take this limit at the end. After some computations,

ρ̄Ωjv0 ¼
Z
R
dλ jC0ðλÞj2j0iλh0jλ

−
1

π

Z
R2

dλ1dλ2
C0ðλ1ÞC�

0ðλ2Þ
λ1 − λ2

× eiv0ðλ1−λ2Þ sin ½εðλ1 − λ2Þ�j0iλ2h0jλ1 : ð100Þ

Because Eq. (64), the trace of this reduced density matrix is

Tr½ρ̄Ωjv0 � ¼ 1 −
ϵ

π
; ð101Þ
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and, in the limit ε → 0, we recover Tr½ρ̄Ωjv0 � ¼ 1, as it was
expected. On the other hand, from Eq. (100),

ρ̄2Ω

����
v0

¼
Z
R
dλ jC0ðλÞj4j0iλh0jλ þOðε2Þ; ð102Þ

and, therefore,

Tr½ρ̄2Ωjv0 � ¼
Z
R
dλjC0ðλÞj4 þOðε2Þ: ð103Þ

Since the function jC0ðλÞj2 must be normalized to 1, the
function C0ðλÞ satisfies:

0 < jC0ðλÞj2 < 1: ð104Þ
Therefore, in the ε → 0 limit,

Tr½ρ̄2Ωjv0 � < Tr½ρ̄2Ωjv0 � ¼ 1: ð105Þ
Thus, the observer limited to live inside the region v0 − ε <
v < v0 þ ε, ϵ ≪ 1 sees an entangled state coming from the
pure ground state Eq. (63). This state lives at the transverse
space and, in addition, the observer should measure an
entangled entropy,

Sðρ̄Ωjv0Þ ¼ −Tr½ρ̄Ωjv0 log ρ̄Ωjv0 �

¼ −
Z
R
dλ jC0ðλÞj2 log jC0ðλÞj2 þOðε log εÞ:

ð106Þ
Note that Eq. (103) as well as Eq. (106) do not depend
on v0. That is because of the translation symmetry in the v
coordinate in the Brinkmann space generated by the Killing
field Eq. (16).
As a particular example, let us to choose the ground state

given by

C0ðλÞ ¼
1ffiffiffi
π

p e−λ
2=2: ð107Þ

As exposed in Eq. (65), this choice guarantees that the pure
state jΩi has zero expectation value of p̂v. Then,

Tr½ρ̄2Ωjv0 � ¼
1

π2

Z
R
dλ e−2λ

2 þOðε2Þ ¼
ffiffiffi
π

p
2π2

þOðε2Þ

≈ 0.4þOðε2Þ: ð108Þ
And, as expected, the observer living at v0 − ε < v <
v0 þ ε, ε ≪ 1, sees an entangled state. Substituting
Eq. (107) in Eq. (106), the corresponding entangled
entropy is

Sðρ̄Ωjv0Þ ¼ −
1

π

Z
R
dλ e−λ

2

log

�
1

π
e−λ

2

�
þOðε log εÞ:

ð109Þ

In the ε → 0 limit,

Sðρ̄Ωjv0Þ ¼
ffiffiffi
π

p
π

�
1

2
þ log π

�
: ð110Þ

VI. THE FIELD VIEWPOINT

In Sec. IV we set a model to build quantum states for
null particles in Brinkmann spaces and, later, we made use
of the model to study some quantum phenomena (tunneling
and entanglement) in stationary Brinkmann spaces in
Sec. V. This is the quantum-mechanical point of view.
However, if the reader goes back to Sec. IV, they will
realize that Eq. (50) looks quite similar to the Fock space of
some quantum field theory. In this section we explore the
possibility to find a quantum field theory for null particles
in a stationary Brinkmann space.
Let us consider a stationary Brinkmann space, with

Ai ¼ 0. The reduced Hamiltonian for each value of λ
is then

HðλÞ ¼ 1

2
gijpipj −

λ2

2
ΦðqkÞ: ð111Þ

As we discussed in Sec. IV, ΦðqkÞ must have a global
maximum to guarantee the quantum stability of the system.
Therefore, let us consider that ΦðqkÞ has a unique maxi-
mum at qk0. Under this condition, at the low energy regime
the projection of the null particles motion over the trans-
verse space Qn is trapped in a region near qk0, and we can
expand HðλÞ as

HðλÞ ¼ 1

2
gijpipj −

λ2

2

�
Φ0 þ

1

2
Hð0Þ

ij ðqi − qi0Þðqj − qj0Þ

þ 1

6
Wð0Þ

ijkðqi − qi0Þðqj − qj0Þðqk − qk0Þ
�
þ…

ð112Þ

where Φ0 ¼ Φðqk0Þ, Hð0Þ
ij is the Hessian at qk0 and Wð0Þ

ijk is

Wð0Þ
ijk ¼ ∂iΦ∂jΦ∂kΦjqk

0

: ð113Þ

The contribution of Φ0 can be dropped off because it does
not have dynamical consequences. In addition, normal
coordinates fηig can be then introduced, at least in a
neighborhood of qk0, such that the reduced Hamiltonian
HðλÞ in the low energy regime takes the form

HðλÞ ¼ 1

2
δijΠiΠj þ

λ2

2

�
ω2
i η

i2 −
1

6
W̄0

ijkη
iηjηk

�
þ…:

ð114Þ
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For conjugate canonical momenta Πi of ηi, −2ðωiÞ2 are the
eigenvalues of the Hessian Hð0Þ

ij and W̄ð0Þ
ijk are the compo-

nents of Eq. (113) in normal coordinates fηig. Therefore, at
the low energy regime, the reduced Hamiltonian for each λ
can be factorized as

HðλÞ ¼ HHO;λðΠi; ηiÞ þHint;λðηiÞ; ð115Þ

where Hint;λ < HHO;λ in the low energy regime, for each λ,
and HHO;λ is the Hamiltonian of the n-dimensional har-
monic oscillator with proper frequencies λωi. Hint;λ will be
brought to an interaction term at the end of the calculus.
Without this interaction term, for each λ, normal coordi-
nates satisfy the equation of motion,

η̈iλ þ λ2ω2
i η

i
λ ¼ 0: ð116Þ

Now, if we define,

η̄iðv; tÞ ¼
Z
R
dλ ηiðλ; tÞe−iλωiv; ð117Þ

where ηiðλ; tÞ≡ ηiλðtÞ, Eq. (116) takes the form

∂
2
t η̄

i − ∂
2
vη̄

i ¼ 0; ð118Þ

which reminds to the bosonic string theory [27] if we take
ηi as the coordinate fields over a world sheet spanned by
coordinates v and t. Equation (118) gives the low energy
regime for null particles as viewed from the transverse
spaceQn. Including the interaction termHint in the calculus
we get the first correction to the low energy regime,

∂
2
t η̄

i − ∂
2
vη̄

i þ Við ⃗η̄Þ ¼ 0; ð119Þ

where Við ⃗η̄Þ is an interaction term coupling the n bosonic
fields η̄i. It is given by

Við ⃗η̄Þ ¼ −
δilW̄ð0Þ

ljk

4

Z
R
dλ λ2ηj ðλ; tÞηkðλ; tÞe−iλωiv: ð120Þ

Because of Eq. (113), this interaction term between the
fields ηiðv; tÞ appears provided ð∂iΦÞ3j0 has a relevant
value, i.e. the gravitational field changes enough sharply
near qk0. The next correction term would be proportional to
ð∂iΦÞ4j0 and it would require a more sudden change in the
gravitational field at qk0 in order to have consequences at the
low energy regime.

VII. CONCLUSIONS AND FUTURE WORK

In this work we have proposed a way to build a quantum-
mechanical model for massless particles in Brinkmann
spacetimes. As a consequence of the model, quantum
tunneling and entanglement of states for massless particles
have been described. Also the possibility of finding a field
theory at the low energy regime has been discussed.
However, the massless particles have been described by
means of null geodesics, without any internal degree of
freedom. In this sense, the present work must be assumed as
a benchmark, and the incorporation of helicity in subsequent
works is a necessity to have a model approaching photons in
curved spacetimes. On the other hand, generalizations to
other spacetimes could be faced through the Penrose limit. In
particular, the application to weak gravity in the Newtonian
gauge and FLRW spacetimes could be of interest.
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