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In this paper we analyze two different models of two interacting conformal Carroll particles that can be
obtained as the Carrollian limit of two relativistic conformal particles. The first model describes particles
with zero velocity and exhibits infinite dimensional symmetries which are reminiscent of the BMS
symmetries. A second model of interaction of Carrollian particles is proposed, where the particles have
nonzero velocity and therefore, as a consequence of the limit ¢ — 0, are tachyons. Infinite dimensional

symmetries are present also in this model.
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I. INTRODUCTION

Carroll symmetry, which was introduced by [1,2] as the
limit of the Poincaré symmetry where the velocity of light is
going to zero, ¢ — 0, has recently received a lot of attention,
mainly in connection with its relation with the Bondi,
Metzner and Sachs (BMS) group [3,4]. Some applications
of Carrollian physics allow, for example, one to understand
the symmetries of null hypersurfaces, such as black-hole
horizons [5], boundaries of asymptotically flat spacetimes
[6], and Carroll fluids [7]. For an introductory review of
certain aspects of Non-Lorentzian theories, see [8].

In particular, in this paper we are interested to have a
dynamical understanding of the relation between the con-
formal Carroll structures [6] and the symmetries of
Carrollian particles.

A (massive) nonconformal Carroll particle was intro-
duced as a Carroll limit of a relativistic massive particle [9];
it can also be obtained from a coadjoint orbit of the Carroll
group [10]. The (massless) Carroll particle was also
considered in [9]. A model of two nonconformal interacting
particles was also considered where the individual particles
move but the center of mass does not move.

The symmetry of massive and massless free Carroll
particles is infinite dimensional. In the massless case it
contains the finite conformal Carroll symmetry introduced
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in [11], see also [12]. In the case of the two nonconformal
particles the symmetry algebra is finite dimensional [9].

The causal structure of the Carroll space allows spacelike
intervals and therefore the existence of Carroll tachyons.
In [13] a model is constructed where a tachyonic Carroll
particle with zero energy moves.

In this paper we propose two models for two conformal
Carroll particles as Carrollian limits of two conformal
relativistic particles introduced in [14].

The first one describes particles which do not move and
exhibits an infinite dimensional symmetry algebra. Any
free conformal Carroll particle has vanishing energy;
therefore, two free Carrollian particles have total energy
equal to zero. The nice feature of this model is that the
system can have a total energy different from zero and still
be Carroll conformal invariant. Clearly the energy, which
turns out to be constant, depends on the interaction. We also
study some possible connections with the infinite dimen-
sional conformal symmetry of [6] and the BMS symmetry.

In the second model the particles move, their individual
energy is zero, and consequently they are Carrollian
tachyons. Also in this case the symmetry turns out to be
infinite dimensional.

II. CONFORMAL CARROLL PARTICLE

The canonical form of the action of a massless relativistic
particle is given by [we assume the signature of the metric

(===l
S:/d‘[|:—p-)‘c—§p21|, (1)

where the dot denotes the differentiation with respect to an
invariant parameter z. The action is also invariant under the
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conformal group that contains dilatations and special
conformal transformations (SCT). The infinitesimal trans-
formations are given by the ordinary Poincaré transforma-
tions, plus dilatations

St = epxt, Spt = —epp”, Se =2eep (2)
and SCT:
Sx# = bHx? —2(b - x)x*,
opt = =2b- pxt +2b - xpt + 2p - xb*, (3)
oe = —4eb - x. (4)

We next consider the Carroll limit which is given by

K0 =

t
—, = wkE, 5

P Po = ( )
with @ — oo. It is understood that, before taking the limit,
we rescale the einbein variable like

e —. (6)

Note that we use a dimensionless parameter @ instead of
the velocity of light. Indeed, if one considers the Carrollian
counterpart of the nonrelativistic limit of a string, one needs
to use a dimensionless parameter [ 15—17]. The contractions
we consider in this work correspond to the limit ¢ — 0 of a
world probed by particles. There are more general possible
contractions that correspond to the non-Lorentzian limits of
extended objects such as strings and branes.
In the Carroll limit the action (1) becomes

SC:/a’r[—Ei—i—p-X—%Ez ) (7)

From the symplectic form of the canonical action we
deduce the following Poisson brackets:
|

{E;t} =1, {ex}=1, {x',p/}=68Y, i=1,23. (8)

This action can also be obtained by the method of
nonlinear realizations [9] and the coadjoint orbit method
[10]. Since the action (1) is relativistic conformal invariant,
the action (7) is also invariant under the Carroll conformal

transformations. We have

ot=p-x+a,, oxt = elik@ixk + al,
op' = k@i pk + BE, SE =0, 9)
ot = ept, oX = €pX, OF = —GDE,
op = —€pp, oe = 2epe, (10)

ot =—b%*+2b-xt, Sx=-bx>+2(b-x)x, (11)

SE = —2b - xE,
op=—2(b°E—b-p)x—2b-xp+2(Et—p-x)b, (12)

Se = 4b - xe, (13)

where ', a,,a',ep, b°,b' are the infinitesimal parameters
associated to Carrollian boost, space-time translations,
dilatation, and special Carrollian conformal transformations.

The phase space realization of the conformal Carroll
generators is the following:

H=E, P=np, G =Ex J=xxp, (14)
D=-Et+p-x, K'=-Ex? K=2Dx-x’p. (15)
The corresponding transformations are obtained as

56={G.,}.
The conformal Carroll algebra in phase space in four
dimensions is given by (see [11], and also [12])

{E,P'} ={E.,G'} ={E,J'} ={E.K°} =0,{E.D} = -E,{E.K'} = -2G',
{P, P} =0,{P",G'} = —8VE {P, ]V} = eV*P,
{P.D} = —P {P" K"} = 2G" . {P', K/} = 2¢'KJk — 2D,
{G',G/'} =0,{G", J/,} = €'*G*,{G', D} = 0,{G',K°} = 0,{G', K/} = 67K,
{J. 07} = ef gk {J'. D} = 0,{J", K"} = 0,{J, K/} = e'/*K*,

{D,K°} = -K°. {D,K'} = -K',
{K',K°} = 0,{K', K/} = 0.

(16)

The conformal Carroll algebra can be obtained from the relativistic conformal algebra with generators M*¥, P*, K*, D
associated to Lorentz, space translations, SCT, and dilatations
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[MFV,MPG_ — n”/’M’“’ 4o,
|PrR7| = 20p°D + 1),
[Pﬂ’ MPU— - ;7#[/’]35]’

[ K+, Mpa_ - nﬂ[ﬂ K,

|Pr.D] =P,
k».D| = &7,
P P| = [k R = [Doi] =0 (17)

by the following contractions

| A 1.
E=—P', G'=—M"  K'=—K° (18)
w 0] 0]
and the identification
R BT
Jt = 561] MK, (19)

ot = {G.,t} = &(x, 1),

ox' = {G,x'} = &(x,1),

A. Infinite-dimensional symmetries

Now we want to analyze which is the most general point
transformation of the Carroll particle action (1) following
the steps of [9].

In order to do that we want to write the Carollian Killing
equations. Let us first consider the equations of motion
deduced from (7),

t = —eE,

x=0, ¢=2a0) (20)

E=0, p=0, x=-1/2E, (21)
where A(7) is an arbitrary function and 7 is the momentum
associated to the einbein variable which is constrained
by 7 = 0.

Consider the following generator of the canonical trans-
formations,

G = E&(x.1) —p-&(x.1) +y(x,1)m, (22)
with &(x, 1), € (x, t), and y(x, t) arbitrary functions of the

space-time coordinates. The transformations generated by
this generator are given by

e ={e,G} =y(x,1),

SE = {G,E} = 0,8°(x, 1)E + 0,&'(x, 1) p; + 9,y (x, 1),
5p' ={G.p'} = 0,&°(x, )E + 0,/ (x, t)p; + 0y (X, 1)7. (23)

These transformations are symmetries of the free
Carroll particle, provided that G is a constant of motion,
i.e., dG/dr = 0.This leads to the following restriction,
after use of Egs. (20) and (21) and =z that is a primary
constraint:

0— E[h)tfo(x, 1) + %0 E(x, z)}
+ pi[10,8(x.0) + %08 (x.0)| + #r(x.1)

= —eE?0,(x,t) — eEp;0,£i(x,t) — %y(x, HE?.  (24)

Equation (24) splits into the following two equations due to
the different powers of the conjugate momenta:

/4

0,80, x) = ~5, 9,£(t,x) = 0, (25)

where y(x, #) remains an arbitrary parameter. This leads to
the following generator of the conformal Killing trans-
formations [9]:

G = E&(1,x) + p,&(x) - 27e0,8(1,x),  (26)

which generates an infinite dimensional symmetry, which
will be called G;. These transformations include Carroll
conformal transformations. However they are more general.
The dependence of £°(¢,x) on the parameter ¢ is arbitrary
while in BMS is linear [6]. This arbitrary dependence on ¢ is
reminiscent of the Newman-Unti group, which contains
BMS which is isomorphic to the infinite extension of the
Carroll conformal group [6].

III. TWO CONFORMAL RELATIVISTIC
PARTICLES

In this section we briefly recall the most relevant features
of a model of two interacting conformal particles proposed
in [14]. The general motivation to consider two relativistic
conformal particles comes from the fact that, after quan-
tization, this theory is naturally connected with nonlocal
field theories appearing in the context of higher spin
theories, see for example [18]. A more recent motivation
comes from AdS/CFT correspondence, in particular the
bilocal-holography approach of [19] and reference therein,
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since due to the world approach to field theory [20-22]
there is a natural connection among the two particle models
and bilocal scalar theories.

The canonical action is formulated, in terms of the
coordinates x;, x,, the momenta p;, p,, the einbeins e, e,,
and the associated momenta z;, 7, that are primary
constraints, by

= /df(—l?lxl =Py ¥yt meé +me;—H), (27)
where the Hamiltonian H is given by

H = —e ) — erthy — mpty — mopa, (28)
U1, Mo are arbitrary functions of 7 and the mass-shells

constraints are

1 |
= | p2-= 2L 2

where r = x; — x, is the relative space-time coordinate.
Note that when the interaction, which is regulated by the
parameter «, vanishes, the model describes two massless
free relativistic particles. Notice also that the model is
conformal invariant with effective masses different from
zero, a property that is not possible for a single conformal
particle.
The equations of motion are given by

i ={xi, H} = e, pl, a=1,2, (30)

2

a 1
M—~@1H}—Zwﬁﬁﬂfmp}

R T G1)
e, ={e, H} = p, a=1,2, (32)
i, = {n, H) =, a=102. (33)

The stability of the primary constraints z, implies the
secondary constraints ¢, = 0. Note the appearance of the
einbeins in the constraints ¢,.

A. Killing equations and symmetries

Like in the free particle case we would like to find the
most general point transformations of the model. We want
to write the corresponding Killing equations for the two

particle model. In order to do that we write the most general
generator

2
G=

Zjau x17~x2 ptl + ya”a] (34)

a=1

As shown in [14] the requirement dG/dr = 0 is satisfied
provided the following conditions are verified:

ga(xl’XZ) = §a<xa)ﬂ a = 1’2? (35)
aéa agdl/ ~
- —|— o — gu¥a =0, a=1,2, (36)
where
- Ya
=12 =1,2, 37
= (37
and
(& - = —Z Ou. (38)

From Eq. (36) we also obtain

¥o= %aavézv a=1,2. (39)

We have verified that the model is invariant under the
diagonal subgroup of the two conformal groups SO(4,2), ,
acting on the two variables x; and x, respectively by
checking that Egs. (36) and (38) are satisfied for a generic
infinitesimal transformation of the diagonal conformal
subgroup,

&=+ wlhyxh +epxl + b2 =2(b-x, )Xk,  a=1,2.

(40)

We can now compute the transformation properties of
the variables under dilatations and SCT using

0 v
bt = (G =& Sph = (G pl} = =2 .
0Xyy
a=1,2, (41)
de, = {e,, G}, a=1,2. (42)
Under dilatations:
Sxly = epxlh, Sph = —epph,
Se, = 2e,ep, a=1,2. (43)
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Under special conformal transformations:

oxg = bxg = 2(b - x4)xa,
8pla = =2b - poXa +2b - X, pl+2p, - x, b, a=1.2,

(44)

e, =e,j, = —e4b - x,, a=1,2. (45)

IV. TWO CONFORMAL CARROLL PARTICLES

Here we consider the Carroll limit of the conformal
relativistic canonical action (27) by assuming

0

1
P = wE,, N =1, a=1,2. (46)

From the mass-shell constraints given in Eq. (29) we get
1{, o e, 1
=_ )X v R Ry i p—
& 2(“’ TPty e Lz-r

1 at e 1
—|oB-p+E A ). 47
b 2(0) 2 P2+4 e2$r(2)—r2 (47)

By defining

2
_— a=12 (48

DR
w

7 @ le 1
erpy = ?2 (E% 4 é_;_2>7 (50)

so that the Carroll canonical Lagrangian is given by

L=-Et)+p; X, —Eyi +py- X,

~ ~2 ~ ~ ~2 ~

e ., a el e (., a [el

— | Ef—— /=== =\ E5—— /=], (51
+2( ! 4\uaﬂ>4'2< 2 4\M5ﬁ> (1)

From now on we neglect the tilde, by renaming
e —>e,a— a.

When a =0 the Lagrangian is invariant under two
independent Carroll transformations acting on the corre-
sponding particle coordinates. When a # 0, the Lagrangian
is invariant under the following diagonal Carroll trans-

formations for each particle

Scxty =€ — Aixl.  Scph = —AUpl+ PE,. (52)

5cta:h+ﬂ'xa, 5CEa:O7
Se, =0, a=1,2. (53)

The Lagrangian equations of motion are

. adt\Jeje

Pr=s"wr"

. arJee

Pr==5w b

x, =0, E, =0, t, = e,E,,

oL 1 e
O: T4 = —— — — Ez—— —2 s
d e, 2( b yy2 (31)

oL 1 a e,
O=g=—=— E2 ——=a./— . 54
& 662 2 ( 2 41’2 €2> ( )

This model describes interacting Carroll particles that have
zero velocity. Since the distance among the particles is
constant, it is only fixed by the initial conditions.

A. Eliminating the einbeins

The einbeins are nondynamical variables and can be
eliminated through their equations of motion [23]. In fact
from the equations of motion of e; we obtain

2

ey (04
— = 55
e, 4E? (55)
and by squaring
2 \2
€ = €y (@) . (56)

Then the canonical Carroll Lagrangian can be rewritten as

, ) e a*\2 1
L = _Eatu -+ E P, X, + 32 <E% - (P) E) . (57)
1

a=1,2
The equation of motion for E, gives
i‘2 = €2E2 (58)

and substituting in Eq. (57) we obtain
.18 e fat\? 1
L:—Ell‘l—ie—‘i‘ Zpa-xa—— sl —. (59)

By using the equation for e,
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4x?
€y = :I:?(E%t%)l/z, (60)

and substituting in Eq. (59),
rewritten as

a2 /2\1/2
L=-Et + Zpa X, :F4 (E2> . (61)
a=1,2

the Lagrangian can be

For the equation of motion of E; we get

1

a .
E, :i—(tg)l/“w.

62
. (62)

By substituting E; in Eq. (61) the final Lagrangian is
(with a suitable choice of + sign)

[2l2 1/4
L= Zpa a l:_:|

a=1,2
tltz]l/z. (63)

=) p.-%,

a=12

We assume #,#, > 0.

Since the Lagrangian is homogeneous of degree one in
the velocities, it is invariant under diffeomorphisms and
gives rise to the primary constraint

(12

In the case of two conformal free particles their indi-
vidual energies are zero. Instead in this model, when the
interaction is turned on (a # 0), the energies are different
from zero and constant. The particles are interacting,
indeed; as shown in Eq. (64), the energy of each particle
depends on the energy and the position of the other one. In
conclusion the model is Carroll conformal even if the two
particles have nonvanishing energies.

Since the energies £, and E, are constants of motion, the
meaning of the Eq. (64) is that each particle stays inside its
own light cone, corresponding to the lines with constant
values of x; and x, [the velocities are zero, see Eq. (54)]
and of r. Introducing the total and the relative energies of
the two particles,

ET - El + Ez, Er - El - Ez, (65)

we get

2
B2 =R+ (66)
r=58rT

This equation shows that the minimum of the total energy is
for £, = E, =0 and for r — oo.

The wave equation associated to Eq. (64) is

a? .
[azl 0, + E} O(1), 1, X1, %) = 0. (67)

B. Invariance under dilatations and special
conformal transformations

The Lagrangian (51) is invariant also under the dilatations
and special conformal transformations. Under dilatations
we have

5la = E'Dta, 6Xa = €pX,, 5Ea = _eDEav
5p, = —€pPy, Se, = 2¢pe,, a=1,2. (68)
Under SCT:

6ta - _bOXZ + 2b : Xata’ 5Xa = _bxgl + 2b : thxa’

a=1,2, (69)
SE,=—-2b-x,E,,

5pa = _2(b0Ea -b 'pa)xa —2b- XuPy +2(Eata —Pa- Xa)b7

(710)

de, = 4b - x e, a=1,2. (71)

These SCTs are obtained from the covariant ones given in
Egs. (44) and (45), considering

b()

0 )/
w

WN=—t,, pl=wE,, a=1,2. (72
w

C. Infinite dimensional symmetries

Like in the previous sections, here we would like to find
the most general point symmetries of the model.
Let us consider the generic Killing vector

G= Z [gg(tlv IZ’leXZ)Ea _ga(tl’ IZ»leXZ)
a=1,2

‘Pa +7a(tl’t2’xlax2)”a]' (73)

By considering the 7 derivative we obtain

3]
aé:a(tlatz’XhXZ)i pj

t.E,— :
a al‘c cra

E Z 089 (11,1),X1,X,) ,
ot, ¢

a,c=1,2

_Ea(tlﬂtZ’Xl’XZ)'pa+7a(tl7t2’xlax2)ira ’ (74)

where we have used the equations of motion
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(75)

and the primary constraints 7, = 0. Using Eq. (54) we get

dG 08(t,, 1, X, 0L (1), 1y, X1,
l Ealti, 12, X, Xz)eCECEa Ca(t1, 1. X1, X))
— ot. ot..
a,c=1,2

1
X e E.plh + Eya(th 1), X1, X,)ES

2 2

o o
_F\/elez(gl -&) -r—@

€
ri(t b Xy, X0) 4 [—
€l

e
+12(t1, 12, X1, X3) —1]~ (76)
€
Therefore the Killing condition dG/dr = 0 implies
0L (11. 1. X1,
HallnloXeXa) o 4oy (1)

ot,

or gjj = g{;(xl ,X,). We see that 6x, = €, does not depend
on the times ?{, t,.
By defining

Ya = €a¥a (78)

from dG/dr = 0 we must have also
085 (11, 1. X1, X)) 1
—:——5 ~’ ,b, :1,2, 79

atc 2 acya a c ( )
and
a> a2 6r? L
r—2(§1—§2)'1‘:7r—2:—z(71+72)’ a=12. (80)

In the case a = 0, that is when we turn off the interaction,
we see that we have two sets of independent Killing
equations, one set for each particle. Therefore the infinite
group of symmetry transformations is G; x G;. When the
interaction is on and a # 0, we get:

1 1612 1 . -
p(§1—§2)'1’=§7:—1(71+72), a=12. (81)
From Eq. (79) we have

9&) 983

—=0===. 82

ot, ot (82)

Furthermore from Eq. (81) we note that since &, are only
functions of x;, x,, 7, depend only on X, X,. In conclusion
we obtain

1
52 = 6tu = _Eya(XI’XZ)ta + ha(Xl,X2),
(83)

0, =Yq = ea7a<xl7x2)’
with the extra condition given by Eq. (81).
Summarizing the Killing generator is given by

G=%" K—%ya(xl,xz)ta 4 ha(xl,xz))Ea

a=1.2

- Ea(xl ’ XZ) “Pa Tt ea?a (Xl s x2)”a:| s (84)

where h,,&,,7, are arbitrary functions of x;, X, that must
satisfy the condition (79). Therefore the original ten
arbitrary functions reduce to nine independent arbitrary
functions of x|, X,.

Therefore the model of two conformal Carroll particles
analyzed in this paper has an infinite dimensional group of
symmetries that we will call G,. Notice that G, C G| x ;.
The main difference between these two groups is the
transformation laws of the times 7, that in the free case
are arbitrary functions of the times and the coordinates,
while in the interacting case Eq. (79) restricts the time
dependence of the transformations of &) to be linear in ¢,.

It is convenient to make a comparison with [6]. Let us
generalize to two particles the expression for the generators
of the conformal Carrollian algebra from [6]. We consider
the diagonal subgroup of the two conformal Carroll groups.

For Carroll dilatations and SCT we have

& = (ep +2b - x,)x,, — b'x2, (85)
&) = (ep +2b - X,)t, + Tu(X1.Xs). (86)
We have
o8,
a—tazeD—FZb'Xa (87)
and

(o, oy _

z(a—tl—’—a—tz —€D+b X1+b X», (88)

(1 —&) -r=epr’ +2(b-x))X; - T—b-r(x,)
=2(b-x;)x5 -+ b r(x;)?

=epr? +1r2(b-x; +b-X,). (89)

In conclusion Eq. (81) is satisfied by Egs. (85) and (86) and
the so-called supertranslations 7, (x|, X,) in our case are
arbitrary functions of both particle positions x;, Xj.
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V. TWO CONFORMAL CARROLL PARTICLES:
A TACHYONIC MODEL

In this section, following the approach of [13,24], we
develop a model describing two interacting Carrollian
tachyons. Let us consider the Lagrangian

L= Z [_Eaia + pxa - ea¢a _)(aEa]
a=12

=—Et; +p; - X, —Exiy +pr- X,

er( , o Jel el , o el
2 \P17 e r? 2 \P27 7y err?
—X1E - nEs. (90)

Notice the presence of the Lagrangian multipliers y, y»,
that implement the energies are zero; these terms are
necessary in order to have Carroll invariance. An analogous
situation appears for a single particle in [24] where the
action is named the magnetic Carroll particle. In fact this
Lagrangian is invariant under the Carroll, Egs. (52) and
(53), scale and SCT, Egs. (68)-(71), by requiring the
following transformations for the einbein y,:

OYu=—€.Ps P a=1,2, Carroll transformations,
(91)
OYa = €pXa> a=1,2, scale transformations,  (92)

5)(a = 2|:ea(b0pa “Xg = Pg - b) +)(ab ’ Xaj| ’

a=1,2, SCT transformations. (93)
The equations of motion derived from the Lagrangian (90)
by varying with respect to 7., E,, Pu> Xus Xa» €, are the
following:

E, =0, i,=-E, (94)
o2
€qPy — X, =0, P = ~ oA Verer = P2, (95)
E, =0, (96)
$a = 0. (97)

In this model the particles have nonzero velocity and
therefore, as a consequence of the limit ¢ — 0, they are
necessarily tachyons. Or equivalently, since E, = 0, if we
use the relativistic mass-shell constraint the two particle
invariant squared masses are negative (E2 — p2 < 0).

A. Eliminating the einbeins

Let us first study the equivalence of this model with the
¢ — 0 limit of the model for two relativistic conformal
particles [14] described by the Lagrangian

x2x2 1/4
L= —a(%) . (98)

In order to do that, we start by eliminating the non-
dynamical variable e; in Eq. (90) through its own equation
of motion. We obtain

(3] (12

= 5 (99)

6—2 rzpl
and substituting in Eq. (90)

L=-Et;+p; X — Eit, +py- X,

2\ 2
e a 1
Y [P% - (m) p_%] =1 Ey— k. (100)

The equations of motion of the nondynamical variables
p, are

1

P2 26—25‘2 (101)
and the Lagrangian becomes
L =-Eity = Exty = 01 Ey — y2Ey
+p1-x1+2iezx§+%<%;>2pi%- (102)

Then we eliminate the nondynamical variable e, through
its own equation of motion (choosing the — sign)

4ar?
e =2\ i3 (103)
a
and substituting in L
. N
L:_Z(Eata +)(uEa)+p1 "X _47 -2 (104)
a=12 ™\ P
Finally, taking into account that
2
%1 = P15\ (105)
4p2 V72

and
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A primary constraint can be obtained by squaring p,,

2@ X5
=—1|= 106
P a2 X% (106) 2
PP e = O (110)
we get the following expression for the Lagrangian:
. 174 B. Killing equations and symmetries
== Ei ) -o(5E) 0 1 Hilling cquations and sy .
=2 r In this section we derive the Killing vector by working
directly with the Lagrangian given in Eq. (90). By taking
By eliminating E, and y, we obtain the total derivative with respect to 7 of the Killing vector
=—¥o. E,=0 (108) G=> (BE,~& Pu+7Vama+vers),  (111)
a=12
and the following expression for the Lagrangian: where
> AN oL
L:—a< 11'42> , (109) :a)_( , (112)
which coincides with the ¢ — 0 limit of (98). we get
dG o0& . & o€, . o¢! .
— X,E, — =1 - x’ : 7 P 78
O 3 (S r - B, st ) - T bt i)
90 o9&, o€, A .
= ——xpE, +— E,+— . E
a.b1’2< atb)(b a + aXb epPrLy + atb)(bpa 0)0;7 bpbpa QZLz(ga Pa + ya¢a + Vg a)
of , od g O, O 1
= _—— —€e _—— —_ —_——
e or, Xb ox,, Py — o, XbPa o J thPa 27apa
o o>
—4\/ erey (& —&)-r 7\/9132(}71 +72) s (113)

where use has been made of the primary constraints
n, =y = 0, of Egs. (94) and (95) and of

= _¢a7 (1 14)
iy =—E,. (115)
The sum over latin indices is understood.
In order to get dG/dz = 0, we must require
o€,
== =0, 116
i, (116)

so that &, is a function of only x;, X,; we require also the
vanishing of the coefficient of E,,

We also require, assuming €, = &,(x
the coefficient of p! p},

«)» the vanishing of

0%, | 9
- - | = =6V 118
(M + ax,g) Rl (118)
so that dG/dr implies, when a # 0,
1 og, | 9 & -&)r
== === 11
—gntr=g (a 1 +6x’2> 2 (119)

In conclusion the general solution for the Killing vector is
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G= Z [52(111t21xl 5X2)Ea _Eu(xa) Py +ea7a”a +Du77'-£:| ’
a=1.2
(120)

where

__%052
Ya = 73040

&) &)
Vg = Z (‘a—tb)(b + ox, epPs | (122)

(121)

b

with & an arbitrary function of #,, t,, X;, X,, and &,(x,)
satisfying Eq. (119). As expected from the tachyonic Carroll
particle case discussed in Sec. V, while & &,,7, are
arbitrary point functions of 7, and €, in general v, depend
also on the momenta p,. Carroll, scale transformations, and
conformal transformations satisfy Eq. (119).

We have checked that, by using the expression of &)
for Carroll, scale and SCT in Eq. (122), we recover the
correct transformations for y, given in Eqgs. (91)-(93), by
computing

o = {Xa G} (123)

and assuming

{)(a’ﬂkb/} = _5ab (124)
Note also that the dependence of v, on X, p, in principle
could give additional contributions to the transformations
of p,, X,, which however are vanishing because they are
proportional to the primary constraints 7%.

Notice also that in the case of two nonconformal
particles [9] the individual particles move with energies
different from zero and they have only a diagonal finite
conformal symmetry.

VI. CONCLUSIONS

Carroll symmetries have recently received a lot of
attention because of several applications in different
domains of theoretical physics, from theory of gravity
and strings to studies of fractons in condensed matter.

In this paper, after reexamining the case of a single
conformal Carroll particle, we derive the conformal Carroll
generators, their algebra, and the infinite extension of this
algebra [9]. Then we propose two different models of
Carroll interacting particles that provide dynamical real-
izations of the Carroll conformal algebra. The models are

obtained from the relativistic model of interacting con-
formal particles proposed in [14] through suitable limits
for ¢ — 0.

Concerning the dynamics, the first model describes
particles with zero velocity but with nonvanishing energy
as a consequence of the interaction. Free conformal Carroll
particles have zero energy; here, when the interaction is on,
the energy of one particle depends on the energy of the
second one and on the particle relative distance which is
constant.

The second model is a tachyonic one: the particles have
nonzero velocity and therefore, due to the limit ¢ — 0, they
are necessarily tachyons. Nevertheless their energy is
vanishing.

Both models exhibit, after a complete analysis of the
most general point symmetry transformations, infinite
dimensional symmetries which include supertranslations
as in the case of the BMS group [3,4], the symmetry that
arises in asymptotically flat space-time at null infinity.
These infinite dimensional algebras contain the Carroll
conformal one [6], which is equivalent to BMS ones. The
infinite symmetries emerging from these models look like
accidental symmetries as the global symmetries that appear
in the particle Standard Model. Therefore it is possible that
the Lagrangian could contain other terms invariant under
conformal Carroll but breaking the infinite dimensional
symmetries.

In the future several directions could be investigated: on
the one hand it would be interesting to extend the analysis
of the two conformal Carroll models to include corrections
to the next order in ¢ — 0 expansion, see for example [24];
on the other hand a deeper analysis of the infinite
symmetries could be performed to check similarities with
the BMS group. The conformal two Carroll particle model
potentially could also be useful to study bilocal holography
for flat space-times.
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