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The microstructure of black holes is a mystery, with no general consensus on questions as basic as to what
the constituent particles (if any) might be. We approach these questions with black hole thermodynamics
(BHT), augmented with the metric geometry of thermodynamics. This geometry connects to interparticle
interactions via the invariant thermodynamic Ricci scalar curvature R, which may be calculated with BHT.
In ordinary thermodynamics (OT), R is positive/negative for interparticle interactions that are repulsive/
attractive. Its magnitude is the correlation length. The basic universality of thermodynamics leads us to
expect similar relations for BHT. Our contribution here is motivated by a physical simplification that
frequently occurs at low temperatures T in OT: complicated interparticle interactions tend to freeze out,
leaving only the basic quantum statistical interactions, such as those of ideal Fermi and Bose gasses. Our
hope is that a similar simplification happens in black holes in the extremal limit, where the BHT temperature
T → 0. We evaluate the extremal regime for 12 BHT models from the literature, working with the
independent variables mass, angular momentum, charge, and the cosmological constant fM; J;Q;Λg
respectively. We allowed only two of these variables to fluctuate at a time, with the other two fixed. M
always fluctuated, either J or Q fluctuated, and Λ was always fixed. We found that, at constant average M,
the thermodynamic invariant R has a limiting divergence R ¼ cT−1, with the nonsingular constant c
depending only onM and the two fixed parameters. c is positive for 11=12 of the models we examined, and
negative only for the tidal charged model. The positive sign for R indicates a BHT microstructure composed
of particles with repulsive (fermionic) interactions. The limiting BHTexpression for R resembles that for the
two- and three-dimensional ideal Fermi gasses at constant volume, which also have a limiting divergence
R ¼ cT−1, and with a positive c.
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I. INTRODUCTION

What is themicrostructure of black holes? This question is
unsettled as theoretical difficulties and a lack of relevant
experimental data have limited progress.Unclear at this point
are properties as fundamental as what black holes are made
of. Are black holes fundamentallymacroscopic entities, with
nomicrostructure at all, as the “no-hair” conjecture suggests?
Or are they composed of some type of known or unknown
microscopic particles or strings? If so, do these microscopic
constituents fill the interior of the black hole volume, have
they collapsed to the center, or are they concentrated at the
event horizon? The continuing success of the general theory
of relativity (GR) in explaining observational results cer-
tainly supports a macroscopic picture. But recent experi-
mental efforts such as the detection of gravitationalwaves [1]
and images from the event horizon telescope [2] offer real
possibilities for results beyond the predictions of GR.
In our paper we take a theoretical approach to black hole

microstructures, one based on black hole thermodynamics

(BHT) [3–5]. In BHT, macroscopic black hole properties
such as mass, angular momentum, and charge ðM; J;QÞ,
respectively, are elements of a structure that follows the
laws of thermodynamics. Details (e.g., thermodynamic
equations of state) can be found from the Bekenstein-
Hawking relation defining the black hole entropy S in terms
of the area A of the event horizon [6,7]:

S
kB

¼ 1

4

�
A
L2
p

�
; ð1Þ

where kB is Boltzmann’s constant, and Lp is the Plank
length:

Lp ¼
ffiffiffiffiffiffiffi
ℏG
c3

r
; ð2Þ

with ℏ the reduced Planck’s constant, G the gravitational
constant, and c the speed of light. Note that fM; J;Qg are
all conserved quantities.
The calculation of A ¼ AðM; J;QÞ with GR, or by other

means, leads with Eq. (1) to the fundamental thermodynamic*Corresponding author: ruppeiner@ncf.edu
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equation S ¼ SðM; J;QÞ providing all of the BHT proper-
ties, as we will explicitly demonstrate in Sec. V. Since Lp

contains Planck’s constant, BHT naturally brings quantum
mechanics into the purely classical GR regime, and thus
offers at least some bare basics of a quantum-gravity picture.
But what does BHT tell us about the microscopic

elements of black holes? Key here is that any thermody-
namic structure contains within it a fluctuation theory that
links macroscopic properties to microscopic properties [8].
To sort out what thermodynamic fluctuations are telling us
about microscopic properties, we employ the thermody-
namic Ricci curvature scalar R [9,10].
R is a thermodynamic invariant in the metric geometry of

thermodynamics. In ordinary thermodynamics (OT), the
magnitude jRj gives the average volume of groups of atoms
organized by their interparticle interactions. Near critical
points, this average volume is given by the correlation
length. The sign of R gives the basic character of the
interparticle interactions: R is positive/negative for inter-
actions repulsive/attractive, in the curvature sign convention
of Weinberg [11], in which R for the two sphere is negative.
If we believe in the basic universality of thermodynamics,
we might expect these features of R to apply in the black
hole scenario as well. For a brief review of the geometry of
thermodynamics in the integrated environment of OT and
BHT, see [12]. For discussion about restricted fluctuations,
where one or more of fM; J;Qg are fixed, see [13,14].
Restricted fluctuations are important in Sec. V.
In our paper we numerically calculate R for a number of

published BHT models that developed analytic equations
for the quantities S, T, and R in terms of fM; J;Qg orM, T,
and R in terms of fS; J;Qg. In some of these models, the
cosmological constant Λ is included as a static parameter.
In contrast to most evaluations of BHT models, which
focus on Van der Waals type phase transitions at nonzero
temperatures, our focus is on the black hole extremal limit
where T → 0.
We argue that the extremal limit offers the possibility of a

direct connection between the microstructures behind BHT
and those corresponding to OT. The reason for this is that in
OT, as T → 0, the physics frequently simplifies to its
absolute basics, which is in many cases the elementary
ideal Fermi or Bose gasses. This happens as the more
complicated interactions between the constituent particles
freeze out. For example, this is a reason why the ideal Fermi
gas is so effective in leading to an understanding of the
physical stability of white dwarfs [15]. White dwarfs are
held up by free electrons and have temperature of the order
of less than the Fermi temperature. Note as well that in
laboratories, both ideal Bose and Fermi gasses have been
produced by cooling to micro Kelvin temperatures [16]. The
thermodynamics agrees remarkably well with the degener-
ate ideal gasses. Our hope is that this freezing out of the
microstates occurs in black holes as well, and that the BHT
in the extremal limit takes on the character of either an ideal

Fermi or ideal Bose gas. We test this conjecture by
comparing the thermodynamic invariant R for BHT and
the ideal Fermi gas, in the limit T → 0.
We find a measure of consistency between the limiting

BHT and ideal Fermi cases. We calculated R for 12 BHT
models. In 11 of these models, R diverges to positive
infinity in the extremal limit. Furthermore, along curves of
constant M, the divergence is as R ¼ c=T, where c is a
constant depending only on M and two fixed parameters, J
or Q, and Λ. This dependence matches that of the ideal
Fermi gas in 2D and 3D. In 2D, the proportionality constant
c is independent of the system mass, and in 3D it depends
somewhat on the mass. However, we attempt no systematic
comparison of the mass dependence of c between BHT and
the ideal Fermi gas. Such a project might better be done
with a more sophisticated Fermi gas model than the one
employed here. The lone exception to the extremal fer-
mionic behavior is the tidal charged model [17,18]. There,
the divergence in R is negative in the extremal limit, more
similar to that of the Bose gas. We offer no explanation
for this.
The match between BHT models and the ideal Fermi gas

in the extremal limit has been reported previously in the
Kerr-Newman family of black holes [19], and we system-
atically extend it here to a number of various BHT models.
But the proposition that the microstructure of black holes
should be composed of fermions is not really surprising.
The condensed matter white dwarfs are held up against
gravity by a gas of largely free electrons, modeled as a
Fermi ideal gas. The much more condensed neutron stars
are supported against gravitational collapse by fermionic
neutrons. It is hence a reasonable extrapolation that black
holes, only a little denser than neutron stars, also be
composed of fermions [20]. Our contribution in this paper
is establishing a clear, systematic connection between

TABLE I. Summary results table. “Params” are the pair of
fluctuating parameters, “Diverge” is the extremal T dependence of
the thermodynamic curvature R, “R-sign” is the sign of R in the
extremal limit, with “þ” denoting fermionic, and “Analytic”
denotes whether or not S, T, and R may be written analytically.

Black hole model Params Diverge R-sign Analytic

Kerr fM; Jg T−1 þ Yes
Kerr-Newman (fixed Q) fM; Jg T−1 þ Yes
Kerr-Newman (fixed J) fM;Qg T−1 þ Yes
Kerr 5D fM; Jg T−1 þ Yes
Black ring fM; Jg T−1 þ Yes
Reissner-Nordström AdS fM;Qg T−1 þ Yes
fðRÞ gravity fM;Qg T−1 þ Yes
Tidal charged fM;Qg T−1 − Yes
Gauss-Bonnet AdS fM;Qg T−1 þ Yes
Dyonic charged AdS fM;Qg T−1 þ Yes
Einstein-dilaton fM;Qg T−1 þ No
R-charged fM;Qg T−1 þ Yes
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fermionic properties and models of general relativity and
string theory.
Table I lists the models we analyzed in this paper and

states some basic outcomes.

II. THERMODYNAMIC GEOMETRY

Basic thermodynamic metric geometry for BHT has been
described in detail elsewhere [13,21], so we keep the present
discussion short. Let S be the black hole entropy given in
Eq. (1). The thermodynamic metric has local distances
corresponding to fluctuation probabilities: the less the
probability of a fluctuation between two states, the further
apart they are [9,10]. In this paper, we consider only two-
dimensional thermodynamic metric [10] geometries, for
which the line element is

dl2 ¼ gμνdXμdXν; ð3Þ

with the coordinates X ¼ fX1; X2g taken as M and one of
fJ;Qg. The two parameters other than X are held fixed, if
they are present in the model.
The entropy metric elements are

gαβ ¼ −
∂
2S

∂Xα
∂Xβ : ð4Þ

This metric form requires that we know S ¼ SðXÞ. However,
we frequently know instead the functionM ¼ MðYÞ, where
the two fluctuating coordinates Y are S and one of fJ;Qg. In
principle, we could algebraically solve M ¼ MðYÞ to get
S ¼ SðXÞ, but a closed form solution is usually difficult
to find.
In cases where we know MðYÞ but not SðXÞ, it is

advisable to start with the Weinhold energy version of the
thermodynamic metric [22]:

dl2
W ¼ gμν;WdYμdYν; ð5Þ

where the Weinhold metric elements are

gαβ;W ¼ −
∂
2M

∂Yα
∂Yβ : ð6Þ

The entropy version of the metric in Eq. (3) that we really
need follows from the identity [23]:

dl2 ¼ 1

T
dl2

W; ð7Þ

where the temperature T is given by

T ¼
�
∂M
∂S

�
J;Q;Λ

: ð8Þ

Generally, the thermodynamic Ricci curvature scalar is
given by [24,25]

R ¼ −
1ffiffiffi
g

p
�
∂

∂x1

�
g12

g11
ffiffiffi
g

p ∂g11
∂x2

−
1ffiffiffi
g

p ∂g22
∂x1

�
þ ∂

∂x2

�
2ffiffiffi
g

p ∂g12
∂x1

−
1ffiffiffi
g

p ∂g11
∂x2

−
g12

g11
ffiffiffi
g

p ∂g11
∂x1

��
; ð9Þ

where

g ¼ det gαβ ¼ g11g22 − g212: ð10Þ

III. IDEAL FERMI GASSES

The basic properties of the ideal Fermi gas thermody-
namics are well known [8]. This gas consists of N non-
interacting fermions, each with mass m, confined to a box
with fixed size and hard walls. The potential is zero inside
the box. We consider only boxes with two and three
dimensions, corresponding to cases where the hypothetical
BHT particles all reside on the event horizon or fill the full
volume inside the event horizon.

A. 2D ideal Fermi gas

The thermodynamic curvature R for the 2D ideal Fermi
gas was worked out in [19]. In the Thomas-Fermi con-
tinuum approximation, the thermodynamic potential per
area ϕ ¼ p=T can be expressed as

ϕ

�
1

T
;−

μ

T

�
¼ kBð2sþ 1Þλ−2f2ðηÞ; ð11Þ

with pressure p, fugacity η ¼ expðμ=kBTÞ, chemical poten-
tial μ, thermal wavelength

λ ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmkBT

p ; ð12Þ

particle spin s, Planck’s constant h, particle mass m, and

flðηÞ ¼ −PolyLogðl;−ηÞ: ð13Þ

The function ϕ in Eq. (11) is naturally written in the
coordinates fF1; F2g ¼ f1=T;−μ=Tg. ϕ ¼ ϕðF1; F2Þ
yields all of the thermodynamics.
The energy and particle number, both per area, are

fu; ρg ¼ f−ϕ;F1
;−ϕ;F2

g, where the comma notation indi-
cates partial differentiation. We have

u ¼ ð2sþ 1ÞkBTλ−2f2ðηÞ; ð14Þ

and

ρ ¼ ð2sþ 1Þλ−2 lnð1þ ηÞ: ð15Þ
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In fF1; F2g coordinates, the thermodynamic metric
elements are [10]

gαβ ¼
1

kB
ϕ;αβ; ð16Þ

and the thermodynamic scalar curvature follows from
Eq. (9):

R¼ λ2
η½−ð1þηÞ ln2ð1þηÞþð2η− lnðηþ1ÞÞf2ðηÞ�

½ð1þηÞ ln2ð1þηÞ−2ηf2ðηÞ�2
: ð17Þ

Numerical calculations over a large grid of points indicate
that in the physical range −∞ < μ < þ∞, 0 < T < ∞,
and 0 < η < ∞, u, ρ, and R are all always positive.
The low temperature comparison between the BHT

models and the ideal Fermi gas must be done systematically.
Generally, for functions of two variables, with one variable
being taken to some limit, what is done with the other
variable as we take the limit must be specified. But which
other variable? For BHT, as T → 0 we will always fix the
total massM, guided by the Kerr-Newman examples where
the R ∝ 1=T result holds only with this variable fixed. For
comparison with the ideal Fermi gas, we then likewise take
the limit T → 0 at fixed mass, or fixed number density ρ. We
also looked at fixing the energy density u for the ideal Fermi
gas, but this too yields R ∝ þ1=T.
From Eq. (15) we see that at fixed T, the density ρ is an

increasing function of η. For large η, the asymptotic
expression becomes

ρ →
2πð2sþ 1Þm

h2
μ; ð18Þ

independent of T.
Now consider the regime of small T, and let ρ be fixed at

some value. Then, by Eq. (18), μ will likewise be fixed, and

positive, leading to η → ∞ as T → 0. Very useful for
dealing with the PolyLog function for large η is the
Sommerfeld approximation [8]

PolyLogðν;−eξÞ ¼−
ξν

Γðνþ 1Þ

×

�
1þ νðν−1Þπ

2

6

1

ξ2
þO

�
1

ξ4

��
: ð19Þ

Using this approximation in Eq. (17) yields the formula for
small T:

R →
3h2

2π3ð2sþ 1ÞmkBT
; ð20Þ

depending only on T and not on ρ. For a check, the
Mathematica “Limit” operation gives the same result. We
also get the limiting expression for u

u →
πð2sþ 1Þm

h2
μ2; ð21Þ

which shows that lines of constant u coincide with those of
constant μ, and thus constant ρ.
Figure 1(a) shows R as a function of T along several

curves with constant ρ. Dimensionless units, with kB ¼ 1,
h ¼ 1, m ¼ 1, and s ¼ 1=2 have been used throughout the
figures. The straight red line shows the asymptotic limiting
expression in Eq. (20). This line, independent of the value
of ρ, clearly agrees with all of our values for R at small T, as
expected. Fair agreement with the asymptotic line extends
into the larger temperatures regime. The data in the graph
have η ranging from ∼10−3 to ∼1034.

FIG. 1. R versus T for the two- and three-dimensional ideal Fermi gasses, each for several constant values of ρ. (a) For small T, the 2D
case has all the points fall on the same curve, with limiting slope −1. (b) For small T, the 3D case shows a density dependence, but for
each density the limiting points all fall on a curve with slope −1.
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B. 3D ideal Fermi gas

The thermodynamic curvature R for the 3D ideal Fermi
gas was worked out in several places [26–28]. The
thermodynamic potential per volume is [8]

ϕ

�
1

T
;−

μ

T

�
¼ kBð2sþ 1Þλ−3f5

2
ðηÞ: ð22Þ

This leads to

u ¼ 3

2
ð2sþ 1Þλ−3f5

2
ðηÞ; ð23Þ

ρ ¼ ð2sþ 1Þλ−3f3
2
ðηÞ; ð24Þ

and

R ¼ 5λ3

h
2f5

2
ðηÞf1

2
ðηÞ2 − f3

2
ðηÞ2f1

2
ðηÞ − f−1

2
ðηÞf3

2
ðηÞf5

2
ðηÞ
i

ð2sþ 1Þ
h
3f3

2
ðηÞ2 − 5f1

2
ðηÞf5

2
ðηÞ
i
2

:

ð25Þ
This equation for Rmatches Eq. (13) in Ref. [27]. (There is
a small error in the corresponding Eq. (4.21) of Ref. [26].)
Over the physical range −∞ < μ < þ∞, 0 < T < ∞, and
0 < η < ∞, u, ρ, and R are all always positive.
For large η, the Sommerfeld approximation yields

ρ →
8
ffiffiffi
2

p
πð2sþ 1Þm3=2

3h3
μ3=2; ð26Þ

independent of T. Along curves of constant ρ, μ stays
fixed, and η → ∞ as T → 0, self-consistent with our use of
the Sommerfeld approximation above. We also have the
limiting form

u →
8
ffiffiffi
2

p
πð2sþ 1Þm3=2

5h3
μ5=2; ð27Þ

which shows that, at low T, lines of constant u correspond
to lines of constant ρ. Finally, the limiting asymptotic form
for R is

R →
32=3h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
512s2 þ 512sþ 128

6
p

4
ffiffiffi
2

p
π8=3mð2sþ 1Þ

�
1

kBTρ1=3

�
; ð28Þ

matching the R ∝ þ1=T form present in the 2D ideal Fermi
gas. The 3D case does, however, have a mild dependence
on ρ in contrast to that for 2D, which has none.
Our finding R ∝ þ1=T for the ideal Fermi gasses

matches the divergences in the extremal limits for 11=12
of the BHT models we consider below. This internal
consistency among the BHT results, as well as with the
ideal Fermi gas divergences, is the main result in our paper.
But further work might produce improved results. First, in

an earlier work [19] it was reported incorrectly that the 3D
ideal Fermi gas had limiting divergence R ∝ þ1=T3=2. This
led to a claim that a filling of the full volume of the black

hole interior was inconsistent with the BHT Kerr-Newman
models considered in that reference. It was suggested instead
that the Fermi gases reside on the event horizon itself, since
the 2D ideal Fermi gas has the R ∝ þ1=T divergence. This
idea is flawed, however, since our more accurate calculation
for the 3D ideal Fermi gas presented here, with its R∝þ1=T
divergence, leaves a claim of how the particles constituting
the interior of the black hole arrange themselves at best
premature. Second, as we discuss below, the constants of
proportionality multiplying 1=T are at present difficult to
match between ideal Fermi and BHT.
The task of sorting these issues out might be greatly

assisted by the introduction of superior ideal Fermi gas
models. Our choice here was to pick the simplest models,
but perhaps more creative models might be viable. But this
issue is beyond the scope of this paper.

IV. RESEARCH PROTOCOL

There is a large amount of literature on probing black
hole microstructures with the thermodynamic curvature,
and a systematic selection among evaluated BHT models
was necessary to keep our project manageable. Many of the
evaluated BHT models are based on combinations of
parameters chosen from among four fundamental fluctuat-
ing quantities: fM; J;Q;Λg, where Λ is the cosmological
constant. This quartet of values is enough to specify the
BHT state for all of the models that we considered.
We considered only models where the thermodynamic

geometry is two-dimensional. So only two of fM; J;Q;Λg
fluctuate while the other two are fixed. Shen et al. [29] used
the Legendre transformed quantity M − ϕQ, where ϕ is the
electrostatic potential on the event horizon, in place ofM in
the thermodynamic metric. But such approaches are beyond
the scope of this manuscript. We also did not evaluate cases
of “extended thermodynamics,” where Λ is a fluctuating
thermodynamic parameter. In extended thermodynamics, Λ
connects to the pressure, conjugate to the black hole volume.
Much recent work has been done here, see e.g. [30], and we
leave the project of sorting out the extended thermodynamic
models in the extremal limit to more qualified authors. For
us, Λ was always fixed. We also restrict ourselves to cases
where the Bekenstein-Hawking equation, Eq. (1), holds
exactly, without the logarithmic correction terms occasion-
ally seen.
Calculations for the BHT models we consulted in the

literature were frequently quite involved, and we made no
systematic attempt to verify them for correctness. What we
needed from each model were analytic equations for the
functions S, T, and R in terms of fM; J;Q;Λg orM, T, and
R in terms of fS; J;Q;Λg. R could be positive or negative
depending on the curvature sign convention. The sign
convention employed was usually clear in each paper. We
expressed all of the R’s in this paper in our curvature sign
convention (i.e. fermionic has positive R). Harder to sort
out are the systems of units employed in the literature, and
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we felt that it would be too confusing (and even prone to
error) to impose our own uniform unit system here. This
means that our graphs of R ¼ RðM;TÞ were not neces-
sarily consistent across different models, differing by
scaling factors.
Our approach was numerical, and centered around the

three basic functions for S (or M), T, and R. Other than
these three functions from the BHT models, our analysis is
independent of the specifics of the BHT models. Such
simplification is essential in order to handle a number of
disparate models effectively. Details of our coding algo-
rithm may be found in the Appendix.

V. RESULTS

In this section we discuss the results for the thermody-
namic scalar curvature R for 12 different BHT models. The
models were selected according to the criteria established
in Sec. IV, and all have two-parameter BHT’s, with either
fluctuating fM; Jg or fluctuating fM;Qg. Thermodynamic
stability, i.e., a positive definite thermodynamic metric, is a
somewhat mixed proposition in BHT. We attempt no
systematic stability analysis here. But we do pass along
stability results reported in the literature.
Before considering the individual cases in detail, we start

with a simple graph, offered by the RNAdS BHT model
worked out by Åman et al. [21], and discussed in detail
here in Sec. V F. Figure 2 shows a plot for R as a function of
ðM;TÞ, with J ¼ 0 and Λ ¼ −0.1. The corresponding
contour plot is shown in Fig. 3(f).
R diverges to plus infinity as T decreases to zero. For the

values of M represented here, there is a line of phase
transitions where R diverges to minus infinity. Such lines of
divergence signal second-order phase transitions, generally
of great interest in the BHT literature. jRj gets small for T

above the phase transition. In the picture that we develop
here, this is because the particles constituting the micro-
structure have effective interparticle interactions less strong
with increasing temperature. For a given M value, the
contour surface eventually terminates as T reaches a
maximum value, as discussed in Sec. VA.
The basic parallel between this black hole figure and

those for example in OT is remarkable.

A. Kerr fM; Jg
We start with the Kerr black hole because it is well

known, is relatively simple, and has physical relevance. Kerr
also has a known analytic expression forR near the extremal
limit, and this provides guidance for our entire project. To
set some of our themes, we spend a bit more time on its
presentation. Kerr black holes are spinning, uncharged
systems with fQ;Λg ¼ f0; 0g, and with BHT states speci-
fied by fM; Jg. Their BHT follows from the Bekenstein-
Hawking entropy formula Eq. (1), which yields the entropy
S ¼ SðM; JÞ on evaluating the area A ¼ AðM; JÞ of the
event horizon H with GR.
The area calculation starts with the Kerr line element in

Boyer-Lindquist coordinates ðt; r; θ;ϕÞ in natural units
G ¼ c ¼ 1, with G the constant of gravitation and c the
speed of light [5]:

ds2 ¼ −
�
1−

2Mr
ρ2

�
dt2 −

4Marsin2θ
ρ2

dtdϕþ ρ2

Δ
dr2

þ ρ2dθ2 þ sin2θ
ρ2

ððr2 þ a2Þ2 − a2Δsin2θÞdϕ2: ð29Þ

Here, ρ2 ¼ r2 þ a2 cos2 θ, the discriminant Δ ¼ r2−
2Mrþ a2, and a ¼ J=M. The outer event horizon radius
rþ is determined by solving Δ ¼ 0 for the larger of the two
real valued solutions. For the Kerr black hole, this gives
rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. For rþ to be real, we clearly require

M2 > a2. The case M ¼ a marks the extremal limit.
To find the area of the static event horizon, begin by

setting dt ¼ dr ¼ 0 and r ¼ rþ. The resulting line element
is that of the Kerr black hole event horizon,

ds2þ ¼
�
r2þ þ a2 þ 2Mrþa2 sin2 θ

ρ2þ

�
sin2 θdϕ2 þ ρ2þdθ2;

ð30Þ

where the þ subscript denotes a dependence on rþ. The
determinant of this metric is det gþ ¼ ð2Mrþ sin θÞ2.
Finally, we may compute the area of the event horizon,

A ¼
Z
H
dΩ ¼

Z
H

ffiffiffiffiffiffiffiffiffiffiffiffi
det gþ

p
dθdϕ ¼

Z
H
2Mrþ sin θdθdϕ

¼ 8πMrþ: ð31Þ

FIG. 2. R versus ðM;TÞ for RNAdS with J ¼ 0 and Λ ¼ −0.1.
We see three regimes of interest: (i) a low temperature extremal
limit regime with positive R, (ii) an intermediate temperature
regime with a line of phase transitions indicated by R diverging to
minus infinity, and (iii) a high temperature ideal gas regime with
jRj near zero.
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Equation (1) now gives SðM; JÞ. We used the scaling of
Åman et al. [21], who set Lp ¼ 1, kB ¼ 1, and employed
dimensionless units for fM; Jg. These authors also inserted
an extra dividing scaling factor of π to get the entropy of the
Kerr black hole:

SðM; JÞ ¼ 2M2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

J2

M4

r !
: ð32Þ

The temperature follows from Eq. (8):

1

T
¼ 4M3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M4 − J2
p þ 4M: ð33Þ

There is a maximum temperature for any given M:
T ¼ 1=8M. This temperature corresponds to J ¼ 0 for
Kerr, as seen in Eq. (33). Maximum M dependent temper-
atures are evident in a number of our contour plots below.
The thermodynamic metric is constructed from SðM; JÞ

with Eq. (4). With Eq. (9) the scalar thermodynamic
curvature R is found to be [21]

R ¼ 1

4M2

2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − J2

M4

q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − J2

M4

q : ð34Þ

Clearly, R is positive for all of the physical states. R in
Eq. (34) is the negative of that in [21] because of opposite R
sign conventions.
The only singularity in R occurs at the extremal limit

where J → M2 and T → 0. The limiting form is

R →
1

8M3T
; ð35Þ

first found by Ruppeiner [19] using a slightly different
scaling. In sign and T dependence, this limiting form
matches Eqs. (20) and (28) for the 2D and the 3D ideal
Fermi gasses, respectively. But the coefficients of 1=T for
Kerr and ideal Fermi differ from one another in their mass
dependences, possibly pointing to the need for a better ideal
Fermi model to make a full correspondence between OT
and Kerr BHT. This is a project for the future.
Clearly for the proportionalityR ∝ þ1=T to hold for Kerr

requires constant M, from Eq. (35). Guided by this, we
examine R only along lines of constant M for all of
our models, a procedure which produces excellent results.
We note that Kerr is thermodynamically unstable every-
where [13], including near the extremal limit, and this may
diminish its interest. Kerr has a simple closed form solution
for R, but other cases considered here have R consist of
possibly hundreds or even thousands of terms. Therefore,
our main calculational effort must be numerical.
For Kerr, Fig. 3(a) shows a contour plot of R in the

fM;Tg plane. The key point to notice is that R increases as
T decreases, as anticipated from the limiting expression

Eq. (35). The analytic expression for R indicates that R for
Kerr diverges only as T → 0, so Kerr is devoid of the
second-order phase transitions seen in other BHT models
away from the extremal line. As Eq. (33) for T shows, all
positive values of M allow T → 0 (with J → M2).
Another look at the temperature dependence of the scalar

curvature for Kerr is found in Fig. 4(a), which shows R as a
function of T, with M fixed at various values. On a log-log
scale, an asymptotic R ∝ 1=T relation presents as a straight
line with slope −1. This is indeed the case in the figure for
all M. For small T, the values of R agree with those in
Eq. (35). Fit values of our coefficients are shown in Table II.
Let us make one additional point. In [19] it was found

that in the extremal limit the product of R and the heat
capacity at constant J and Q goes to unity for fJ;Qg,
fM; Jg, and fM;Qg fluctuations. Exactly the analogous
behavior was found for the 2D ideal Fermi gas. This points
to an additional connection between BHT and the 2D ideal
Fermi gas. However, we make no attempt to generalize this
find here because of the difficulty of evaluating heat
capacities in BHT and because of uncertainties about
the appropriate heat capacities to use in more complex
models. In this survey, we confine ourselves to analyzing
just the extremal invariant R, whose appropriateness is
never in doubt.

B. Kerr-Newman fM; Jg (Q= 0.4)

The three parameters fM; J;Qg characterizing Kerr-
Newman (KN) black holes [5] provide a rich avenue of
exploration into the BHT thermodynamic geometry. The
entropy’s dependence on these three parameters gives rise
to seven different thermodynamic geometries based on
which (if any) of the three parameters are held fixed
[13,14,19]. But we restrict ourselves in this paper to exactly
two of the three fM; J;Qg fluctuating, fM; Jg and fM;Qg,
both with fluctuatingM. We omit fJ;Qg fluctuations since
they do not have fluctuating M. For the case of all three
parameters fM; J;Qg fluctuating see [19,31].
In the scaling of Åman et al. [21] the Kerr-Newman BHT

has entropy function:

SðM; J;QÞ ¼ 2M2 −Q2 þ 2M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

J2

M4
−
Q2

M2

r
: ð36Þ

The temperature follows from Eq. (8):

1

T
¼ 2ðK2 þ 2K þ L2ÞM

K
; ð37Þ

where the variables read

fα; βg ¼
�
J2

M4
;
Q2

M2

�
ð38Þ

and
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FIG. 3. Contour plots for R for the 12 BHT models considered.
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fK;Lg ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α − β

p
;
ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p g: ð39Þ
In this subsection, we consider fM; Jg fluctuating at fixed Q > 0 (Q ¼ 0 is simply Kerr). The entropy and the

temperature are given by Eqs. (36) and (37), respectively. Equation (4) yields the thermodynamic metric elements, and
Eq. (9) yields the thermodynamic curvature:

R ¼

ðK7 þ 3K6 þ 2K5L2 þ 6K4L2 − 5K4 þ K3L4 þ 9K3L2−
9K3 þ 3K2L4 þ 4K2L2 − 8K2 þ 9KL4−

21KL2 þ 12K þ 9L4 − 24L2 þ 16Þ
2KM2ð2K3 þ 3K2 þ 2KL2 − 2K þ 3L2 − 4Þ2 : ð40Þ

It is straightforward to show that the limiting R at small T is

FIG. 4. Fits to R data versus T for various constant values of M near the extremal limit. Note that R for the tidal charged figure
(h) is negative.
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R →
1

4L2M3T
; ð41Þ

so again R ∝ þ1=T in the extremal limit along lines of
constant M.
Figure 3(b) shows a contour plot of R in the fM;Tg

plane, for fixed fQ;Λg ¼ f0.4; 0g. Generally, R is seen to
increase as T decreases to zero. ForQ ¼ 0.4, R is uniformly
positive and has no divergences other than in the extremal
limit [19]. The BHT has uniformly unstable thermodynam-
ics for Q ¼ 0.4 [13], and this may diminish the interest in
this model. The contour lines in Fig. 3(b) each terminate at
an M dependent upper limiting value for T.
The introduction of a nonzero Q does not affect the

essential extremal limiting behavior of R at constant M
given in Eq. (41): R ∝ þ1=T. For Q less than about 0.85,
the BHT is unstable near the extremal curve [13], and this
may diminish its interest. For larger Q, there is a region of
thermodynamic stability adjacent to the extremal curve.
However, highly charged black holes are physically very
unlikely to occur.
The temperature dependence of R for Kerr-Newman

fM; JgðQ ¼ 0.4Þ near the extremal curve is shown in
Fig. 4(b), which shows R as a function of T, with M fixed
at various values. On the log-log scale, the asymptotic
behavior is a straight line with slope −1, consistent with
R ∝ 1=T. Values of the fit coefficients are shown in Table II.
They show a trend visible in all of our fits: at given T, R
tends to be smaller at larger M. The plots in Fig. 4 are to be
compared with those in Fig. 1 for the ideal Fermi gas, which
they resemble in their temperature dependence.

C. Kerr-Newman fM; QgðJ = 0.7Þ
Consider now the case where fM;Qg fluctuate and J > 0

is held fixed. (J ¼ 0 corresponds to the Reissner-Nordström
solution to GR, which is known to have R ¼ 0 [21,32].) The
functions S and T for this model are the same as for the
Kerr-Newman fM; Jgmodel, Eqs. (36) and (37). R is given
in [19] with a slightly different scaling from here:

R ¼ −

ðL − 1ÞðLþ 1ÞðK5L2 þ 8K5 − 4K4L2 þ 4K4 þ 4K3L4þ
14K3L2 − 36K3 − 8K2L4 þ 40K2L2 − 32K2 þ 3KL6−
6KL4 − 36KL2 þ 48K − 4L6 þ 36L4 − 96L2 þ 64Þ

2KM2ðK4 − K3L2 þ 4K3 þ K2L2 þ 2K2 − KL4 − 2KL2 þ 4K þ 2L4 − 10L2 þ 8Þ2 ð42Þ

Near the extremal curve, BHT [13] is thermodynamically stable for all states. Increasing T from the extremal curve along a
line of constantQ=M has us encounter a line of phase transitions along whichR → þ∞; see Fig. 6 of [13]. But this line is not
particularly interesting in this study, so we do not pursue it. The extremal limiting R is given by

R →
1

4L2M3T
; ð43Þ

TABLE II. The fit parameters log10 c for the 12 models
considered here. Each fit is for a dataset all with the same value
of M. In the extremal limit, we expect R → cT−1, or the linear
function log10 R ¼ log10 c − log10 T. For each dataset, we fit the
linear function to the three data points with the smallest values of
T. Fits and data are graphed in Fig. 4. Each fit had an exponent for
T very close to −1 (within 0.01%) and we do not show their tiny
deviations. For tidal charged, we calculated the logarithmic fit to
−R, since R is negative.

Model Mass M log10 c Model Mass M log10 c

Kerr 0.4 0.2907 fðRÞ gravity 0.6 0.9575
0.6 −0.2376 0.7 0.6684
0.8 −0.6124 0.8 0.4303
1.0 −0.9031 0.9 0.2276

1.0 0.0501

KN ðM; JÞ 0.6 −0.1284 Tidal charged 0.2 1.4948
0.8 −0.5544 0.4 0.5917
0.9 −0.7207 0.6 0.0635
1.0 −0.8669 0.8 −0.3114

KN ðM;QÞ 0.92 −0.7198 GB-AdS 0.25 0.5371
0.94 −0.7330 0.50 0.1929
0.96 −0.7467 0.75 −0.0028
0.98 −0.7608
1.00 −0.7753

Kerr 5D 0.85 −0.4097 Dyonic-AdS 0.2 0.6712
0.90 −0.4594 0.4 0.0698
0.95 −0.5064 0.6 −0.1827
1.00 −0.5509 0.8 −0.3250

1.0 −0.4189

Black ring 0.985 −1.3360 E-d 0.030 1.2111
0.990 −1.3404 0.035 1.0789
0.995 −1.3447
1.000 −1.3491

RN-AdS 0.80 −0.2122 R-charged 0.3 −0.0678
0.90 −0.3427 0.5 −0.2457
1.00 −0.4557 0.7 −0.3569

0.9 −0.4370
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exactly the same as for Kerr-Newman fM; Jg, Eq. (41).
Again, we analytically find R ∝ þ1=T in the extremal limit
along lines of constant M.
Figure 3(c) shows a contour plot of R for Kerr-Newman

fM;Qg with fixed fJ;Λg ¼ f0.7; 0g. Clearly, R increases
with decreasing T. The line of phase transitions is not
visible in this representation. The fitted analysis at constant
M is shown in Fig. 4(c), and clearly R ∝ þ1=T. The fit
parameters are listed in Table II.

D. Kerr 5D fM; Jg
The Kerr 5D BHT model is more exotic. Myers and

Perry [33] constructed its GR metric by adding a fourth
spatial dimension to the Kerr metric. Åman and Pidokrajt
[34] added fM; Jg BHT fluctuations and constructed the
thermodynamic geometry. In five dimensions, two angular
momenta are possible, but we consider only one.
We start with the thermodynamic equation for the mass

M ¼ MðS; JÞ in general space-time dimension d [34]:

MðS; JÞ ¼ d − 2

4
Sðd−3Þ=ðd−2Þ

�
1þ 4J2

S2

�
1=ðd−2Þ

: ð44Þ

Solving this equation for S (pick the largest real root) and
setting d ¼ 5 yields

SðM; JÞ ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16M3

3
− 9J2

r
: ð45Þ

The temperature is

T ¼
�

9

32M2

�
S: ð46Þ

With the fundamental thermodynamic equation (45) we can
construct the full thermodynamic geometry for this system,
starting with the thermodynamic metric Eq. (4). With only
one angular momentum, the thermodynamic geometry is a
two-dimensional space parametrized by ðM; JÞ.
Equation (9) for R produces the remarkably simple

expression [34]

R ¼ 1

S
: ð47Þ

Aminus sign was omitted on the right-hand side because of
the different sign convention between [34] and us. Clearly,

R ¼ 9

32M2T
; ð48Þ

an expression that shows the familiar R ∝ þ1=T behavior
over the full range of thermodynamic states, and not just in
the extremal limit. This result is confirmed numerically
with fixed fQ;Λg ¼ f0; 0g, as seen in Figs. 3(d) and 4(d).

The fit coefficients are shown in Table II. Clearly even BHT
models in 5D spacetimes show an R ∝ þ1=T divergence in
the extremal limit.

E. Black ring fM; Jg
Even more exotic is the black ring (BR) model [35].

General BR models can be described by a GR line element
written in terms of the standard parameters fM; J;Q;Λg.
Following Ref. [35] we consider only two-dimensional
thermodynamic geometries of BR systems, with fluctuating
fM; Jg. We fix fQ;Λg ¼ f0; 0g, corresponding to an
uncharged, asymptotically flat space.
Define first the parameters μ ¼ 8M=ð3πÞ, a ¼ 3J=

ð2MÞ, and x ¼ a=
ffiffiffi
μ

p
. For some pairs of fM; Jg values,

there may be two values of S, corresponding to a large and a
small black hole. We worked out the extremal limit for the
small black hole, for which we have the parameter

ν ¼
ffiffiffi
8

p
x

�
1ffiffiffi
3

p cosΘþ sinΘ
�
− 1; ð49Þ

where

Θ ¼ 1

3
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32

27
x2 − 1

r
: ð50Þ

It was reported that the small black hole is nowhere
thermodynamically stable, but that the large black hole
has regimes of stability [35]. In this sense it might have
been better to work out the large black hole case first, but
the small one gives interesting results also.
The entropy and temperature are [35]

S ¼
ffiffiffi
2

p

4
π2μ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νð1 − νÞ

p
; ð51Þ

and

T ¼ 1

2
ffiffiffi
2

p
π
ffiffiffi
μ

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − ν

ν

r
: ð52Þ

The thermodynamic scalar curvature is

R ¼ 2
ffiffiffi
2

p

π2μ3=2

ffiffiffi
ν

p ðν2 þ 2ν − 2Þ
ð2ν − 1Þ2 ffiffiffiffiffiffiffiffiffiffiffi

1 − ν
p : ð53Þ

The exact analytic temperature dependence of the scalar
curvature is not immediately manifest, so we turn to
numerical methods. Figure 3(e) shows the familiar, pos-
itive, asymptotic behavior in Rwith decreasing T and fixed
fQ;Λg ¼ f0; 0g. Fit plots at constant M are shown in
Fig. 4(e), and they show the extremal divergence
R ∝ þ1=T. Fit values are shown in Table II.
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F. Reissner-Nordström AdS fM; Qg
In this section we investigate the thermodynamic scalar

curvature R of the Reissner-Nordström black hole in AdS
space, where we have a cosmological constant Λ not zero.
We take the cosmological constant Λ to be strictly

negative and parametrized by

Λ ¼ −
ðd − 1Þðd − 2Þ

2l2
; ð54Þ

where d is the spacetime dimension, and l is the AdS length
parameter. For d ¼ 4, we have

Λ ¼ −
3

l2
: ð55Þ

A nonzero Λ gives the Reissner-Nordström black holes a
nonzero R. Λ ¼ 0 has the trivial R ¼ 0, as mentioned
earlier.
The entropy SðM; J;Q;ΛÞ is too cumbersome to write

here. However, Åman et al. [21] give a compact expression
relating the mass and the entropy:

M ¼
ffiffiffi
S

p

2

�
1þ S

l2
þQ2

S

�
: ð56Þ

This equation allows an easy calculation of R using the
Weinhold metric method in Eq. (7). The temperature is

T ¼ 1

4
ffiffiffi
S

p
�
1þ 3S

l2
−
Q2

S

�
: ð57Þ

Finally, the thermodynamic scalar curvature of such a
system is given by [21]

R ¼ 9

l2

	
3S
l2 þ Q2

S


	
1 − S

l2 −
Q2

S



	
1 − 3S

l2 −
Q2

S


	
1þ 3S

l2 −
Q2

S


 : ð58Þ

While this is the first model that we have considered not
embedded in asymptotically flat space, Figs. 3(f) and 4(f)
show a similar extremal limiting behavior as the previous
models: R ∝ þ1=T. In the figures, we worked with fixed
fJ;Λg ¼ f0;−0.1g. l is given by Eq. (55). Fit values of our
coefficients are shown in Table II.

G. f ðRÞ gravity AdS fM; Qg
In this section we analyze an instance of fðRÞ gravity

[36–38]. This class of theories generalizes the dependency
of the relativistic Ricci scalar curvature R in the Einstein-
Hilbert action:

I ¼
Z

fðRÞ ffiffiffiffiffiffi
−g

p
d4x; ð59Þ

where fðRÞ is some function of R. We recover the standard
GR when fðRÞ ¼ R. The specific model considered here is
a charged AdS black hole in fðRÞ gravity with constant
curvature R0 [37].
The GR line element is

ds2 ¼ −NðrÞdt2 þ dr2

NðrÞ þ r2ðdθ2 þ sin θ2dϕ2Þ; ð60Þ

where

NðrÞ ¼ 1 −
2m
r

þ q2

br2
−
R0

12
r2 ð61Þ

is the discriminant function. Here, the constant b ¼ 1þ
f0ðR0Þ and m and q are related to mass and charge via
M ¼ mb and Q ¼ q=

ffiffiffi
b

p
. We take b > 0. This black hole

solution reduces to the RN-AdS black hole when b ¼ 1 and
R0 ¼ −12=l2. We follow the lead of Li and Mo [37] and set
b ¼ 1.5 and R0 ¼ −12. The later equality has Λ ¼ −3,
given by Eq. (55) above.
The entropy is

S ¼ πbr2þ; ð62Þ

where rþ is the radius of the event horizon.We find rþ from
S, and we find S by solving the mass equation (pick the
largest real root)

M ¼ 12b2π2Q2 þ 12bπS − R0S2

24π3=2
ffiffiffiffiffiffi
bS

p : ð63Þ

The temperature is

T ¼ 1

4πrþ

�
1 −

q2

br2þ
−
R0r2þ
4

�
: ð64Þ

The analytic expression for the scalar curvature follows
directly from Eq. (36) of Ref. [37]:

R¼ AðS;QÞ
ð4b2π2Q2−4bπS−R0S2Þ3ð4b2π2Q2−4bπSþR0S2Þ

;

ð65Þ

where the numerator is

AðS;QÞ ¼ −1280b7π7Q6 þ 64b6π6Q4ð8 − 7Q2R0ÞSþ 128b5π5Q2ð6þQ2R0ÞS2 þ 16b4π4Q2R0ð20 − 3Q2R0ÞS3
− 336b3π3Q2R2

0S
4 þ 4b2π2R2

0ð4 − 9Q2R0ÞS5 þ 16bπR3
0S

6 þ 3R4
0S

7: ð66Þ
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Figure 3(g) shows the characteristic asymptotic behavior of
the thermodynamic curvature R at low temperatures. We
worked with fixed fJ;Λg ¼ f0;−3g. The results of the
fitting algorithm, shown in Fig. 4(g), confirms that R ∝
þ1=T in the extremal limit. Fit values of our coefficients
are shown in Table II.

H. Tidal charged fM; Qg
The tidal charged black hole model [17,18] comes from

string theory and is also analyzable by our methods. The
mass M may be written as a function of the entropy S and
the tidal charge Q [18]:

M ¼
ffiffiffi
S

p

2

�
1þQ

S

�
: ð67Þ

Finding the largest real root for S of this equation yields

SðM;QÞ ¼ ðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q

p
Þ2: ð68Þ

The temperature follows from our Eq. (8), and agrees with
Eq. (13) of [18]:

TðM;QÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q

p
2ðM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q

p
Þ2
: ð69Þ

When Q is positive, the tidal charge is related to the
electric charge QE by Q ¼ Q2

E. In the more general
brane-world theories, Q may take on negative values
as well, but we consider only positive Q since there is
no extremal limit for negative Q. It was shown that
the BHT for this model is stable regardless the sign
of Q.
With our sign convention the thermodynamic scalar

curvature is simple [18]:

R ¼ −
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q

p
ðM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q

p
Þ
: ð70Þ

The analytic temperature dependence of R is clear from
Eqs. (69) and (70):

R ¼ −
1

4TðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q

p
Þ3
: ð71Þ

In the extremal limit, Q → M2, and the limiting expression
for R is

R → −
1

4M3T
: ð72Þ

This expression resembles the KN limiting expressions. R
in Eq. (71) is finite except in the extremal limit T → 0, so
there are no nonzero T phase transitions.

The numerical analysis of these equations, with fixed
fJ;Λg ¼ f0; 0g, produces similar results to before, but
with one essential difference: as seen in Eq. (72), R
diverges negative in the extremal limit for the tidal charged
black hole. This divergence is bosonic and not fermionic,
marking this model as an anomaly, for which we offer no
explanation. Figures 3(h) and 4(h) show the extremal limit
divergence, R ∝ −1=T for constant M. Fit values of our
coefficients are shown in Table II.

I. Gauss-Bonnet AdS fM; Qg
Gauss-Bonnet gravity theories are based on a truncation

of the Lovelock Lagrangian [39] to just terms quadratic in
the GR curvature tensor. Sahay and Jha [40] worked out a
class of such theories with an Einstein-Maxwell framework
in 5D AdS space, and the Lagrangian

L ¼ 1

16πGd

h
R − 2Λþ αðR2 − 4RμνRμν þ RμνρσRμνρσÞ

i

−
1

4
FμνFμν; ð73Þ

where the d-dimensional gravitational constant Gd gets set
to unity, α is a coupling constant subject to the constraint

0 ≤
α

l2
≤
1

8
ð74Þ

for d ¼ 5, the only case considered here, and Fμν denotes
the matter content via the gauge field stress tensor.
Varying the Einstein-Hilbert action yields the following

GR metric:

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2hijdxidxj; ð75Þ

where fðrÞ is given in [40], along with the gauge field. The
hij are the metric elements of the maximally symmetric
Einstein space with constant curvature ðd − 2Þðd − 3Þk. The
curvature parameter k was taken to be þ1 and α ¼ 0.01.
For d ¼ 5, the authors [40] provide compact formulas for

the mass, entropy, and temperature (setting the AdS length
parameter l ¼ 1):

M ¼ πðQ2 þ 12r4 þ 12r6 þ 24r2αÞ
32r2

; ð76Þ

S ¼ 1

2
π2rðr2 þ 12αÞ; ð77Þ

and

T ¼ −Q2 þ 12r4 þ 24r6

24πr3ðr2 þ 4αÞ : ð78Þ
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Our numerical solution method is to solve for the outer
event horizon radius rwith Eq. (76) for givenM,Q, α (pick
the largest real root). This yields S and T, and also the
scalar curvature R, whose analytic expression is too lengthy
to display here, but it is given in [40].
Proceeding numerically (with fixed fJ;Λg ¼ f0;−6g),

the relevant contour plot is found in Fig. 3(i). The diverging
asymptotic behavior in the extremal limit is clearly present
here. Figure 4(i) shows in more detail that the thermody-
namic scalar curvature R obeys the same extremal limiting
behavior at constant M as our other cases: R ∝ þ1=T. Fit
values of our coefficients are shown in Table II.

J. Dyonic charged AdS fM; Qg
Dyonic charged AdS black holes characterize solutions

to Einstein-Maxwell theories in AdS space, with both an
electric charge qE and a magnetic charge qM considered.
We follow the analysis of [41,42], based on static,
spherically symmetric black holes. To restrict the thermo-
dynamics to two fluctuating variables, the authors [41]
allowedM and qE to fluctuate at fixed qM. This model has
two charges rather than the standard charge Q and angular
momentum J used elsewhere in this paper. We handle
this formally by letting Q ¼ qE and J ¼ qM. These black
holes thus correspond here to fM;Qg fluctuating at
fixed fJ;Λg ¼ f0.13;−3g.
Dyonic black holes have the space-time metric,

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dθ2 þ r2 sin2 θdϕ2: ð79Þ

The lapse function fðrÞ is given by

fðrÞ ¼ 1þ r2

l2
−
2M
r

þ q2E þ q2M
r2

; ð80Þ

where l is the AdS length scale that the authors set to unity,
corresponding to our Λ ¼ −3, by Eq. (55).
The spherical symmetry results in an entropy propor-

tional to the square of the outer event horizon radius [found
by solving fðrÞ ¼ 0 for the largest real root]. The entropy
as a function of mass is unwieldy, but we have instead the
compact inverse relationship

M ¼ 1

2

ffiffiffi
π

S

r �
S2

π2
þ S
π
þ q2e þ q2m

�
ð81Þ

to calculate the thermodynamic metric via the Weinhold
metric Eq. (7). The temperature is [41]

T ¼ 1

4ðπSÞ3=2 ½3S
2 þ πS − π2ðq2E þ q2MÞ�: ð82Þ

The scalar curvature is

R ¼ ðπ2q2m þ 3S2Þ½3π4ðq2e þ q2mÞ2 þ π3Sð−3q2e þ q2mÞ þ 12π2S2ðq2e þ 3q2mÞ − 9πS3 þ 9S4�
S½π2ðq2e þ 3q2mÞ − πSþ 3S2�2½−π2ðq2e þ q2mÞ þ πSþ 3S2� : ð83Þ

This model has a line of phase transitions, which does not
enter our discussion.
We analyzed the dependence of R on fM;Tg with our

numerical program. The results are presented in Figs. 3(j)
and 4(j). The asymptotic behavior for R in the extremal limit
at constantM follows the characteristic relation R ∝ þ1=T.
Fit values of our coefficients are shown in Table II.

K. Einstein-dilaton fM; Qg
Considered next is an instance of the Einstein-dilaton

family of black hole models. The scalar curvature R for
these models was worked out by Zangeneh et al. [43], who
focused on Lifshitz black hole solutions in Einstein-dilaton
gravity with Born-Infeld nonlinear electrodynamics.
The space-time metric used by these authors was

ds2 ¼ −
r2zfðrÞ
l2z

dt2 þ l2dr2

r2fðrÞ þ r2dΩ2
n−1: ð84Þ

The space-time dimension of the system is nþ 1, with
n ¼ 3 in this case. The exponent z is the dynamical critical
exponent.
Two different classes of solutions were discussed by the

authors in [43]: z ¼ nþ 1 and z ≠ nþ 1. These two cases
manifest themselves in the discriminant function fðrÞ of
the space-time metric, given in Eq. (14) of [43]. Since the
event horizon radius is determined by solving fðrÞ ¼ 0 for
r, the two different cases yield distinct expressions for the
entropy S.
The first case considered in [43] has z ¼ 1, for which

z ≠ nþ 1. This case is covered in the authors’ Sec. IV. The
authors have several other parameters in their model, which
we set to k ¼ 1, l ¼ 1, b ¼ 1, and β ¼ 1000. With l ¼ 1,
we have Λ ¼ −3. R for this model is too lengthy to display
here (and so too are the entropy and temperature), so
our analysis is purely numerical. The asymptotic behavior
R ∝ þ1=T at constant M seen in previously considered
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models is visible for this model as well, as seen in Figs. 3(k)
and 4(k), with fixed fJ;Λg ¼ f0;−3g. Fit values of our
coefficients are shown in Table II.

L. R-charged fM; Qg
Our final model corresponds to a black hole arising from

gauged supergravity. Sahay et al. [44] worked out the BHT
thermodynamics for a five-dimensional R-charged black
hole, which may have one, two, or three nonzero R-charges.
Only the case with three nonzero R-charges has an extremal
limit, so we considered only it. Let ai denote the charge
parameter of the ith R-charge, with the index i having
values 1, 2, or 3. We simplify by setting all of the charge
parameters equal to one another: a1 ¼ a2 ¼ a3 ¼ a [44].
The space-time metric for such a black hole is [44,45]

ds2 ¼ −ðH1H2H3Þ−2=3fðrÞdt2 þ ðH1H2H3Þ1=3ðfðrÞ−1dr2
þ r2dΩ3;kÞ; ð85Þ

where the H factors are related to the charge parameter a,

Hi ¼ 1þ ai
r2
; ð86Þ

and the discriminant fðrÞ is defined by

fðrÞ ¼ k −
μ

r2
þ r2

l2
H1H2H3; ð87Þ

with μ the mass parameter. In 5D we have the space-time
coordinates ðt; r;ψ ; θ;ϕÞ. Finally, dΩ3;k is the angular
volume element. We work here only with k ¼ 0, for which
the angular volume element is

dΩ3;0 ¼ dψ2 þ ψ2ðdθ2 þ sin θ2dϕ2Þ: ð88Þ

The event horizon radius rþ is found in the standard way,
by solving for the largest real positive root to fðrÞ ¼ 0. We
calculate numerically for given k, μ, a, and l. The mass M
and the charge Q are given by M ¼ 3μ=2þ 3a and
Q ¼ ½aðμþ aÞ�1=4. For a pair of grid parameters ðM;QÞ
these equations may be used to generate corresponding
values of ðμ; aÞ. We set J ¼ 0 and l ¼ 1.
The entropy and the temperature of this black hole is

found to be [44]

S ¼ 2πðr2þ þ aÞ3=2; ð89Þ

and

T ¼ 1

2π

2r2þ þ affiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a

p : ð90Þ

The scalar curvature is

R ¼ 3a − 2r2þ
πð2r2þ þ aÞða − 2r2þÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a

p : ð91Þ

We calculate numerically with these formulas, with fixed
fJ;Λg ¼ f0;−3g. Results are shown in Figs. 3(l) and 4(l),
which confirm the expected R ∝ þ1=T result at constant
M. Fit values of our coefficients are shown in Table II.

VI. PROPORTIONALITY CONSTANTS

In this broad study of the extremal BHT limit, an issue
that we did not explore in any detail was the constant of
proportionality c in R ¼ c=T, other than its sign. It was
found previously [19] in the extremal limit that for Kerr
fM; Jg and Kerr-Newman fM; Jg, fM;Qg, and fJ;Mg,
the product of R and the heat capacity CJ;Q is unity. The
same holds for the 2D ideal Fermi gas at small T. This
correspondence among proportionality constants between
BHT and OTwould seem to be another strong indication of
a connection between the ideal Fermi gas and BHT micro-
structures. Thus it might have seemed logical to expand on
this theme in this research. But we refrained from doing so
for several reasons: (i) heat capacities are generally difficult
to calculate for BHT, (ii) there is a priori no best choice of
heat capacity (there are several possibilities), and (iii) none
of the heat capacities are thermodynamic invariants, and
invariance is a property that we have emphasized here. (For
help in evaluating BHT heat capacities, see [46]). We leave
this interesting issue as a topic for the future, perhaps best
examined first for individual models, both ideal Fermi and
BHT, and not as part of a broad survey as we undertake here.
One might also investigate c just for R alone as to its

dependence on the parameters fM; J;Q;Λg. The exact
results presented in Secs. VA–VC already give some
insight, and they are supplemented by our data in
Table II. There is, however, no particular correlation between
c in BHT and c in the ideal Fermi gasses presented in
Sec. III. Perhaps we need to find a new Fermi model within
OT that better matches to BHT. Or perhaps the connections
between R and the heat capacities mentioned above already
point to the adequacy of the present ideal Fermi model in
two or three dimensions. But new ideas seem called for, and
so we have not muddied the picture with an attempt to
analyze in detail the data in Table II.

VII. CONCLUSION

This paper presents analysis of 12 black hole models in
the extremal limit, where the black hole thermodynamic
temperature T → 0. The extremal limit is a natural target for
investigation since in ordinary thermodynamics the physics
generally simplifies as one approaches absolute zero.
Frequently, effects of complex interparticle interactions
freeze out, leaving little left other than basic quantum
properties, such as ideal Bose or ideal Fermi statistics.
Perhaps this freezing out of complexity holds for black hole
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microstructures as well in the limit T → 0, and an essential
property of the constituent black hole particles would reveal
itself. Our main result in our research is that 11 out of 12 of
the BHT models we looked at have the thermodynamic
curvature R ∝ þ1=T along curves of constant massM. This
is a property in common with the ideal Fermi gas.
The BHT models considered here are characterized by a

variety of thermodynamic parameters, many not corre-
sponding directly with those that appear in OT. A mean-
ingful comparison between OT and BHT requires a careful
selection of reasonable common parameters. We focused
first of all on the thermodynamic scalar curvature R
because it is a thermodynamic invariant. In OT, R clearly
offers a connection between thermodynamics and micro-
structures. If thermodynamics is general, as we would
hope, this connection should extend to BHT unchanged,
marking R as an excellent object to employ in probing BH
microstructures. In our research we displayed R as a
function of the mass M and the temperature T, two
parameters with common meanings in the OT and the
BHT scenarios. This pair of variables are known to be
appropriate for the Kerr and the Kerr-Newman examples.
Our focus then on the function R ¼ RðM;TÞ throughout
this paper would appear to be well motivated.
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APPENDIX

In this appendix we detail our numerical analysis
procedure.
The BHT models that we considered all have their states

specified by between two to four parameters selected from
the canonical list fM; J;Q;Λg, whereM is the mass, J is the
angular momentum, Q is the electric charge, and Λ is
the cosmological constant. We allowed exactly two of these
parameters (though neverΛ) to fluctuate, with the remaining
two parameters fixed. We call any permutation of the
symbols fM; J;Q;Λg a CQuartet, with elements fX1; X2;
X3; X4g. We set parameters in the CQuartet not appearing in
the BHT model to zero.
Essential in our method are functions from the literature

for the entropy S (or mass M), the temperature T, and the
thermodynamic scalar curvature R. These functions may all
be numerically evaluated knowing the values of the param-
eters within the CQuartet. We refer to the list of symbols
fX1; X2; X3; X4; S; T; Rg as the septuplet. For calculating

numbers, all our literature BHT models yield the map-
ping CQuartet → septuplet.
We follow the convention that:
(1) fX1; X2g are the fluctuating parameters;
(2) fX3; X4g are the fixed parameters; and
(3) X1 is always M.

For example, consider a case with fluctuating fM;Qg. If
we want to analyze how the function RðM;TÞ varies with
T at constant average M, we would take CQuartet ¼
fM;Q; J;Λg.
Our first priority in graphing a BHT model is to generate

a two-dimensional grid of points fX1; X2g. The grid
generation requires specifying minimum and maximum
values for both X1 and X2. These limits bracket p numerical
values for X1 and q numerical values for X2. Grid values
may be spaced linearly or logarithmically. Logarithmic
spacing allows us to crowd points closer together as T → 0.
Close spacing between points could result in inadequate
precision, necessitating extra places of accuracy for reliable
computation.
From the CQuartet we generate the CGrid, structured as

CGrid ¼ fCQuartet; fX3; X4g; frow1; row2;…; rowpgg;
ðA1Þ

where CQuartet is the list of symbols, and fX3; X4g are the
fixed numerical values. The quantities

FIG. 5. The flowchart of our computational algorithm. Red
ovals indicate the input needed to get the desired output graphs.
This input includes the BHT model consisting of the three
functions S (or M), T, and R. The blue rectangles represent
the code for generating CGrid, GGrid, and the desired graphs.
This code is common to all of our BHT models.
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rowi ¼ ffX1
i ; X

2
1g; fX1

i ; X
2
2g;…; fX1

i ; X
2
qgg; ðA2Þ

with X1
i the numerical value of the ith element in the list of

X1 values, and likewise for X2
j. Each rowi has the same

value of X1 all the way across, which is convenient for
graphing some quantity as a function of X2, holding X1

fixed. The fX1; X2g grid values, together with the fixed
fX3; X4g values, allow us to numerically determine values
for the complete list of septuplet entries at all the grid
points, assuming that we have a BHT model on the scene.
Our main analysis grid is the general grid GGrid, based

on the list of symbols GQuartet ¼ fY1; Y2; Y3; Y4g obey-
ing the following rules:
(1) fY1; Y2; Y3; Y4g are four distinct symbols selected

from septuplet;
(2) fY1; Y2g ¼ fX1; X2g;
(3) Y4 is the quantity that we want to analyze (here

always R); and
(4) Y4 gets graphed and analyzed versus fY1; Y3g (here

Y3 is always T).
We define

GGrid ¼ fGQuartet; fGrow1;Grow2;…;Growpgg; ðA3Þ

where

Growi ¼ ffY1
i ; Y

2
1; Y

3ðXÞ; Y4ðXÞg;
fY1

i ; Y
2
2; Y

3ðXÞ; Y4ðXÞg;…;

fY1
i ; Y

2
q; Y3ðXÞ; Y4ðXÞgg; ðA4Þ

with Y1
i ¼ X1

i , and Y2
j ¼ X1

j . Y
3ðXÞ and Y4ðXÞ denote the

values of Y3 and Y4 at the values of the CQuartet X at the
corresponding CGrid point.
There is one more point that we need to appreciate. The

construction of the CGrid is based on limits on X1 and X2

that reflect the ad hoc choices of researchers. Since the idea
is to operate very near the extremal limit, it is likely that a
number of CGrid points will be beyond the extremal limit.
We found that in the BHT models here, such unphysical
points reveal themselves as having negative or imaginary T.
Such points were never included in GGrid.
Figure 5 shows the broad outline of our computational

algorithm.
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