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We show that a noncommutative structure arises naturally from perturbative quantum gravity in a de
Sitter background metric. Our work builds on recent advances in the construction of observables in highly
symmetric background spacetimes [Brunetti et al., J. High Energy Phys. 08 (2016) 032; Fröb and Lima,
Classical Quantum Gravity 35, 095010 (2018)], where the dynamical coordinates that are needed in the
relational approach were established for such backgrounds to all orders in perturbation theory. We show
that these dynamical coordinates that describe events in the perturbed spacetime are naturally non-
commuting and determine their commutator to leading order in the Planck length. Our result generalizes the
causal noncommutative structure that was found using the same approach in Minkowski space [Fröb et al.,
Phys. Rev. D 107, 064041 (2023)].
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I. INTRODUCTION

The quantization of general relativity (GR) using the
well-known approach of perturbative quantum field theory
leads to a nonrenormalizable quantum theory of gravity
that, in principle, loses all predictive power. However, at
scales that are well separated from the fundamental scale
(that is, for large distances or low energies compared to the
Planck scale), treating it as an effective field theory one can
obtain qualitatively and quantitatively meaningful quantum
corrections to the classical results [1]. This effective
approach to quantum gravity, where one quantizes metric
fluctuations around a fixed classical background metric, is
known as perturbative quantum gravity (pQG). In pQG, the
diffeomorphism symmetry of classical GR translates into a
gauge transformation for the metric fluctuations, and the
resulting gauge theory can be treated using the well-known
Becchi-Rouet-Stora-Tyutin formalism [2].
However, there are some important differences to the

usual (Yang-Mills type) gauge theories: as in any diffeo-
morphism-invariant theory, the identification of observ-
ables that describe local measurements is complicated (see,
for example, Ref. [3] for a review). Because diffeomor-
phisms move points, physical observables cannot be local
fields (i.e., defined at a point of the manifold), since by

definition observables are gauge invariant. That is, the
general covariance of GR implies that the outcome of
measurements cannot depend on the arbitrary choice of
coordinates, which are changed by diffeomorphisms, and
hence physical observables describing these measurements
must be diffeomorphism invariant. As an example, consider
a scalar field SðxÞ and a diffeomorphism xμ → xμ − ξμðxÞ.
Under this transformation the scalar field changes as S →
Sþ ξμ∂μS to first order in ξ and, thus, cannot be an
observable unless it is constant.
A possible way around this problem is to consider the

framework of relational observables. This approach makes
manifest the idea that measurements always concern the
state of some dynamical quantity with respect to a different
one, for example, the gravitational field at the spacetime
point where the measurement apparatus sits. In practice,
one chooses four dynamical scalar fields that serve as
coordinates, in the sense that points are determined by the
value that these fields assume there. Observables are then
obtained by evaluating the quantity of interest in this
dynamical coordinate system, i.e., they are the value of
a chosen physical quantity at that point of the manifold
where the dynamical scalars that serve as coordinates take
on a prescribed value. In other words, what the relational
approach shows is that physical events in a gravitational
theory cannot be described using coordinates on the
background manifold, but instead one must use a fully
dynamical coordinate system. This approach goes back a
long way in the literature [4–6]; see Ref. [7] for a recent
review. For a sufficiently generic background spacetime,
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one can, for example, take geometrical scalar fields, such as
curvature scalars. In perturbation theory, one then requires
that the background value of the chosen scalar fields
discriminate points in the background spacetime, and then
computes perturbative corrections to both the dynamical
coordinates and the relational observables.1

However, in the case of perturbative gravity over highly
symmetric backgrounds (such as flat Minkowski spacetime
or cosmological spacetimes), curvature scalars can clearly
not distinguish between all points of the background
manifold and thus are ill suited for the task at hand. In
other words, relational observables constructed with curva-
ture scalars as dynamical coordinates only measure the
average over all points where the curvature scalars are
constant and thus cannot describe localizedmeasurements in
such background spacetimes. While one can add the
required scalar fields by hand (such as the famous
Brown-Kuchař dust [20]), this changes the dynamics of
the theory [21,22] and therefore might be undesirable. A
suitable method to treat highly symmetric cases without
introducing extra fields was first proposed in Ref. [23] and
further developed inRefs. [24–27]. There, the general idea is
the construction of the required scalar fields as solutions of
scalar field equations in the perturbed spacetime, which are
identically satisfied by the background coordinates in the
background spacetime. This method is an explicit example
of the so-called geometrical clocks [28,29] used in the
relational approach and has the advantage that one can easily
construct the field-dependent coordinates and correspond-
ing relational observables to arbitrary order in perturbation
theory. It has already been employed successfully in pQG for
the computation of graviton loop corrections to invariant
scalar correlators in Minkowski spacetime [24], of the
quantum gravitational backreaction on the Hubble rate
during inflation [30,31], and of quantum-gravity corrections
to the Newtonian potential of a point particle [32].
Apart from the quantization of gravity as an effective

field theory, one can also approach quantum gravity by
considering the spacetime to be of quantum nature, i.e.,
quantizing spacetime itself. This approach is what is
commonly referred to as noncommutative geometry, and
various different methods are taken under this umbrella. A
particular example is the Moyal-Weyl spacetime, where
one imposes a quantization condition on the coordinates xμ

themselves. That is, one promotes the coordinates to self-
adjoint operators x̂μ and postulates canonical commutation
relations [33],

½x̂μ; x̂ν� ¼ iΘμν; ð1Þ

where Θ is a constant skew-symmetric matrix that is
assumed to be proportional to the square of the Planck
length lPl. While this example has been studied intensively,
there are various issues, among them the UV-IR mixing
problem [34–37] (a problem of renormalizability in the
formulation of quantum field theories in such spacetimes)
and the breaking of Lorentz covariance [38].
Even though these two approaches seem very different,

recently a connection between them was found in Ref. [39]
by three of the authors: the field-dependent dynamical
coordinates that are needed to construct gauge-invariant
observables in the relational approach define a noncom-
mutative geometry. This connection was realized in the
case of pQG over Minkowski spacetime with generalized
harmonic coordinates, and the commutator of the dynami-
cal coordinates was computed to leading order in the
Planck length. While the resulting commutator has the
form (1), there are some important differences: first of all,
one does not have a single coordinate operator x̂μ, but
instead associates a dynamical coordinate operator to each
physical event. It then turns out that the matrix Θμν is not a
spacetime constant, but instead depends on the separation
between the events that are described using the dynamical
coordinates. Indeed, if they are spacelike separated, Θ
vanishes, while if they are timelike separated Θ is a
constant that depends on which one lies in the future. In
this way, the commutator is fully Lorentz invariant and, in
particular, vanishes outside the light cone, which in the end
follows from the microcausality of the underlying effective
field theory that pQG is.
In this work, we generalize the results obtained in

Ref. [39] to de Sitter spacetime. De Sitter spacetime is
important for various reasons. First, it describes to a very
good approximation both the inflationary phase of our
universe and the current accelerated expansion [40–42].
Second, not all of the de Sitter manifold is accessible to any
single observer; there are both past and future horizons. It
thus provides a background spacetime where horizon
effects can be studied, with the advantage that it is
computationally much easier than a black hole, since de
Sitter is a maximally symmetric spacetime. (However,
while the black hole horizon can be defined independent
of an observer, the cosmological horizons are observer
dependent.) Third, it provides a test bed for different
approaches to quantum gravity. In particular, we want to
mention the proposition that theories with dynamical
gravity contain a reduced number of degrees of freedom
when compared to nongravity theories in the same space-
time. Heuristically, this comes from the fact that a black
hole is formed when too much mass is concentrated in a
region of fixed size, whose entropy is only proportional to
the area of the horizon according to the famous Bekenstein-
Hawking formula [43,44] and not proportional to the
volume as for a nongravitational theory. Since the de
Sitter horizon has a finite area, the Bekenstein-Hawking

1Another way to construct gauge-invariant observables in
quantum gravity is to extend the concept of dressed observables
in gauge theories [8–14] to pQG, as proposed in Refs. [15–18].
Interestingly, these dressed observables can be reformulated in
the framework of relational observables, see Ref. [19].
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formula also associates to it a finite entropy [45], whose
interpretation is, however, difficult; see [46] and references
therein for discussions of this issue.2

Let us summarize: The aim of this work is to show that
one does not need to postulate a noncommutative spacetime
such as the Moyal-Weyl one (1). Rather, the noncommu-
tative structure is seen to be a prediction of pQG, the well-
established effective field theory approach to quantum
gravity. The form of the resulting commutator depends,
in general, on the background spacetime and the dynamical
coordinates, and for a Minkowski background and gener-
alized harmonic coordinates it is a simple and Lorentz-
invariant function to leading order in the Planck length
[39]. In this article, we want to show that the same holds for
a de Sitter background, which describes the large-scale
structure of our universe to a very good approximation. In
this way, we will be able to connect the literature that exists
for noncommutative spacetimes and their phenomenologi-
cal implications, see, for example, Ref. [57], with the pQG
approach.
The remainder of the article is structured as follows: In

Sec. II, we give more details on the construction of the
required dynamical coordinates, and in Sec. III we con-
struct them to first order in perturbation theory around a de
Sitter background. In Sec. IV, we quantize metric fluctua-
tions around de Sitter spacetime and give explicit solutions
for the dynamical coordinates as functionals of the metric
perturbation. In Sec. V, we finally compute the commutator
of the dynamical coordinates to leading order in perturba-
tion theory and conclude in Sec. VI.
We assume an n-dimensional spacetime, use the

“þþþ” convention of [58], and define
κ ¼ ffiffiffiffiffiffiffiffi

16π
p

lPl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πℏGN=c3

p
. Greek indices denote

spacetime indices, whereas latin indices are purely
spatial.

II. FIELD-DEPENDENT COORDINATES

As discussed in the Introduction, a relational observable
corresponds to a dynamical field evaluated at spacetime
points that are not fixed, but are determined by the value
that other dynamical fields in the system assume there.
These other dynamical fields define a (field-dependent)
reference frame with respect to which the measurement of a
given observable is carried out.
To make these ideas more concrete, let us consider an n-

dimensional spacetime with metric gμν and coordinates xμ.
Let us assume that we can find n scalar fields XðμÞ ¼ XðμÞ½g�

that are functionals of the spacetime metric.3 We further
assume that themap xμ → XðμÞðxÞ defines a diffeomorphism
in our spacetime, such that we can view the dynamical fields
XðμÞ as field-dependent coordinates. We can then convert
any tensor field into an observable by evaluating it in the
field-dependent frame XðμÞ.
As a simple example, let us consider a scalar field SðxÞ.

The transformation of S to the field-dependent coordinates
XðμÞðxÞ yields

SðXÞ≡ S½xðXÞ�; ð2Þ
where xμðXÞ denotes the inverse of the map xμ → XðμÞ ¼
XðμÞðxÞ. Now, consider an arbitrary diffeomorphism f∶xμ →
ðx0Þμ ¼ fμðxÞ with inverse xμ ¼ ðf−1Þμðx0Þ. Since XðμÞ and
S are scalar fields, they both transform under f as

XðμÞðxÞ → ðX0ÞðμÞðx0Þ ¼ XðμÞðxÞ ¼ XðμÞ½f−1ðx0Þ�; ð3aÞ

SðxÞ → S0ðx0Þ ¼ SðxÞ ¼ S½f−1ðx0Þ�: ð3bÞ

Note that, while the transformed scalar field S0 has the same
numerical value at the new point x0, it differs at the old point
x: S0ðxÞ ≠ SðxÞ. However, if we instead hold the XðμÞ fixed,
we obtain

S0ðXÞ ¼ S0½x0ðXÞ� ¼ S½f−1ðx0ðXÞÞ�
¼ S½xðXÞ� ¼ SðXÞ; ð4Þ

where in the second equality we used the transformation of S
(3b) and in the third equality the expression for the inverse
diffeomorphism; the expression for x0ðXÞ is obtained by
inverting the relation (3) for the transformation of the XðμÞ.
Hence, even though the diffeomorphism f displaces the
points xμ, changing the form of the scalar fields XðμÞ and S
with respect to xμ, the scalar SðXÞ is always computed at the
same point where the XðμÞ take on a given value.
In what follows, we will be concerned with (quantum)

perturbations of the metric over a given spacetime back-
ground gμν covered by coordinates xμ. Hence, let us write
the full metric g̃μν as

g̃μν ¼ gμν þ κhμν; ð5Þ

where hμν is the perturbation. In this case, we can assume
that the field-dependent coordinates XðμÞ are chosen such
that they agree with the background coordinates xμ for
κ ¼ 0 and, in general, can be written as a power series in κ.
We therefore write

XðμÞðxÞ ¼ xμ þ κXðμÞ
ð1ÞðxÞ þOðκ2Þ: ð6Þ

2Assuming a holographic correspondence for de Sitter space
[47–49], the horizon entropy can be understood as the entangle-
ment entropy between the right and left dual conformal field
theories (CFTs) that appear in the correspondence or between the
past and future dual CFTs [50–56]. We thank Hao Geng for
bringing these works to our attention.

3We keep the index μ within parenthesis in XðμÞ to stress that
these are a collection of scalar fields.
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Since the background is fixed, we now consider small
diffeomorphisms of the form xμ → xμ − κξμðxÞ, which
implies the following change for the metric perturbation:

δξhμν ¼ ∇μξν þ∇νξμ þOðκÞ; ð7Þ

where ∇μ is the covariant derivative of the background
metric gμν. Moreover, because of the assumption that XðμÞ

are scalar fields, we also have that

δξXðμÞ ¼ κξμ þOðκ2Þ: ð8Þ

Expanding also the scalar S in a power series in κ, we can
then use Eq. (8) to check explicitly that S defined in Eq. (2)
is gauge invariant (at least up to first order).
To construct the field-dependent coordinates XðμÞ, we

shall follow Refs. [23–26] and assume that they are
solutions of some set of scalar differential equations

DðμÞ
g̃ ðXÞ ¼ 0; ð9Þ

where DðμÞ
g̃ are (possibly nonlinear) differential operators

involving the spacetime metric g̃μν. Since they are sol-
utions of differential equations with coefficients involving
g̃μν, we thus expect the dynamical coordinates XðμÞ to be, in
general, nonlocal functionals of the metric. Equations (9)
model the reference frame in which we perform our
measurements, which depends on the specific experimen-
tal setting we have at hand. We shall furthermore require

that Eqs. (9) (i) reduce to DðμÞ
g ðxÞ ¼ 0 at the background

level κ ¼ 0 and (ii) are causal, i.e., the XðμÞðxÞ should only
depend on the metric perturbations within the past light
cone of the observation point x. Condition (i) realizes our
assumption that the field-dependent and background
frames coincide in the absence of perturbations (6),
while condition (ii) avoids unphysical action-at-a-distance
effects coming from arbitrary large spacelike separa-
tions [24,25].

III. FIELD-DEPENDENT COORDINATES
FOR DE SITTER SPACETIME

For the background spacetime, we take the exponentially
expanding half of de Sitter spacetime, the so-called
Poincaré patch, which is the portion of de Sitter spacetime
most relevant to cosmology. In the Poincaré patch, the de
Sitter metric gμν has the line element

ds2 ¼ −dt2 þ a2ðtÞdx2; ð10Þ

where t∈R is the cosmological time, aðtÞ≡ eHt is the
scale factor, H is the Hubble constant, and the spatial
sections are flat and described using Cartesian coordinates.
Clearly, as H → 0 we obtain aðtÞ → 1 and recover the flat

Minkowski spacetime. The Christoffel symbols in these
coordinates are given by

Γρ
μν ¼ Hðuρgμν − uρuμuν − uμδ

ρ
ν − uνδ

ρ
μÞ; ð11Þ

where uμ ≡ −∂μt ¼ −δ0μ. Using the metric (10), it is easy to
verify that the background coordinates xμ ¼ ðt; xÞ satisfy

∇2xμ ¼ −ðn − 1ÞHuμ; ð12Þ

where ∇2 ≡ gμν∇μ∇ν. In analogy to the background
coordinates, we now define the field-dependent coordinates
XðμÞ on the perturbed spacetime by [31,59]

∇̃2XðμÞ ¼ −ðn − 1ÞHuμ ð13Þ

and solve this equation perturbatively.
Hence, we take the perturbed metric (5), set

Xð0ÞðxÞ ¼ tþ κXð0Þ
ð1ÞðxÞ þOðκ2Þ; ð14aÞ

XðiÞðxÞ ¼ xi þ κXðiÞ
ð1ÞðxÞ þOðκ2Þ; ð14bÞ

and substitute these expansions into Eq. (13). The equation
for the first-order corrections then reads

∇2XðμÞ
ð1Þ ¼ ∇νhμν −

1

2
∇μh − hρσΓμ

ρσ

¼ gμαgνβ∂νhαβ −
1

2
gμν∂νh

− ðn − 3ÞHuνhμν þ 2Huμuνuρhνρ; ð15Þ

where h≡ gαβhαβ. Equation (15) can be solved after initial
and boundary conditions have been specified. We will
assume that the metric perturbations are either localized (of
compact support) or fall off for large spacelike and
timelike distances and can then choose the initial con-
ditions

lim
t→−∞

XðμÞ
ð1Þðt; xÞ ¼ lim

t→−∞
∂tX

ðμÞ
ð1Þðt; xÞ ¼ 0: ð16Þ

The solution for Eq. (15) for a classical metric perturbation
hμν can then be written as

XðμÞ
ð1ÞðxÞ ¼

Z
Gretðx;x0ÞDμαβhαβðx0Þ

ffiffiffiffiffiffi
−g

p
dnx0; ð17Þ

where Gretðx; x0Þ is the retarded Green’s function satisfying

∇2Gretðx; x0Þ ¼ 1ffiffiffiffiffiffi−gp δnðx − x0Þ: ð18Þ
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Here, we also defined

D0αβ ≡ 1

2
uαuβ∂t þ

1

2
a−2η̄αβ∂t − a−2uðαη̄βÞk∂k

þ ðn − 1ÞHuαuβ −Ha−2η̄αβ; ð19aÞ

Diαβ ≡ −a−2η̄iðαuβÞ∂t þ a−4η̄iðαη̄βÞk∂k

−
1

2
a−2gαβη̄ik∂k − ðn − 3ÞHa−2uðαη̄βÞi; ð19bÞ

and η̄μν ≡ ημν þ uμuν is the purely spatial part of the flat
metric.
As in Ref. [39], here we are interested in the commu-

tation relations of the field-dependent coordinates XðμÞ
when the metric perturbation is of quantum origin. Since
the metric perturbation then has a nonvanishing commu-
tator, by Eq. (17) also the field-dependent coordinates do
not commute. We shall employ standard quantum field
theory techniques to quantize the metric perturbations in
the background de Sitter spacetime and compute the
leading contribution to the commutator.

IV. QUANTIZATION OF THE METRIC
PERTURBATIONS

To quantize the metric perturbation, we expand the
Einstein-Hilbert action for gravity (including a cosmologi-
cal constant),

SG ≡ κ−2
Z

ðR̃ − 2ΛÞ
ffiffiffiffiffiffi
−g̃

p
dnx; ð20Þ

to second order in perturbation theory. In de Sitter space-
time, the cosmological constant Λ is related to the Hubble
constant H by 2Λ ¼ ðn − 1Þðn − 2ÞH2, and the action (20)
is simplified if we employ conformally flat coordinates for
the background. Hence, we define the conformal time
η∈ ð−∞; 0Þ, which is related to the cosmological time as
η≡ −e−Ht=H. The background metric can then be written
in terms of the Minkowski metric ημν as gμν ¼ a2ημν. After
rescaling the metric perturbation as hμν ¼ a2ĥμν, the
expansion of the gravitational action (20) to second order,
SG ¼ S2 þOðκÞ, yields

S2 ¼
1

2

Z
an−2ĥμνPμνρσĥρσdnx; ð21Þ

where we have defined the differential operator

Pμνρσ ≡ 1

2

h
ημðρησÞν − ημνηρσ

i
∂
2 − ∂

ðμηνÞðρ∂σÞ

þ 1

2
ημν∂ρ∂σ þ 1

2
ηρσ∂μ∂ν

þ ðn − 2ÞHa
h
δðρ0 η

σÞðμ
∂
νÞ − ημνδðρ0 ∂

σÞ
i

−
n − 2

2
Ha

h
ημðρησÞν − ημνηρσ

i
∂0

þ ðn − 2Þðn − 1Þ
2

H2a2ημνδρ0δ
σ
0; ð22Þ

which is symmetric. In this expression, ∂2 ≡ ημν∂μ∂ν is the
flat-space d’Alembertian and indices are raised and lowered
with the Minkowski metric ημν.
The action S2 is invariant under gauge transformations of

the form (7), which in conformally flat coordinates and
with the above rescaling read

δξĥμν ¼ ∂μξν þ ∂νξμ − 2Haημνξ0: ð23Þ
It follows that Pμνρσ has a nontrivial kernel, i.e., we have
Pμνρσδξĥμν ¼ 0. Hence, to be able to invert the operator
Pμνρσ and obtain the quantum propagator, we need to
introduce a gauge-fixing action. Here we follow Ref. [60]
and adopt the gauge-fixing action

SGF ¼ −
1

2

Z
HμHμan−2dnx; ð24Þ

with

Hμ ≡ ∂
νĥμν −

1

2
ηρσ∂μĥρσ − ðn − 2ÞHaĥ0μ; ð25Þ

which is the de Sitter generalization of the well-known
Feynman gauge for the graviton (also called the de Donder
gauge in Minkowski spacetime [61]). We will see that it
leads to a similar simplification for the propagator as in flat
space [62]. The total action then reads

S≡ S2 þ SGF ¼
1

2

Z
an−2ĥμνP

μνρσ
GF ĥρσdnx; ð26Þ

where the differential operator Pμνρσ
GF is given by

Pμνρσ
GF ¼ Pμνρσ þ ∂

ðμηνÞðρ∂σÞ þ 1

4
ημνηρσ∂2 −

1

2
ημν∂ρ∂σ −

1

2
ηρσ∂μ∂ν − ðn − 2ÞHaδðρ0 η

σÞðμ
∂
νÞ þ ðn − 2ÞHaημνδðρ0 ∂

σÞ

−
n − 2

4
Haημνηρσ∂0 þ ðn − 2ÞH2a2δðμ0 η

νÞðρδσÞ0 −
ðn − 2Þðn − 1Þ

2
H2a2ημνδρ0δ

σ
0

¼ 1

4

h
2ημðρησÞν − ημνηρσ

i
a2∇2 þ ðn − 2ÞH2a2δðμ0 η

νÞðρδσÞ0 ; ð27Þ
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where the scalar d’Alembertian ∇2 in conformally flat
coordinates reads

a2∇2 ¼ ∂
2 − ðn − 2ÞHa∂η: ð28Þ

The Feynman propagator for the rescaled metric pertur-
bation

ĜF
μνρ0σ0 ðx; x0Þ≡ −ihT ĥμνðxÞĥρ0σ0 ðx0Þi; ð29Þ

where T denotes time ordering and primed indices refer to
the coordinate basis at x0, satisfies

Pαβμν
GF ĜF

μνρ0σ0 ðx; x0Þ ¼ δαðρ0δ
β
σ0Þ

δnðx − x0Þ
an−2

: ð30Þ

The advantage of the gauge-fixing action (24) is that it
renders a very simple tensor structure for the graviton
propagator. In conformally flat coordinates, the Feynman
propagator (29) reads [60,63]

ĜF
μνρ0σ0 ðx; x0Þ ¼ 2

h
η̄μðρ0 η̄σ0Þν −

1

n − 3
η̄μνη̄ρ0σ0

i
GF

0ðx; x0Þ
− 4δ0ðμη̄νÞðρ0δ

0
σ0ÞG

F
1ðx; x0Þ

þ 2

ðn − 2Þðn − 3Þ ½ημν þ ðn − 2Þδ0μδ0ν�

× ½ηρ0σ0 þ ðn − 2Þδ0ρ0δ0σ0 �GF
2ðx; x0Þ; ð31Þ

where we recall that η̄μν ¼ ημν þ δ0μδ
0
ν is the purely spatial

part of the Minkowski metric. The scalar Feynman propa-
gators GF

s ðx; x0Þ satisfy

½∇2 − sðn − 1 − sÞH2�GF
s ðx; x0Þ ¼

δnðx − x0Þ
an

: ð32Þ

They can be written as

GF
s ðx;x0Þ ¼Θðη−η0ÞGþ

s ðx;x0ÞþΘðη0−ηÞG−
s ðx;x0Þ; ð33Þ

where G�
s ðx; x0Þ are the Wightman functions, which satisfy

G−
s ðx; x0Þ ¼ Gþ

s ðx0; xÞ, and Θ is the usual Heaviside step
function. For later use, we also define the Dyson (or anti-
time-ordered) propagator as

GD
s ðx;x0Þ ¼Θðη−η0ÞG−

s ðx;x0ÞþΘðη0−ηÞGþ
s ðx;x0Þ: ð34Þ

Passing to Fourier space according to

G�
s ðx; x0Þ ¼

Z
G̃�

s ðη; η0; pÞeipðx−x0Þ
dn−1p
ð2πÞn−1 ; ð35Þ

in the Euclidean (or Bunch-Davies) vacuum [64–66] we
have

G̃þ
s ðη; η0; pÞ ¼ −i

π

4H
a−

n−1
2 ðηÞa−n−1

2 ðη0Þ

× Hð1Þ
n−1
2
−sð−jpjηÞH

ð2Þ
n−1
2
−sð−jpjη0Þ; ð36Þ

where HðkÞ
ν is the kth Hankel function of order ν [67]. These

expressions simplify for n ¼ 4 dimensions, where we
obtain

G̃þ
0 ðη;η0;pÞ¼−i

H2

2

ð1þ ijpjηÞð1− ijpjη0Þ
jpj3 e−ijpjðη−η0Þ; ð37aÞ

G̃þ
1 ðη; η0; pÞ ¼ G̃þ

2 ðη; η0; pÞ ¼ −i
H2

2

ηη0

jpj e
−ijpjðη−η0Þ: ð37bÞ

Since the two-point function G̃�
0 ðη; η0; pÞ diverges for

small jpj like jpj−3, the inverse Fourier transform in three
spatial dimensions is not well defined, and the graviton
propagator (31) displays the usual IR divergence of mass-
less fields in the Euclidean vacuum [68,69]. Nevertheless,
for the commutator we obtain

h
ĥμνðxÞ; ĥρσðx0Þ

i
¼ 2½ημðρ0 η̄σ0Þν − η̄μνη̄ρ0σ0 �Δ0ðx; x0Þ1

þ
h
ðημν þ 2δ0μδ

0
νÞðηρ0σ0 þ 2δ0ρ0δ

0
σ0 Þ

− 4δ0ðμη̄νÞðρ0δ
0
σ0Þ
i
Δ1ðx; x0Þ1; ð38Þ

where the state-independent scalar commutator (or Pauli-
Jordan) functions Δs are well defined also for small jpj, and
convergent in the IR,

Δ̃0ðη; η0; pÞ ¼ iH2
η − η0

jpj2 cos ½jpjðη − η0Þ� ð39aÞ

−iH2
1þ p2ηη0

jpj3 sin ½jpjðη − η0Þ�; ð39bÞ

Δ̃1ðη; η0; pÞ ¼ −iH2
ηη0

jpj sin ½jpjðη − η0Þ�: ð39cÞ

Using conformal time η and the rescaled metric pertur-
bation ĥμν, the explicit expression (17) for the leading
quantum correction to the field-dependent coordinates XðμÞ
also changes. Performing the change of coordinates and the
rescaling, we obtain

XðμÞ
ð1ÞðxÞ ¼

Z
Gretðx; x0ÞD̂μαβĥαβðx0Þanðx0Þdnx0; ð40Þ

with
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D̂0αβ ¼ a−1δα0δ
β
0½∂η þ ðn − 1ÞHa�

− a−1η̄kðαδβÞ0 ∂k þ
1

2a
ηαβ∂η; ð41aÞ

D̂iαβ ¼ −a−2η̄iðαδβÞ0 ½∂η þ ðn − 2ÞHa�

þ a−2η̄iðαη̄βÞk∂k −
1

2a2
ηαβ∂i: ð41bÞ

Note, however, that the coordinate corrections XðμÞ
ð1Þ them-

selves are not transformed, since they are scalar functionals
by construction.
We see from Eq. (40) that the leading quantum correction

to the field-dependent coordinates XðμÞ is linear in the
metric perturbation ĥμν. Hence, the commutation relation
for the quantum fluctuations of the metric (38) will give rise
to nontrivial commutation relations for the coordinates XðμÞ
defined by Eq. (13). Nevertheless, since the integral (40) is
extended over the full past light cone, additional IR
divergences might arise from this integration, and one
has to be careful in evaluating the commutator.

V. COMMUTATOR OF THE GENERALIZED
HARMONIC COORDINATES

To compute the leading contribution to the commutator
of the XðμÞ, we use the fact that the commutator of a linear
field is a state-independent c number, such that we have

h
XðμÞ
ð1ÞðxÞ; XðνÞ

ð1Þðx0Þ
i

¼
�D

XðμÞ
ð1ÞðxÞXðνÞ

ð1Þðx0Þ
E
−
D
XðνÞ
ð1Þðx0ÞXðμÞ

ð1ÞðxÞ
E�

1: ð42Þ

The expectation value on the right-hand side of this equation
can be computed in any quantum state. In our case, it is
convenient to compute it using theEuclideanvacuum,where
the graviton propagator (31) has a simple expression in
Fourier space (37). Moreover, at leading order the expect-
ation value on the right-hand side is computed in the free
theory, and so we can perform the computation in n ¼ 4
dimensions. At higher orders, one would need to consider
loop corrections, for which dimensional regularization
could be employedwith then-dimensional propagators (36).
The appropriate formalism to compute true expectation

values (rather than scattering matrix elements) is the so-
called Schwinger-Keldysh or in-in formalism [70,71]. It is
particularly useful in calculations in time-dependent space-
times, as in cosmology, where one is usually interested in
expectation values at a given time [72–75]. In this formal-
ism, one extends the time integration contour: it first goes
forward in time from past infinity up to some arbitrary final
real time T (which needs to be taken larger than any time
one is interested in and can even be taken to be future
infinity), and then backward in time from T to past infinity;

it is thus also known as the closed-time path formalism. For
practical purposes, it is convenient to split the contour and
instead double the number of fields, denoting fields on the
forward part of the contour with a “þ” and fields on the
backward part of the contour with a “−”. All time
integrations then go from −∞ to þ∞, and integrations
over “−” fields come with an extra minus sign to com-
pensate for the change of orientation in the backward part
of the integration contour. Since contributions from outside
the light cone cancel in the integrals, the in-in formalism
ensures a causal evolution of observables.
In principle, one can start the integration at a finite time

t0 and describe the initial state with a density matrix, which
is equivalent to having interaction terms in the action which
are localized at t0 [74,76]. Since the commutator (42) is
state independent, we can restrict to the adiabatic vacuum,
which can be obtained using the iϵ prescription familiar
from the in-out formalism [77] or as the zero-temperature
limit of a thermal density matrix [78]. Again, we can
choose the simplest route and generalize the iϵ prescription.
For this, the time integration contour needs to be tilted in
the complex plane, with the contours starting and ending at
t�0 ¼ t0ð1 ∓ iϵÞ instead of past infinity. After performing
the integral, we take first the limit t0 → −∞ with fixed
ϵ > 0 and afterward the limit ϵ → 0.
Instead of time-ordered expectationvalues, in general, the

in-in formalism computes path-ordered expectation values.
If all fields lie on the forward part of the contour, i.e., are “þ”
fields, these are just time-ordered expectation values, while
if all fields are on the backward part, one obtains anti-time-
ordered expectation values. Fields on both parts of the
contour result inmixed expectationvalues, with fields on the
backward contour always ordered before fields on the
forward contour. In particular, the path-ordered two-point
function of the (rescaled) metric perturbation reads

ĜAB
μνρσðx; x0Þ ¼ −i

D
PĥAμνðxÞĥBρσðx0Þ

E
; ð43Þ

with A; B ¼ �. In line with what was just explained, this
propagator can take four values,

Ĝþþ
μνρσðx; x0Þ ¼ −i

D
T ĥμνðxÞĥρσðx0Þ

E

¼ ĜF
μνρσðx; x0Þ; ð44aÞ

Ĝþ−
μνρσðx; x0Þ ¼ −i

D
ĥρσðx0ÞĥμνðxÞ

E

¼ Ĝ−
μνρσðx; x0Þ; ð44bÞ

Ĝ−þ
μνρσðx; x0Þ ¼ −i

D
ĥμνðxÞĥρσðx0Þ

E

¼ Ĝþ
μνρσðx; x0Þ; ð44cÞ

Ĝ−−
μνρσðx; x0Þ ¼ −i

D
T̄ ĥμνðxÞĥρσðx0Þ

E

¼ ĜD
μνρσðx; x0Þ; ð44dÞ
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encompassing both the time-ordered (Feynman) and anti-
time-ordered (Dyson) propagator, as well as the positive and
negative frequency Wightman functions. All of these are
given by the general formula (31), and only the scalar
propagators Gs change, with the Feynman and Dyson
propagators given by Eqs. (33) and (34), respectively.
In the quantum theory, also the coordinate corrections

XðμÞ
ð1Þ (17) need to be computed in the in-in formalism, and

thus, instead of the retarded propagator Gret appropriate for
the classical theory, we have to use the path-ordered one
and sum over both parts of the contour. The path-ordered
correlation function of two coordinate corrections thus
reads

D
PXðμÞA

ð1Þ ðxÞXðνÞB
ð1Þ ðx0Þ

E

¼ i
ZZ

GAC
0 ðx; yÞGBD

0 ðx0; y0Þ

× D̂μαβ
y D̂νρσ

y0 ĜCD
αβρσðy; y0Þa4ðyÞd4ya4ðy0Þd4y0; ð45Þ

where the repeated indicesC;D ¼ � are summed over, and
we recall that integrations over the backward part of the
contour come with an extra minus sign. Using the Fourier
representation of the relevant propagators (31) and (37), we
obtain

D
PXðμÞA

ð1Þ ðxÞXðνÞB
ð1Þ ðx0Þ

E

¼
Z

Fμν
ABðη; η0; pÞeipðx−x

0Þ d3p
ð2πÞ3 ; ð46Þ

where the components of Fμν are determined in the
Appendix and read

F00
ABðη; η0; pÞ

¼ −
ZZ

e−ijpjfACðη−τÞ

2jpj
1þ ijpjfACðη − τÞ þ p2ητ

p2

×
e−ijpjfBDðη0−τ0Þ

2jpj
1þ ijpjfBDðη0 − τ0Þ þ p2η0τ0

p2

×
h
1þ 2ijpjfCDðτ − τ0Þ þ ijpjττ0∂2τfCDðτ − τ0Þ

i

×
e−ijpjfCDðτ−τ0Þ

2jpj ðττ0Þ−3dτdτ0; ð47Þ

F0i
ABðη; η0; pÞ ¼ Fi0

ABðη; η0; pÞ ¼ 0; ð48Þ

and

Fij
ABðη; η0; pÞ

¼ i
2
δijH2

ZZ
e−ijpjfACðη−τÞ

2jpj
1þ ijpjfACðη − τÞ þ p2ητ

p2

×
e−ijpjfBDðη0−τ0Þ

2jpj
1þ ijpjfBDðη0 − τ0Þ þ p2η0τ0

p2

× ∂
2
τfCDðτ − τ0Þe−ijpjfCDðτ−τ0Þðττ0Þ−1dτdτ0: ð49Þ

Here we have introduced the function

fCDðηÞ ¼

8>>><
>>>:

η CD ¼ −þ
−η CD ¼ þ−
jηj CD ¼ þþ
−jηj CD ¼ −−

; ð50Þ

and in deriving Eqs. (47)–(49), we have used that it satisfies

½∂ηfCDðηÞ�2 ¼ 1; ð51aÞ

η∂ηfCDðηÞ ¼ fCDðη
�

ð51bÞ

for any choice of indices CD, as can be easily checked.
Finally, the leading-order contribution to the coordinate

commutator (42) is given by

h
XðμÞ
ð1ÞðxÞ;XðνÞ

ð1Þðx0Þ
i

¼
Z

½Fμν
−þðη;η0;pÞ−Fμν

þ−ðη;η0;pÞ�eipðx−x0Þ
d3p
ð2πÞ31: ð52Þ

As in the case of quantum gravitational perturbations
around Minkowski spacetime [39], the time-space com-
ponents vanish and the space-space components are
proportional to δij, showing that also on de Sitter space-
time only the same coordinate does not commute with
itself.

A. Temporal part

The function F00
AB (47) is computed in the Appendix, and

we obtain

F00þ−ðη; η0; pÞ ¼ F00
−þðη0; η; pÞ

¼ 1þ p2ηη0

4jpj3 eijpjðηþη0Þ½Einð−2ijpjη0Þ þ γ þ lnð2ijpjη0Þ�

þ 1þ p2ηη0

4jpj3 e−ijpjðηþη0Þ½Einð2ijpjηÞ þ γ þ lnð−2ijpjηÞ�

−
eijpjðη−η0Þ

8jpj3
�
1þ 3ijpjðη − η0Þ − 2ijpjðηþ η0Þ ln

�
η

η0

��
;

ð53Þ
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where the entire function Ein is given by

EinðzÞ≡
Z

1

0

ezt − 1

t
dt ¼

X∞
k¼1

zk

kk!

¼ −Γð0;−zÞ − lnð−zÞ − γ; ð54Þ
with the incomplete Γ function [see Eq. (8.2.2) in [67] ].
The expression (53) is, in fact, not too complicated. It also
has the right flat-space limit, as can be seen by going back
to cosmological time t ¼ −H−1 lnð−HηÞ and then taking
the limit H → 0. This results in

F00þ−ðt; t0; pÞ ¼ −
1

4jpj3 e
ijpjðt−t0Þ½1 − ijpjðt − t0Þ� þOðHÞ;

ð55Þ
which agrees with the flat-space result [see Eq. (39)
in [39] ].
It remains to compute the inverse Fourier transform

F00þ−ðx; x0Þ ¼
Z

F00þ−ðη; η0; pÞeipðx−x0Þ
d3p
ð2πÞ3

¼ 1

2π2r
lim
δ→0þ

Z
∞

0

e−δjpjjpj

× F00þ−ðη; η0; jpjÞ sinðjpjrÞdjpj; ð56Þ

with r≡ jx − x0j. Here, we introduced a factor e−δjpj to
ensure convergence for large momenta, and the limit δ → 0
needs to be taken in the sense of distributions. To compute
the inverse Fourier transform, we need the integrals
Z

∞

μ

1

p
e−apdp ¼ −γ − ln ðaμÞ þOðμ ln μÞ; ð57aÞ

Z
∞

μ

1

p2
e−apdp¼1

μ
−aþaγþa lnðaμÞþOðμlnμÞ; ð57bÞ

Z
∞

0

e−ap
h
EinðibpÞþ γþ lnð−ibpÞ

i
dp¼−

1

a
ln

�
1þ ia

b

�
;

ð57cÞ
Z

∞

0

e−ap ln ð−ibpÞ
�
EinðibpÞ þ γ þ ln ð−ibpÞ

�
dp

¼ 1

a

�
1

2
ln2

�
1þ ia

b

�
þ γ ln

�
1þ ia

b

�
− Li2

�
−
ia
b

��
;

ð57dÞ
Z

∞

μ

1

p
e−ap

�
EinðibpÞ þ γ þ ln ð−ibpÞ

�
dp

¼ −
1

2
½γ þ ln ð−ibμÞ�2 − Li2

�
−
ia
b

�
−
π2

12
þOðμ ln μÞ;

ð57eÞ

Z
∞

μ

1

p2
e−ap

�
EinðibpÞþ γþ lnð−ibpÞ

�
dp

¼ 1

μ

�
1þ γþ lnð−ibμÞ

�
þða− ibÞ ln ½ða− ibÞμ�

−a lnð−ibμÞ−aþ 2ib− ibγþa
π2

12

þa
2
½γþ lnð−ibμÞ�2þaLi2

�
−
ia
b

�
þOðμ lnμÞ; ð57fÞ

valid for ℜa > 0, ℑb ¼ 0, and μ > 0. These can all be
obtained by using the integral form (54) for the function
Ein, interchanging the integrals over p and t, and integra-
tion by parts. When computing the integral over t, the
dilogarithm Li2 appears, which is defined by [see
Eq. (25.12.2) in [67] ]

Li2ðzÞ ¼ −
Z

1

0

lnð1 − ztÞ
t

dt; ð58Þ

and to simplify the above expressions we also used the
identity [see Eq. (25.12.4) in [67] ]

Li2ðzÞ ¼ −Li2
�
1

z

�
−
π2

6
−
1

2
ln2ð−zÞ: ð59Þ

The introduction of the IR cutoff μ was necessary because
of the aforementioned IR divergence of massless fields in
the Euclidean vacuum, but all terms depending on μ cancel
in the (state-independent) expression for the commutator.
Using these integrals, we compute the inverse Fourier
transform (56), which results in a lengthy expression that
we write down for completeness in the Appendix. It
simplifies in the limit δ → 0, for which we use that, in
the sense of distributions, we have

lnðx� iδÞ → ln jxj � iπΘð−xÞ; ð60aÞ

Li2ðx� iδÞ → Θð1 − xÞLi2ðxÞ þ Θðx − 1Þ
�
π2

6

− Li2ð1 − xÞ − lnðxÞ lnðx − 1Þ � iπ ln x

�
:

ð60bÞ

Furthermore, many terms cancel in the commutator (52),
since they are symmetric under the exchange of η ↔ η0. In
particular, all terms depending on the IR cutoff μ com-
pletely cancel, and we obtain the IR-finite result
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h
Xð0Þ
ð1ÞðxÞ; Xð0Þ

ð1Þðx0Þ
i

¼ i
8π

Θ½ðη − η0Þ2 − r2�sgnðη − η0Þ

×

�
ηþ η0

r
ln

�
ηþ η0 þ r
ηþ η0 − r

�
þ ln

�ðηþ η0Þ2 − r2

4ηη0

�

−
3

2
−

2ηη0

r2 − ðηþ η0Þ2
�
1: ð61Þ

This is more complex than the Minkowski result [see
Eq. (47) in [39] ], but we recover the right flat-space limit
by changing back to cosmological time, where for small H
we obtain

h
Xð0Þ
1 ðxÞ; Xð0Þ

1 ðx0Þ
i

¼ i
8π

Θ½ðt − t0Þ2 − r2�sgnðt − t0Þ

×

�
1þ r2 þ 3ðt − t0Þ2

24
H2 þOðH3Þ

�
: ð62Þ

We see that, as in Minkowski spacetime, the commutator
(61) vanishes outside of the light cone, and its overall sign
depends on which of the two points lies in the future of the
other. However, in contrast to the flat-space result, it is not
constant inside the light cone.
For later use, we can also express the commutator (61)

using the de Sitter–invariant distance

Zðx; x0Þ ¼ 1 −
r2 − ðη − η0Þ2

2ηη0
¼ cos ½Hμðx; x0Þ�; ð63Þ

where μ is the geodesic distance between the two points x
and x0 and the last equality holds whenever the points are
close enough together such that a unique geodesic exists
between them.4 For timelike separation between x and x0,
we have Z > 1, for spacelike separation Z < 1, and if the
points are lightlike related, we have Z ¼ 1. This results in

�
Xð0Þ
ð1ÞðxÞ; Xð0Þ

ð1Þðx0Þ
�

¼ i
8π

Θ½Zðx; x0Þ − 1�sgnðη − η0Þ

×

�
ηþ η0

r
ln

�
rðηþ η0Þ þ η2 þ ðη0Þ2

ηη0½1þ Zðx; x0Þ� þ 1 − Zðx; x0Þ
1þ Zðx; x0Þ

�

þ ln

�
1þ Zðx; x0Þ

2

�
−
3

2
þ 1

1þ Zðx; x0Þ
�
1; ð64Þ

where now

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ ðη0Þ2 − 2ηη0Zðx; x0Þ

q
: ð65Þ

That the commutator (64) is not de Sitter invariant, i.e., that
it does not only depend on Z, is of course a consequence of
the explicit de Sitter breaking of both the dynamical
coordinates (13) and the gauge-fixing condition (24).
However, it becomes invariant for small spatial separation
r → 0, where we obtain

�
Xð0Þ
ð1ÞðxÞ;Xð0Þ

ð1Þðx0Þ
�

¼ i
8π

Θ½Zðx; x0Þ− 1�sgnðη− η0Þ

×
�
1

2
þ 1

1þZðx; x0Þ þ ln
�
1þZðx; x0Þ

2

�
þOðrÞ

�
1: ð66Þ

B. Spatial part

The function Fij
AB (49) is computed in the Appendix, and

we have the quite simple expression

Fij
þ−ðη; η0; pÞ

¼ δij
H2

4jpj5 e
ijpjðη−η0Þ

h
3 − 3ijpjðη − η0Þ

− p2ðη2 − 3ηη0 þ ðη0Þ2Þ − ijpj3ηη0ðη − η0Þ
i
: ð67Þ

It also has the right flat-space limit [see Eq. (39) in [39] ],
which we again can compute by going back to cosmo-
logical time t and taking the limit H → 0, resulting in

Fij
þ−ðt; t0;pÞ¼

1

4jpj3 e
ijpjðt−t0Þ½1− ijpjðt− t0Þ�þOðHÞ: ð68Þ

We compute the inverse Fourier transform in the same way
as in the last subsection and obtain for the commutator in
real space

h
XðiÞ
ð1ÞðxÞ; XðjÞ

ð1Þðx0Þ
i
¼ i

8π
δijΘ

h
ðη − η0Þ2 − r2

i
sgnðη − η0Þ

×
H2

2

h
r2 − η2 − ðη0Þ2

i
: ð69Þ

As for the temporal part (62), this commutator agrees with
the flat-space result in the limit H → 0. This is seen
changing back to cosmological time t, where for small
H we obtain

4If such a geodesic does not exist, then μðx; x0Þ ¼
π − μðx; αðx0ÞÞ with αðx0Þ the antipodal point of x0 [79].
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h
XðiÞ
ð1ÞðxÞ; XðjÞ

ð1Þðx0Þ
i
¼ −

i
8π

δijΘ
h
ðt − t0Þ2 − r2

i
sgnðt − t0Þ

×
h
1 − ðtþ t0ÞH þOðH2Þ

i
; ð70Þ

which agrees with Eq. (47) in [39].
As for the commutator of two time coordinates (61), the

commutator of two spatial coordinates (69) vanishes out-
side of the light cone, its overall sign depends on which of
the two points lies in the future of the other, and it is not
constant inside the light cone. Expressing it using the de
Sitter invariant Z (63), we obtain

h
XðiÞ
ð1ÞðxÞ; XðjÞ

ð1Þðx0Þ
i
¼ −

i
8π

H2ηη0δijΘ½Zðx; x0Þ − 1�
× sgnðη − η0ÞZðx; x0Þ: ð71Þ

So in contrast to the commutator (64) of the time coor-
dinates, the commutator of spatial coordinates is de Sitter
invariant up to an overall factor.

VI. DISCUSSION

In this work, we have generalized the results obtained in
Ref. [39] to de Sitter spacetime. We quantized perturbations
of the metric around a de Sitter background and computed
the dynamical field-dependent coordinates that are needed
to describe gauge-invariant observables in the relational
framework to linear order. Since the coordinates are (non-
local) functionals of the quantized metric perturbation hμν,
they possess a nonvanishing commutator, and we have
computed this commutator to leading order in the Planck
length lPl. Since the coordinates describing the background
de Sitter spacetime do commute among themselves, the
leading-order commutator is given by the commutators (64)

and (71) of the first-order corrections XðμÞ
ð1Þ. Denoting by

XðμÞ ¼ XðμÞðpÞ and YðμÞ ¼ XðμÞðqÞ the dynamical coordi-
nates describing two points p and q, we thus have (recall
that κ2 ¼ 16πl2

Pl)

½XðμÞ; YðνÞ� ¼ κ2
�
XðμÞ
ð1ÞðxÞ; XðνÞ

ð1ÞðyÞ
�
þOðκ3Þ

¼ 2il2
PlΘ

�
−ðX − YÞ2

�
sgnðX0 − Y0Þ

× KμνðX; YÞ1þOðl3
PlÞ; ð72Þ

with

K00ðx; x0Þ ¼ ln
�
1þ Zðx; x0Þ

2

�
−
3

2
þ 1

1þ Zðx; x0Þ

þ ηþ η0

r
ln

�
rðηþ η0Þ þ η2 þ ðη0Þ2

ηη0½1þ Zðx; x0Þ�

þ 1 − Zðx; x0Þ
1þ Zðx; x0Þ

�
; ð73Þ

K0iðx; yÞ ¼ 0; ð74Þ

and

Kijðx; x0Þ ¼ −H2ηη0δijZðx; x0Þ; ð75Þ

where Zðx; x0Þ (63) is the de Sitter–invariant distance
between x and x0, η ¼ −H−1e−Ht ∈ ð−∞; 0Þ is the con-
formal time, and r is the spatial separation, given in terms
of Z and η by Eq. (65).
The flat-space limit of the commutator (72) is obtained

by expressing it using the cosmological time t and then
taking the limit H → 0. In this limit we have Z → 1 and
Kμν → ημν, which can also be read off from Eqs. (62) and
(70). The resulting commutator

lim
H→0

½XðμÞ; YðνÞ� ¼ 2il2
PlΘ½−ðX − YÞ2�sgnðX0 − Y0Þ

× ημν1þOðl3
PlÞ ð76Þ

agrees with Eq. (48) of [39], which provides a consistency
check on our computations. While the spatial part (75) is de
Sitter invariant up to an overall factor, the temporal one (73)
is not. This is a direct consequence of the explicit de Sitter
breaking of both the dynamical coordinates (13) and the
gauge-fixing condition (24). However, de Sitter invariance
of the temporal part (73) is recovered for small spatial
separation r → 0, and the result is given in Eq. (66).
Apart from the flat-space limit, also the limits of large

separation and late times are interesting. Since the com-
mutator (72) vanishes outside the light cone, only large
timelike separations are of interest, which correspond to
Z → ∞. To compute the limits, it is useful to express the
commutator using the average time σ ≡ ðηþ η0Þ=2 and the
difference Δη ≡ η − η0. From Eq. (61), we then obtain

�
Xð0Þ
ð1ÞðxÞ; Xð0Þ

ð1Þðx0Þ
�
¼ i

8π
Θ
�
Δ2

η − r2
�
sgnΔη

×
�
2σ

r
ln
�
2σ þ r
2σ − r

�
þ ln

�
4σ2 − r2

4σ2 − Δ2
η

�

−
3

2
−

4σ2 − Δ2
η

2ðr2 − 4σ2Þ
�
1; ð77Þ

and from Eq. (69) we have

h
XðiÞ
1 ðxÞ; XðjÞ

1 ðx0Þ
i
¼ i

8π
δijΘðΔ2

η − r2ÞsgnΔη

×
H2

4
ð2r2 − 4σ2 − Δ2

ηÞ1: ð78Þ

If we keep the spatial separation r constant, the limit of
large separation is Δη → �∞, in which we have
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�
Xð0Þ
ð1ÞðxÞ; Xð0Þ

ð1Þðx0Þ
�
→

i
8π

sgnΔη

×

�
Δ2

η

2ðr2 − 4σ2Þ − 2 ln jΔηj þOð1Þ
�
1; ð79aÞ

h
XðiÞ
1 ðxÞ; XðjÞ

1 ðx0Þ
i
→ −

i
8π

δijsgnΔη
H2

4
½Δ2

η þOð1Þ�1:
ð79bÞ

We see that both commutators grow quadratically with the
separation, unlike in flat space where the commutator is
constant. This indicates a correlation over large distances,
which is in fact not too surprising since the dynamical
coordinates involve an integral of the metric perturbation
over the full past light cone (17). On the other hand, if we
also let the spatial separation grow linearly with the
temporal separation, r ¼ αΔη with jαj < 1, we obtain

�
Xð0Þ
ð1ÞðxÞ; Xð0Þ

ð1Þðx0Þ
�
→

i
8π

sgnΔη

×

�
2 ln jαj − 3

2
þ 1

2α2
þO

�
Δ−1

η

��
1;

ð80aÞ
�
XðiÞ
1 ðxÞ;XðjÞ

1 ðx0Þ
�
→

i
8π

δijsgnΔη

×
H2

4

��
2α2−1

�
Δ2

ηþOð1Þ
�
1: ð80bÞ

In this limit, the temporal commutator becomes a constant,
while the spatial commutator is still growing. Finally, we
consider the late-time limit. Recall that, while the cosmo-
logical time t∈R, the conformal time η∈ ð−∞; 0Þ, such
that late times correspond to σ → 0. In this limit, however,
the light cone shrinks to a point, and the commutator
vanishes.
As in the flat-space case, the Planck length lPl appears

naturally in the commutator (72), and the commutator is
compatible with microcausality, vanishing outside the light
cone. The same caveats as there of course also apply to our
de Sitter result: the perturbative effective field theory (EFT)
approach is only valid at scales larger than the fundamental
scale, the Planck length in our case. On one hand, this
makes the commutator (72) well defined, since to leading
order the causal relation between events that enters the
right-hand side is the one of the background coordinates,
and we do not need to worry how to define causal ordering
and a topology for a noncommutative spacetime. On the
other hand, we cannot infer strong statements such as the
resolution of the singularity in black holes [80] from our
result, since there the EFTapproach breaks down; we could

only use our result to make an informed guess, such as in
the recent study [81].
It would be an interesting but quite tough question to

check the validity of our main results for the case in which
the background spacetime admits closed timelike curves
(CTCs). While Hawking’s chronology conjecture [82]
states that “The laws of physics do not allow the appearance
of CTCs,” taking general relativity in isolation, this con-
jecture does not hold. In particular, there are several
solutions of the Einstein equations containing CTCs, such
as the van Stockum dust spacetime and its generalizations
[83,84]. However, as advocated by Thorne [85], the
combination of general relativity and quantum theory
may provide such a mechanism for chronology protection.
As a first step and to gain further insight into such a
mechanism, one has to study how quantum fields behave in
a background spacetime that contains CTCs. However,
already quantum mechanics (i.e., nonrelativistic quantum
theory) in such a background displays unusual features, and
various conditions on the quantum system [86] or even
modifications of the postulates of quantum theory have
been proposed to deal with these [87,88]. The required
conditions and/or modifications can then be generalized to
quantum field theory; see, for example, the review [89] or
Refs. [90,91] and references therein.
There are various other questions that remain open. First

is the relation to a generalized uncertainty principle (GUP)
[92–98]. Of course it is possible to use the well-known
formula

ΔAΔB ≥
1

2
jh½A;B�ij ð81Þ

relating the standard deviations Δ of two Hermitian
operators A and B (that is, the uncertainties in the
measurement of their values) to the expectation value of
their commutator, and thus derive a GUP from our result
(72). However, while in quantum mechanics one can
repeatedly measure the position and momentum of a
particle, and from this determine their standard deviations,
in quantum gravity it is impossible to measure the coor-
dinates XðμÞ of the same event repeatedly. Therefore, the
operational meaning of the standard deviation for the
coordinates XðμÞ is not clear, and at the moment we do
not have anything to say about the relation to possible
experiments [99–101]. A second question involves higher-
order corrections, and going hand in hand with this is the
question of how to define a noncommutative spacetime
with its topology and causal relations. There are, of course,
concrete proposals for noncommutative spacetimes, for
example Riemannian spectral triples [102], but the
Lorentzian case presents extra challenges [103]. As was
mentioned in the previous work [39], already for a classical
Lorentzian manifold there can be a mismatch between the
topology of the underlying manifold and the causal
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ordering induced by the Lorentzian metric [104], and we
refer the reader to the review [105] for an overview of
results and open questions. A possible way to define the
topology of such a quantum spacetime would be to start on
the background spacetime with the path topology of
Hawking, King, and McCarthy [106] or one of its refine-
ments [107–109], which includes the causal structure of the
manifold. In perturbation theory, we have the bijective map
(6) from the coordinates of the background spacetime to the
dynamical field-dependent coordinates, which then could
be used to map the topological structure from the back-
ground spacetime to the quantum one. Using the path
topology, this would then also give information about the
causal structure.
Another question that is worth investigating further con-

cerns the choice of dynamical coordinates. While the con-
crete choice (13) that we made was proposed earlier to
construct invariant observables indeSitter spacetime [31,59]
and leads to manageable computations, one may wonder if
there are other choices that better model a certain physical
situation. For example, geodesic light cone coordinates
[26,110–114] model measurements that are made along
the observer’s past light cone. Also, generalized harmonic
coordinates ∇̃2XðμÞ ¼ 0 could be a suitable choice, espe-
cially since they also appear in other contexts such as matrix
models [115]. In fact, in the flat-space limit H → 0 of our
choice (13) are generalized harmonic coordinates, which
were used in [39]. It is possible that the commutator of these
coordinates then also respects de Sitter invariance, which is
explicitly broken in our case. A related issue is the gauge-
fixing dependence of the dynamical coordinates. The diffeo-
morphism invariance of general relativity translates into a
gauge symmetry of the metric perturbations according to
Eq. (7), which results in the change (8) of the dynamical
coordinates. Therefore, as in classical GR, the coordinates
themselves do not have an independent physical signifi-
cance; rather, the invariant observables (2) that are con-
structed using the coordinates are gauge independent (4) and
physical. Therefore, our result (72) for the commutator of
dynamical coordinates is only part of a physical effect, and
further work is needed to construct a suitable observable and
connect it to experiments [99–101].
Despite these open questions, our results also clarify

some issues that arose in connection with noncommuta-
tive spacetimes. First, since the noncommutative structure
arises from pQG and is not an extra postulate, it is
clear that well-established fundamental physics on large
scales is unchanged. Second, the problems of UV-IR
mixing [34–37] and the breaking of Lorentz covariance
[38] (in the flat-space limit) are absent, the former because
pQG as an effective field theory does not have this issue,
and the latter since the matrix Θμν that appears on the
right-hand side of the commutation relations (1) is not a
constant but a function of spacetime, given by Eq. (72) in
de Sitter or Eq. (76) in Minkowski spacetime. Third, our

approach also gives a change of perspective in the
interpretation of the commutation relations (1): instead
of having a single coordinate operator x̂μ, in pQG one
associates a coordinate operator XðμÞ ¼ XðμÞðpÞ to every
physical event or point p. This change is akin to the
change in perspective from quantum mechanics to quan-
tum field theory: instead of quantizing the position and
momentum of a single particle, one quantizes canonical
coordinates and momenta at each point in spacetime,
hence a quantum field.
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APPENDIX: DETAILS OF THE COMPUTATION

To compute the functions Fμν
AB (46), we first need to

determine the action of the differential operators D̂μαβ (41)
on the propagator (31). We obtain

aðηÞaðη0ÞD̂0μν
x D̂0ρσ

x0 ĜCD
μνρ0σ0 ðx; x0Þ

¼ −3∂η∂η0GCD
0 ðx; x0Þ

þ
�
2∂η þ 3HaðηÞ

��
2∂η0 þ 3Haðη0Þ

�
GCD

1 ðx; x0Þ

þ△GCD
1 ðx; x0Þ; ðA1Þ

aðηÞa2ðη0ÞD̂0μν
x D̂jρσ

x0 ĜCD
μνρ0σ0 ðx; x0Þ

¼ −∂η∂iGCD
0 ðx; x0Þ

−
h
∂η0 þ 2Haðη0Þ

i
∂iGCD

1 ðx; x0Þ; ðA2Þ

a2ðηÞaðη0ÞD̂iμν
x D̂0ρσ

x0 ĜCD
μνρ0σ0 ðx; x0Þ

¼ ∂η0∂iGCD
0 ðx; x0Þ

þ
h
∂η þ 2HaðηÞ

i
∂iGCD

1 ðx; x0Þ; ðA3Þ

and

a2ðηÞa2ðη0ÞD̂iμν
x D̂jρσ

x0 ĜCD
μνρ0σ0 ðx; x0Þ

¼ −δij△GCD
0 ðx; x0Þ

− δij
h
∂η þ 2HaðηÞ

ih
∂η0 þ 2Haðη0Þ

i
GCD

1 ðx; x0Þ; ðA4Þ

where we used that in n ¼ 4 dimensions the propagatorsG1

and G2 are equal (37). We then pass to Fourier space and
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insert the explicit expressions of the propagators. For the
positive frequency Wightman functions G−þ, these are
exactly the expressions given in Eq. (37), while for the
Feynman Gþþ and Dyson G−− propagators we use the
relations (33) and (34). This results in

G̃CD
0 ðη; η0; pÞ ¼ −i

H2

2

1þ ijpjfCDðη − η0Þ þ p2ηη0

jpj3
× e−ijpjfCDðη−η0Þ; ðA5aÞ

G̃CD
1 ðη; η0; pÞ ¼ −i

H2

2

ηη0

jpj e
−ijpjfCDðη−η0Þ; ðA5bÞ

where the function fCD is defined in Eq. (50). We then
obtain the expressions (47) for F00

AB, (48) for F
0j
AB and Fi0

AB,
and (49) for Fij

AB, using also the identities (51).

To compute the integrals over τ and τ0 in Eqs. (47) and
(49), we sum over the indices C;D ¼ � and integrate from
η�0 to a final time T as explained in Sec. V, taking care to
add minus signs for the “−” fields to compensate for the
change of orientation in the backward part of the integra-
tion contour. The resulting integrals contain terms involv-
ing, e.g., jη − τj, which we treat by splitting the τ integral at
τ ¼ η. One then sees explicitly that any dependence on the
final time T cancels, since the in-in formalism ensures a
causal evolution. For the second derivative of fCD, we use
that

∂
2
τf−þðτ − τ0Þ ¼ ∂

2
τfþ−ðτ − τ0Þ ¼ 0; ðA6aÞ

∂
2
τfþþðτ − τ0Þ ¼ −∂2τf−−ðτ − τ0Þ ¼ 2δðτ − τ0Þ; ðA6bÞ

and altogether we obtain

F00þ−ðη; η0; pÞ ¼
1

8jpj7 ð1þ ijpjηÞ
h
−ð1þ ijpjη0Þe−ijpjðηþη0ÞGð1Þ

þ−ðη; η0; pÞ þ ð1 − ijpjη0Þe−ijpjðη−η0ÞGð2Þ
þ−ðη; η0; pÞ

i

þ 1

8jpj7 ð1 − ijpjηÞ
h
ð1þ ijpjη0Þeijpjðη−η0ÞGð3Þ

þ−ðη; η0; pÞ − ð1 − ijpjη0Þeijpjðηþη0ÞGð4Þ
þ−ðη; η0; pÞ

i
; ðA7Þ

with

Gð1Þ
þ−ðη; η0; pÞ ¼ 2ijpj

Z
η

ηþ
0

e2ijpjτð1 − ijpjτÞ2τ−4dτ

þ
Z

η

ηþ
0

Z
τ

ηþ
0

e2ijpjτ0 ð1 − ijpjτÞð1 − ijpjτ0Þ½1þ 2ijpjðτ − τ0Þ�ðττ0Þ−3dτ0dτ

þ
Z

η

ηþ
0

Z
η0

τ
e2ijpjτð1 − ijpjτÞð1 − ijpjτ0Þ½1 − 2ijpjðτ − τ0Þ�ðττ0Þ−3dτ0dτ; ðA8Þ

Gð2Þ
þ−ðη; η0; pÞ ¼

Z
η

ηþ
0

Z
η0

η−
0

e2ijpjðτ−τ0Þð1 − ijpjτÞð1þ ijpjτ0Þ½1 − 2ijpjðτ − τ0Þ�ðττ0Þ−3dτ0dτ; ðA9Þ

Gð3Þ
þ−ðη; η0; pÞ ¼ 2ijpj

Z
η

η0
ð1þ p2τ2Þτ−4dτ

þ
Z

η

η−
0

Z
τ

ηþ
0

e−2ijpjðτ−τ0Þð1þ ijpjτÞð1 − ijpjτ0Þ½1þ 2ijpjðτ − τ0Þ�ðττ0Þ−3dτ0dτ

þ
Z

η0

η−
0

Z
η0

τ
e−2ijpjðτ−τ0Þð1þ ijpjτÞð1 − ijpjτ0Þ½1þ 2ijpjðτ − τ0Þ�ðττ0Þ−3dτ0dτ

þ
Z

η0

η

Z
τ

η0
ð1þ ijpjτÞð1 − ijpjτ0Þ½1 − 2ijpjðτ − τ0Þ�ðττ0Þ−3dτ0dτ; ðA10Þ

and
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Gð4Þ
þ−ðη; η0; pÞ ¼ −2ijpj

Z
η0

η−
0

e−2ijpjτð1þ ijpjτÞ2τ−4dτ

þ
Z

η0

η−
0

Z
η

τ
e−2ijpjτð1þ ijpjτÞð1þ ijpjτ0Þ½1þ 2ijpjðτ − τ0Þ�ðττ0Þ−3dτ0dτ

þ
Z

η0

η−
0

Z
τ

η−
0

e−2ijpjτ0 ð1þ ijpjτÞð1þ ijpjτ0Þ½1 − 2ijpjðτ − τ0Þ�ðττ0Þ−3dτ0dτ ðA11Þ

for the temporal part, and

Fij
þ−ðη; η0; pÞ ¼ δij

iH2

4jpj6 ð1þ ijpjηÞð1þ ijpjη0Þ
Z

η

tþ
0

e−ijpjðηþη0−2τÞ ð1 − ijpjτÞ2
τ2

dτ

− δij
iH2

4jpj6 ð1 − ijpjηÞð1 − ijpjη0Þ
Z

η0

t−
0

eijpjðηþη0−2τÞ ð1þ ijpjτÞ2
τ2

dτ

þ δij
iH2

4jpj6 ð1 − ijpjηÞð1þ ijpjη0Þeijpjðη−η0Þ
Z

η0

η

1þ p2τ2

τ2
dτ ðA12Þ

for the spatial part.
The integrals can then be done straightforwardly, using the special function Ein defined in Eq. (54). Finally, we set

η�0 ¼ η0ð1 ∓ iϵÞ and take first the limit η0 → −∞with fixed ϵ > 0 and afterward the limit ϵ → 0. For this limit, we need the
asymptotic expansion of Ein, which can be obtained from the one of the incomplete Γ function [see Eq. (8.11.2) in [67]] and
reads (for ℜα < 0 and as r → ∞)

Einðαrþ βÞ ∼ −γ − ln½−ðαrþ βÞ� þ eαrþβ

�
1

αr
þOðr−2Þ

�
: ðA13Þ

This gives the results (53) for F00þ− and (67) for Fij
þ−, and the analogous computation for Fμν

−þ shows that the same result is
obtained with η and η0 exchanged.
Finally, we need to compute the inverse Fourier transform (56) as explained in Sec. VA. The full expression, including

the IR cutoff μ and the UV convergence factor depending on δ, reads

F00þ−ðx; x0Þ ¼
1

16π2

�
3þ π2

6
þ γ þ 2 lnð4ηη0Þ − ½γ þ ln μþ lnð−2η0Þ�2 − ½γ þ ln μþ lnð−2ηÞ�2 − iπ ln

�
η

η0

�
þ ln μ

�

−
i

16π2r

�
1

2

�
−2iðηþ η0Þ ln

�
η

η0

�
þ 3δ

��
ln½δ − iðη − η0 þ rÞ� − ln½δ − iðη − η0 − rÞ�

�

−
3

2
ir

�
ln½δ − iðη − η0 þ rÞ� þ ln½δ − iðη − η0 − rÞ�

�

þ ½δ − iðηþ η0Þ − ir�Li2
�
iδþ ðηþ η0 þ rÞ

2η0

�
− ½δ − iðηþ η0Þ þ ir�Li2

�
iδþ ðηþ η0 − rÞ

2η0

�

− ½δþ iðηþ η0Þ þ ir�Li2
�
−iδþ ðηþ η0 þ rÞ

2η

�
þ ½δþ iðηþ η0Þ − ir�Li2

�
−iδþ ðηþ η0 − rÞ

2η

�

−
ηη0

½δ − iðηþ η0 þ rÞ� ln
�
1 −

iδþ ðηþ η0 þ rÞ
2η0

�
þ ηη0

δ − iðηþ η0 − rÞ ln
�
1 −

iδþ ðηþ η0 − rÞ
2η0

�

þ ηη0

½δþ iðηþ η0 þ rÞ� ln
�
1þ iδ − ðηþ η0 þ rÞ

2η

�
−

ηη0

δþ iðηþ η0 − rÞ ln
�
1þ iδ − ðηþ η0 − rÞ

2η

��
; ðA14Þ

with the dilogarithm Li2 defined in Eq. (58).
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