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Given the lack of an absolute time parameter in general relativistic systems, quantum cosmology often
describes the expansion of the universe in terms of relational changes between 2 degrees of freedom, such
as matter and geometry. However, if clock degrees of freedom (self-)interact nontrivially, they in general
have turning points where their momenta vanish. At and beyond a turning point, the evolution of other
degrees of freedom is no longer described directly by changes of the clock parameter because it stops and
then turns back, while time is moving forward. Previous attempts to describe quantum evolution relative to
a clock with turning points have failed and led to frozen evolution in which degrees of freedom remain
constant while the clock parameter, interpreted directly as a substitute for monotonic time, is being pushed
beyond its turning point. Here, a new method previously used in oscillator systems is applied to a tractable
cosmological model, given by an isotropic universe with spatial curvature and scalar matter. The
recollapsing scale factor presents an example of a clock with a single turning point. The method succeeds in
defining unitary and freeze-free evolution by unwinding the turning point of the clock, introducing an
effective monotonic time parameter that is related to but not identical with the nonmonotonic clock degree
of freedom. Characteristic new quantum features are found around the turning point, based on analytical
and numerical calculations.

DOI: 10.1103/PhysRevD.108.086001

I. INTRODUCTION

General relativistic systems such as cosmological models
are time reparametrization invariant and therefore lack a
physically defined energy scale. Their canonical descrip-
tion requires a generalization from Hamilton’s equations to
constrained evolution, in which both time reparametriza-
tions and evolution are generated by a single object, the
Hamiltonian constraint. A common method to describe
(physically observable) evolution within this setting and to
distinguish it from mere reparametrizations of a time
coordinate, going back to [1], consists in deriving changes
of the dynamical variables with respect to changes of a
distinguished one among them, identified as an internal
time parameter or a clock variable. Similar questions have
been analyzed recently in the context of quantum reference
frames [2–7].
Classically, the transition from the usual time coordinate

t to an internal clock ϕ locally consists in a simple
substitution of the local inverse of a solution ϕðtÞ for t.
However, the local nature of this procedure implies
obstacles at the quantum level. In practice, the procedure
has therefore required the choice of rather special matter

systems as candidates for internal clocks, such as a free,
massless scalar field [8], dust [9,10], or, more generally,
systems with purely kinetic energy and no potential or
(self-)interactions. These choices classically imply mono-
tonic solutions for the relevant fields as functions of
coordinate time, which can be inverted globally. They also
have conserved momenta, which can then serve as simple
Hamiltonians that globally generate classical or quantum
evolution with respect to the canonically conjugate varia-
ble. While such models therefore have consistent quanti-
zations, their highly restrictive and nonfundamental nature
means that the physical viability of their implications
should be tested by eliminating the strong underlying
assumptions. An analysis of models with nonmonotonic
matter solutions or nonglobal internal clocks is therefore
required, but previous attempts in quantum cosmology
were unable to extend evolution across a turning point of a
nonmonotonic clock [11,12]: evolution froze because all
degrees of freedom remained constant beyond the turning
point of the clock.
Based on our earlier work on oscillating clocks in

quantum mechanics [13–15], we here perform a new
analysis of a cosmological model using a nonglobal clock
variable. The variable we choose as a clock, given by the
scale factor in a closed isotropic model, has a single turning
point and is not oscillating. Our previous methods are seen
to apply nonetheless and show that the resulting dynamics
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of a scalar field is consistent. Unlike in previous attempts,
the use of an internal clock with turning points does not
lead to freezing cosmological evolution in our treatment.
This outcome relies on the construction of an effective
monotonic time parameter from a nonmonotonic funda-
mental clock. After an introduction of the classical model in
Sec. II, we present a detailed construction of global
evolution in Sec. III. Semiclassical evolution far from
the turning point, before as well as after, is described well
by what is expected classically if one uses the same clock
for local evolution. There are new quantum effects around
the turning point which we will derive analytically and
confirm by numerical solutions. Some of these results will
be used in a comparison with Dirac observables in Sec. IV.

II. CLASSICAL MODEL

We begin with the Friedmann equation

�
ȧ
a

�
2

þ k
a2

¼ 8πG
3

ρ ð1Þ

for an isotropic model with positive spatial curvature, the
dot indicating a derivative by proper time. The constant k is
positive and equals k ¼ 1 if the full volume of a spatial
3-sphere is evolved, but it will be convenient to keep it as a
variable constant in our quantum model. In particular, k
may be smaller than one if only a subset of the 3-sphere is
considered. While the choice of this value makes no
difference classically (as long as it remains positive),
quantum effects usually depend on the size of the region
in which they are computed, as known from fluctuation
energies or Casimir forces. Similarly, quantum cosmology
is sensitive to a change of k by subdividing the spatial
volume as a consequence of infrared renormalization [16].
In preparation for our quantization, we first introduce the

canonical momentum

pa ¼ −
3

4πG
aȧ ð2Þ

and specialize the energy density ρ to the kinetic term ρ ¼
1
2
p2
ϕ=a

6 of a free, massless scalar ϕ with momentum pϕ:

4πG
3

�
pa

a2

�
2

þ 3k
4πGa2

¼ p2
ϕ

a6
: ð3Þ

A first canonical transformation from ða; paÞ to

ã ¼
ffiffiffiffiffiffiffiffiffi
3

4πG

r
a and p̃a ¼

ffiffiffiffiffiffiffiffiffi
4πG
3

r
pa ð4Þ

and from ðϕ; pϕÞ to

ϕ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffi
4πGk
3

r
ϕ and p̃ϕ ¼

ffiffiffiffiffiffiffiffiffiffiffi
3

4πGk

r
pϕ ð5Þ

eliminates several constant factors, such that

�
p̃affiffiffi
k

p
ã2

�
2

þ 1

ã2
¼ p̃2

ϕ

ã6
: ð6Þ

A second canonical transformation from ðã; p̃aÞ to

α ¼
ffiffiffi
k

p
ln ã and pα ¼

ãp̃affiffiffi
k

p ð7Þ

then implies the constraint

C ¼ p̃2
ϕ − p2

α − eγα ¼ 0 ð8Þ

with γ ¼ 4=
ffiffiffi
k

p
≥ 4. From now on, wewill drop the tilde on

ϕ and pϕ for convenience.
Classically, in terms of some gauge variable ϵ,

Hamilton’s equations generated by C are

dα
dϵ

¼ fα; Cg ¼ −2pα ≈ −2sgnðpαÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ϕ − eγα

q
ð9Þ

and

dpα

dϵ
¼ fpα; Cg ¼ γeγα ≈ γðp2

ϕ − p2
αÞ: ð10Þ

As indicated by the weak equalities, these equations
decouple on the constraint surface C ¼ 0, also using the
fact that pϕ is constant thanks to the ϕ-independence of C.
Therefore,

αðϵÞ ¼ −
2

γ
ln
coshðγjpϕjϵÞ

jpϕj
; pαðϵÞ ¼ pϕ tanhðγpϕϵÞ

ð11Þ

if we eliminate the sole integration constant that remains
after imposing the constraint by choosing ϵ such that
pαð0Þ ¼ 0.
For the scalar field we obtain the simple monotonic

solution ϕðϵÞ ¼ 2pϕϵþ c with a constant c, as well as
constant pϕ. The model therefore has a global internal time
ϕ, in which case evolution is generated by the strictly
positive Hamiltonian − pϕ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
α þ eγα

p
. The equations of

motion for ϕ-evolution generated by −pϕ can be solved as
well, and they agree with a simple substitution of pϕϵ ¼
1
2
ðϕ − cÞ in (11). Inverting the resulting αðϕÞ, we obtain the

double-valued function

ϕðαÞ ¼ cþ 2

γ
cosh−1ðjpϕje−γα=2Þ: ð12Þ
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The branch of the inverse cosh should be switched when α
starts decreasing (if it has been increasing initially) at its
turning point

αtðpϕÞ ¼
2 ln jpϕj

γ
: ð13Þ

An application of α as an internal clock instead of ϕ is
therefore challenging, in particular when the system is to be
quantized. We will present the necessary steps for such a
construction in the next section, but first note that classical
evolution with respect to α is locally generated by the
Hamiltonian

−pα ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ϕ − eγα

q
: ð14Þ

Unlike the ϕ-Hamiltonian, this expression is explicitly
clock (α) dependent, and it is not positive definite. It equals
zero at the turning point (13) where α has to start decreasing
(again, if it has been increasing initially) for the square root
to remain real. Correspondingly, the sign chosen in (14) has
to be flipped for α to turn around. The formalism of [13–15]
allows us to implement this turning point of α even within
unitary quantum evolution determined by an effective time
parameter related to (but not identical with) α as an
internal clock.

III. GLOBAL QUANTUM EVOLUTION

Equation (14) can formally be quantized to

iℏ
∂ψðpϕ;αÞ

∂α
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ϕ − eγα

q
ψðpϕ; αÞ: ð15Þ

However, the Hamiltonian on the right-hand side is not self-
adjoint on the kinematical Hilbert space L2ðR2; dpϕdαÞ
and therefore does not define global evolution with respect
to α. To ensure that α does not surpass the turning-point
value αtðpϕÞ given in (13), we replace α in evolution
equations with an effective time parameter τ that locally
follows the changes of α but implements the condition that
α start decreasing (with respect to this new τ) right after it
reaches the turning point. These conditions, together with
continuity of αðτÞ, determine this relationship as

αðτÞ ¼
�þτ if τ < αtðpϕÞ
−τ þ 2αtðpϕÞ if τ > αtðpϕÞ

ð16Þ

up to a constant shift. (If a different clock rate is preferred, τ
may be transformed nonlinearly in our final solutions; see
Sec. III C.) While the clock variable α is allowed to be
nonmonotonic around the turning point, time τ continues to
increase. This crucial step, clearly distinguishing between
clock and time, is sufficient for a consistent definition of
global evolution [13]. In our treatment, time is an effective

parameter constructed from a fundamental clock according
to the prescription (16) that keeps track of turning points,
just as time labels used in daily life are constructed from
clock readings as well as turning points. Since the time
parameter is not fundamental, we make no attempt to
complete (16) to a canonical transformation, which due to
multivaluedness would require an extension of the phase
space.
An important feature of quantum evolution is that a

generic state, as a superposition of p̂ϕ-eigenstates, has
contributions that go through the turning point at different
values of the clock, thanks to the pϕ-dependence of αtðpϕÞ.
We will nevertheless continue to speak of a single turning
point because it is unique for a given pϕ, unlike the
examples of oscillating clocks studied in [14,15].

A. Evolution through a turning point

Using τ as time, we have to rewrite (15) in terms of a
time derivative by τ, applying the chain rule and the
parametrization (16):

iℏ
∂ψðpϕ; τÞ

∂τ
¼ iℏ

dα
dτ

∂ψðpϕ; τÞ
∂α

¼ � dα
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ϕ − eγαðτÞ

q
ψðpϕ; τÞ: ð17Þ

The sign choice has to be made such that �dα=dτ ¼ 1,
ensuring stability by a positive τ-Hamiltonian. With this
condition, evolution with respect to τ is unitary and stable
(positive Hamiltonian) on the Hilbert space L2ðR; dpϕÞ.
The variable α is quantized to an operator only before the

constraint or the evolution equation is imposed (on the
kinematical Hilbert space). In (17), it has been replaced
completely by an effective time parameter without quantum
properties. Since (16) is not part of a canonical trans-
formation, Eq. (17) is not directly constructed from a
quantized momentum of τ, but rather by applying the
change rule to the original Eq. (15), which was based on a
quantized momentum of α on the kinematical Hilbert
space. This treatment is consistent with our definition of
τ as an effective time parameter, distinct from the values of
a fundamental clock. Looking back, Eq. (15) presents the
first step of our construction in which α is introduced as the
clock variable. If there were now turning points, αwould be
an internal time and (15) would present our evolution
equation for states in the physical Hilbert space
L2ðR; dpϕÞ. Since there are turning points in our model,
we need to perform the second step of our construction,
introducing time by (16) and formulating evolution by (17).
Solutions to this equation correspond to physical states in
systems without turning points.
The sign choice implies that we should solve the

evolution equation separately for the two cases in (16),
depending on whether τ is before or after the turning point
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αtðpϕÞ for a given pϕ. A state written in the pϕ-represen-
tation evolves as

ψpϕ
ðτÞ ¼ fðpϕÞ exp ð−iΘðαðτÞ; pϕÞÞ ð18Þ

with some function fðpϕÞ for τ < αtðpϕÞ, where dα=dτ ¼
1 for the given pϕ, with the phase

Θðα;pϕÞ¼
2

ℏγ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ϕ−eγα

q
− jpϕjtanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−eγα=p2

ϕ

q �
≤0:

ð19Þ

This function vanishes at the turning point αtðpϕÞ. Evolving
onwards in the same state with respect to τ after this value is
reached, α then decreases such that dα=dτ ¼ −1 in (17), and
we now choose the minus sign of �. The corresponding
solution for the wave function is obtained from (18) by a
simple sign change:

ψpϕ
ðτÞ ¼ fðpϕÞ exp

�
iΘðαðτÞ; pϕÞ

�
: ð20Þ

The phase, now given by −ΘðαðτÞ; pϕÞ, therefore becomes
positive and continues to increase after it goes through zero at
the turning point. For α → −∞ and using tanh−1ð1 − xÞ ∼
− 1

2
lnðx=2Þ for 0 < x ¼ 1

2
eγα=p2

ϕ ≪ 1, we have Θðα; pϕÞ ∼

αjpϕj=ℏ or sgnðdα=dτÞΘðαðτÞ; pϕÞ ∼ τjpϕj=ℏ. The combi-
nation of (18) and (20) together with (16) therefore implies
that we approximate the standard linear phase in stationary
states ψpϕ

ðτÞ ∝ expð−iτjpϕj=ℏÞ far from the turning point.
There are, however, effects of a nonlinear phase around the
turning point implied by the time-dependent Hamiltonian as
well as superposition effects in states that are not eigenstates
of p̂ϕ.

B. Evolving expectation value

We are interested in analyzing the influence of turning
points on the evolving expectationvalue of ϕ̂ in order to show
that evolution does not freeze at a turning point and respects
(at least semiclassically) themonotonic behavior (12). To this
end, we should use a suitable normalizable superposition of
p̂ϕ-eigenstates. As usual, such a superposition is determined
by a corresponding function for the coefficients fðpϕÞ of
these eigenstates. If this function has support on all pϕ, such
as a Gaussian state, at any finite time τwherewemay impose
an initial state, there will be some p̂ϕ-eigenstates that have
already crossed their turning points, for which (20) should be
used, and some which are still approaching their turning
points, for which (18) should be used. If the initial time is τ0
with state ψðpϕ; τ0Þ ¼ fðpϕÞ, the evolved state for any
τ ≥ τ0 is given by

ψðpϕ; τÞ ¼

8>>>>><
>>>>>:

fðpϕÞe−iΘ0ðpϕÞ exp
�
þiΘðαðτÞ; pϕÞ

�
if αtðpϕÞ ≤ τ0 ≤ τ

fðpϕÞeþiΘ0ðpϕÞ exp
�
þiΘðαðτÞ; pϕÞ

�
if τ0 ≤ αtðpϕÞ ≤ τ

fðpϕÞeþiΘ0ðpϕÞ exp
�
−iΘðαðτÞ; pϕÞ

�
if τ0 ≤ τ ≤ αtðpϕÞ

; ð21Þ

where Θ0ðpϕÞ ¼ Θðαðτ0Þ; pϕÞ. The initial state determines
this constant phase contribution, andsignchoices areuniquely
fixed by the relationship between τ and αtðpϕÞ as well as
continuity in τ. Inparticular,when τ crossesαtðpϕÞ for a given
pϕ, we move from the second case in (21) to the third case.
Since ΘðαtðpϕÞ; pϕÞ ¼ 0, continuity requires that the con-
stant phase is the same in these two cases, without a sign

change. The first case in (21) requires the opposite sign in the
constant phase in order to be consistent with the initial state
ψðpϕ; τ0Þ ¼ fðpϕÞwhenτ0 ≠ αtðpϕÞ.Bychangingτ at fixed
τ0 andpϕ, the first case can never be turned into the second or
third one; therefore, there it is not subject to a condition on the
phase from continuity in τ.
Similarly, for τ ≤ τ0 we have

ψðpϕ; τÞ ¼

8>>>>><
>>>>>:

fðpϕÞe−iΘ0ðpϕÞ exp
�
þiΘðαðτÞ; pϕÞ

�
if αtðpϕÞ ≤ τ ≤ τ0

fðpϕÞe−iΘ0ðpϕÞ exp
�
−iΘðαðτÞ; pϕÞ

�
if τ ≤ αtðpϕÞ ≤ τ0

fðpϕÞeþiΘ0ðpϕÞ exp
�
−iΘðαðτÞ; pϕÞ

�
if τ ≤ τ0 ≤ αtðpϕÞ

ð22Þ

MARTINEZ, BOJOWALD, and WENDEL PHYS. REV. D 108, 086001 (2023)

086001-4



with all sign choices determined by the same conditions as before. In our analytical examples, we will restrict ourselves to
the case of τ > τ0 with wave packets that are supported mainly (but not completely) on pϕ such that τ0 < αtðpϕÞ. The
second and third cases in (21) will then be sufficient in an approximate analysis.
The expectation value of ϕ in such an evolving state is given by

hϕ̂iðτÞ ¼ iℏhψ ; dψ=dpϕiðτÞ ¼ iℏ

�
f0ðp̂ϕÞ
fðp̂ϕÞ

	
þ ℏ

�
sgnðdα̂=dτÞ dΘðα̂ðτÞ; p̂ϕÞ

dpϕ
−
dΘ0ðpϕÞ
dpϕ

	

¼ iℏ

�
f0ðp̂ϕÞ
fðp̂ϕÞ

	
þ ℏhsgnðdα̂=dτÞ

�
∂Θðα̂ðτÞ; p̂ϕÞ

∂pϕ
þ ∂α̂

∂pϕ

∂Θðα̂ðτÞ; p̂ϕÞ
∂α

�
−
∂Θ0ðpϕÞÞ

∂pϕ

	
: ð23Þ

[According to our assumption that τ0 < αtðpϕÞ for most pϕ,
the constant phase Θ0ðpϕÞ does not depend on αt within the
approximation used.] The first term is τ-independent and
equals the initial expectation value ϕ0 of ϕ at τ ¼ τ0, where
ψðpϕ; τ0Þ ¼ fðpϕÞ. The second term is evaluated in the
same state, but has an explicitly τ-dependent operator, which
we are applying in the pϕ-representation. It is important to
note that α̂ðτÞ is now an operator because its classical
expression depends on pϕ through αtðpϕÞ. The sign change
in the phase therefore depends on the pϕ-eigenstate in a
superposition given by a general state, and the α-dependence
of the phase contributes to the ϕ̂-expectationvalue alongwith
the pϕ-dependence.
Using our solution for the phase ΘðαðτÞ; pϕÞ, we obtain

hϕ̂iðτÞ ¼ ϕ0 þ
2

γ

D
tanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eγα̂ðτ0Þ=p̂2

ϕ

q E

−
2

γ

D
sgnðdα̂=dτÞ tanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eγα̂ðτÞ=p̂2

ϕ

q E

−
4

γ

D
θð−dα̂=dτÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eγα̂ðτÞ=p̂2

ϕ

q E
ð24Þ

with the Heaviside step function θðxÞ from

∂αðτÞ
∂pϕ

¼ 2θð−dα=dτÞ dαt
dpϕ

¼ 4

γjpϕj
θð−dα=dτÞ; ð25Þ

combining (16) and (13). The τ-dependent parts are
continuous in τ in spite of the sign and the Heaviside
function because the latter are multiplied by functions that
vanish at the step where the sign of dα=dτ changes.
The functional dependence of the third term in (24) can

be seen to equal (12), using tanhðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ðxÞ − 1

p
=

coshðxÞ, but now the branch of cosh−1 is explicitly
determined by sgnðdα=dτÞ for each pϕ-eigenstate in a
superposition. The fourth contribution to the expectation
value is entirely determined by the turning points and has
no classical analog. The inverse tanh in the third term
implies that the fourth term is relevant only during a time
interval when the majority of the p̂ϕ-eigenstates are cross-
ing the turning point.

C. General features of the method

Before we continue with a detailed analysis of evolution
in our specific model, we briefly discuss several aspects
related to the applicability of our general method and its
time parametrization.
The specific example considered here describes a simple

cosmological model in which most equations can be solved
analytically. A large class of generalizations is available
within the same method, but there are also models that
require further developments that are still in progress.
Looking at the constraint, it may be generalized in two
ways, by changing the clockHamiltonian or theHamiltonian
of the system interpreted as evolving with respect to the
clock.
If we first fix the clock Hamiltonian, it is easy to see that

our methods can be applied to any system Hamiltonian
Hðϕ; pϕÞ such that the initial evolution equation (15) is
replaced by

iℏ
∂jψiðαÞ

∂α
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĥ − eγα

p
jψiðαÞ: ð26Þ

In this general case, it is not convenient to work in the pϕ-
representation, but our equations can easily be adjusted if
we work in the representation spanned by eigenstates of Ĥ.
Given the positive clock Hamiltonian and the constraint, we
can restrict the spectrum of Ĥ to its positive part. Assuming
the corresponding eigenstates are labeled by some number
k (and additional labels in case of degeneracies in the
positive part of the spectrum), which may be discrete or
continuous, and the Ĥ-eigenvalues are Ek ≥ 0, the evolu-
tion equation

iℏ
∂ψkðαÞ
∂α

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek − eγα

p
ψkðαÞ ð27Þ

can be solved simply by replacing jpϕj with
ffiffiffiffiffiffi
Ek

p
in our

previous phase.
The same substitution can be used in the globally

evolved wave function, given for τ ≥ τ0 by
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ψkðτÞ ¼

8>>>>><
>>>>>:

fðkÞe−iΘ0ðkÞ exp
�
þiΘðαðτÞ; kÞ

�
if αtðkÞ ≤ τ0 ≤ τ

fðkÞeþiΘ0ðkÞ exp
�
þiΘðαðτÞ; kÞ

�
if τ0 ≤ αtðkÞ ≤ τ

fðkÞeþiΘ0ðkÞ exp
�
−iΘðαðτÞ; kÞ

�
if τ0 ≤ τ ≤ αtðkÞ

; ð28Þ

where αtðkÞ ¼ γ−1 lnðEkÞ and a corresponding version for
τ < τ0. Since jψkðτÞj2 ¼ jfðkÞj2 for all τ, normalization
of this state in the Ĥ-representation is preserved by
evolution. The same property is then true in any other
representation, where the evolving state is

jψiðτÞ ¼
Z
k
ψkðτÞjkidk ð29Þ

if jki are the Ĥ-eigenstates in the desired representation. In
this expression, integration over k (or summation in the
discrete case) at fixed τ takes into account the nontrivial
k-dependence of the phase in (28) andmay therefore bemore
complicated than the corresponding transformation in a
model with an absolute time. Nevertheless, τ-independence
of normalization follows from general properties, in particu-
lar the fact that the Ĥ-eigenbasis is orthonormal for
self-adjoint Ĥ together with preserved normalization in
the Ĥ-representation based on (28).
It is also possible to apply our methods to a different

clock Hamiltonian. We will not go into details here
because doing so would require a new parametrization of
αðτÞ, possibly with multiple turning points. The methods
used here can easily be adjusted to other clock potentials
if there is still only one turning-point value, αt. The case
of two turning-point values of the form �αt has been
discussed in detail in the clock model of [14,15].
Further generalizations that include direct interaction

terms between clock and system, such as a constraint C ¼
p2
α þ Iðα;ϕÞ −Hðϕ; pϕÞ with an interaction term Iðα;ϕÞ

that depends on both α and ϕ, remain challenging. In this
case, since fIðα;ϕÞ; Hðϕ; pϕÞg ≠ 0, we are not able to
diagonalize the operators Î and Ĥ simultaneously. The
Ĥ-representation then does not sufficiently simplify the
dynamics, and without analytical solutions, it is more
difficult to implement suitable phase changes at turning
points. Preliminary investigations suggest that at least a
numerical treatment is possible in principle, but slowed
down by the requirement to transform back and forth
between the Ĥ and the Î-representations. A generalization
of our methods to systems with direct system-clock
interactions would certainly be important for cosmological
models.
Within a specific model such as the one used here,

one may be interested in considering different time

parametrizations in which the rate of change of τ does
not agree with the rate of change of the clock degree of
freedom, α. For instance, in our cosmological model, α is
the logarithmic scale factor, but one may want to write
evolution with respect to proper time, given by a different
function of the scale factor, depending on the model. Our
method allows for such reparametrizations. Instead of
(16), we may use

αðτÞ ¼
�þRðτÞ if RðτÞ < αtðpϕÞ
−RðτÞ þ 2αtðpϕÞ if RðτÞ > αtðpϕÞ

ð30Þ

with a monotonic reparametrization function RðτÞ. The
reparametrization function is not applied to αtðpϕÞ in the
branch conditions and in the second line of (30) because
these terms are determined by α or RðτÞ (but not τ)
reaching the turning point. Therefore, derivative oper-
ators acting on the pϕ-dependence of the wave func-
tion through αt, such as (24), and in particular the
coefficient in (25), are unchanged by the reparametriza-
tion. The only effect of the reparametrization is to shift
the location of turning points in terms of τ [through
sgnðdα̂=dτ and θð−dα̂=dτÞ in (24)], and to function as a
standard reparametrization of time away from turning
points.

D. Shifts around the turning point

The functional form of (24) suggests that there may be
significant quantum effects around the turning point, but
at much earlier or later times we have nearly classical
behavior provided the initial state is sufficiently semi-
classical. A useful way to express quantum effects is by
computing additional shifts they imply in the asymptotic
behavior of ϕðτÞ for τ → �∞ in addition to the classical
shift. For α → −∞, and therefore for both τ → −∞ and
τ → ∞, we have

dϕ
dτ

¼ −sgnðdα=dτÞpϕ

pα
¼ jpϕjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
ϕ − eγα

q → 1 ð31Þ

such that ϕðτÞ asymptotically approaches a straight line
at an angle of 45°. However, the behavior around the
turning point is not linear, which implies a constant shift
in the ϕ-direction between the asymptotic past and the
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asymptotic future. This shift is sensitive to quantum
effects around the turning point and can therefore be
used to quantify them.
We first compute the classical shift as a reference basis.

We can introduce in the classical solution ϕðαÞ, given in
Eq. (12), the same parametrization αðτÞ given in (16) as

used in the unwinding of α as a quantum clock. Classically,
the resulting ϕðτÞ can be viewed as a reparametrization of
the gauge orbit ϕðϵÞ with a nonlinear transformation τðϵÞ
such that dα=dϵ ¼ �dτ=dϵ. If the initial value ϕ ¼ ϕ0 is
chosen at some τ0 < αtðpϕÞ for a given pϕ, continuity of
ϕðτÞ requires that

ϕðτÞ ¼
8<
:

ϕ0 þ 2γ−1tanh−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eγτ0=p2

ϕ

q
− 2γ−1tanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eγαðτÞ=p2

ϕ

q
if τ < αtðpϕÞ

ϕ0 þ 2γ−1tanh−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eγτ0=p2

ϕ

q
þ 2γ−1tanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eγαðτÞ=p2

ϕ

q
if τ > αtðpϕÞ

: ð32Þ

This function is consistent with (11) for all τ if we use ϕðτðϵÞÞ ¼ 2pϕϵþ ϕ0 þ 2γ−1 tanh−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eγτ0=p2

ϕ

q
to reparametrize

from τ to ϵ. Using again tanh−1ð1 − xÞ ∼ − 1
2
lnðx=2Þ as already applied in our analysis of the phase, we have

−
2

γ
sgnðdα=dτÞ tanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eγα=p2

ϕ

q
∼ sgnðdα=dτÞα −

2

γ
sgnðdα=dτÞ lnð2jpϕjÞ: ð33Þ

If we simply combine the two α-branches, their asymptotic linear curves are separated by a ϕ-shift of 4γ−1 lnð2jpϕjÞ.
However, the parametrization in terms of τ changes this result because of an additional shift of τ by 2αtðpϕÞ ¼ 4γ−1 lnðjpϕjÞ
according to (16):

sgnðdα=dτÞαðτÞ − 1

γ
sgnðdα=dτÞ lnð2p2

ϕÞ ¼
�
τ − 2γ−1 lnð2jpϕjÞ if τ < αt

τ − 2αtðpϕÞ þ 2γ−1 lnð2jpϕjÞ if τ > αt

¼
�
τ − 2γ−1 lnð2jpϕjÞ if τ < αt

τ − 2γ−1 lnð2jpϕjÞ þ 4γ−1 ln 2 if τ > αt
: ð34Þ

The classical shift is therefore independent of pϕ and is
given by

Δϕclassical ¼
4

γ
ln 2: ð35Þ

The same shift appears in the quantum case, but there are
additional contributions as well. For τ → −∞, the fourth
term in (24) can be ignored because the majority of p̂ϕ-
eigenstates still has to cross their turning points. The third
term then guarantees nearly classical behavior. For τ → ∞
when αðτÞ → −∞ and most eigenstates have gone through
their turning points, the fourth term only implies a constant
negative shift of hϕ̂iðτÞ by

Δϕ1 ¼ −
4

γ
; ð36Þ

while the inverse tanh in the second term continues to
increase with linear asymptotic τ-dependence asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eγαðτÞ=p2

ϕ

q
approaches one. The full quantum shift

equals

Δϕ ¼ Δϕclassical þ Δϕ1 ¼ Δϕclassical −
4

γ
ð37Þ

provided the initial state is posed sufficiently far ahead of
the turning point. For γ ¼ 4, the shifts simplify to
Δϕclassical ¼ lnð2Þ and Δϕ ¼ Δϕclassical − 1.
As a function of τ, the classical-type contribution to (24),

depending on tanh−1, provides a monotonic asymptotic

contribution to hϕ̂iðτÞ: While
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eγαðτÞ=p2

ϕ

q
has a local

minimum of zero at τ ¼ αtðpϕÞ, and so does

tanh−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eγαðτÞ=p2

ϕ

q
, multiplying this expression with

−sgnðdα=dτÞ turns it into a monotonically increasing func-
tion of τ. The τ-dependent expectation value of monotonic
functions of τ is alsomonotonic. Since the tanh−1 is dominant
well before and after the turning point, the classical mon-
otonic behavior of ϕðτÞ is maintained in this regime.
The last contribution to (24) does not respect this

behavior because it subtracts an increasing function after
the turning point, thanks to the factor of θð−dα=dτÞ. Since
this term approaches a constant at late times, it can change
the monotonic behavior of ϕðτÞ only around the turning
point, the more so far larger pϕ because the slope of the
subtracted square root is then larger close to the turning
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point. The quantum shift Δϕ1 is implied by the same term,
but it is independent of pϕ because it refers to the
asymptotic value.
While there may therefore be noticeable quantum

effects around the turning point of α, these observations
demonstrate that our quantum evolution does not freeze
there and has the correct asymptotic behavior, before and
after the turning point. The eigenstate dependence
of the turning points makes these features more involved
than in standard quantum mechanics. We now turn to
numerics in order to show specific examples of evolving
states.

E. Numerical treatment

For a numerical analysis of equation (24) we have to
choose an initial state, which we take to be a Gaussian

ψ0ðϕÞ ¼ ð2πd2Þ−1=4 exp
�
iϕpϕ

ℏ
−
ðϕ − ϕ0Þ2

4d2

�
ð38Þ

centered at ðϕ0; pϕÞ. Numerically, we restrict the ϕ-range to
be a finite interval between −L and L for some L
sufficiently large to contain a given stretch of evolving
ϕðτÞ. In addition, we express the evolved state as a
truncated sum of p̂ϕ-eigenstates,

ψðτ;ϕÞ ¼
XþN

n¼−N
cn exp

�
−isgnðdαðτ; pðnÞ

ϕ Þ=dτÞΘðαðτ; pðnÞ
ϕ Þ; pðnÞ

ϕ Þ
�
exp ðiϕpðnÞ

ϕ =ℏÞ; ð39Þ

where pðnÞ
ϕ ¼ nπ=L. In our examples, the normalization of

ψðτ;ϕÞ is approximately conserved within a relative
accuracy of 10−4 for N=L > 10.
Since the turning point (13) depends on pϕ, the truncated

superposition (39) experiences a turning point at 2N þ 1
different values of τ. A nontruncated state supported on the
infinite set of momenta pϕ will never completely cross all
the turning points since at any finite τ there will be terms in
the superposition of p̂ϕ-eigenstates that have yet to
encounter their time of the turning point. However, these
terms contribute less and less as the wave function
approaches zero for large jpϕj. The finite truncation is
therefore expected to be reliable.
Examples of the expectation value hϕ̂iðτÞ for different

values of the initial time τ0 where the state is Gaussian are
shown in Fig. 1. The initial time does not matter much, even
if it is set close to the main turning point. The only changes
in the resulting curves are implied by a slightly different
initial ϕ0ðτ0Þ, which was chosen to follow the classical
behavior. Confirming our analytical results based on
Eq. (24), the field expectation value retains its monotonic
behavior in asymptotic regimes and, for the specific values
of γ and pϕ chosen in this figure, even while our local clock
α goes through its turning point. The slope of hϕ̂iðτÞ
asymptotically approaches the value one if the state remains
semiclassical because for α → −∞,

dϕ
dτ

¼ sgnðdα=dτÞ dϕ=dϵ
dα=dϵ

¼ −sgnðdα=dτÞpϕ

pα

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eγα=p2

ϕ

q → 1 ð40Þ

is implied by the classical constraint.
As further support of freeze-free evolution, we show

the probability density of ϕ̂ in the evolved state in Fig. 2.

Our initial state is Gaussian, but it does not strictly keep this
form because the α-Hamiltonian is not harmonic. Most of
the turning points happen in the region close to τ ¼ 0 in this
case where the magnitude jψðϕ; τÞj2 is largest. The wave
function continues to evolve as expected while going
through the turning point of α for several pϕ-eigenstates.
The dependence on γ is illustrated in Fig. 3. As expected

from our analytical expression for the quantum shift, the
future asymptotic behavior of the quantum curve is closer
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Scalar Field  Expectation Value Comparison
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( =-3/4, =4)

( =-1, =3.73)
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( =0, =4.84)

FIG. 1. Expectation value of ϕ as a function of τ for different
initial times τ0 at which the state is assumed to be Gaussian,
centered at ϕ0ðτ0Þ following the classical curve. The differences
between the future and past asymptotic behaviors in the classical
and quantum cases, respectively, are consistent with the values
Δϕclassical ≈ 0.7, Δϕ ¼ Δϕclassical − 1 ≈ −0.3 implied by our for-
mulas with the value γ ¼ 4. The momentum in this case equals
pϕ ¼ 1.25.
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to the classical curve for larger γ, but, in contrast to the
classical solution, it is always below an extension from the
asymptotic past to the future as a straight line.
A new feature is shown in the dependence on pϕ in

Fig. 4. The asymptotic parts are not affected by changing
pϕ, but the behavior around the turning point does change
noticeably when pϕ is increased from the value pϕ ¼ 1.25
used in the previous plots. In particular, the expectation
value hϕ̂iðτÞ is no longer monotonic in a small range
around the turning point. A closer look at the curves reveals
that this feature is a consequence of a property seen in the
analytical expression (24): Starting in the asymptotic past,
the expectation value follows the classical curve longer for
larger pϕ, but then approaches the shifted future behavior
more quickly. This behavior is implied by the appearance of

pϕ in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − eγα=p2

ϕ

q
, which leads to a more abrupt transition

for larger pϕ and makes quantum effects of turning points
more noticeable. The numerical solutions show that a
sufficiently rapid transition can lead to a nonmonotonic
hϕ̂iðτÞ in a small interval around the turning point.

FIG. 2. Evolution of the probability density for the Gaussian
wave packet under the constraint Hamiltonian for γ ¼ 4 and
pϕ ¼ 1.25.
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FIG. 3. Expectation value of ϕ as a function of τ for three values
of γ ≥ 4. Each curve corresponds to the same Gaussian initial
state (d ¼ 1) at the main turning point τ ¼ 2γ−1 ln jpϕj, where
pϕ ¼ 1.2 has been chosen for the numerics.
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FIG. 4. Expectation value of ϕ as a function of τ for four values
of pϕ. For the sake of clarity, the curves have been plotted with
different initial ϕ0ðτ0Þ in order to shift them apart. While the
asymptotic behavior does not depend on pϕ, the range around the
turning point where the transition between the asymptotic past
and future happens shows a new feature for larger pϕ: The

expectation value hϕ̂iðτÞ is no longer monotonic for sufficiently
large values.
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IV. COMPARISON WITH DIRAC
QUANTIZATION

Our classical constraint C ¼ p2
ϕ − p2

α − eγα can easily be
turned into an operator on the kinematical Hilbert space
L2ðR2; dαdϕÞ. According to standard Dirac quantization,
the physical Hilbert space on which the constraint is solved
would then be a suitable Hilbert-space completion of
(generalized) states ψ satisfying

Ĉψ ¼ ðp̂2
ϕ − p̂2

α − eγα̂Þψ ¼ 0: ð41Þ

A. Observables and double-valuedness

A common way [8,17] to introduce a physical inner
product interprets (41) in the ðα;ϕÞ-representation ψðα;ϕÞ
as a Klein-Gordon equation and uses the bilinear form

ðψ1;ψ2Þ ¼ i
Z �

ψ�
1

∂ψ2

∂ϕ
−
∂ψ�

1

∂ϕ
ψ2

�
dα ð42Þ

conserved in evolution with respect to ϕ. To obtain a
positive definite inner product, one restricts the solution
space to positive-frequency solutions with positive eigen-
values of p̂ϕ, or combines positive-frequency solutions
with the inner product ðψ1;ψ2Þ and negative-frequency
solutions with the inner product −ðψ1;ψ2Þ.
Irrespective of the specific choice, the procedure makes

use of the factorization

Ĉ ¼ Ĉ−Ĉþ ¼
�
p̂ϕ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2
α þ eγα̂

q ��
p̂ϕ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2
α þ eγα̂

q �

ð43Þ

into two commuting factors. Both positive-frequency
solutions, solving Ĉ−ψ ¼ 0, and negative-frequency sol-
utions, solving Ĉþψ ¼ 0, are therefore part of the solution
space of the constraint. The two types of states can then be
interpreted as evolving with respect to ϕ, such that (42)
together with the correct sign choice provides an inner
product given by integration over α at some fixed ϕ. The
value chosen for ϕ does not matter because the inner
product is conserved in ϕ.
Dirac observables provide physically motivated opera-

tors acting on the physical Hilbert space. They are defined
as expressions that (classically) have vanishing Poisson
brackets with the constraint or (in a quantization) commute
with the constraint operator. The classical version of such
an expression is conserved by the gauge flow generated by
the constraint on phase space, and the quantum version
maps the solution space of the constraint to itself. A simple
example in the present case is the conserved momentum
pϕ, which locally has a canonically conjugate Dirac
observable

Φ ¼ ϕ −
2

γ
cosh−1ðjpϕje−γα=2Þ: ð44Þ

The conserved nature of Φ can be interpreted as
describing evolution of α relative to ϕ, such that Φ remains
constant. The double-valuedness of the inverse cosh
implies that Φ is only locally defined on phase space.
Once α reaches a turning point αtðpϕÞ, the other branch of
the inverse cosh should be followed in order to have
agreement between this relational evolution αðϕÞ and the
gauge orbits given by αðϵÞ and ϕðϵÞ discussed in Sec. II. [A
global Dirac observable other than pϕ is given by

D ¼ e−γα=2ðpϕ coshðγϕ=2Þ − pα sinhðγϕ=2ÞÞ: ð45Þ

It cannot be solved globally for ϕðαÞ.]

B. Disambiguations

The double-valuedness of Φ means that this expression
does not have a straightforward quantization. An additional
choice is required that specifies how the two values are
assigned to different states. For instance, the classical expres-
sion� ffiffiffiffiffiffijαjp

, as a simpler version of cosh−1ðjpϕje−γα=2Þ, may
be disambiguated by assigning the plus choice to positive
values of α and the minus choice to negative values of α, such
that� ffiffiffiffiffiffijαjp ¼ sgnðαÞ ffiffiffiffiffiffijαjp

. In a quantization, this choice can
be implemented by using the same disambiguation on the
spectral decomposition of α̂ when defining � ffiffiffiffiffiffijα̂jp

. The
specific disambiguation depends on the physical meaning
and use of the resulting operator.
For instance, � ffiffiffiffiffiffijαjp

could appear in a Dirac observable
ϕ� ffiffiffiffiffiffijαjp

of the constraint C ¼ p2
ϕ − 4jαjp2

α, defining
relational evolution ϕðαÞ by setting the observable to a
constant value. (The constraint surface has two compo-
nents. For a given sign choice, in ϕ� ffiffiffiffiffiffijαjp

, a Dirac
observable on one of the components is obtained.) Not
only quantization but also well-defined classical evolution
then requires a disambiguation. As in our main example, a
suitable choice can be derived by comparing relational
evolution with the behavior on gauge orbits, which is easier
in this model because here α does not have a turning point.
The gauge equations can easily be solved for ϕðϵÞ ¼

ϕ0 þ 2pϕϵ, jαðϵÞj ¼ 4pϕϵ
2, and pαðϵÞ ¼ −sgnðαÞ=ð4ϵÞ

while pϕ is constant. Instead of a turning point, αðϵÞ has
a stationary point at α ¼ 0 where dα=dϵ ¼ 0. Positive and
negative α therefore need not be connected to a single
gauge orbit. However, ϕðϵÞ clearly moves through all
positive and negative values. The relational description
based on ϕ� ffiffiffiffiffiffijαjp ¼ const can correctly describe this
behavior only if the disambiguation � ffiffiffiffiffiffijαjp ¼ sgnðαÞ ffiffiffiffiffiffijαjp
is used (up to an overall sign choice).
The suitability of this disambiguation can also be seen

from the fact that the model system can be obtained by a
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canonical transformation from the pair ðx; pxÞ with con-
straint p2

ϕ − p2
x and Dirac observable ϕ − x (on one compo-

nent of the constraint surface). A simple interpretation of
� ffiffiffiffiffiffijαjp ¼ ffiffiffiffiffiffijαjp

, ignoring the sign choice, would follow
from a local canonical transformation x ¼ ffiffiffiffiffiffijαjp

, px ¼
2

ffiffiffiffiffiffijαjp
pα that is not defined on negative x. The global

transformation x ¼ sgnα
ffiffiffiffiffiffijαjp

, px ¼ 2
ffiffiffiffiffiffijαjp

pα (up to an
overall sign choice in x) corresponds to our disambiguation.
Back to our main example, the unwinding of the local

clock α to a global time parameter τ is an example of a
disambiguation, determined as in the simple model by the
condition that there should be states in which ϕ has the
expected asymptotic semiclassical behavior according to
which it goes to negative infinity at early times and posi-
tive infinity at late times. This variable classically has a
strictly monotonic gauge flow for nonzero pϕ but inherits
double-valuedness when it is constructed from the Dirac
observable Φ. The double-valuedness is resolved by the
disambiguation used throughout the paper.
In some cases, double-valuedness can be resolved in

quantum mechanics if one requires that states are always
superpositions of states suitably supported on both values.
For instance, working only with even wave functions ψðαÞ
treats positive and negative α on the same footing. For
operators to respect this symmetry, a specific sign choice
must be made, such as using the same expression

ffiffiffiffiffiffijαjp
for

positive and negative α. In our case and in other models of
relational evolution, however, this procedure is not suitable
for various reasons: (i) The symmetry of states that helps to
disambiguate possible operators is imposed by hand and
not derived from the dynamics. (ii) The condition is not
guaranteed to be consistent with the required semiclassical
behavior in asymptotic regimes. (iii) The model would be
strongly restricted because any choice of initial states
would have to follow the imposed symmetry condition.
For instance, it would be impossible to set up a semi-
classical state that compares quantum evolution with a
single classical trajectory going through a given pair ðα;ϕÞ.
(iv) As we have seen in our main discussion, the symmetry
condition that connects different α before and after a
turning point is usually not universal but, just as αt,
depends on other phase-space degrees of freedom such
as pϕ. (v) The strict symmetry condition ignores the
possibility that quantum physics on phase spaces with
nontrivial topology, as implied here by branch cuts on the
solution space of the constraint, usually makes use of the
universal covering space on which discrete classical sym-
metries are not necessarily respected. Accordingly, our
solutions are not reflection symmetric around the turning
point, which may not be obvious from the plot but can
easily be seen from the fact that the Gaussian form of our
initial state, posed on one side of the turning point, is,
generically, not recovered on the other side by the non-
harmonic evolution of our model.

C. Dirac observables in evolution
with respect to a local clock

The standard procedure of relational evolution breaks
down if one is interested in developing a picture of quantum
evolution in terms of α rather than ϕ. Since p̂2

ϕ − eγα̂ is not
positive definite, the definition of its square root is not clear.
Even if this problem can be solved, an exact factorization
such as (43) is no longer available because p̂α does not
commute with p̂2

ϕ − eγα̂. It is possible to define the
constraint operator as

Ĉ ¼
�
p̂α −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2
ϕ − eγα̂

q ��
p̂α þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2
ϕ − eγα̂

q �

¼ p̂2
α − p̂2

ϕ þ eγα̂ þ


p̂α;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2
ϕ − eγα̂

q �
ð46Þ

in this specific ordering, with a commutator term that
indicates quantum corrections to the classical expression.
However, since the two factors do not commute, acting on a
state by Ĉψ, as in standard Dirac quantization, can give only
solutions with the negative sign of pα.
Our procedure makes use of the same factorization, but

since we explicitly include phases of time reversal when the
clock α runs in the opposite direction of time τ, we are
acting not only to the right [with a positive α-Hamiltonian
H ¼ −pα from the second factor of (46)] but also on the
left when dα=dτ < 0 where the α-Hamiltonian H ¼
−sgnðdα=dτÞpα > 0 is still positive if we use the first
factor of (46). The pϕ-dependence of time reversals implied
by the pϕ-dependence of αt means that the standard
definition of a physical Hilbert space does not apply.
Nevertheless, we were able to define unitary α-evolution
on a physical Hilbert space (defined as a Hilbert space on
which gauge degrees of freedom are not represented) with a
conserved inner product.
Moreover, our expectation value (24) faithfully models

the Dirac observable Φ far from the turning points. The
tanh−1 part of (24), evaluated in a semiclassical state, is
equivalent to constant Φ with a specific branch choice of
the inverse cosh determined by sgnðdα=dτÞ. The last term
in (24) shows an additional quantum correction starting at
the turning point, thanks to the theta function. This
correction leads to stronger deviations between classical
and quantum behavior, such as the nonmonotonic hϕ̂iðτÞ
seen in Fig. 4 for larger values of pϕ.
Asymptotically, the term implies the quantum contribu-

tion Δϕ1 to the shift of ϕ derived in (36). Quantum
evolution through the turning point therefore connects
two semiclassical evolutions with respect to two different
Dirac observables, Φ1 and Φ2 ¼ Φ1 þ Δϕ1. The classical
Dirac observable Φ is not strictly conserved, but since it is
not globally defined it does not have a direct quantum
analog anyway. Our construction implies a successful
implementation of Dirac observables that are conserved
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at least in semiclassical regimes far from turning points. As
our analytical expressions show, the overall shift Δϕ ¼
4γ−1ðln 2 − 1Þ between the asymptotic past and the asymp-
totic future of a quantum trajectory decreases for larger γ, in
which case the exponential potential is steeper and most
pϕ-contributions to a state reach their turning point at
almost the same time. Additional quantum corrections
implied by the pϕ-dependence of the turning point are then
suppressed.

V. CONCLUSION

We applied the methods of [13–15] to a simple cosmo-
logical model that, after rescalings and simplifications, has a
Hamiltonian constraintwith a standardkinetic energy for two
variables, and an exponential potential for one of them. One
of the degrees of freedom therefore can be used as a global
internal time, while the other one encounters one turning
point in its classical evolution and constitutes a local clock
variable. Traditional methods of deparametrization are able
to implement only the global time, while we obtained
consistent quantum evolution also with the local clock.
Unlike in previous proposals our quantum evolution

does not freeze when the classical turning point is reached,
as we demonstrated both analytically by Eq. (24) and
numerically in Figs. 1 and 2. Our construction also gives a
successful description of the fact that a quantum super-
position of different energy eigenstates encounters a
number of turning points at different times, in contrast
to the classical system at a fixed energy. A visible
implication of this new behavior can be seen in the
possibility that the variable that could be used as a global
internal time may behave nonmonotonically when it
evolves with respect to the local clock, as shown in
Fig. 4. The same feature demonstrates that the two choices,
global clock or local clock, are not equivalent upon
quantization, adding another example to the list of models
that have confirmed the inequivalence between different
choices of internal times in quantum cosmology [18–23].
[Our results are, however, invariant with respect to non-
linear reparametrizations of the effective time parameter τ if
they are performed after the local clock α has been chosen.
The resolution of the turning point and the characteristic
shift therefore do not depend on the parametrization (16) as
long as it presents a full disambiguation of the flow of α.]
The energy dependence of classical turning points

also implies a characteristic shift between semiclassical
relational trajectories in the asymptotic past and future.
The corresponding analytical expressions allowed us to

demonstrate that the classical Dirac observables are approx-
imately conserved asymptotically far from the turning
point, but undergo specific changes during the transition
through a turning point. This feature is remarkable because
the corresponding Dirac observable does not have a well-
defined quantization in this case, owing to multivaluedness
of the classical expression on phase space. (See also [24,25]
for a discussion of Dirac observables on nontrivial phase
spaces.) Multivaluedness is related precisely to the behav-
ior around turning points that implies the nonconservation
of classical Dirac observables at the quantum level. Our
procedure therefore preserves the expected classical fea-
tures in regimes where turning points are not relevant, and
at the same time provides a consistent freeze-free quantum
evolution through turning points.
While the dependence of the turning point on the energy

of a state is a characteristic feature, for a given energy the
turning point is unique, given the monotonic nature of the
potential used here. In this respect, the model is rather
different from the first application of our methods in [14],
where the clock variable was oscillating and encountered its
turning points an infinite number of times even in a single
energy eigenstate. The transition through the turning point
remains hard to analyze without numerical input because it
is sensitive to the various energy contributions of a wave
packet that transit the turning point at different times. But
our detailed investigation of a model with a single turning
point has led to a clear analytical description of the
relationship between states before and after the turning
point, which might also help to understand long-term
quantum evolution in the presence of local oscillating
clocks.
A common feature can be seen in the observation that

quantum evolution with local clocks is closer to what is
expected from global deparametrization when the potential
is very steep in the range of variables where turning points
occur. For an oscillating clock ϕ, this happened for large
clock frequencies in a potential λ2ϕ2 with large λ. In the
present case, the condition is large γ, such that the potential
eγα for the local clock α with a single turning point gets
very steep.
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