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A new duality is proposed in four-dimensional flat space, which exchanges between spin and orbital
degrees of freedom. This is motivated by a Hodge decomposition of the angular-momentum bivector
for massive fields, along which spin and orbital angular momentum are Hodge duals of one another. The
duality respects Poincarè symmetry and is shown to transform between complementary spacelike regions,
projecting a fixed three-dimensional de Sitter world-tube (around the center of mass) into the bulk of four-
dimensional spacetime and vice versa. This state of affairs is interpreted as a realization of the holographic
principle. The dual theory living on that tube turns out to be noncommutative and entirely defined by the
Casimir elements of the Poincarè algebra. In fact, the mass is now an ultraviolet cutoff. This naturally
suggests that, for a Poincarè or just Lorentz-invariant quantum theory with massive fields of nonzero spin,
spacetime is quantized at the fundamental level.
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I. INTRODUCTION

In this article, we present a duality in four-dimensional
flat space between spin and orbital angular momentum.
Those combine into a common conservation law—that of
total angular momentum—but, otherwise, are usually
conceived to be different in nature. In other words, this
is a map between internal and external degrees of freedom
with respect to the spacetime manifold.
The motivation to consider such a bold connection

springs from a stunning symmetry in the algebraic structure
of angular momentum. The story unfolds as follows. First,
Lorentz symmetry distinguishes between spacetime-
independent (spin) and spacetime-dependent (orbital)
angular momentum; this is just Noether’s first theorem.
The former is defined as the exterior algebra of position
and momentum and is, hence, of kinematic nature. The
latter is dynamic, in the sense that it is not kinematic and
may interact with external spacelike fields. Those angular-
momentum currents are complementary, since they both
conspire to sustain a common conservation law. Following
this kinematic-dynamic complementarity through, we
project angular momentum on four-momentum. The logic
is that kinematics may as well be defined as the projection
along a kinematic four-vector, while dynamics should be
whatever remains from that projection. This is achieved

through the (1þ 3) decomposition of tensors with respect
to four-momentum. In turn, this yields a breakdown into
what we call an electric and a magnetic part, titles which
refer to the electromagnetic tensor whose usual decom-
position into an electric and a magnetic field is actually
tantamount to such a (1þ 3) decomposition. We prove that,
in the case of the total-angular-momentum tensor, orbital
angular momentum is the electric and spin is the magnetic
part. This decomposition reflects a structure that is man-
ifestly symmetric under the exchange between those
parts. Given this structural symmetry and motivated by
Maxwell’s electromagnetic duality, we show that this
exchange between spin and orbit degrees of freedom
respects Poincarè symmetry—in terms of the associated
conservation laws and algebra—and reflects a novel duality
for every massive Poincarè or just Lorentz-invariant field
theory. We call this the spin-orbit duality.
The implications of this duality are remarkable. For one,

since orbital angular momentum is the exterior algebra on
position and momentum, the duality implies an underlying
map between four-position and the Pauli-Lubanski pseu-
dovector. This transformation naturally selects a surface in
spacetime—a three-dimensional de Sitter world-tube—on
which the duality becomes the trivial map. Surprisingly, the
radius of this tube is identified with the so-called Møller
radius found in the literature. This radius signifies a region
of noncovariance inside of which only (pseudo-)worldlines
of the center of mass live, while, quantum-mechanically, its
eigenvalues are of the order of the Compton wavelength
which poses a limitation on localization too. Hence, the
duality map becomes trivial exactly where the center-of-
mass position seizes to be valid anyway. At the same time,
this world-tube is shown to be where the dual theory
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lives on. Thus, the duality not only interchanges spin with
spatial degrees of freedom but also connects complemen-
tary regions of spacetime. This state of affairs, i.e. that
spacelike information in four-dimensional bulk spacetime
is encoded onto a three-dimensional de Sitter surface,
eventually drives us to interpret this map as a holographic
duality.
Yet, another striking feature here is that four-position

transforms in such a way so that the dual quantum theory
is a particular noncommutative space, defined entirely
by the underlying Poincarè algebra. In fact, the dual
noncommutative space may be classified as either the
so-called spin-noncommutativity or a three-dimensional
fuzzy de Sitter space. All of those algebras are already
constructed in the literature. In the rest fame, its spatial
subalgebra yields a fuzzy sphere, whereas we illustrate
that orbital-angular-momentum “uncertainty rings”
(around an axis) on this dual sphere correspond to spin
(along the same axis) of quantum states in the bulk theory.
It is those dual rings, accompanied by the realization of
the duality as a hologram, which offer a good under-
standing for the exchange between internal (spin) and
external (orbit) degrees of freedom across the dual
pictures of field theory.
All this indicate that this duality may as well be seen as a

link between large and small scales, i.e., the bulk spacetime
and a de Sitter world-tube of the Compton scale. Therefore,
since this world-tube is shown to be noncommutative, this
naturally suggests that, for a Poincarè or just Lorentz-
invariant quantum theory with massive fields of nonzero
spin, spacetime is quantized at the fundamental level.
The plan of the article is the following. In Sec. II we

review the Lorentz and Poincarè Noether currents and
assign them proper interpretations. In Sec. III we prove
the spin-orbit duality and extract its basic transformation
properties. In Sec. IV we show that the dual theory is
noncommutative and present its fundamental features,
while in Sec. V we give the duality map the interpretation
of a hologram. Finally, we give out the reasons we think
this duality has far-reaching consequences in Sec. VI,
while, in the end of the article, there are five Appendices
with proofs of important statements made in the
main text.

II. SPIN FROM LORENTZ INVARIANCE

Spin angular momentum is usually thought of as a
quantum-mechanical property of particles. This is most
often due to Wigner’s classification of unitary irreducible
representations of the Poincaré group [1], which are labeled
by two parameters m ≥ 0 and s ¼ 0; 1

2
; 1…, respectively

realized as the mass and spin of representations. However,
as, e.g., mass or orbital angular momentum are present
in both the classical and quantum level, so is spin;
discretization in the quantum regime does not preclude a
classical analogy.

A. Conservation law

In the most basic level, spin angular momentum silently
emerges just from the pure transformation properties of
the Lorentz algebra, which acts on fields through the
generator Mμν ¼ Sμν þLμν. The familiar differential oper-
ator Lμν ≡ −iðxμ∂ν − xν∂μÞ is an orbital rotation, while the
four-vector representation ðSμνÞρσ ≡ −iðgμρδνσ − gνρδμσÞ,
or the spinor representation ðSμνÞαβ ¼ − i

2
½γμ; γν�αβ, reflect

how the field changes when frames change; Sμν ¼ 0 is
understood for scalar fields. In order to prove rigorously
that Sμν is associated with spin and Mμν with the total
angular momentum, we consider those transformations
as symmetries. In fact, we assume invariance under the
larger ISO(1,3) Poincaré group, where, given a generic
action principle of the form S ¼ S½q; ∂q� ¼ R d4xL½q; ∂q�,
symmetry manifests through Noether’s archetypal first
theorem. When the equations of motion are satisfied,
the translations subgroup implies the conserved current
density

T μν ≡ ∂L
∂∂μq

∂
νq − gμνL;

∂μT μν ¼ 0 ⇒ ṗμ ¼
Z

d3xT 0μ ¼ 0; ð2:1Þ

where T μν is the canonical energy-momentum tensor and
pμ the total four-momentum. This current, in general, is not
symmetric. Next, Lorentz rotations imply the conserved
current density

Mρμν ≡ i
∂L
∂∂ρq

Mμνq ¼ i
∂L
∂∂ρq

Sμνqþ ðxμT ρν − xνT ρμÞ;

∂ρMρμν ¼ 0: ð2:2Þ

This integrates over space to the total angular momentum of
the system,

Mμν ¼
Z

d3xM0μν

¼
Z

d3x

�
i
∂L
∂q̇

Sμνqþ ðxμT 0ν − xνT 0μÞ
�
; ð2:3Þ

providing a natural separation between two kinds of
angular-momentum degrees of freedom. Those are a
spacetime-dependent and a spacetime-independent term,

Lμν ≡ L0μν ≡ xμT 0ν − xνT 0μ; Sμν ≡ S0μν ≡ i
∂L
∂q̇

Sμνq;

ð2:4Þ

which are what we call the orbital and spin-angular-
momentum densities, respectively. Total current conserva-
tion, ∂ρMρμν ¼ 0, gives
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∂ρLρμν ¼ −∂ρSρμν ¼ T μν − T νμ; ð2:5Þ

which is just the statement that the presence of spin
in a system implies an asymmetric canonical energy-
momentum tensor. Accordingly, orbital angular momentum
is not independently conserved but cancels out with spin
angular momentum, their total quantities related as

Ṁμν ¼ L̇μν þ Ṡμν ¼ 0: ð2:6Þ

This tension between the two kinds of angular momentum
inside their conservation law makes us wonder whether
spin could be realized too as a form of orbital angular
momentum.

B. The full energy-momentum current

To answer this question, we should seek for an energy-
momentum tensor Θμν, such that all angular momentum in
the system (i.e., including spin) will be deduced from its
rotational flow. That is, in view of (2.3), we want instead

Mμν ¼!
Z

d3xðxμΘ0ν − xνΘ0μÞ; ð2:7Þ

which would yield the same total angular momentum as
in (2.3). This implies the also-improved current

Mρμν
Θ ¼ xμΘρν − xνΘρμ ≠ Mρμν; ð2:8Þ

which, in turn, integrates over space to give the same total
angular momentum Mμν

Θ ¼ Mμν. Then, conservation of the
new current Mρμν

Θ ,

∂ρM
ρμν
Θ ¼ Θμν − Θνμ ¼ 0; ð2:9Þ

implies that we want a symmetric energy-momentum
current. This symmetrization is achieved by employing
the Lorentz symmetry to eliminate the six antisymmetric
components of the canonical energy-momentum tensor.
Such redefinition may seem arbitrary but is certainly not.
This is because in the usual application of Noether’s first
theorem an integration by parts takes place and, thus, the
canonical current is always ambiguous under addition of
terms of the form ∂ρU½ρμ�ν. In fact, this procedure has been
worked out by Belinfante [2] and Rosenfeld [3] and results
in the unique current

Θμν ¼ T μν þ 1

2
∂ρðSρμν þ Sνμρ þ SμνρÞ: ð2:10Þ

The new energy-momentum current Θμν is manifestly
conserved, yields the same total energy-momentum and,
as a bonus, is symmetric,

∂μΘμν ¼ 0; pν ¼
Z

d3xΘ0ν ¼
Z

d3xT 0ν;

Θμν ¼ Θνμ; ð2:11Þ

where being symmetric is precisely the result of incorpo-
rating spin into the picture. In Appendix A, we derive Θμν

through Noether’s second theorem just by assuming
Poincarè invariance, in absence of any particular aim. In
fact, this suggests that it is the improved tensor which
should be considered as the actual canonical current.

C. Interpretation

Looking at this new energy-momentum tensor in (2.10),
we identify the first—canonical—term with energy and
linear-momentum flow across hyperplanes, as usual. The
second term, which is of the form1 ∇ × S, reflects the
breakdown of a spacetime-independent angular-momentum
across the same hyperplanes. However, this density does not
contribute to the total energy and momentum, which means
that the net flow of this kind of angular momentum is exactly
zero. Therefore, it must be made of bound currents (i.e.,
closed circuits) of momentum density, whose existence is
irrespective of spacetime position. This is spin, the kind of
angular momentum that is intrinsic to entities in field theory.
Two comments are in place here. First, spin, of

course, exists without considering the improved energy-
momentum tensor Θμν or even Poincarè invariance itself, as
seen from considering Noether’s theorem solely for Lorentz
invariance; it is just the improved picture that provides its
nice interpretation as an angular momentum due to (bound)
rotational motion. Ohanian [4] was the first to illustrate this
for the electromagnetic and the Dirac field. Secondly,
realizing spin as a bound current of angular-momentum
density, i.e., ∇ × S, is completely analogous to magnetism.
There, except the free currents we also have the bound
currents M⃗b ¼ ∇ × M⃗ (associated with some magnetiza-
tion density M⃗), both of them sourcing the magnetic field.
The same applies here, where except the free (canonical)
current of four-momentum we include the bound current,
which is spin angular momentum.
In the presence of a gravitational field,Θμν is identified [5]

with the (metric) Hilbert energy-momentum tensor T H
μν ¼

2 ∂L
∂gμν

þ gμνL. Moreover, since, at the quantum level, equa-

tions of motion are satisfied in correlators up to contact
terms, the energy-momentum tensor redefinition modifies
the Ward identities in those contact terms exclusively.
Overall, symmetry seems to naturally divide angular

momentum into two complementary parts: orbital and spin
angular momentum. The first reflects motion inside the
target space and is thus of kinematic character, while the

1This form becomes manifest if we consider the density of the
associated spin pseudovector Sμ ¼ 1

2
ϵμνρσuνSρσ, where uμ is the

four-velocity. We will introduce this vector in the next section.
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second involves some kind of internal (rotational)
motion and is thus dynamic with respect to, e.g., external
spacelike fields.

III. SPIN-ORBIT DUALITY

In that sense, this kinematic-dynamic complementarity
should also have a geometric point of view. A simple take,
in that respect, is that kinematics in the theory may as well
be defined as the projection along a kinematic four-vector,
e.g., the four-momentum. Dynamics should be whatever
remains from that projection.

A. (1 + 3) decomposition

In four-dimensional spacetime, this projection is the
(1þ 3) decomposition of tensors. With respect to a timelike
four-momentum pμ, where p2 ¼ −m2, we may decompose
the flat metric into a parallel and a normal tensor part,
i.e., ημν ¼ pμpν=p2 þ hμνðpÞ, that naturally defines the
projection tensor

hμνðpÞ≡ ημν −
pμpν

p2
ð3:1Þ

which projects normal to pμ. Then, a general second-order
tensor X in flat space can be (1þ 3)-decomposed as

Xμν ¼
1

p4
ðXρσpρpσÞpμpν þ

1

p2
ðhμρXρσpσÞpν

þ 1

p2
ðhνσXρσpρÞpμ þ hμρhνσXρσ: ð3:2Þ

When, in particular, X is a bivector, then Xμνpμpν ¼ 0.
In this case, we may define the vector

Eμ ¼ hμρXρνpν ¼ Xμνpν; ð3:3Þ

and, also, since ðhμρhνσXρσÞpμ ¼ 0, another one as

hμρhνσXρσ ¼
1

p2
ϵμνρσpρHσ ⇒ Hμ ¼ pν ⋆ Xμν; ð3:4Þ

where ⋆Xμν ¼ 1
2
ϵμνρσXρσ is the Hodge-dual tensor, so that

X may be expressed as

Xμν ¼
1

p2
ðEμpν − Eνpμ þ ϵμνρσpρHσÞ: ð3:5Þ

We call Eμ and Hμ the electric and magnetic part of X,
respectively, since, at the rest frame, X takes the familiar
form of the electromagnetic tensor, with Ei playing the role
of the electric field and Hi that of the magnetic field.
Conversely, the traditional electric and magnetic fields may
be realized as the distinguished tensor parts of the electro-
magnetic tensor under the (1þ 3) decomposition.

Naming

Eμpν − Eνpμ

p2
≡ Eμν;

ϵμνρσpρHσ

p2
≡Hμν; ð3:6Þ

such that Xμν ¼ Eμν þHμν, we observe that, by
construction,

pμ ⋆ Eμν ¼ 0 and Hμνpν ¼ 0; ð3:7Þ

which actually resembles the Helmholtz decomposition
of vectors in R3 into curl-free and divergence-free parts,
respectively. In fact, generalizing from vectors to differ-
ential forms on (pseudo-)Riemann manifolds, this (1þ 3)
decomposition is a Hodge decomposition. Eμν is the
projection of the bivector Xμν along the four-momentum
pμ, while Hμν is the complementary normal projection. So,
more or less, Eμν and Hμν may be understood to represent
the kinematic and dynamic character of Xμν, respectively.
Angular momentum is a bivector and, hence, it can be

(1þ 3)-decomposed, accordingly [6]. In that sense, since
orbital and spin angular momentum reflect too a kind of
kinematic-dynamic complementarity, we may wonder
whether they fit into the structure of the Hodge decom-
position. If they do, then the orbital part should be
Lμν ¼ Eμν and the spin part Sμν ¼ Hμν, satisfying the
Hodge structure (3.7). Indeed, this is exactly what happens.

B. Angular-momentum decomposition

Assuming a certain massive field configuration of
four-momentum pμ, we decompose with respect to
this four-momentum, the magnetic part of total angular
momentum reading

Hμ ¼
Z
R3

pν ⋆Mμν ¼ pν ⋆ Sμν; ð3:8Þ

which involves only spin, since pν ⋆Lμν ¼ 0 identically,
using the momentum-space generator Lμν ¼ xμpν − xνpμ.
Of course, this integrates over three-space to yield the
condition

pν ⋆ Lμν ¼ 0; ð3:9Þ

in terms of total quantities, i.e. that the magnetic part of
orbital angular momentum vanishes. In turn, the electric
part reads

Eμ ¼ Mμνpν ¼ ðLμνpν þ SμνpνÞ; ð3:10Þ

where only the orbital part is, in general, nonzero. The spin
electric part is obscure, in the sense that we cannot
immediately tell whether it vanishes or not. On the other
hand, according to the idea that spin and orbital angular
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momentum are complementary, and since the magnetic
part of the latter vanishes identically, we would expect
that the spin electric part also vanishes, Sμνpν ¼ 0.
Indeed, since SμνSμν for a field (or fields) q is an invariant,
then its derivative with respect to any affine parameter τ
should vanish,

0¼ d
dτ

ðSμνSμνÞ
¼2SμνṠμν

¼−4Sμν
Z
R3

∂L
∂q̇

�
∂L
∂q

xμpνqþ ẋμpνqþxμpνq̇

�
; ð3:11Þ

where we used the angular-momentum conservation
law (2.6), Ṡμν ¼ −L̇μν, translation invariance, ṗμ ¼ 0,
and the Lagrange equations of motion. Next, we note that
the angular-momentum conservation law, (except when
Ṡμν ¼ L̇μν ¼ 0), states

−Ṡμν ¼ L̇μν ≠ 0; ð3:12Þ

which implies that four-velocity uμ ≡ ẋμ and four-
momentum are not generally parallel. Hence, the second
term in (3.11) does not vanish identically. As a matter of
fact, none of the three terms in that equation is a priori zero.
Therefore, it must be that

Sμνpν ¼ 0: ð3:13Þ

Equivalently, given that this implies ðS0μÞþ ¼ 0 in the rest
frame and that the spin tensor has six antisymmetric
components in total, we could have just employed
Lorentz symmetry to achieve all this. This would look
like an arbitrary choice, but this is not so since it has been
shown [7,8] that this condition defines a unique center-of-
mass worldline. In fact, this constraint goes by the name
supplementary spin condition and has been derived in
various ways. One that is similar to the above can be found
in [9]. The oldest proof dates back to Pryce [7] and
Beiglböck [8], in an effort to describe the relativistic
center of mass. Subsequent works reach the same result
[10], while a review of the various points of view can be
found in [11]. Note, also, that since most of those proofs do
not assume translation invariance, they are more general
than ours and, hence, (3.13) holds just in the presence of
Lorentz symmetry.
Therefore, orbital and spin angular momentum decouple

geometrically (but not dynamically!), in the sense that they
are independent parts of a unified algebraic structure,

fpν⋆Lμν ¼ 0; Sμνpν ¼ 0g; ð3:14Þ

which, as shown, is a Hodge decomposition. To get a better
grip on the decoupling of angular momentum under this

decomposition, we notice that, in the rest frame Σþ,
equations in (3.14) imply ðLijÞþ ¼ ðS0iÞþ ¼ 0, so that

Mμν ¼
�

0 L0j

Li0 Sij

�
þ
: ð3:15Þ

In this picture, boosts are generated solely by orbital
angular momentum and spatial rotations by spin. Or, in
the words of relativistic kinematics, in the rest frame, the
particle only boosts along spatial dimensions and sees a
spacelike field, which is its spin angular momentum.

C. Spin condition

The use of the constraint Sμνpν ¼ 0 throughout the
diverse literature is, usually, to eliminate unphysical
degrees of freedom. Here, it does more than that. That
is, as with (3.4), it implies that the spin tensor can be
deconstructed as

Sμν ¼ −
1

p2
ϵμνρσWρpσ; ð3:16Þ

whereWμ makes sense here only as a spacelike vector, i.e.,
Wμpμ ¼ 0. The factor −1=p2 is just a convenience, for this
expression to be reversed as

Wμ ¼
1

2
ϵμνρσSνρpσ; Wμpμ ¼ 0: ð3:17Þ

Wμ is, in fact, proportional to a spin pseudovector,
Sμ ¼ 1

2
ϵμνρσSνρuσ , the two vectors related, in the rest frame,

asWμ ¼ ð0; mSiÞþ. It is, also, easy to check that 12 SμνSμν ¼
SμSμ ≡ S2 and, more importantly,

W2 ¼ m2S2: ð3:18Þ

In fact, we have just reached the contact point between the
classical and quantum theory; the rest-frame vector Si and
the invariant S2, lifted as quantum operators acting on states
in a Hilbert space, define the eigenvalue problem which
makes sense out of the usual particle spin.
Moreover, we notice thatWμ is exactly the magnetic part

of the angular momentum tensor, (3.8); actually, spin being
packaged into the magnetic part Hμ ¼ Wμ of total angular
momentum is the whole point of the Hodge decomposition.
Of course, Wμ is not just any vector; it is the famous
Pauli-Lubanski pseudovector. In the level of the algebra,
in the rest frame, we have Wμ ¼ ð0; mSiÞþ, implying
½Wi;Wj� ¼ imϵijkWk, which is an enveloping algebra of
½Si;Sj� ¼ iϵijkSk that defines the SO(3) little group of
SO(1,3). WμWμ, along with PμPμ, are the unique
Casimir elements of the Poincarè algebra. This is why
all irreducible unitary representations of the Poincarè group
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are labeled exclusively by their mass and spin. In a
quantum theory of massive states jm; si, of mass m
and spin s, since Ŵ2 ¼ m2Ŝ2, we have the eigenvalues
Ŵ2jm; si ¼ m2ℏ2sðsþ 1Þjm; si. Eventually, the natural
appearance of the Pauli-Lubanski pseudovector in the
Hodge decomposition of angular momentum as its mag-
netic part may serve as another definition of this vector.

D. An electric-magnetic duality

The statement that spin and orbit decouple geometrically
under the Hodge decomposition is just an expression for the
structure (3.14), fpν⋆Lμν ¼ 0; Sμνpν ¼ 0g. For the mind
that always seeks symmetry, a natural observation here is
that this structure is invariant under the exchange between
the magnetic and electric part of angular momentum,
Hμ ¼ pν⋆Sμν and Eμ ¼ Lμνpν. That is,

Lμν ↦ ⋆ Sμν; Sμν ↦ ⋆ Lμν; ð3:19Þ

is an automorphism of this structure. This symmetry raises
the question of whether this automorphism yields a mean-
ingful duality of the theory as a whole. Another strong
motive to look into this is that Hodge decomposition of
angular momentum poses a striking resemblance with
electromagnetism, which enjoys the electric-magnetic dual-
ity; this is really the exchange between the associated
electric and magnetic parts of the electromagnetic field-
strength bivector. The resemblance is especially manifest in
the rest-frame representation of (3.15). From this perspec-
tive, it is more than natural to ask whether such a duality
between orbital and spin angular momentum represents a
meaningful concept.
Electric-magnetic duality is the statement that Maxwell’s

equations are invariant under the exchange of fields
ðE⃗; B⃗Þ ↦ ðB⃗;−E⃗Þ. Equivalently, in U(1) pure gauge
theory, where Lorentz invariance is manifest, the equations
of motion (and Bianchi identity),

∂μFμν ¼ 0; ∂μ ⋆ Fμν ¼ 0; ð3:20Þ

where ⋆Fμν ¼ 1
2
ϵμνρσFρσ is the Hodge-dual strength, are

invariant under the map

Fμν ↦ ⋆Fμν; ⋆Fμν ↦ −Fμν: ð3:21Þ

The negative sign in the second case is because ⋆2 ¼ −1 in
a four-dimensional Lorentz manifold. An associated map
holds between electric and magnetic source currents, if
those are present in the theory, and overall this duality is an
honest symmetry of electromagnetism. In that respect, there
is a sensible analogy with angular momentum,

Mμν ↦ ⋆Mμν; ⋆Mμν ↦ −Mμν; ð3:22Þ

since, given Hodge decomposition, this actually implies
the map fLμν ↦ ⋆Sμν; Sμν ↦ ⋆Lμνg,2 which is the sug-
gested structural symmetry (3.19). We shall call this the
spin-orbit duality. Again, this map leaves the geometric
structure (3.14) intact,

pν⋆Lμν ¼ 0 ↦ Sμνpν ¼ 0

Sμνpν ¼ 0 ↦ pν⋆Lμν ¼ 0; ð3:23Þ

which was the original motivation to investigate this
duality, in the first place. Under this map, conservation
of total angular momentum,

Ṁμν ¼ L̇μν þ Ṡμν ¼ 0 ↦ ⋆Ṁμν ¼ 0 ⇔ Ṁμν ¼ 0; ð3:24Þ

remains invariant, which indicates that this could indeed be
a symmetry of the associated conservation law. In turn, in
order to test the conservation law of the associated currents,
in accordance with the map (3.19), we consider the (more
fundamental) map

Lμν ↦ ⋆Sμν; Sμν ↦ ⋆Lμν; ð3:25Þ

which exchanges the representations of Lorentz generators
or, equivalently, maps M ↦ ⋆M. Here, of course, the
action of those generators on fields is understood. It is easy
to see that this results in a map for densities,

Lμν ↦ ⋆Sμν; Sμν ↦ ⋆Lμν; ð3:26Þ

and current densities,

Lρμν ↦
1

2
ϵμναβSρ

αβ; Sρμν ↦
1

2
ϵμναβLρ

αβ; ð3:27Þ

under which the general conservation law,

∂ρMρμν ¼ ∂ρðLρμν þ SρμνÞ
¼ 0 ↦ ϵμναβ∂ρMρ

αβ

¼ 0 ⇔ ∂ρMρμν ¼ 0; ð3:28Þ

remains invariant. Therefore, although interchanging inter-
nal with external degrees of freedom at best seems uncon-
ventional, spin-orbit duality respects Lorentz symmetry.
In fact, this is just the inverse Noether’s theorem [12]:
conserved quantities coming from conservation laws are

2In fact, the duality map is true up to a sign, i.e., Mμν ↦
�ð⋆MμνÞ etc. Equivalently, Lμν↦�ð⋆SμνÞ and Sμν↦�ð⋆LμνÞ.
We adopt the positive sign as our convention, without any loss
of generality. This choice produces orientation-related minus
signs throughout this article, which however are physically
unimportant.
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generators of infinitesimal symmetry transformations.3

Hence, since angular momentum is conserved in the dual
theory too, it still corresponds to a continuous symmetry.

1. Invariance of the Lorentz Algebra

In the level of the algebra, as expected from preservation
of Lorentz symmetry, the structure of the soð1; 3Þ algebra
is invariant under the spin-orbit duality. That is,
schematically,

½M;M� ¼ ηMþ ηM − ηM − ηM ↦ ½M̃; M̃�
¼ ηM̃þ ηM̃ − ηM̃ − ηM̃; ð3:29Þ

where M̃ ¼ ⋆M. Nonetheless, it is instructive to see the
dual algebra through the eyes of the initial theory. That is,
we replace for the original generators in the dual algebra,
M̃ ¼ ⋆M,

½Mμν;Mρσ� ¼ ηαβϵβνρσMαμ − ηαβϵβμρσMαν: ð3:30Þ

This is the Lorentz algebra in the dual theory, but in terms
of the generators of the initial theory. Therefore, in terms
of the original generators, the duality map implies, for
example,

½M01;M02� ¼ −M12 ↦ ½M01;M02� ¼ M30;

½M01;M23� ¼ 0 ↦ ½M01;M23� ¼ 0; ð3:31Þ

where same commutators project onto Hodge-dual gen-
erators across the dual pictures, up to an orientation-related
change of sign. Again, this twisted dual picture does
certainly not mean that Lorentz symmetry is lost; spin-
orbit duality preserves the conservation of the angular-
momentum current, which yields that Lorentz symmetry
must still be present. What happens is that Hodge duality,
M ↦ ⋆M, shuffles the generators (not changing them per
se) and so their Lorentz algebra shifts its basis. Indeed,
the Hodge star operator is a linear map that just takes an
orthonormal basis into an orthonormal basis. Hence, Hodge
duality is an automorphism of their algebra. This is also
reflected in the two Casimir elements of the Lorentz algebra
which are left invariant, again up to a change of sign,

M2 ↦ −M2

⋆MM ↦ −ð⋆MMÞ: ð3:32Þ

An equivalent, more geometric way to see that this an
automorphism is to consider the constrained Lorentz
group SOþð1; 3Þ as a manifold. Since boosts are the
homogeneous space SOþð1;3Þ=SOð3Þ≅H3≅R3 and rota-
tions are SOð3Þ ≅ RP3, then SOþð1; 3Þ ≅ RP3 × R3. In
terms of the SOþð1; 3Þ group manifold, spin-orbit duality
M ↦ ⋆M, which is an exchange between boost and
spatial-rotation generators, is realized as an (orthonormal)
swapping between timelike planesM0i and spacelike planes
Mjk. Therefore, the duality is an isomorphism between
spaces RP3 and R3, implying an overall isomorphism

RP3 × R3 ↦ R3 × RP3; ð3:33Þ

which leaves the product space RP3 × R3 topologically
invariant.
In the case of a Lorentz-invariant theory, conservation

of angular momentum under the spin-orbit duality, i.e.,
the invariance (3.28), is the only conservation law whose
invariance we have to investigate. In a Poincarè-invariant
theory, however, we also ought to study whether the
isoð1; 3Þ algebra and conservation of energy-momentum
remain invariant. In our case, we do have to do this, because
the duality acts on orbital and spin angular momenta, which
depend explicitly on the energy-momentum density, i.e.
∂ρLρμν ¼ −∂ρSρμν ¼ T μν − T νμ, and, thus, conservation of
the energy-momentum current is at stake. As it turns out,
energy and momentum are still conserved in the dual
picture but, this time, the proof is a bit more elaborate
and, hence, we present all its details in Appendix B 1.
The bottom line is that translations are still a symmetry
in the dual theory and this duality is enjoyed by the
more-constrained class of Poincarè-invariant massive
field theories.

E. Dual momentum and position

So we have seen the way angular momenta transform
under the proposed duality, which was the very inspiration
for this duality to begin with. On the other hand, orbital
angular momentum itself is really the exterior algebra of
position and momentum and, thus, a more fundamental
map must be implied for those quantities.
Taking up first the simplest of the two, four-momentum

should stay a four-momentum. This is not a physical
assumption, nor an axiom of any sort, but a consequence
of the nature of the spin-orbit duality. Let us explain. If we
call H≔ ðS;L;⋆Þ¼ðpν⋆Lμν¼0;Sμνpν¼0Þ the (Hodge)
structure on the cotangent bundle T�M, then the duality
may be defined as an endomorphism F on H,

F∶ H ↦ H; ð3:34Þ

which is also an isomorphism (since it is bijective) and,
hence, an automorphism. If four-momentum transforms
under F into a general four-vector p̃μ, then the map ofH is

3To be precise, there is a couple of obvious assumptions to this
inversion. The first is that our system should be Hamiltonian,
which it is. The second assumption is that the conserved
quantities are nondegenerate, which, at least in this case, they
are. This is, of course, the case, since the dual conserved
quantities are, as a final set, the same as the ones in the initial
theory: the six components of total angular momentum.
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0 ¼ Sμνpν ↦ p̃ν⋆Lμν ¼! 0: ð3:35Þ

This remains an automorphism, if and only if p̃μ ∝ pμ.
The simplest example is dilations p̃μ ¼ λpμ, λ∈R. In the
general case, though, it may be p̃μ ¼ fpμ, with f a scalar
function of a general argument, which, by the way, also
respects the form of the projection tensor hμνðpÞ ¼
gμν − pμpν=p2. This last remark is equally important,
since H is actually a Hodge decomposition, which, in this
context, is a (1þ 3) decomposition, which, in turn, relies
entirely on hμνðpÞ. In any case, as we are about to see, pμ

and xμ are entangled under the map F∶ Lμν ↦ ⋆Sμν and,
thus, a transformation p̃μ ¼ fpμ would just parametrize
xμ ↦ 1

f x̃
μ, whatever x̃μ is. Hence, without loss of general-

ity, we may as well choose f ¼ 1 and set

F∶ pμ ↦ pμ; ð3:36Þ

to make everything prettier. Hence, four-momentum stays
the same under the duality.
Of course, as with angular momentum in (3.25), this

is taken to imply a more fundamental map, that of
the translation generators, Pμ ↦ Pμ. Therefore, it is now
straightforward to check that the Poincarè algebra remains
intact under the spin-orbit duality, something that should
have already been anticipated from the preservation of the
energy-momentum current in the dual theory. The proof is
analogous to that of the invariance of the Lorentz algebra
and is presented in Appendix B 2.
To find how four-position transforms, we consider the

original map between Lμν ↦ ⋆Sμν. In fact, we actually
pick the corresponding map between densities, Lμν ↦ ⋆
Sμν, or the one between generators, xμpν − xνpμ ¼ Lμν ↦
⋆Sμν (where their action on fields is understood), which,
given that four-momentum does not change, yield

hμ ↦ h̃μ ≡Wμ

p2
: ð3:37Þ

Here, hμ ≡ hμνðpÞxν is the spacelike part of the four-
position, the latter being (1þ 3)-decomposed with respect
to four-momentum as

xμ ¼ ðx · pÞpμ

p2
þ hμνðpÞxν ≡ yμ þ hμ; ð3:38Þ

where we also defined the timelike part yμ ≡ ðx · pÞpμ=p2.
Accordingly, Sμν ↦ ⋆Lμν leads to Wμ ↦ W̃μ ≡ −p2hμ.
Hence, the dual spacelike position h̃μ is defined by the
Pauli-Lubanski vector Wμ (i.e., the spin and mass) of the
initial theory and, conversely, the dual Pauli-Lubanski
vector W̃μ is defined by the position hμ of the initial
theory. Had we let for a transformation pμ ↦ p̃μ ¼ fpμ,
then the right-hand side of the map (3.37) would simply

acquire a factor of 1=f, which makes obvious our freedom
to conveniently set f ¼ 1. In any case, since Wμpμ ¼ 0,
this is a map between spacelike objects, which in the rest
frame reads

xið¼ hiÞ ↦ x̃ið¼ h̃iÞ≡Wi

p2
; ð3:39Þ

where we did not assign any subscripts since we always
refer to the rest frame when we talk about spatial four-
vector components.
Exactly because orbital angular momentum is defined on

the exterior algebra of position and momentum, the map of
the spacelike four-position hμ is all the information we can
extract from the spin-orbit duality. That is, because it is
really Lμν ¼ hμpν − hνpμ, then the duality Lμν ↦ ⋆Sμν
deals only with hμ and poses no restriction on the timelike
part, yμ, whatsoever. Therefore, since pμ ↦ pμ, we may as
well take the four-position part that is parallel to the four-
momentum to stay the same, without loss of any generality.
This is the statement that

yμ ↦ yμ: ð3:40Þ

Thus, for example, in the rest frame, this implies ðx0Þþ ≡
x0 ↦ x0 and the duality is

xμ ¼ yμ þ hμ

¼
�
x0

0

�
þ
þ
�

0

xi

�
þ
↦

�
x0

0

�
þ
þ
�

0

Wi

p2

�
þ

¼ x̃μ: ð3:41Þ

In a general frame, we acquire

xμ ¼ yμ þ hμ ↦ x̃μ ¼ yμ þWμ

p2
; ð3:42Þ

where the dual position is broken down into timelike and
spacelike parts, in a natural manner. It is straightforward to
check that, given this map for the four-position, a full circle
of the spin-orbit duality back to the initial theory, i.e.,
Lμν ↦ ⋆Sμν ↦ −Lμν ↦ −ð⋆SμνÞ ↦ Lμν, is satisfied in
every step of the way, as it should. In fact, this circle
is already obvious through the map of the Lorentz
algebra (3.29), a situation presented in Fig. 1.
The first interesting fact coming out of the four-position

map (3.42) is that, in a general frame Σ, the dual spacelike
position defines a surface

ρ2 ¼ h̃μh̃μ ¼ −ðh̃0ΣÞ2 þ ðh̃iΣÞ2; ρ2 ≡W2

p4
; ð3:43Þ

which is a three-dimensional one-sheet hyperboloid in
spacetime, a de Sitter world-tube of radius ρ. Hence, in
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the dual theory, the hyperspace normal to four-momentum
is a de Sitter space, whose curvature is dictated by the
Casimirs of the Poincarè algebra. In fact, this is the literal
manifestation of the spin-orbit duality where spin and
position exchange roles: what was before realized as a
(particular) spin vector, in the dual picture is a (particular)
spacelike position h̃μ living on a de Sitter surface.
In the rest frame, on the other hand, in view of (3.41) or

even (3.39), the dual theory sits exclusively on a two-sphere
of radius

x̃ix̃i ¼ h̃ih̃i ¼ ρ2: ð3:44Þ

As time evolves, this defines a cylindrical world-tube
in four-dimensional spacetime. Again, this is a particular
surface, since it is rendered of the two Poincarè Casimirs,
and is, thus, fixed. This radius, actually, turns out to be a
very special quantity, both in the context of the spin-orbit
duality and in relativistic mechanics. At this stage, though,
we just want to emphasize that the spacelike position-space
of the dual theory is a world-tube of radius ρ.4

At this point, we should make an important remark.
Throughout this section, four-position xμ could refer to
nothing else, other than the center of mass of the field
configuration. In fact, as already pointed out,

Lμν ¼ xμpν − xνpμ ¼ hμpν − hνpμ; ð3:45Þ

so that, actually, it is the spacelike hμ that represents the
center-of-mass position. This is an important realization,
because the very notion of the center-of-mass position is
obscure in a relativistic theory [13,14], while it is has long
been shown [7,15,16] that it is comprised not by one, but by
three objects: the canonical but noncovariant Newton-
Wigner center of mass, the noncanonical and noncovariant
Møller center of energy and the covariant but noncanonical
Fokker-Pryce center of inertia. Those are usually dubbed as
the relativistic collective coordinates. Here, hμ is identified
with the Fokker-Pryce four-vector, which makes sense
since that is the only collective variable that is covariant.
Indeed, the Poisson structure of (3.38) yields a noncanoni-
cal hμ as expected, a fact that is structural for the relativistic
angular momentum. What is the relation of the center of
inertia, hμ, with the (notion of) center of mass, is a question
that is naturally answered in the next section.
Coming back to the dual four-position x̃μ in (3.42),

we notice that, although dimensionally correct, its peculiar
form does not provide any deep insight. At least not
classically. Quantum-mechanically, as we will soon find
out, it has profound consequences. But in order to see
those, there is still one special limit of this duality left to
consider.

F. Self-duality

Since we are dealing with a duality transformation, we
may wonder what happens when nothing happens. That is,
what is the physical picture when the action of the spin-
orbit duality becomes trivial? This is the special occasion
when

Mμν ¼ ⋆Mμν; ð3:46Þ

which, of course, since Hodge decomposition decouples
spin and orbit, is the statement that

Lμν ¼ ⋆Sμν: ð3:47Þ

Obviously, this is solved to give the expressions (3.37)–(3.42)
but this time as equations and not as maps, implying

hμ ¼ h̃μ ¼ Wμ

p2
: ð3:48Þ

This is understood as follows. While the duality transforms
the spacelike four-position hμ (which in principle spans all
spacetime) into its dual counterpart h̃μ ¼ Wμ=p2, when we
reach the exact value hμ ¼ h̃μ ¼ Wμ=p2 the duality becomes
the trivial map. Therefore, actually, for a general frame Σ,
any hμ gets mapped except those that live on a de Sitter
world-tube,

ρ2 ¼ hμhμ ¼ −ðh0ΣÞ2 þ ðhiΣÞ2; ρ2 ¼ W2

p4
; ð3:49Þ

FIG. 1. Given the spin-orbit duality map F, angular momentum
needs a quadruple action of F in order to return to its initial form,
i.e., Lμν ↦ ⋆Sμν ↦ −Lμν ↦ −ð⋆SμνÞ ↦ Lμν. The same is ob-
vious, through the Lorentz algebra duality map (3.29). Here, we
symbolically add a minus sign in front of the theory, depending
on which step of the map sequence it is.

4Note that hμhμ ¼ c2, for a real c, in the initial theory too. That
is, the initial spacelike position sits in a three-dimensional de
Sitter submanifold too. However, the situation is different now.
First, c may anything in the initial theory, i.e., the center of mass
may as well be anywhere in spacetime. Second, c is a Lorentz
invariant quantity but, in general, not a constant; it may be a
function of an affine parameter. Hence, all in all, in the initial
theory spacetime foliates into de Sitter subspaces of various radii
and hμ effectively parametrizes all four-dimensional space.
Actually, we will soon discover that this is true up to a minimum
radius. Anyway, this contrasts the dual theory where h̃μ lives
on a de Sitter world-tube of fixed radius, which yields a duality
that effectively maps a four-dimensional region onto a three-
dimensional one. That is, much like a hologram.
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on which angular momentum is self-dual and the spin-orbit
duality is trivial. At the same time, this tube represents a
natural boundary around the (center of inertia of the) massive
configuration. All this is remarkable because, as shown
in (3.43), the dual configuration lives on such a surface,
which implies that the duality does not only reflect a
qualitative exchange between spin and spatial degrees of
freedom, but also transforms between complementary
regions of spacetime. In the rest frame, the same radius,

ρ ¼
ffiffiffiffiffiffiffiffi
xixi

q �
¼

ffiffiffiffiffiffiffiffi
hihi

q
¼

ffiffiffiffiffiffiffiffi
h̃ih̃i

q �
¼

ffiffiffiffiffiffiffiffi
x̃ix̃i

q
¼

ffiffiffiffiffiffiffi
W2

p4

s
¼ S

m
;

ð3:50Þ

defines a two-sphere around the center of inertia, while
S ¼

ffiffiffiffiffiffiffiffi
SiSi

p
is understood. Eventually, as time evolves, this

defines a flat world-tube in four-dimensional spacetime; it is
this locus—the surface of theworld-tube—where self-duality
of angular momentum occurs. Those induced world-tubes,
along with the basic fact that jh⃗j ¼ ρ defines a boundary
around the massive configuration, are explained in Fig. 2.
But this is a striking result: ρ is the so-called Møller

radius [16]. Given that in a relativistic system with nonzero
spin there is no canonical four-position that describes
the center of mass [7]—but only pseudo-worldlines which
depend on the chosen inertial frame—Møller showed that
all those pseudo-worldlines fill in a world-tube of an
invariant transverse radius ρ, exactly like the one we found.

The geometric center of the tube is the worldline of the
Fokker-Pryce center of inertia, which, in our context, is the
spacelike four-position hμ. This world-tube defines a region
of noncovariance of the center-of-mass worldline and
imposes a limit on the localization of the canonical
center-of-mass. In other words, the sought-for center of
mass may be regarded as a fuzzy notion, an abstraction
enveloped inside that world-tube [14,17]. It has, also, been
shown that the same ρ is the minimum radius of a volume
that a spinning relativistic body has to have, in order not to
rotate with a superluminal velocity. In fact, if the material
volume of a rotating system has a radius smaller that than ρ,
then there are frames where energy is not positive-definite,
which renders this radius a reduction of the energy
conditions of general relativity down in flat spacetime [18].
Quantum-mechanically, Møller radius is an operator that

acts on a massive state jm; si, reflecting the eigenvalue

ρ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 1Þp

ℏ
m

; ð3:51Þ

which is of the order of the Compton wavelength,
λC ¼ ℏ=m, of the associated field configuration. In other
words, the configuration travels through spacetime span-
ning a world-tube of radius ρ ≈ λC, which envelopes its
(center-of-mass) position. Therefore, this world-tube not
only encloses all frame-dependent (pseudo-)worldlines of
the center-of-mass, but is also a region where relativistic
(classical) physics seizes to be valid, since localization in

FIG. 2. On the left: in the rest frame, the center-of-inertia spatial vector xi ¼ hi is ambiguous under redefinition of the coordinate
origin, here, e.g., ðPOÞ, ðPO0Þ, and ðPO00Þ. The statement xixi ¼ hihi ¼ ρ2 means that all those vectors have the same length ρ. Putting
all the (infinite) choices of origins together (O;O0; O00;…), we obtain a two-sphere (pink sphere) of radius ρ ¼ S=m around the center of
inertia P. We call this the self-dual two-sphere, on which angular momentum is self-dual and the spin-orbit duality is the trivial map.
On the right: the upper graph shows the self-dual flat world-tube, carved by the self-dual two-sphere as time evolves in the rest frame Σþ.
The lower graph shows the self-dual de Sitter world-tube, in a general frame Σ. Both are of radius ρ. (For de Sitter, h3Σ ¼ 0 is taken so that
the throat at h0Σ ¼ 0 has radius ρ.) Whatever the frame is, the duality maps any hμ in the bulk spacetime (white), except the world-tubes’
surface (pink) where it becomes trivial.
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such small regions implies pair production; the notion of a
single, localized particle breaks down completely below the
Compton wavelength. All in all, the existence of the tube
reflects, both from a classical and quantum point of view, a
limitation in localizing the center-of-mass position. In that
respect, as we could have already guessed, the Møller
radius has been suggested as a candidate for an effective
ultraviolet (UV) cutoff [17]. As are about to see in the next
section, such a regularization comes up naturally in the dual
quantum theory.
Returning to our original cause, the surface of the self-

dual world-tube of a massive field configuration is, as said,
the locus where the duality itself becomes trivial. On the
other hand, the dual theory lives exactly on that tube,
which led us to understand the duality as a map between
complementary spacetime regions: the three-dimensional
world-tube versus the remaining four-dimensional bulk
spacetime. Clearly, this is the very definition of a hologram.
Before defending such claims, though, let us first take the
dual theory to the quantum level.

IV. NONCOMMUTATIVE DUAL THEORY

Thus far, besides the some-what surprising appearance
of the self-dual world-tube, we have not really looked into
the quantum aspects of the spin-orbit duality. Before doing
so, we notice that the hard core of this duality, which is the
Hodge (1þ 3) decomposition with respect to a timelike
four-momentum, may refer to either a collection of various
four-vectors (corresponding to various invariant masses) or
just one four-vector. In the quantum level, the former is
about the quantum field theory of multi-particle states (i.e.,
particles of different type) and the latter about the quantum
mechanics of single-particle states.5 Naturally, in order to
understand the primary impact of the duality on the
quantum regime, we assume a particular four-momentum
and single-particle states in a Fock space.
As usual, in the absence of any particular assumption,

relativistic quantum mechanics comes with the ordinary
Heisenberg algebra,6

½x̂μ; p̂ν� ¼ iημν; ½x̂μ; x̂ν� ¼ 0; ½p̂μ; p̂ν� ¼ 0; ð4:1Þ

which, in our context, is the algebra resulting from
canonical quantization of the position and momentum of
a massive configuration. Nonetheless, our setup is based on
the (1þ 3) decomposition with respect to four-momentum,

where four-position decomposes into its timelike and
spacelike parts, xμ ¼ yμ þ hμ. This results into a decom-
position of the Heisenberg algebra as well, the timelike part
defined by

½ŷμ; p̂ν� ¼ i
p̂μp̂ν

p2
; ½ŷμ; ŷν� ¼ 0; ½p̂μ; p̂ν� ¼ 0; ð4:2Þ

where p2 ¼ −m2 is a Poincarè Casimir element that
commutes with everything else and, thus, is treated as a
c-number. This algebra is a consequence of decomposing
the Poisson structure of position and momentum, a natural
quantization scheme given in Appendix C. More impor-
tantly, though, since yμ ↦ yμ and pμ ↦ pμ under the spin-
orbit duality, this subalgebra stays the same in the dual
theory. Hence, the duality map of four-position (3.42),
xμ ↦ x̃μ ¼ yμ þWμ=p2, implies that the dual four-
position operator X̂μ ¼ ŷμ þ Ŵμ=p2 satisfies the algebra

½X̂μ; X̂ν� ¼ −i
�

1

m4

�
ðŴμp̂ν − Ŵνp̂μ þ ϵμνρσŴρp̂σÞ;

½X̂μ; p̂ν� ¼ i
p̂μp̂ν

p2
; ð4:3Þ

where we renamed the dual operator ˆ̃xμ ≡ X̂μ, to avoid ugly
expressions. The rest of the commutators between oper-
ators are implied by the usual algebra of the Pauli-Lubanski
generator. This algebra is manifestly Lorentz and, also,
translation-invariant. Naively, one may think that, since
X̂μ ¼ ŷμ þ Ŵμ=p2, translations in dual space spoil the
position commutator but, as illustrated in Appendix B 1,
spin-orbit duality preserves translation invariance which
strongly suggests that this is not the case. Indeed, Ŵμ may
be the spacelike part of the dual position operator but, at the
same time, it is the Pauli-Lubanski operator of the initial
theory. In other words, it may pose as dual position but,
structurally, it behaves as Ŵμ. This means that, in fact, it
does not have a continuous spectrum but eigenvalues
accustomed to the particular configuration, it shifts only
as a Lorentz (pseudo-)vector (satisfying its defining algebra
½Ŵμ; Ŵν� ¼ −iϵμνρσŴρp̂σ) and it does certainly not change

as Ŵμ → Ŵμ þ Ŵμ
0 for some operator Ŵμ

0 ∝ 1̂. The part
that does shift as a translation in the dual position operator
is ŷμ, i.e., ŷμ → ŷμ þ ŷμ0 (the same as in the initial theory)
but this timelike part is not involved in the right-hand side
(rhs) of the dual algebra (4.3).
In the rest frame, as seen from (3.42) [or straight

away from (3.39)], the dual three-position is x̃i ¼
Wi=p2 ¼ mSi=p2, where the associated spin operators Ŝi

are the usual generators of the little group satisfying
½Ŝi; Ŝj� ¼ iϵijkŜk. This implies the subalgebra

5There is also the case when there are multiple four-momenta,
all corresponding to the same invariant mass, and, hence,
representing a multiparticle system of a single particle-type.
We leave this case aside to simplify the conversation, since that
does not change the quality of the algebraic arguments that
follow.

6We set ℏ ¼ 1 from now on, except at some cases where its
presence might be physically meaningful, e.g., when we want to
emphasize on the role of the Compton wavelength, λC ¼ ℏ=m.
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½X̂iþ; X̂
j
þ� ¼

�
1

m2

�
iϵijkŜk; ð4:4Þ

with X̂iþ being the rest-frame position operators.
Equivalently, this subalgebra is a reduction of the
Lorentz-invariant one above, (4.3), when the latter is
understood to act on states of vanishing three-momentum
jpi ¼ 0; si, i.e. hp̂ii ¼ 0, which serves as another definition
of the rest frame. The mass factor in the r.h.s. of the
algebra and the fact that X̂þ is a representation of the spin
operator Ŝ imply a fundamental scale which is defined by
the Casimir elements of the underlying spacetime algebra.
We illustrate this later on, when we present the induced
uncertainty relations.
Surprisingly, the expressions we found are not just any

kind of noncommutative algebras. The rest-frame spatial
algebra (4.4) is the so-called spin noncommutativity,
which has been constructed [19] and studied from various
points of view [20]. Hints that probably inspired such a
construction had already been given sometime ago by
Jackiw and Nair [21]. Not only that, the generic Lorentz-
invariant algebra (4.3) actually matches exactly what
was proposed in [22] and further studied in [23] as a
relativistic generalization of the preceding one,7 in pur-
suit of a consistent spin-noncommutative field theory
which respects Lorentz symmetry, as opposed to the
seminal noncommutative Lorentz-breaking theories [27].
In that line of work, a noncommutative Dirac equation
has been derived [24], while, also, this noncommutative
algebra came up naturally in quantum twistor theory [25]
and in the dynamics of spinning particles on curved
spacetime [26].

A. Noncommutative Wigner 3-spaces

As far as the second subalgebra in (4.3) is concerned, this
is the only difference between the aforementioned inves-
tigations on spin noncommutativity and our construction.
That is, in their case, the standard Heisenberg commutator
½x̂; p̂� ¼ iημν was assumed to be true, whereas, here, the
associated commutator ½X̂μ; p̂ν� ¼ ip̂μp̂ν=p2 was obtained,
not an assumption but merely a result of the (1þ 3)
decomposition. Regardless, one may wonder what is the
meaning of this odd-looking commutator. To have a chance
in spotting anything familiar we need a comparison with
quantum mechanics and, thus, we take the low-energy limit
to obtain

½X̂i; p̂0� ¼ −i
p̂i

p̂0
; ð4:5Þ

which is the rightful statement that the free particle
(i.e., ṗμ ¼ 0) moves at the expected three-velocity (up to
orientation, because of the minus sign), given its particular
four-momentum. This condition was, actually, introduced
by Newton and Wigner [28] in their effort to acquire a well-
defined position operator for massive relativistic particles.
Their operator was called the Newton-Wigner position
operator and its associated scheme the Newton-Wigner
localization [29]. The difference between the Newton-
Wigner theorem and our results, is that our position
operator does not commute with itself, i.e., (4.3), a state
of affairs that has actually been suggested as an improve-
ment of this kind of localization [30]. In any case, as we
show in Appendix D, the link of our noncommutative
structure with the Newton-Wigner operator already takes
place in the initial theory and it is, actually, irrespective of
the context of the spin-orbit duality.

B. Fuzzy de Sitter space

Even more surprisingly though, in view of the (1þ 3)
decomposition (3.5) of bivectors, the position subalgebra
in (4.3) actually implies the form

½X̂μ; X̂ν� ¼ −i
�

1

m4

�
Ŵμν; ð4:6Þ

where Ŵμν is the self-dual total-angular-momentum
operator,

Ŵμν ≡ Ŵμp̂ν − Ŵνp̂μ þ ϵμνρσŴρp̂σ ¼ M̂μνjE¼H: ð4:7Þ

This is the operator associated with a total angular
momentum Mμν which is self-dual, i.e., Mμν ¼ ⋆Mμν,
or, in other words, an angular momentum that has equal
electric and magnetic parts, i.e., Eμ ¼ Hμ ¼ Wμ. Of course,
being an angular-momentum operator, Ŵμν naturally sat-
isfies the soð1; 3Þ Lorentz algebra.
For one, this form of the position algebra resembles

most of the covariant noncommutative structures in the
literature [31] and most notably [32]. More importantly,
though, the fact that this position algebra projects onto a
SO(1,3) generator implies that the underlying space may
be equally seen as a three-dimensional noncommutative
de Sitter space. Whereas, indeed, in the previous section we
showed that the (classical) dual theory lives in a three-
dimensional de Sitter world-tube. Fuzzy de Sitter space
has been studied before, but usually in two and four
dimensions [33]. In any case, it is noteworthy that, except
being self-dual, this operator squares to zero identically,

Ŵμν ¼ ⋆Ŵμν and ŴμνŴμν ¼ 0: ð4:8Þ

7Notice, also, that, in order to match the conventions
of [22–26], our position commutator in (4.3) may be equivalently
expressed as ½X̂μ; X̂ν� ¼ ið 1

m2Þ 12 ϵμνρσ Ŝρσ − ið 1
m4ÞϵμνρσŴρp̂σ , up to

numerical prefactors for each of those papers. As we see in the
following section, in (4.7), the particular form presented here is
such that the rhs of this algebra conspires into a particular
operator of a very special meaning.
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Those are statements in the dual theory, where spin and
position exchange roles: what was before realized as a
(particular) spin vector, in this picture is a spacelike
position h̃μ living on a (particular) de Sitter world-tube.
Hence, self-duality selects a dual spin vector W̃μ such that
W̃μ=p2 ¼ h̃μ, where h̃μ ¼ Wμ=p2. The operator Ŵμν proj-
ects on such dual states and, since Ŵ2

μν ¼ 0, those are of a
vanishing total angular momentum.
Before digging any deeper, we feel we should pause to

appreciate all this. In our understanding, this is the second
striking result of the spin-orbit duality: the dual quantum
theory is noncommutative, a fact that came up in a
completely natural way. The only caveat one could impose
against the universality of this statement is that, from the
beginning, we have assumed a first-order action principle,
S ¼ S½q; ∂q�. But that should not pose a problem of any sort
since, first of all, the vast majority of the known field theories
are first-order, avoiding the usual pathology of vacuum
states whose energy is unbounded from below. Even for
higher-derivative theories, though, currents would just be
supplemented with additional terms, not altering the actual
conservation laws and the structural interplay between
spin and orbital angular momentum, showing, therefore,
no indication whatsoever that the spin-orbit duality would
cease to exist. It would be instructive to prove this rigorously.
One could also wonder whether us studying single-

particle states makes noncommutativity dedicated solely to
that particular case. But this too is not true. The reason we
chose single-particle states is really because, then, we are
dealing with quantum mechanics where a position operator
is a well-defined object in the underlying algebra, a state of
affairs that is simply not there for the quantum field theory
of multi-particle states. Of course, since quantum mechan-
ics is noncommutative, the same must hold for the
associated quantum field theory. In each case, the non-
commutative scale is set by the Casimir element p2 ¼ −m2.
At this point, we should note that we have not yet

mentioned anything about the usual Lagrange equations
of motion. We intentionally bring this up now that we have a
more complete view of the dual theory. For one, four-
momentum is invariant which implies that momentum space
stays the same. In that respect, invariance of the equations of
motion would imply that this duality is also a true symmetry
of massive Poincarè or Lorentz-invariant theories. On the
other hand, considering position space, we fail to see how a
map between a commutative and a noncommutative struc-
ture can be an honest symmetry. In any case, for now, we
hold on to the fact that spin-orbit duality maps the four-
dimensional bulk spacetime onto a noncommutative, three-
dimensional world-tube around the center of mass.

C. Fundamental scale and cutoff

The mass which characterizes the noncommutative
algebra is a Poincarè Casimir element and, therefore,

should always account for the physical, pole mass mP.
Hence, all this time we really meant p2 ¼ −m2 ¼ −m2

P.
This is the mass corresponding to external states, identified
with the pole in propagators. Naturally, for a free theory
this equals the bare mass m0 in the (bare) Lagrangian,
mP ¼ m0. In a fully-interacting theory, the mass gets
corrected and renormalized, while, depending on the
subtraction scheme, the renormalized mass, mR, may or
may not coincide with the pole mass. Still, whatever the
case might be, the Casimir element—and, thus, the funda-
mental scale—is always identified with the pole mass and
is, therefore, independent of the energy scale.8 Hence, this
is tantamount to setting the UV cutoff equal to mP,

ΛUV ∼mP ð4:9Þ

in the dual noncommutative theory. At the same time, a
finite noncommutative space implies also an infrared (IR)
cutoff, of the order of its radius. Hence, since both cutoffs
depend on the mass, there is a direct tension between them,
which is a nonperturbative manifestation of the UV-IR
mixing phenomenon [34,35]. Anyhow, it is intriguing
to investigate the impact of this peculiar cutoff on the
renormalization group, since it is at λC ¼ ℏ=m where
quantum effects begin to become important.

D. Fuzzy sphere

Interestingly, there is another way to view the
position commutator in (4.3). That is, the commutator is
equivalent to

½X̂μ; X̂ν� ¼ −i
�

1

m2

�
ðX̂μp̂ν − X̂νp̂μ þ ϵμνρσX̂ρp̂σÞ; ð4:10Þ

where, as it is easy to see, if we expand X̂μ ¼ ŷμ þ Ŵμ=p2,
and given the definition ŷμ ¼ ðx̂ · p̂Þp̂μ=p2, all terms
involving ŷμ cancel or vanish identically and we get back
to the original form (4.3). Of course, as explained
below (4.3), since those ŷ-terms do not really contribute,
despite appearances, the above commutator is (still) trans-
lationally invariant. The reason we expressed it that way is
that, now, a Lie-algebraic form is manifest. In fact, by
removing the third term in the rhs of the above expression
and taking four-momentum as a constant vector, then
the remaining algebra is associated with the so-called κ
deformations of the Poincarè Hopf algebra [36]; those
deformations did not originally preserved the Lorentz
algebra, as opposed to subsequent constructions [37].
When considered in the rest frame, i.e., when it acts on

8This makes sense, since, if the opposite was true, such a scale-
dependent noncommutative algebra would imply, as energy
grows, an ever-shrinking fundamental length. In turn, this would
also imply an ever-growing UV cutoff which, by its definition
and purpose, makes no sense either.
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states jpi ¼ 0; si such that p̂i ¼ 0 and p̂0 ¼ m can be
understood, the algebra effectively reduces to

½X̂iþ; X̂0þ� ¼ −i
�
1

m

�
X̂iþ; ½X̂iþ; X̂

j
þ� ¼ −i

�
1

m

�
ϵijkX̂

kþ:

ð4:11Þ

Again, if ½X̂iþ; X̂
j
þ� ¼ 0 was true, then we would have the

so-called κ-Minkowski spacetime [38] where the funda-
mental scale would be identified with κ ¼ m. Nonetheless,
the reason for reducing to the rest-frame is that the second
commutator above yields a very special kind of non-
commutative space.
As a matter of fact, there is an equivalent way to acquire

this algebra. Taking into account, one more time, that the
dual rest-frame position operator is X̂iþ ¼ −Ŵi=m2 ¼
−Ŝi=m, we realize that spin-noncommutativity (4.4) is,
equivalently,

½X̂iþ; X̂
j
þ� ¼ iλCϵijkX̂

kþ; ð4:12Þ

where we absorbed an orientation-related minus sign of the
rhs into the definition of the Levi-Civita symbol. Naively,
this algebra seems to break translation invariance, contra-
dicting the translationally invariant generic algebra (4.3)
and, equally, as restated, the fact that spin-orbit duality
preserves translation invariance. But, as both of those
arguments strongly suggest, no such breaking occurs.
That is, as was illustrated in and around (3.44), the dual
theory, in the rest frame, sits on a fixed two-sphere of the
Møller radius ρ, which means that rest-frame translations in
the dual theory are actually SU(2) rotations on a two-
sphere. And so (4.12), which is an enveloping algebra
of suð2Þ, is invariant under the action of its own elements.
In other words, since X̂iþ ¼ −Ŝi=m in the dual picture,
½X̂iþ; X̂

j
þ� ¼ iλCϵijkX̂

kþ is preserved under translations,
in the exact same manner that the little-group algebra
½Ŝi; Ŝj� ¼ iϵijkŜk is preserved under rotations. Notice that
this invariance is a property in the particular context of the
spin-orbit duality, where dual position realizes (i.e. it is a
label for) the spin vector of the initial theory. For a general
Lie-algebraic position algebra this, of course, is not true.
Given the exact structure of (4.12), this is not just any

position-dependent, Lie-algebraic noncommutative algebra
either. It is a fuzzy sphere [39] of radius

R⊛ ≡
ffiffiffiffiffiffiffi
X̂2þ

q
¼

ffiffiffiffiffiffi
Ŝ2

m2

s
¼ ρ ¼ λC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 1Þ

p
; ð4:13Þ

which is, as expected from (3.44), the Møller radius and, as
usual, Ŝi are understood as (2sþ 1)-dimensional operators
acting on a space of massive spin states, fjs;ms;migms¼þs

ms¼−s .
Then, the algebra (4.12) may, as well, be written as

½X̂iþ; X̂
j
þ� ¼

 
R⊛ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðsþ 1Þp !
iϵijkX̂

kþ; ð4:14Þ

which is a universal enveloping algebra Uðsuð2ÞÞ of the
suð2Þ algebra of the spin operators, ½Ŝi; Ŝj� ¼ iϵijkŜk, for

X̂iþ ¼ −
1

m
Ŝi ¼ −

R⊛ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 1Þp Ŝi: ð4:15Þ

Hence, the dual space is discrete, in the sense that the
spectrum of eigenvalues of the position operators X̂i is of
dimension 2sþ 1.

1. Dual dispersion rings

In fact, the fact that X̂iþ ¼ −Ŝi=m, or, in other words, that
the two noncommutative algebras

½X̂iþ;X̂
j
þ�¼ iλCϵijkX̂

kþ⇔ ½X̂iþ;X̂
j
þ�¼

�
1

m2

�
iϵijkŜk; ð4:16Þ

are equivalent, makes this fuzzy sphere of a quite special
kind. First, we understand that, in this case, a mean position
on the sphere makes sense, since

hX̂iþi ¼ −
hŜii
m

; ð4:17Þ

such that a configuration in some spin state has a particular
expected localization on it. Hence, except the inherent
scale given by the mass of the configuration, there is, at the
same time, a built-in orientation in the dual theory. This
localization, though, can be made more exact. That is, the
spin-noncommutative algebra, second of the two in (4.16),
implies an uncertainty relation

ΔX̂iþΔX̂
j
þ ≥

1

m2
jhϵijkŜkij; ð4:18Þ

where, for example, a state of maximal spin-projection
along the Z-dimension has

ΔXΔY ≥
s
m2

; ð4:19Þ

with s the spin of the field, while it holds that hẐi ¼ −s=m
and hX̂i ¼ hŶi ¼ 0. In fact, it may be that the mean values
of X̂ and Ŷ vanish, but since their dispersion is nonzero and
satisfies (4.19), then this inequality defines a (minimum)
radius in the X-Y plane, i.e. rXY ≥

ffiffiffi
s

p
=m. In order to

understand what this means, it instructive to become a bit
more specific and consider a spinor field representation of
spin s ¼ 1=2.
For the s ¼ 1=2 field, ΔSi ¼ hŜ2i i − hŜii2 ¼ s2 − hŜii2

and, thus, h bSzi ¼ −mhẐi ¼ s implies ΔSz ¼ ΔZ ¼ 0,
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which exactly localizes the configuration in the
Z-dimension.9 Therefore, because the configuration lives
on the fuzzy sphere, the radius rXY dictated by the
uncertainty relation (4.19) defines a ring on that sphere,
around the Z-axis. And since this sphere is of the Møller
radius, it is straightforward to check that the radius of the
ring must be

r2XY þ hẐi2 ¼ ρ2 ¼ sðsþ 1Þ
m2

⇒ r2XY ≡ ðrmin
XY Þ2 ¼

s
m2

;

ð4:20Þ

which is, indeed, the minimum value permitted by (4.19).
This is all depicted in Fig. 3(a). Overall, in the rest frame of
the dual theory, such a state of a field configuration is
understood to be a dispersed excitation along a ring on a
fuzzy sphere. Conversely, such a dispersion ring around the
Z-axis in the dual sphere, corresponds to a state of h bSzi ¼ s
in the initial theory.
Needless to say, analogous dispersion rings are dual

to maximal-spin states in the Y or X dimensions too.

However, when superposition of states is considered, a
somewhat different picture arises, where rings are replaced
with ribbons, as schematically visualized in Fig. 3(b).
Nonetheless, the analogy remains the same: states with
spin projections in one axis in the initial theory, correspond
to ribbons around the same axis in the dual fuzzy sphere.

V. A HOLOGRAPHIC INTERPRETATION

Nevertheless, exchanging between spatial and spin
degrees of freedom still sounds somewhat extraordinary
if not absurd. What does it really mean to have a dual theory
where what was before realized as an internal degree of
freedom is now an external one? To answer such questions,
we now attempt a full-scale interpretation of the spin-orbit
duality.
Let us, first, recap and see the big picture here. To keep

things simple, we go to the rest frame, where we understand
that the duality acts on a restricted range of the three-
position of the center of mass,

jx⃗j > ρ ¼ S
m
: ð5:1Þ

This restriction is because the spin-orbit duality naturally
selects the surface of a two-sphere of the Møller radius ρ
as its self-dual region, on which the duality becomes the
trivial map. Incidentally, as explained, relativity implies
noncovariance on and inside the ball of radius ρ, while
quantum mechanics poses the same limitation since at
ρ̂ ≈ λC pair-production comes up and the concept of
position breaks down anyway. In the dual theory, on the
other hand, the rest-frame three-position is

FIG. 3. Representations of two s ¼ 1
2
states in the dual fuzzy sphere of the Møller radius. (a) On the left: the dual picture of a maximal-

spin spinor-state with h bSzi ¼ −mhẐi ¼ s and, thus, h bSxi ¼ hX̂i ¼ hŜyi ¼ hŶi ¼ 0. This is a (yellow) ring around the Z axis, on which
the field excitation in dispersed, according to relations ΔXΔY ≥ r2XY and ΔZ ¼ 0. The ring is localized along the Z dimension on
hẐi ¼ s

m, sinceΔZ ¼ 0, where we enforced a positive sign just as a matter of taste; as stated, spin-orbit duality is true up to a sign. (b) On

the right: a superposition state with h bSxi ¼ hŜyi ¼ sffiffi
2

p and, thus, h bSzi ¼ 0. The example used is jsi ¼ ð1þi
2
Þjþi − ð iffiffi

2
p Þj−i, where j�i are

the basis vectors of spin projection along the Z. Ribbons have replaced rings, since now ΔX, ΔY, ΔZ ≠ 0.

9Of course, we should not be worried about the statement
that, given ΔZ ¼ 0, the configuration is localized along the
Z-dimension, since ΔX and ΔY are still nonzero. In other words,
the configuration is delocalized, with all its uncertainty dispersed
along a X − Y ring on the fuzzy sphere. This is depicted in
Fig. 3(a). Moreover, one could argue that, since h bSxi ¼ −mhX̂i ¼
hŜyi ¼ −mhŶi ¼ 0 imply ΔSx ¼ mΔX ¼ ΔSy ¼ mΔY ¼ s, the
naive product ΔXΔY ¼ s2=m2 contradicts the uncertainty rela-
tion (4.19), ΔXΔY ≥ s

m2. But, as exactly in standard quantum
mechanics, this is not the case: an uncertainty product is given as
an inequality with regard to the underlying algebra, e.g., (4.18),
not by multiplying individual dispersions.
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x̃i ¼ −
Si

m
⇒ x̃ix̃i ¼ ρ2 ¼ S2

m2
; ð5:2Þ

which says that the configuration lives exactly on that two-
sphere of the Møller radius ρ. Therefore, we deduce that all
three-position of the initial theory, except an open ball of
radius ρ, is mapped into the boundary two-sphere of that
very ball. In simple words, in the rest frame, the duality is a
map between complementary spacetime regions: the two-
dimensional sphere versus the three-dimensional bulk
spacetime. What is realized as spin in the bulk is orbital
angular momentum on the two-sphere and vice versa. In
particular,

Lμν ↦ L̃μν ¼ ⋆Sμν; ð5:3Þ

says, for example, that the (dual) z-position on the two-
sphere is given by the (initial) projection of spin in the bulk,
along the same dimension,

z̃ ¼ −
Sz
m
: ð5:4Þ

The significance of this statement, though, is better under-
stood in quantum mechanics. That is, as illustrated in the
last section, the associated state is defined by

hẐi ¼ −
hŜzi
m

and ΔXΔY ¼ r2XY ¼ hŜzi
m2

: ð5:5Þ

This reflect a dispersion ring of radius rXY, around the z
axis, on the dual fuzzy sphere, as depicted in Fig. 3(a).
But, in turn, such a dispersion ring implies orbital angular
momentum on the XY plane, or, in other words, a ΔLz
component on the fuzzy sphere; this can be understood
as the fact that the dispersion product ΔXΔY implies
the existence of an uncertainty ΔLzΔϕ, where Δϕ is the
angular position about the z axis, on the XY plane. Let us
rephrase: orbital angular momentum along an axis in the
two-sphere represents spin angular momentum, along the
same axis, in the remaining bulk three-space. Eventually,
this swapping between kinematic and spin degrees of
freedom is the very incarnation of the spin-orbit duality.
So let us generalize all this for any frame and make sense

of the situation. The duality is eventually a map between
complementary regions of spacetime. That is, between a
three-dimensional word-tube with radius of the order of
the Compton wavelength λC—around the center of mass
of the configuration—and the remaining four-dimensional
bulk spacetime. Spin and orbit degrees of freedom
exchange roles and what was before realized as spin is
now orbital angular momentum, i.e. L̃μν ¼ ⋆Sμν, which
makes an exact analogy with what was discussed in the
end of Sec. II where spin emerged as bound currents of
angular momentum. As a matter of fact, in the quantum
level, actual orbital-angular-momentum dispersion rings in

the (dual) noncommutative world-tube correspond to spin
of quantum states in the bulk (initial) theory. Needless to
say, all four-dimensional information being stored onto a
three-dimensional de Sitter surface (or a flat cylinder, in the
rest frame) is the very definition of a hologram. This state of
affairs naturally drive us to interpret spin-orbit duality as a
holographic map. External and internal degrees of freedom
in the bulk Minkowski space outside the world-tube—the
configuration properties that define scales larger than
λC—are inversely encoded onto this natural boundary.
And vice versa.
From this point of view, an exchange between internal and

external degrees of freedom when we shift between the dual
pictures—the one on the tube versus its higher-dimensional
projection—makes total sense. Spatial (orbit) degrees of
freedom in the bulk space (initial theory) could never
be mapped into spatial degrees of freedom on a lower-
dimensional surface, much like points in a vector space
cannot be stereographically projected down onto a lower-
dimensional subspace without overlapping. Whereas,
indeed, spin-orbit duality indicates that spatial degrees
of freedom are encoded as spin on the dual world-tube,
S̃μν ¼ ⋆Lμν. In reverse, orbital angular momentum on the
dual world-tube manifests as spin degrees of freedom in the
higher-dimensional bulk space, L̃μν ¼ ⋆Sμν, since kinemat-
ics on a compact surface may only provide bound currents
of orbital angular momentum with respect to the higher-
dimensional space in which the surface is embedded. Again,
those are the bound currents of the improved energy-
momentum current Θμν (which incorporates spin) in four-
dimensional Minkowski space. Hence, it looks like we are
dealing with a legitimate hologram and spin-orbit duality
should be probably understood as a realization of the
holographic principle [40].
Therefore, this duality may as well be seen as a link

between large and small scales, i.e. the bulk spacetime
and a de Sitter world-tube of the Compton scale. In turn,
since this world-tube is shown to be noncommutative, this
naturally suggests that, for a Poincarè or just Lorentz-
invariant quantum theory with massive fields of nonzero
spin, spacetime is quantized at the fundamental level.

VI. SUMMARY AND DIRECTIONS

Summarizing, a new duality was proposed in four-
dimensional flat space, which exchanges between spin
and orbital degrees of freedom. This was motivated by a
Hodge decomposition of the angular-momentum bivector
for massive fields, along which spin and orbital angular
momentum are Hodge duals of one another. The duality
respects Poincarè symmetry and was shown to transform
between complementary spacelike regions, projecting a
fixed three-dimensional de Sitter world-tube of the
Compton scale (around the center of mass) into the bulk
of four-dimensional spacetime and vice versa. This was
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interpreted as a realization of the holographic principle.
Surprisingly, the dual theory living on that tube turns out to
be noncommutative and entirely defined by the Casimir
elements of the Poincarè algebra. In fact, the pole mass is
the ultraviolet cutoff. Ultimately, this naturally suggests
that, for a Poincarè or just Lorentz-invariant quantum
theory with massive fields of nonzero spin, spacetime is
quantized at the fundamental level.
Before discussing any possible directions, we shall

underline a couple of facts. The first, obviously, is the
suggestion that a large class of field theories exhibit a
noncommutative spacetime. This is, of course, profound
because it implies that any such theory could, in principle,
be UV finite. The second point which we feel deserves
attention is the fact the central quantities predicted by the
duality—the world-tube radius and the noncommutative
algebra—are identified with objects already present in the
literature. Those would be the Møller radius and spin/
de Sitter noncommutativity. For one, the Møller radius
roots in both relativity and quantum mechanics and poses a
limitation in localization, which is perfectly in line with the
fact that spin-orbit duality becomes trivial on this exact
region. Second, while spin/de Sitter noncommutativity are
arbitrary constructions in the literature which serve as
consistent algebras that respect Lorentz symmetry (as
opposed to the seminal noncommutative Lorentz-breaking
theories), here they are derived as a natural feature of all
massive field theories with spin, without any sort of
assumptions. It is truly remarkable the way spin-orbit
duality provides an arena where all those concepts and
noncommutative algebras meet.

A. Discussion and ideas

So, first of all, let us make a comment on the bold
statement that spacetime is quantized. It is clear that spin-
orbit duality, among other points of view, serves as a link
between the large and small scales, implying that massive
fields with spin exhibit a noncommutative geometry at the
Compton scale. Nonetheless, it is not clear how to imple-
ment this in a field theory. Should we simply choose
an appropriate quantum field theory and consider it in a
spacetime quantized according to spin-noncommutativity?
Or, maybe, are there other objects that transform along,
according to the duality map? If the first case were true,
we would just employ the spin-noncommutative algebra
for a massive scalar or Dirac field in the presence of
a U(1) gauge field. Or the Proca theory. Or, even better, the
Abelian Higgs model [41]. Then, the Moyal product [42]
would be enforced and propagators would be calculated. In
that case, another privilege of this duality would be the
offer of the pole mass as a UV cutoff. In any case, the exact
application of the spin-orbit duality on noncommutative
field theory merits further investigation.
Next, we strongly believe that there should be some

sort of connection between the spin-orbit duality and

S-duality [43]. This is mostly because of the obvious
structural similarity between the spin-orbit and the
electromagnetic duality, the latter being a simple case
of the Montonen-Olive duality [44] of gauge theory,
which in turn is an example of S-duality. Another hint,
in this direction, is the tension that has been observed
between the electromagnetic duality and the separation
between spin and orbital angular momentum [45].
The simplest investigation to that end should probably
initiate by establishing a relation with the standard
electromagnetic duality of pure U(1) gauge theory.
Such an attempt, however, requires us generalizing the
spin-orbit duality for the case of massless fields.
In turn, employing the duality for the massless case is

not, in any way, guaranteed to work. Of course, if indeed
possible, that would let us consider the full conformal
group and investigate whether the duality holds for the
larger class of conformal field theories (CFTs). In such an
occasion, the presence of an intrinsic (noncommutative)
scale would maybe look incompatible with conformal
symmetry, but this most probably is a matter of the way
symmetry is implemented in quantum geometry [46]. In
any case, such a generalization seems impossible even from
its very first step, since the projection tensor hμνðpÞ ¼
ημν − pμpν=p2 of the (1þ 3) decomposition diverges when
we take the massless limitm → 0. However, we believe that
this limiting procedure is naive, as it is usually the case with
similar occasions in field theory, while probably the proper
way to go would be to shift to lightcone coordinates.
Speaking of generalizing the duality for larger symmetry

groups, another important matter we have not yet addressed
is supersymmetry. Both the Poincarè superalgebra and
Noether’s supercurrent conservation law seem to be invari-
ant under the spin-orbit duality, statements for which a
proof is sketched in Appendix E. Preservation of super-
symmetry would not only generalize the class of the dual
noncommutative spaces but, more importantly, it plays a
decisive role in the dynamics and stability of noncommu-
tative field theory [47]. Nevertheless, a more-formal proof
in Minkowski superspace should probably be pursued, an
analysis left for future investigation.
Anyhow, we suspect that the most interesting viewing

angle for this duality is string theory, where we would have
to work with reductions of the superstring in four dimen-
sions. The most prominent example would probably be the
quantization of D3-branes, although compactifications
and more-complex Hannany-Witten D-brane set-ups [48]
could also be considered. In any case, string theory seems
an appealing context for the duality due to various reasons.
One of them, is that, in a way, it involves the Møller radius
operator ρ̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðsþ 1Þp
ℏ=m in the disguise of the

Bogomol’nyi-Prasad-Sommerfield (BPS) bound, s ≤ m.
This yields ρ̂2 ≤ ðs=m2 þ 1Þℏ, which should be somehow
related to the fundamental string scale and, maybe,
correlated to string-theory uncertainty relations. Another
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obvious reason is the quantum geometry induced by open
strings on D-branes. Moreover, the fact that the dual rest
frame always hosts a fuzzy sphere provokes an associ-
ation with D0-branes and matrix theory. Nevertheless,
we do not rush into conclusions, since those theories
involve matrices of dimension N, where N the number of
D-branes, whereas in the context of the spin-orbit duality
the dimension of the (rest-frame) dual-position operator,
X̂i ¼ −Ŝi=m, is 2sþ 1.
Eventually, since similarities between the two theories

are tantalizing, almost everything we said about string
theory may be argued in favor of black holes too. In
particular, the analogue of S=m is found in any rotating
solution, e.g., the Kerr metric. It would be interesting to
find a meeting point between the spin-orbit duality and
noncommutative Kerr black holes [49]. In fact, a more
general effort to correlate this duality with noncommutative
theories probably points to the most prominent nonlocal
concept, i.e., entanglement entropy, which has been studied
before in noncommutative space [50].
Surprisingly, as far as entanglement is concerned, a

duality has been shown to exist for entangled systems
of identical particles under the exchange between internal
and external degrees of freedom [51]. This duality was
argued to enable a reliable test of quantum indistinguish-
ability [52], while it was also specified for spin and orbital
degrees of freedom [53] (although applied to (massless)
photons, which elude our analysis as of yet). Soon after,
this so-called “entanglement duality” was generalized
for distinguishable particles too [54]. Anyhow, we suspect
that this is a direct realization of the spin-orbit duality
presented here.
Finally, another practical direction that would shed

light onto the swapping between spin and orbit degrees
of freedom would be to look what happens to the
eigenvalue problem of the angular-momentum operators.
That is, considering vortices (rotation eigenmodes) and
boost eigenmodes [55], we may wonder what is the
physical picture of them exchanging roles under the
spin-orbit duality.
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APPENDIX A: ENERGY-MOMENTUM CURRENT
FROM NOETHER’S SECOND THEOREM

As always, we may prefer a more geometric angle and
view Lorentz transformations for what they really are,

xμ → x0μ ≔ xμ þ ωμ
νxν ≔ xμ þ ξμðxÞ; ξμðxÞ≡ ωμ

νxν;

ðA1Þ

i.e., spacetime-dependent translations. In fact, along this
(Killing) vector field, general fields’ transformations
are naturally identified with its Lie derivative, δq ¼
i
2
ωμνMμνq ¼ Lξq, and thus the Lagrangian density varies,

on the equations of motion, as

∂μ

�
∂L
∂∂μq

Lξq

�
¼ δL ¼ LξL ¼ ∂μðξμLÞ; ðA2Þ

where, in the last equation, we used that ∂μξμ ¼ 0. This
implies

0 ¼
Z
R4

∂μ

�
∂L
∂∂μq

Lξq − ξμL
�

¼
Z
R4

∂μðξρT μρ þ ∂νξρSμνρÞ

¼
Z
R4

ð∂μξρÞðT μρ þ ∂νSμνρ þ ∂νUνμρÞ; ðA3Þ

where we used the conservation law ∂μT μρ ¼ 0, by
Noether’s first theorem, set ∂μ∂νξρ ¼ 0 for Lorentz trans-
formations and integrated by parts two times in the last
equation; the total derivative ∂νUνμρ reflects the ambiguity
of this integration. Since ∂μξρ ¼ ωμρ, the antisymmetric
part of the expression in the parenthesis must vanish, giving

∂νUνμρ ¼ 1

2
∂νðSνμρ þ Sρνμ − SμνρÞ; ðA4Þ

where we used the conservation law T μρ − T ρμ ¼ −∂νSνμρ

from Noether’s first theorem, as in (2.5). Integrating by
parts, one last time, the last equation in (A3) (and, thus,
taking into account another ambiguity), we get the con-
servation law

∂μðT μρ þ ∂νSμνρ þ ∂νUνμρ þ ∂νQνμρÞ ¼ 0; ðA5Þ

Noticing that ∂μ∂νUνμρ ¼ 0 and requiring that the expres-
sion in the parenthesis keeps having a vanishing antisym-
metric part, the new ambiguity must be

∂νQνμρ ¼ −∂νSμνρ − ∂νSρνμ; ðA6Þ

which, by relabeling indices, yields the conserved current

∂μΘμν ¼ ∂μ

�
T μνþ 1

2
∂ρðSρμνþSνμρþSμνρÞ

�
¼ 0; ðA7Þ

a result identical to (2.10). This is Noether’s second theorem,
when the equations of motion are satisfied. In a sense, this is
to be expected from this second theorem, since local
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spacetime translations (A1) are really the general coordinate
transformations of a curved-spacetime theory with diffeo-
morphism invariance (whose Hilbert energy-momentum
tensor has been identified as T H

μν ¼ Θμν). Note, also, that
redefining the canonical currents could be made systematic
and employed to extended spacetime symmetry or gauge
groups [56].

APPENDIX B: DUALITY VERSUS
TRANSLATION INVARIANCE

1. Conservation of the dual energy-momentum current

At first glance, spin-orbit duality could have an impact
on energy-momentum conservation. This is because, from
angular momentum conservation (2.5), the antisymmetric
part of the energy-momentum tensor is T ½μν� ¼ − 1

2
∂ρSρμν,

which, under (3.27), transforms as

T ½μν� ¼ −
1

2
∂ρSρμν ↦ T̃ ½μν� ≡−

1

4
ϵμναβ∂ρLρ

αβ ¼ −ð⋆T ½μν�Þ:
ðB1Þ

So what about the transformation of the symmetric part
T ðμνÞ? At this point, we notice that the above map shows
how T ½μν� transforms under the duality, because it is
(fundamentally) expressed in terms of the underlying
transforming objects: the angular-momentum currents.
Hence, we must find the analogous expression for T ðμνÞ.
That expression we already have, though, in terms of the
improved energy-momentum tensor Θμν of Sec. II B,
Eq. (2.10), which implies

T ½μν� ¼ −
1

2
∂ρSρμν

T ðμνÞ ¼ Θμν −
1

2
∂ρðSνμρ þ SμνρÞ: ðB2Þ

In other words, we express T μν in terms of Θμν, the latter
being the fully-inclusive current that takes spin into
account. If we do not do this, i.e., if we just take T μν

irrespective of Θμν, we will be looking at a transformation
that exchanges spin and orbit, on an object that misses its
spin part. Moving on, the antisymmetric part transforms as
in (B1). The symmetric part, on the other hand, maps to

T ðμνÞ↦ T̃ ðμνÞ ¼ Θ̃μν−
1

2
∂ρðϵμραβLν

αβþϵνραβLμ
αβÞ; ðB3Þ

where, by a straightforward calculation,

∂μT̃
ðμνÞ ¼ ∂μΘ̃μν þ ∂μð⋆T ½μν�Þ: ðB4Þ

In view of (B1), this means that Poincarè invariance in the
dual theory, ∂μT̃

μν ¼ 0, holds if and only if ∂μΘ̃μν ¼ 0.
Hence, all we need is the transformation Θμν ↦ Θ̃μν.

Nevertheless, Θμν ↦ Θ̃μν (or T ðμνÞ ↦ T̃ ðμνÞ, for that mat-
ter) must be a map different from the previous ones, since
we are now dealing with a symmetric tensor and the map
needed cannot be Hodge duality. For example, we may
assume the most general index-structure-preserving trans-
formation rule Θ̃μν ¼ Pμν

αβΘαβ, where P is symmetric
in (μ ↔ ν) and (α ↔ β), the latter being true since Θμν

(and, thus, its map Θ̃μν) is symmetric. In turn, this also
means that this tensor is a symmetric tensor product
Θ ¼Pi λiv

i ⊗ vi, for some coefficients λi and in some
basis fvi ∈R1;3g. Hence, whatever the exact form of the
spin-orbit duality is in this case, it acts separately on the
basis vectors fvig and, thus, implies the transformation rule

Θμν ↦ Θ̃μν ¼ Pμ
αPν

βΘαβ; ðB5Þ

which has to be a homomorphism, in order to preserve
group structure, and a bijection, so that the inverse map
exists. In fact, as summarized in Fig. 1, a double action the
spin-orbit duality should bring us back to the initial
theory,10 which means that P should be orthogonal, i.e.
PTP ¼ PPT ¼ 1. In turn, that means that P is an element
of the Lorentz group, i.e. P∈ O(1, 3). Hence,Θμν ↦ Θ̃μν is
a homogeneous Lorentz transformation and indeed, since
∂μΘμν ¼ 0 in the initial theory, it also holds that ∂μΘ̃μν ¼ 0

in the dual picture. Therefore,

∂μT̃
μν ¼ 0; ðB6Þ

which says that energy-momentum conservation and, thus,
translation invariance are still true in the dual theory. On top
of that, it is straightforward to check that

Z
d3xΘ̃0ν ¼

Z
d3xT̃ 0ν ¼ p̃ν; ðB7Þ

as in the initial theory, which just validates that the dual
energy-momentum currents keep their defining properties.

2. Invariance of the Poincarè algebra

In regard to the Poincarè algebra, since spin-orbit duality
acts on the Poincarè generators as M ↦ M̃ ¼ ⋆M and
P ↦ P̃ ¼ P, the relevant extension preserves the algebraic
form,

10As Figure 1 shows, this is true up to a minus sign for tensors
that involve/transform into the spatial part of four-position, like
e.g. the angular momenta. However, here we are dealing with a
symmetric tensor of second order, so even if the transformation of
its fvig basis picked up a minus sign, that would not show in its
second-order tensor product. All in all, Θμν should come back to
itself under the double action of the spin-orbit duality.
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½P;P� ¼ 0 ↦ ½P̃; P̃� ¼ ½P;P� ¼ 0

½M;P� ¼ ηP − ηP ↦ ½M̃;P� ¼ ηP − ηP; ðB8Þ

which indicates that isoð1; 3Þ remains invariant. As with
Lorentz algebra in (3.31), we can express the dual
commutators in terms of the original generators, to get
maps like

½M01;P0� ¼ P1 ↦ ½M̃01;P0� ¼ ½M23;P0� ¼ P1

½M12;P1� ¼ P2 ↦ ½M̃12;P1� ¼ ½M30;P1� ¼ P2: ðB9Þ

This, as was with the Lorentz subalgebra, does not reflect a
failure of the isoð1; 3Þ algebra. It is just an expression of
the fact that, in the dual theory, Lorentz generators have
(orthonormally) shifted their basis, due to Hodge duality,
and are, thus, shuffled, so that the same generators in the
dual picture generate different rotations. Again, this has a
nice manifold interpretation through the Poincarè group:
this is the semidirect product SOð1; 3Þ⋊R1;3, which, as a
set, is the Cartesian product SOð1; 3Þ ×R4, which, in turn,
is homeomorphic to ðRP3 × R3Þ × R4. Given that, as
shown in the map (3.33), spin-orbit duality is essentially
an exchange between RP3 and R3 (while translations,
i.e.,R4, remain unchanged), then in the case of the Poincarè
group the map is

ðRP3 × R3Þ × R4 ↦ ðR3 × RP3Þ × R4; ðB10Þ

which are just different assignments of the translations of
R4 to elements of RP3 × R3, but topologically equivalent
group spaces.

APPENDIX C: QUANTIZATION OF THE
POSITION FOUR-VECTOR

(1þ 3) decomposition breaks four-position into its time-
like and spacelike parts,

xμ ¼ ðx · pÞpμ

p2
þ hμνðpÞxν ≡ yμ þ hμ; ðC1Þ

where we identify xμ and pμ as conjugate variables, which
define the usual Poisson algebra

fxμ;xνgPB¼fpμ;pνgPB¼0; fxμ;pνgPB¼ ημν: ðC2Þ

Using this canonical algebra and the decomposition (C1),
the Poisson structure breaks down into a timelike part,

fyμ; pνgPB ¼ pμpν

p2
; fyμ; yνgPB ¼ 0; ðC3Þ

and a spacelike part,

fhμ;pνgPB¼ημν−
pμpν

p2
; fhμ;hνgPB¼−

Lμν

p2
; ðC4Þ

both being entangled through

fyμ; hνgPB þ fyν; hμgPB ¼ Lμν

p2
: ðC5Þ

Canonical quantization of xμ and pμ, as usual, lifts the
Poisson structure (C2) to the ordinary Heisenberg algebra,

½x̂μ; p̂ν� ¼ iημν; ½x̂μ; x̂ν� ¼ 0; ½p̂μ; p̂ν� ¼ 0; ðC6Þ

where we set ℏ ¼ 1. Then, decomposition (C1) implies
that the position operator should break into a set of two
operators,

x̂μ¼ ŷμþ ĥμ; ŷμ¼ðx̂ · p̂Þp̂ν

p2
; ĥμ¼ x̂μ−

ðx̂ · p̂Þp̂ν

p2
; ðC7Þ

where p2 ¼ −m2 is a Casimir element of the Poincarè
algebra that commutes with everything else and, thus, may
be treated as a c-number. As far as the definition of ŷμ (and,
thus, ĥμ) is concerned, there is an apparent ambiguity in the
position of x̂μ among the two p̂μ operators, which means
that the above expressions are a particular choice of
operators. However, even when we employ the Weyl
quantization scheme, the most popular technique when
such ambiguities come up, and average over all possible
choices,

ŷμ ¼ 1

4

�ðx̂ · p̂Þp̂ν

p2
þ ðp̂ · x̂Þp̂ν

p2
þ p̂νðx̂ · p̂Þ

p2
þ p̂νðp̂ · x̂Þ

p2

�
;

ðC8Þ

the resulting algebra of commutators ends up the same.
In particular, this is the algebra

½ŷμ; p̂ν� ¼ i
p̂μp̂ν

p2
; ½ŷμ; ŷν� ¼ 0; ðC9Þ

which is, as we would anticipate, in exact correspondence
with its associated Poisson subalgebra (C3).

APPENDIX D: (1 + 3) DECOMPOSTION
AND THE NEWTON-WIGNER THEOREM

In reality, as mentioned in Sec. IV, the correlation of
our noncommutative structure with the Newton-Wigner
theorem already takes place in the initial theory and it is
irrespective of the context of the spin-orbit duality. That is,
it originates from the (1þ 3) decomposition of the
four-position xμ ¼ yμ þ hμ, under which, as shown in
Appendix C, the spacelike part defines a noncommutative
hyperspace,
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½ĥμ; ĥν� ¼ −i
L̂μν

p2
½ĥμ; p̂ν� ¼ iημν − i

p̂μp̂ν

p2
: ðD1Þ

The first commutator reflects the noncommutativity of
the spacelike submanifold normal to the four-momentum.
Taking into account, as shown in Appendix C, that
½ŷμ; ĥν� þ ½ĥμ; ĥν� ¼ L̂μν=p2 and ½ŷμ; ŷν� ¼ 0, this noncom-
mutative subspace is born from a nonlinear decomposition
of an, otherwise, commutative space, i.e., ½x̂μ; x̂ν� ¼
½ŷμ þ ĥμ; ŷν þ ĥν� ¼ 0. The second commutator, in the
low-energy regime, implies again the velocity commutator
(4.5) (this time with the correct, positive sign), together
with the first commutator forming the spatial subalgebra

½ĥi; ĥj� ¼ −i
L̂ij

p2
; ½ĥi; p̂j� ¼ iδij − i

p̂ip̂j

p2
: ðD2Þ

This algebra, in turn, constitutes a long-lived proposal of
the generalized uncertainty principle [57] (i.e., by first
assuming the principle, they deduced the above algebra)
and of the doubly special relativity [58]. More recent
research on those topics [59] start from this kind of algebra,
though sometimes restricting to commuting position
operators.
All in all, the spacelike position hμ defines a hyperspace

normal to four-momentum pμ, introducing a (1þ 3) slicing
in spacetime, the latter foliating into equal-time three-
spaces spanned by hi. Those are often called the Wigner
3-spaces. In our context, those subspaces transform in such
a way in the dual theory that an overall noncommutative
spacetime, i.e., (4.3), emerges.

APPENDIX E: DUALITY VERSUS
SUPERSYMMETRY

Like the dual Lorentz and Poincarè algebras, supersym-
metry seems, at first, to have similar transformation
properties under the spin-orbit duality. That is, considering
that the supercharges Q themselves are unaffected by the
duality, and since P ↦ P,then

½M;Q� ¼ SQ ↦ ½M̃;Q� ¼ S̃Q; ðE1Þ

where S ↦ S̃ ¼ ⋆L. As was the case with the previous
algebras, this map seems to preserve the form of the
superalgebra. However, now, there is an important differ-
ence: this algebra separates between the S and L repre-
sentations of the (total-angular-momentum) Lorentz
generators M ¼ SþL. So when we express the dual
superalgebra, as did with the Lorentz and Poincarè alge-
bras, in terms of the original generators, we get

½M̃;Q�¼ S̃Q⇔⋆½M;Q�¼⋆LQ⇒ ½M;Q�¼LQ: ðE2Þ

In the cases of the Lorentz and Poincarè algebras, the
analogous expressions (3.31) and (B9) have well-defined
meanings as being the same algebras (with those of the
initial theory) but in a shifted basis. On the contrary, the
dual superalgebra in (E2) has no such properties: S has
given its place to L, which it is certainly not just a shift of
basis. It is not clear to us whether this is an actual problem,
as far as invariance of an algebra under this duality is
concerned. That is, since the latter exchanges the roles
between spin and orbit degrees of freedom, dual expres-
sions like ½M̃;Q� ¼ S̃Q should have the same algebraic
meaning with ½M;Q� ¼ SQ of the initial theory. In any
case, assuming that it is a problem, we may then consider
that supercharges transform too under the duality,

Q ↦ Q̃∶ LQ̃ ¼ ⋆SQ̃; ðE3Þ

a map which keeps the superalgebra invariant, with the
used-to change of basis. (We could also pick the map such
thatLQ̃ ¼ SQ̃which leaves the basis alone, but we want to
keep an exact analogy with the rest of the dual Poincarè
algebra that does have a shifted basis.) This is a statement
on generators analogous to what we discussed below (4.7),
which may be interpreted as the fact that supersymmetry in
the dual theory is preserved for self-dual angular momen-
tum. Whereas, this is an automatically satisfied condition
for the dual space.
The strongest hint, though, that supersymmetry and

the spin-orbit duality work well together, comes from
superspace. In this realization, supercharges Qα ¼ ∂α þ
ðσμÞαβ̇θβ̇Pμ should stay the same, since Pμ ↦ Pμ under the
duality. Then by considering Noether’s theorem and deriv-
ing the corresponding supercurrent [60] we find that the
latter is, as expected, dependent on the energy momentum
tensor (the canonical or the improved one, whatever).
In that respect, conservation of the supercurrent is not
affected, since, as was illustrated, the energy-momentum
conservation law is preserved under the duality. However,
we also find that the supercurrent involves terms of the
form γμγν∂ν, where the gamma-matrix product is associated
with both the Lorentz and Dirac spacetime algebras, as
ðSμνÞαβ ¼ − i

2
½γμ; γν�αβ and fγμ; γνg ¼ 2ημν. This yields

that the product is actually a projection

γμγν ¼ iSμν þ ημν1; ðE4Þ

which is obviously sensitive to the spin-orbit duality.However,
in momentum space, γμγν∂ν reveals the spin condition
SμνPν ¼ 0 (where the action of generators on fields is
understood) and implies that only the metric part of the
projection survives. Hence, all facts considered, supercurrent
conservation seems to be invariant under the duality.
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[14] C. Lorcé, Eur. Phys. J. C 78, 785 (2018).
[15] A. D. Fokker, Relativiteitstheorie (Noordhoff, Groningen,

1929), p. 171.
[16] C. M. Møller, The Theory of Relativity (Oxford University

Press, New York, 1957); C. M. Møller, Ann. I’nst. Henri
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