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It is usually accepted that quantum dynamics described by the Schrödinger equation that determines the
evolution of states from one Cauchy surface to another is unitary. However, it has been known for some
time that this expectation is not borne out in the conventional setting in which one envisages the dynamics
on a fixed Hilbert space. Indeed it is not even true for linear quantum field theory onMinkowski space if the
chosen Cauchy surfaces are not preserved by the flow of a timelike Killing vector. This issue was elegantly
addressed and resolved by Agullo and Ashtekar who showed that in a general setting quantum dynamics in
the Schrödinger picture does not take place in a fixed Hilbert space. Instead, it takes place on a nontrivial
bundle over time, the Hilbert bundle, whose fiber at a given time is a Hilbert space at that time. In this
article, we postulate a Schrödinger equation that incorporates the effect of change in vacuum during time
evolution by including the Bogoliubov transformation explicitly in the Schrödinger equation. More
precisely, for a linear (real) Klein-Gordon field on a globally hyperbolic spacetime we write down a
Schrödinger equation that propagates states between arbitrary chosen Cauchy surfaces, thus describing the
quantum dynamics on a Hilbert bundle. We show that this dynamics is unitary if a specific tensor on the
canonical phase space satisfies the Hilbert-Schmidt condition. The generalized unitarity condition of
Agullo-Ashtekar follows quite naturally from our construction.
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I. INTRODUCTION

We do not know of any physical principle or algorithm
that selects the vacuum for quantum fields on globally
hyperbolic curved spacetimes. The choice of the vacuum is
usually dictated by the symmetry of the background
geometry, positivity of energy, and by requiring the
renormalizability of the stress-energy tensor. Indeed, even
in Minkowski space there exist inequivalent representations
of the operator algebra (see, e.g., Ref. [1]). A well-known
example is the Rindler vs Minkowski vacuum in flat space
(the former is reducible, however). See also Refs. [2,3] for
interesting applications in the context of black hole
thermodynamics, Ref. [4] for dissipative systems, and
Ref. [5] for emergent gravity scenarios. The representation
that is deemed physical is the one compatible with the
symmetries of the Minkowski space. Thus, for quantum
field theory on Minkowski space a unique vacuum, hence a
unique representation of the operator algebra, is picked out
once the Poincare invariance of the vacuum is imposed.

In the usual approach to quantum field theory on curved
space ([6,7]), one starts by quantizing a classical phase
space, which is usually taken to be the covariant phase
space. Classical theory also supplies the fields that are
promoted to field operators in the quantum theory. The
choice of vacuum is encoded in the choice of complex
structure J on the phase space. Complex structure is the
new mathematical structure needed to go from the classical
theory to the quantum theory. This leads to a one particle
Hilbert space labeled by the points of phase space and the
total Hilbert space is constructed as a Fock space built on
top of the one particle Hilbert space. Each choice of J thus
corresponds to a representation of the covariant operator
algebra on a Hilbert space labeled by J, HJ. This results in
the covariant Heisenberg picture, in which the field
operators are time dependent and vacuum is a linear
functional on the (commutator) algebra of field operators.
The dynamical information is contained in the (represen-
tation of) operator algebra. The time dependent vacuum
correlation functions of field operators are the observables
of the theory.
In quantum mechanics, i.e., in the quantum description

of a finite number of degrees of freedom, the unitary
equivalence of Heisenberg and Schrödinger representation
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is well known. The celebrated Stone-von Neumann theo-
rem assures that for a finite number of particles the
representation of canonical commutation relations is essen-
tially unique. The theorem however does not apply to field
theories due to the presence of an infinite number of
degrees of freedom. One can thus ask if in the infinite
dimensional setting, given a quantum field theory in the
Heisenberg representation, can a Schrödinger representa-
tion be constructed so that one has the notion of a state that
evolves with time. In other words, the question is if in the
field theory setting can the dynamics be unitarily trans-
ferred from the operators to the states in the Hilbert space.
When the time evolution is along the timelike Killing
vector field of the background spacetime then this can be
done. For example, when the spacetime is foliated in
Cauchy slices orthogonal to the timelike Killing symmetry
of the spacetime then the Heisenberg and Schrödinger
representations are equivalent. That is why one does not ask
this question in most of the quantum field theory textbooks.
However, many studies (see e.g., Refs. [8–21]) reported
that this is not true in general. More precisely, in different
settings in curved spacetimes, it was found in the men-
tioned studies that there is no unitary Schrödinger dynam-
ics between arbitrary Cauchy hypersurfaces (not
necessarily orthogonal to the time translation Killing field
of the background spacetime, or in the case that the
background spacetime has no timelike Killing vector,
e.g., in a cosmological setting) in a fixed Hilbert space.
In particular, Ref. [8] showed that even in Minkowski
space, an attempt to construct a unitary Schrödinger
dynamics between arbitrary Cauchy slices fails. But there
is no problem in the covariant quantization itself. It is only
that one cannot transfer the dynamics from the operator
algebra to the states in a unitary fashion.
This perplexing state of affairs was addressed by

Ashtekar and Agullo in an elegant paper [22]. These
authors realized that the problem arises because of the
insistence on describing the Schrödinger dynamics on a
fixed Hilbert space. The approach of covariant quantization
can be adapted to canonical quantization as well. In this
case, one again needs to choose a complex structure J, this
time on the canonical phase space of the theory. The old
unitarity condition, the one that is presented in textbooks,
and the one that was shown to lead to the unitarity puzzle
arises by asking if there exists a unitary operator U that
evolves the state from initial time slice ti to a final time slice
tf such that the following is true for any states jΨi and
jΨ0i∈HJ:

hΨ0jUðtf; tiÞ−1ÔðtiÞUðtf; tiÞjΨi ¼ hΨ0jÔðtfÞjΨi; ð1Þ

where the field operators on the left- and right-hand sides Ô
are quantized with respect to J, i.e., they act on the fixed
Hilbert space HJ. On the right-hand side the field operator
is evolved to the final time while the states are on the initial

time. This is the Heisenberg representation of quantum
mechanics. On the left-hand side the states are evolved to
the final time slice while the operator is on the initial time.
This is the Schrödinger representation of quantum mechan-
ics. It turns out that such a unitary operator U exists if and
only if ½J − EJE−1� is Hilbert-Schmidt,1 where E is the map
implementing time evolution from ti to tf in the canonical
phase space. In several examples on curved space studied in
Refs. [8–21] this condition was shown to be violated. Even
in simple cosmological examples that were first studied in
Refs. [23–25], it was shown in Ref. [22] that the Hilbert-
Schmidt condition is violated and hence such a unitary
operator does not exist.
The key insight of Ref. [22] was that when the state

evolves from one Cauchy slice to the other, one needs to
take care of the evolution of the complex structure as well.
Thus in the Schrödinger picture representation, the quan-
tum dynamics does not take place on a fixed Hilbert space.
The authors of Ref. [22] postulated a generalized unitarity
condition, Eq. (2), which appropriately takes care of the
evolution of the complex structure. In this case, there is no
kinematical unitary identification between the Hilbert
spaces on the initial and final Cauchy slices, HJðtiÞ and
HJðtfÞ, respectively. Instead, there is a dynamical unitary
identification. Let us see this in a bit more detail.
Let jΨi and jΨ0i be states ∈HJðtiÞ. Let Uðtf; tiÞ∶

HJðtiÞ → HJðtfÞ be the operator that maps HJðtiÞ to HJðtfÞ.

Let Ô be the operator quantized in the representation JðtiÞ,
thus it acts on states ∈HJðtiÞ, and let ˆ̂O be the same
operator quantized in the representation JðtfÞ, hence it acts
onHJðtfÞ. The generalized unitarity condition of Ref. [22] is

hΨ0jUðtf; tiÞ−1 ˆ̂OðtiÞUðtf; tiÞjΨi ¼ hΨ0jÔðtfÞjΨi; ð2Þ

where it should be noted that the hatted operator on the
right-hand side is acting at final time tf but is quantized in
the representation JðtiÞ (thus acting on the Hilbert space at
ti, HJðtiÞ), while the double hatted operator on the left-hand
side is acting on the initial time ti but is quantized in the
representation JðtfÞ (thus acting on the Hilbert space at tf,
HJðtfÞ). Therefore, the right-hand side is the Heisenberg
representation in which the operator is evolving with time
while the states and the representation space is fixed at the
initial time. The left-hand side is the Schrödinger repre-
sentation in which the states and thus the representation
space is evolving with time while the operator is acting at
the initial time. The departure of Ref. [22] from the
previous studies, and the reason why Eq. (2) is called
the generalized unitarity condition, is the fact that the
Hilbert spaces HJðtiÞ and HJðtfÞ are in general not unitarily

1We will give a proof of the Hilbert-Schmidt condition in the
main text in Sec. III C.
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equivalent, in the sense that ½JðtfÞ − JðtiÞ� does not in
general satisfy the Hilbert-Schmidt condition. However,
Eq. (2) leads to a different unitarity condition, namely, that
½JðtfÞ − EJðtiÞE−1� should be Hilbert-Schmidt, where E is
the map implementing time evolution from ti to tf in the
canonical phase space. In particular, if JðtfÞ is the time
evolution of JðtiÞ then we have that JðtfÞ ¼ EJðtiÞE−1 and
the Hilbert-Schmidt condition is trivially satisfied and the
operator U is unitary. In the language of Ref. [22],
U implements unitarily the dynamical automorphism of
the operator algebra.
The goal of this paper is to explicitly construct the

operatorU of Eq. (2). Our work is complementary to that of
Ref. [22]. While in Ref. [22] the generalized unitarity
condition was inspired by the classical picture and the
existence of the covariant quantum field theory and then
deriving the Schrödinger picture representation, our goal is
to derive the generalized unitarity condition of Ref. [22]
by postulating the explicit quantum dynamics in the
Schrödinger picture representation. We will use the ideas
from geometric quantization in order to quantize the
canonical phase space. We will also find it convenient to
work in a fixed basis of the canonical phase space in a
discrete notation, thus treating it as if it were finite
dimensional, and keeping our eye on the infinite dimen-
sional limit in which the issue of unitarity arises.
The organization of this article is as follows. In Sec. II we

review the construction of the canonical phase space for the
real Klein-Gordon field theory on a globally hyperbolic
spacetime. One goal in this section is to show that the
symplectic form on the canonical phase space is translation
invariant, a fact that we will use in the geometric quantiza-
tion of the theory. Toward the end of this section we will
also lay down our notation that we will follow in the later
sections. In Sec. III we discuss the quantization procedure
following Refs. [26,27]. In Sec. III A we review the
geometric quantization, construction of the Hilbert space,
and quantization of linear functions. In Sec. III B we review
the Bogoliubov transformation and the quantization of
quadratic functions. In Sec. III C we show how the Hilbert-
Schmidt condition arises as the necessary condition for
the unitary equivalence of two Hilbert spaces. In Sec. IV
we present our Hamiltonian and the Schrödinger picture
representation of quantum dynamics of the Klein-Gordon
field. In Sec. V we make contact with Ref. [22] and derive
their generalized unitarity condition from our Schrödinger
equation. We conclude with a brief summary and outlook in
Sec. VI. In the Appendix we present the calculation
for the normalization of the wave function that is used
in Sec. III C.

II. SCALAR FIELD THEORY: CLASSICAL

In this section we sketch the construction of the
canonical phase space of the classical free Klein-Gordon

field theory. The purpose is to show that the canonical
Hamiltonian is quadratic in fields and the symplectic
structure is translation invariant on the phase space. This
is important for our construction because we will be using
this fact in the later sections.
Consider the free Klein-Gordon theory on a globally

hyperbolic spacetime M with a pseudo-Riemannian metric
gab described by the action

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
gab∇aΦ∇bΦþm2Φ2

�
; ð3Þ

where g is the determinant of the metric, g ¼ detðgabÞ.
Let Σ be a Cauchy surface. Given a one parameter family

of spacelike embeddings I t of Σ into M we obtain a
foliation of M by a one parameter family of hypersurfaces
Σt ≔ I tðΣÞ specified by a time function t ¼ constant. Time
evolution along the vector field ta ¼ ð ∂

∂tÞa can be decom-
posed in terms of unit timelike normal to Σt, na (where
na ¼ ∇at), the lapse function N, and the shift vector Na. In
what follows we will put the shift to zero for simplicity. We
then have the following relations:

gab ¼ hab − nanb; ð4Þ

ta ¼ Nna; ð5Þ

where hab is the metric induced on Σt. The Klein-Gordon
action can then be decomposed in a 3þ 1 form,

S ¼ −
1

2

Z
dt
Z
Σt

d3xN
ffiffiffi
h

p �
habDaΦDbΦ

−
1

N2
ðLtΦÞ2 þm2Φ2

�
; ð6Þ

where LtΦ is the Lie derivative of Φ along the time
evaluation vector field ta, LtΦ ¼ ta∂aΦ, and Da is the
covariant derivative operator induced on the hypersurface
Σt and is compatible with the induced metric hab.
Next, the canonical variables are defined as

ϕðxÞ ¼ Φðt; xÞjΣt
; ð7aÞ

πðxÞ ¼ δS
δLtΦ

¼ 1

N
LtΦðt; xÞjΣt

: ð7bÞ

The canonical Hamiltonian density is obtained by a
Lagrange transform and we get

H ¼ 1

2
NðhabDaϕDbϕþ π2 þm2ϕ2Þ; ð8Þ

This Hamiltonian generates the infinitesimal time evolution
of the canonical variables ϕ and π via the Poisson brackets,
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Ltϕ ¼ fϕ;Hg ¼ Nπ; ð9aÞ

Ltπ ¼ fπ;Hg ¼ habDaNDbϕþ ND2ϕ −m2ϕ: ð9bÞ

We thus arrive at the canonical phase space of the Klein
Gordon theory. The phase space Γ is coordinatized by
canonical variables ϕðxÞ and πðxÞ, i.e., a point on the phase
space φ is specified by its coordinates φ ¼ ðϕ; πÞ. The
poisson bracket is seen as the structure on the phase space
which is given by the symplectic structure, which is a
nondegenerate closed and exact two-form on the phase space,

ωðδ1; δ2Þ ≔
Z
Σt

d3x
ffiffiffi
h

p �
δ1
δ1ϕ

δ2
δ2π

−
δ1
δ1π

δ2
δ2ϕ

�
: ð10Þ

Owing to the linearity of Γ, the symplectic structure can
be pulled back from the tangent space of Γ to Γ thus giving
Γ the structure of a symplectic vector space with the
symplectic form, which we again denote by ω. The
symplectic product between two phase space points φ1 ¼
ðϕ1; π1Þ and φ2 ¼ ðϕ2; π2Þ is given by

ωðφ1;φ2Þ ¼
Z
Σt

d3x
ffiffiffi
h

p
ðϕ1ðxÞπ2ðxÞ − ϕ2ðxÞπ1ðxÞÞ: ð11Þ

One reason to discuss this well-known classical setting is to
emphasize that the symplectic structure is translation
invariant in the sense that its components do not depend
on the phase space point.
Finite time evolution, from ti to tf on the canonical phase

space can be obtained by integrating the Hamilton equa-
tions, Eq. (9). Equivalently, it can be written as a map2

Etfti ¼ I−1
tf I ti : ð12Þ

The meaning of this equation is the following: for given
functions ϕðxÞ and πðxÞ on Σ, first push them to Σti using
the map I ti . Treating this as initial data on Σti , use the
Klein-Gordon equation ð□ −m2ÞΦðt; xÞ ¼ 0 to find the
solution Φðt; xÞ corresponding to the initial data ðϕ; πÞ.
Evaluate the solution Φðt; xÞ and its time derivative on the
time slice Σtf and push it back to Σ using the map I−1

tf . This
process gives the finite time evaluation of the phase space
point φ at an initial time ti to a final time tf as Etfti · φ.
In what follows, we will work in a chosen basis for the

canonical phase space. We will find it convenient to use a
discrete notation and denote this basis as φi, where i would
in general stand for continuous indices like x. The
discussion of this section can thus be summarized as
follows. In the canonical description of the Klein-
Gordon field we have a phase space Γ whose coordinates
are φi. Variation of any quantity with phase space point will

be denoted by ∂i which means ∂

∂φi. Γ is equipped with a

nondegenerate closed and exact antisymmetric matrix, the
canonical symplectic structure, with components ωij. The
inverse matrix of ωij will be denoted by ωij, such that
ωijω

jk ¼ δki . Note that components of the symplectic
structure ωij are translation invariant in the sense that they
do not depend upon the phase space points φi’s.
Infinitesimal time evolution on the phase space is

generated by the quadratic Hamiltonian which we write
in component form as H ¼ 1

2
Hijφ

iφj, where Hij is
symmetric in its indices. The vector field on Γ correspond-
ing to any function f on Γ is given by Vf ¼ ω−1df. For our
quadratic Hamiltonian this vector field has components
Vi
H ¼ ωij

∂jH ¼ ωijHjkφ
k ≡ ðω−1HÞijφj ≡ Ti

jφ
j. Thus

infinitesimal time evolution of phase space is described
by the matrix T ¼ ω−1H. Finite time evolution on Γ is still
given by the map Etfti , i.e., φ

iðtfÞ ¼ Ei
jφ

jðtiÞ.

III. SCALAR FIELD THEORY: QUANTUM

In order to quantize the canonical phase space in the
previous section we follow the ideas from geometric
quantization ([26,27]) which is in fact closely related to
the general construction of quantum field theory on curved
spacetime in Ref. [6] (see also Ref. [7]) and used in
Ref. [22]. In both cases, one starts with the classical phase
space and introduces a complex structure on it that is
compatible with the symplectic structure in the sense
discussed below.
Accessible reviews of geometric quantization can be

found in Refs. [28,29]. Here we will follow Refs. [26,27] to
construct the quantum theory. In Sec. III A we will discuss
the construction of the Hilbert space and the quantization of
linear operators. In Sec. III B we describe the Bogoliubov
transformation and the quantization of quadratic operators.
In Sec. III C we provide a proof of the Hilbert-Schmidt
condition.

A. Geometric quantization

In geometric quantization one begins by first construct-
ing a unitary line bundle on the phase space whose
curvature is −iωij. If the symplectic structure is translation
invariant then the covariant derivative on the sections of this
bundle can be taken to be

Di ¼ ∂i þ
i
2
ωijφ

j: ð13Þ

Square integrable sections of this line bundle constitute the
prequantum Hilbert space. Next one constructs a holo-
morphic structure on the prequantum line bundle by
introducing the complex structure J on the phase space
such that J2 ¼ −1 and J is translation invariant in the sense
that its components Jij do not depend upon the point on the

2This is inverse of the map in Ref. [22].
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phase space where it is evaluated; ωij is compatible with J
in the sense that ωijJipJjq ¼ ωpq; J is positive in the sense
that it defines a positive metric gij ¼ ωikJkj on phase space.
The Hilbert space, i.e., the space of quantum states (wave

functions), consists of the square integrable sections of the
prequantum Hilbert space which are holomorphic with
respect to J, i.e., they satisfy the following equation:

ð1þ iJÞkiDkΨ ¼ 0: ð14Þ

Since this Hilbert space depends on the choice of complex
structure J it will be denoted by HJ.
Following Ref. [26] it would be very convenient to

introduce some notation that will streamline the calcula-
tions. Let us first introduce the projectors that project on the
holomorphic and antiholomorphic sectors,

1

2
ð1 − iJÞij holomorphic; ð15aÞ

1

2
ð1þ iJÞij antiholomorphic: ð15bÞ

Projected components of vectors and one-forms will be
represented by overlined/underlined indices as

Vi ¼ 1

2
ð1 − iJÞijVj holomorphic; ð16aÞ

Vī ¼ 1

2
ð1þ iJÞijVj antiholomorphic; ð16bÞ

Vi ¼
1

2
ð1 − iJÞkiVk holomorphic; ð16cÞ

Vī ¼
1

2
ð1þ iJÞkiVk antiholomorphic: ð16dÞ

The nonzero components of the complex structure are given
by Jij ¼ iδij and Jīj̄ ¼ −iδī j̄. Furthermore, due to the

condition of compatibility between ω and J, the nonzero
components of the symplectic structure are ωi j̄ and ωī j.

In this notation, wave functions which lie in HJ are
holomorphic in the sense that their antiholomorphic com-
ponents vanish,

DīΨ ¼ 0: ð17Þ
By using the definition of D in Eqs. (13) and (17) can be
partially solved to get that any holomorphic wave function
Ψ of the form

Ψ ¼ e
−i
2
ωī jφ

īφ
j

gðφÞ; ð18Þ
where g is a holomorphic function of coordinates in the
ordinary sense, i.e., ∂īg ¼ 0; ∀ i. The wave function with
g ¼ 1 is the vacuum wave function in Hilbert space HJ,

Ψvac ¼ e
−i
2
ωī jφ

īφ
j

; ð19Þ

and is characterized by the fact that φ̂īΨvac ¼ 0; ∀ i,
where φ̂ is the operator to be defined in Eq. (23).
The inner product on HJ is given by

hΨ1;Ψ2i ¼
Z  Y2N

i¼1

dφi

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
ω

2π

�s
Ψ�

1Ψ2; ð20Þ

where 2N is the dimension of phase space. In the infinite
dimensional case, which is the case of interest for us, we
will take the limit N → ∞ at the end of our calculations.
Next we introduce some operators on HJ. In geometric

quantization there is a heuristic recipe to get operators from
classical functions on phase space. Given a function f on
phase space, the prequantum operator f̂ is constructed as

f̂ ¼ −iVi
fDi þ f; ð21Þ

where Vi
f is the vector field generated by f on the phase

space, i.e., Vi
f ¼ ωij

∂jf. This recipe is often to be aug-
mented by the so-called metaplectic corrections. For our
purposes we will not need that technology. We will be
interested only in quantizing the phase space functions
which are at worst quadratic in phase space coordinates.
Thus the technique given in Refs. [26,27] would be enough
for our purpose. To begin with, we define the operators
corresponding to linear functions on the phase space. The
phase space coordinates φi form a basis for these functions.
Following the geometric quantization recipe, we get the
corresponding operators as

φ̂i ¼ iωijDj þ φi; ð22Þ

where we evaluated the vector field corresponding to φi as
Vj
φi ¼ ωjk

∂kφ
i ¼ ωji. In particular, for holomorphic and

antiholomorphic components, using the fact that the wave
functions are holomorphic [see Eq. (17)] we get

φ̂i ¼ φi; ð23aÞ

φ̂ī ¼ iωī jDj þ φī: ð23bÞ

Before we discuss the quantization prescription for the
quadratic operators we need to understand how to take care
of change in the complex structure. The reason is that we
will ultimately be interested in writing the Schrödinger
equation, for which we need the Hamiltonian. However, in
a general dynamical problem the complex structure will
change with time. Since the Hamiltonian is the infinitesimal
generator of time evaluation, the finite time evolution
should take us from the initial Hilbert space HJðtiÞ to the
final Hilbert space HJðtfÞ. We therefore turn to Bogoliubov
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transformation that implements the change of J in quantum
operators. This was constructed in Refs. [26,27] and we
follow one of the constructions given in those references.

B. Bogoliubov transformation and quadratic operators

Let us consider a quadratic Hamiltonian h ¼ 1
2
hijφiφj,

where hij ¼ hji. The vector field generated by h on the
phase space is

Vi
h ¼ ωij

∂jh

¼ ωijhjkφk

≡ ðω−1hÞikφk: ð24Þ
Canonical transformation generated by h is the flow of Vh
on the phase space obtained by the Lie drag due to Vh,

δhϕ
i ¼ LVh

φi

¼ Vj
h∂jφ

i

≡ ðω−1hÞijφj: ð25Þ

Change in the complex structure J under this canonical
transformation can be obtained by computing the Lie
derivative of J along Vh. For translation invariant complex
structures (i.e., ∂kJij ¼ 0) we get

δhJij ¼ LVh
Jij

¼ ½J;ω−1h�ij: ð26Þ

Now, choosing ω−1h ¼ − 1
2
ðJδJÞ, and (since J2 ¼ −1)

using that δJ2 ¼ 0 ¼ ðJδJ þ δJJÞ, we get

δhJij ¼ δJij: ð27Þ

Thus we see that any change in the complex structure
δJ can be obtained as a Hamiltonian flow on the
phase space generated by the quadratic Hamiltonian
h ¼ − 1

4
ðωJδJÞijφiφj. The vector field generated by h

is Vh ¼ − 1
2
ðJδJÞijφj.

Following the geometric quantization recipe for the
prequantum operator corresponding to the classical func-
tion h we get the prequantum operator PrðhÞ,

PrðhÞ ¼ −iVi
hDi þh

¼ i
2
ðJδJÞijφjDi −

1

4
ðωJδJÞijφiφj: ð28Þ

Note that the prequantum operator is a first-order differ-
ential operator. Following Ref. [27] (see Ref. [26] for
another approach) let us write another operator correspond-
ing toh, denoted by ĥ, which is obtained by simply putting
hats on φ’s,

ĥ ¼ 1

2
hijφ̂iφ̂j ð29Þ

¼ 1

2
hij
�
iωimDm þ φi

��
iωjnDn þ φj

�
; ð30Þ

where we do not need to symmetrize since hij is already
symmetric. Note that ĥ does not depend upon the complex
structure J. Expanding the right-hand side we get that

ĥ ¼ PrðhÞ − 1

4

�
JδJω−1

�
ijDiDj: ð31Þ

The meaning of this equation is as follows. The operator ĥ
on the left-hand side does not depend on J. The first term
on the right-hand side, PrðhÞ, implements the Bogoliubov
transformation. Therefore, the second term on the right-
hand side is interpreted as canceling the change of complex
structure. Since D’s act on wave functions Ψ which are
holomorphic with respect to J, and using that Jij ¼ iδij, the

second term in Eq. (31) can be written as

A ≔
1

4
ðδJω−1Þi jDiDj; ð32Þ

where the symbol A comes from the fact that A is the
connection on a bundle. Indeed, in the approach of
Ref. [27], one constructs a bundle whose base space is
the space of J’s and whose fiber at J is the Hilbert space
HJ. Then A denotes the connection that is to be used for
transporting a state from the fiberHJ at J to the fiberHJ0 at
J0. For finite dimensional systems this connection is
unitary, in the sense that the states are mapped by this
transport in a unitary fashion. In the infinite dimensional
case though this connection will generically be nonunitary.
However, we will see that this is not a problem. The map
that would take us from the Hilbert space at initial time ti to
a final time tf will in fact be unitary, thus demonstrating the
implementation of “dynamical automorphism” of operator
algebra as a unitary transformation between the two Hilbert
spaces as described in Ref. [22].
This leads us to the prescription of Ref. [27] for the

quantization of classical functions quadratic in phase space
coordinates. For such a function f, the quantum operator f̂
is given by

f̂ ¼ PrðfÞ þ i
4

�
δfJω−1

�i jDiDj; ð33Þ

where PrðfÞ ¼ −iVi
fDi þ f, and δfJ is the change in

complex structure along the flow of the vector field Vf on
the phase space, i.e., δJ ¼ LVf

J. It can be checked that this
quantization scheme respects the Poisson bracket structure,

½f̂; φ̂k� ¼ −i dff;ϕkg: ð34Þ
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C. Unitarity of A: The Hilbert-Schmidt condition

Consider the phase space Γ for a free scalar field theory.
Let us construct two Hilbert spaces H1 and H2 correspond-
ing to two complex structures J1 and J2, respectively, on Γ.
Then H1 and H2 are unitarily equivalent if and only if the
following condition is satisfied:

trjJ1 − J2j2 < ∞; ð35Þ

where the trace is over the phase space.3 The inequality in
Eq. (35) is called the Hilbert-Schmidt condition. Here we
provide a physicist’s derivation of the Hilbert-Schmidt
condition following Ref. [7].
We could use the connection to propagate the vacuum

wave function [see Eq. (19)] with respect to J1 and
checking if the resulting wave function ∈HJ2 , i.e., if it
is normalizable in HJ2 . The propagation is implemented
by the exponentiated version of A, which is defined as

U ¼ Pe
R

A (path integrated exponential) that maps the
state from HJ1 to HJ2 . However, it is easier to follow
another route as in Ref. [7]. To this end, we first compute
that commutator of the connection with a field operator φ̂i

and we get

½A; φ̂i� ¼ 0: ð36Þ

This means that U is such that

U−1 ˆ̂φiU ¼ φ̂i; ð37Þ

where, since U∶ HJ1 → HJ2 , we have that the double
hatted operator on the left-hand side is quantized with
respect to J2 and the one on the right-hand side is quantized
with respect to J1. In particular,

U−1ð1þ iJ1Þ ˆ̂φU ¼ ð1þ iJ1Þφ̂; ð38Þ

where we have omitted the indices for brevity. Operating
the right-hand side on the vacuum in HJ1 , Ψvac [see
Eq. (19)] we get zero. Let ψ ¼ UΨvac. Then we have that

ð1þ iJ1Þijφ̂jΨvac ¼ 0;

⇒
h
ð1þ iJ1Þij̄ ˆ̂φj̄ þ ð1þ iJ1Þij ˆ̂φj

i
ψ ¼ 0;

⇒
h
ðJ2 þ J1Þij̄ ˆ̂φj̄ − ðJ2 − J1Þij ˆ̂φj

i
ψ ¼ 0;

⇒
h
ˆ̂φī − χ īj ˆ̂φj

i
ψ ¼ 0; ð39Þ

where ˆ̂ϕ again signifies that the indices of the operator are
projected with respect to J2, and χ is the operator

χ ≔ ðJ2 þ J1Þ−1ðJ2 − J1Þ. Next we substitute the operator
definitions [see Eq. (23)] to get the differential equationh

iωī jDj þ φī − χ ījφ
j
i
ψ ¼ 0: ð40Þ

This equation can be simplified by first expressing ψ as

ψ ¼ e
−i
2
ωī jφ

īφ
j

gðφÞ, for some holomorphic (with respect to
J2) function g, [see Eq. (18)], which gives a differential
equation for g as h

iωī j
∂j − χ ījφ

j
i
g ¼ 0; ð41Þ

which is easily solved to get

gðφÞ ¼ e
i
2
ωī jχ

ī
kφ

kφ
j

ð42Þ

Therefore the vacuum Ψvac ∈HJ1 propagated to HJ2 yields
the state ψ ¼ UΨvac,

ψ ¼ N e
−i
2
ωī jφ

īφ
j

e
i
2
ωī jχ

ī
kφ

kφ
j

; ð43Þ

where N is a yet-to-be-determined normalization constant.
ψ would be a legitimate state and would lie in HJ2 if N is
finite. Calculation of the normalization factor is given in the
Appendix, where we show that the condition for the
finiteness of N is that trχ2 ≔ χ ījχ

j
ī should be finite, which

translates to the Hilbert-Schmidt condition

ðJ2 − J1ÞīkðJ2 − J1Þkī < ∞: ð44Þ

IV. HAMILTONIAN EVOLUTION AND THE
SCHRÖDINGER EQUATION

Let us now consider a linear system whose time
evaluation is given by a Hamiltonian quadratic in coor-
dinates, as is the case for us [see Eq. (8)],

H ¼ 1

2
Hijφ

iφj: ð45Þ

From the quantization prescription in Eq. (33) for such a
function we have the corresponding operator,

Ĥ ¼ PrðHÞ þ i
4
ðδHJω−1Þi jDiDj; ð46Þ

where δHJ is the change in complex structure due to flow
generated by H on phase space. While one can choose the
complex structure at each time independently, we will
consider the natural time evolution of J. This means that
δHJ ¼ LVH

J ¼ ½J; T�, where, recall from the last paragraph
of Sec. II, T is the matrix describing the infinitesimal time

3Which is equivalently the trace over one-particle Hilbert space
corresponding to either H1 or H2 after Cauchy completion.
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evolution of the phase space points ðφ̇i ¼ Ti
jφ

jÞ. The
reason that we keep only the natural time evolution of the
initial J in our Hamiltonian is that once we have the
complete picture of time evolution of wave functions in this
case, then we can simply do a Bogoliubov transformation
to any other complex structure that we decide to choose on
the final time slice. More discussion about this appears at
the end of Sec. V.
It can be checked that with this prescription the quan-

tization respects the Poisson bracket,h
Ĥ; φ̂k

i
¼ −i dfH;φkg: ð47Þ

Importantly, our Hamiltonian respects the holomorphicity
of wave functions. This is so because we can check thath

Ĥ;Dī

i
¼ 0: ð48Þ

To see that this condition is necessary for preserving the
holomorphicity of wave functions let us see the implication
of δðDīΨÞ ¼ 0,

δðDīΨÞ ¼ δDī ·Ψþ DīðδΨÞ
¼ i
h
Ĥ;Dī

i
Ψþ Dī

�
−iĤΨ

�
¼ i
h
Ĥ;Dī

i
Ψ − i

h
Dī; Ĥ

i
Ψ

¼ 2i
h
Ĥ;Dī

i
Ψ; ð49Þ

where in going to the third equality from the second we
used the holomorphicity of Ψ. Therefore, δðDīΨÞ ¼ 0

⇒ ½Ĥ;Dī� ¼ 0. Thus, Eq. (48) says that our Hamiltonian
keeps the holomorphic wave functions holomorphic.
Our proposal for the Schrödinger equation, i.e., the

equation describing the time evolution of the wave function
is then

i
∂Ψ
∂t

¼ ĤΨ; ð50Þ

where Ĥ is as given in Eq. (46) and includes the connection
term. Equation (50) is the key equation of this paper.
From our Schrödinger equation in Eq. (50) we have the

following finite time evolution of a quantum state:

ΨðtfÞ ¼ Uðtf; tiÞΨðtiÞ; ð51Þ

where

Uðtf; tiÞ ¼ T
�
e
−i
R

tf
ti

dtĤ
�
; ð52Þ

where T is the symbol for time ordering dictated by our
foliation of spacetime. The commutation relation in

Eq. (48) says that our Hamiltonian at time t, which depends
upon the complex structure J at time t, preserves the
holomorphicity of wave functions at time t. This implies
that the exponentiation yielding the operator for finite time
evolution Uðtf; tiÞ maps the wave functions at time ti that
are holomorphic with respect to JðtiÞ to the wave functions
at time tf that are holomorphic with respect to JðtfÞ. Thus
Uðtf; tiÞ maps the Hilbert space at time ti, HJðtiÞ to the
Hilbert space at time tf, HJðtfÞ,

Uðtf; tiÞ∶ HJðtiÞ → HJðtfÞ: ð53Þ

The question now is, under what condition is U a unitary
operator? In order to answer this, we could just propagate
the vacuum state Ψvac in HJti

using U and check for the
finiteness of the norm of the evolved state Uðtf; tiÞΨvac to
see if it lies in HJðtfÞ. But it is easier to follow along the
lines of analysis in Sec. III C. In the next section we will
first derive the generalized unitarity condition of Ref. [22]
and then use it to prove the unitarity of U.

V. UNITARITY OF TIME EVOLUTION

Let us begin by collecting at one place our expression of
the quantized Hamiltonian operator,

Ĥ ¼ PrðHÞ þ i
4
ðδHJω−1Þi jDiDj; ð54Þ

where

PrðHÞ¼−iVi
HDiþH¼−iTi

kφ
kDiþ

1

2
ðωTÞijφiφj; ð55Þ

i
4
ðδHJω−1Þi jDiDj ¼

1

2
ðTω−1Þi jDiDj; ð56Þ

where we have used that δHJ ¼ LVH
J ¼ ½J; T�.

Furthermore, the following commutation relations follow:

i
h
Ĥ; φ̂i

i
¼ Ti

kφ̂
k; ð57aÞ

i
h
Ĥ; φ̂ī

i
¼ Tī

kφ̂
k: ð57bÞ

Consider an initial state Ψ∈HJðtiÞ and its time evolved
image4Uðtf; tiÞΨ∈HJðtfÞ. Now an operator that acts on the

time evolved state is ˆ̂φk. Notice that here k means that the
index k is holomorphically projected with respect to JðtfÞ,
i.e., the operator is quantized with respect to JðtfÞ since it
acts on the Hilbert spaceHJðtfÞ. The latter fact is emphasized

by the double-hatted notation. Similarly, ˆ̂φk̄ also acts on

4There is a slight abuse of notation here, for we do not know
yet if the evolved state is ∈HJðtfÞ.
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HJðtfÞ. Note that we want to interpret these as Schrödinger
picture operators so we are inserting them still at the initial
time ti, but they act on the Hilbert space at tf.
For any states jΨ0i and jΨi∈HJðtiÞ, an infinitesimal form

of the operator insertion in hΨ0jUðtf; tiÞ−1 ˆ̂φiUðtf; tiÞjΨi
and hΨ0jUðtf; tiÞ−1 ˆ̂φīUðtf; tiÞjΨi, in the limit that tf → ti,
can be calculated to be

i
h
Ĥ; φ̂i

i
−
i
2
δHJijφ̂j ¼ Ti

jφ̂
j; ð58aÞ

i
h
Ĥ; φ̂ī

i
þ i
2
δHJijφ̂j ¼ Ti

j̄φ̂
j̄; ð58bÞ

respectively. From these infinitesimal forms we deduce the
corresponding finite forms,

hΨ0jUðtf; tiÞ−1 ˆ̂φiUðtf; tiÞjΨi

¼ hΨ0jEi
j

�
1 − iJðtfÞ

2

�
j

k
φ̂kjΨi; ð59aÞ

hΨ0jUðtf; tiÞ−1 ˆ̂φīUðtf; tiÞjΨi

¼ hΨ0jEi
j

�
1þ iJðtfÞ

2

�
j

k
φ̂kjΨi; ð59bÞ

respectively. Here Ei
j is the classical time evaluation on the

canonical phase space Γ, ðφiðtfÞ ¼ Ei
jφ

jðtiÞÞ, and the
operator on the right-hand side is quantized with respect to
JðtiÞ since it acts on the states in the initial Hilbert space
HJðtiÞ. Adding these two equations we get

hΨ0jUðtf; tiÞ−1 ˆ̂φiUðtf; tiÞjΨi ¼ hΨ0jEi
jφ̂

jjΨi; ð60Þ

where again the operator on the right-hand side is quantized
with respect to JðtiÞ while the one on the left-hand side is
quantized with respect to JðtfÞ. Equation (60) is precisely
the generalized unitarity condition [Eq. (2)] proposed in
Ref. [22]. If the operator U is unitary then Eq. (60)
establishes the equivalence of the Heisenberg and
Schrödinger picture in quantum field theory for arbitrary
foliation of the background spacetime.
We turn to the analysis of unitarity of U now. The

strategy would be the same as in Sec. III C. We project the
operator on the right-hand side to its antiholomorphic
components and act on the vacuum state in the initial
Hilbert space. We have the following operator relation from
Eq. (60):

Uðtf; tiÞ−1 ˆ̂φiUðtf; tiÞ ¼ Ei
jφ̂

j: ð61Þ

To get the antiholomorphic components on the right-hand
side we perform the following manipulations (suppressing
the indices for a little bit):

Eð1þ iJðtiÞÞφ̂ ¼ �1þ iEJðtiÞE−1
�
Eφ̂

¼ Uðtf; tiÞ−1
�
1þ iEJðtiÞE−1

�
ˆ̂φUðtf; tiÞ:

ð62Þ

Now applying Eð1þ iJðtiÞÞφ̂ to Ψvac ∈HJðtiÞ we get zero.
Let Uðtf; tiÞΨvac ¼ ψ ∈HJðtfÞ. We then get

	ð1þ iEJðtiÞE−1Þ ˆ̂φ
ψ ¼ 0:

⇒
h
ð1þ iEJðtiÞE−1Þij̄ ˆ̂φj̄ þ ð1þ iEJðtiÞE−1ÞÞij ˆ̂φj

i
ψ ¼ 0;

⇒
h
ðJðtfÞ þ EJðtiÞE−1Þij̄ ˆ̂φj̄ − ðJðtfÞ − EJðtiÞE−1ÞÞij ˆ̂φj

i
ψ ¼ 0;

⇒
h
ˆ̂φī − χ īj ˆ̂φ

j
i
ψ ¼ 0; ð63Þ

where χ is the operator χ ≔ ðJðtfÞ þ EJðtiÞE−1Þ−1
ðJðtfÞ − EJðtiÞE−1Þ. In the second equality above we have
restored the indices and decomposed the operator in terms
of its holomorphic and antiholomorphic components with
respect to JðtfÞ. In the third equality we have used the fact

that JðtfÞij̄ ˆ̂φj̄ ¼ −i ˆ̂φj̄ and similarly for the holomorphic
component. But Eq. (63) is the same as Eq. (39) with the
identification J2 ¼ JðtfÞ and J1 ¼ EJðtiÞE−1. Therefore
the result Eq. (44) of Sec. III C can be imported as is. We
thus have the conclusion that operator Uðtf; tiÞ is unitary if
and only if

	
JðtfÞ − EJðtiÞE−1



ī
k

	
JðtfÞ − EJðtiÞE−1



k
ī < ∞: ð64Þ

In our case, since our complex structure JðtfÞ is not
specified separately but is dictated by the time evolution
of the initial complex structure JðtfÞ, we have that JðtfÞ ¼
EJðtiÞE−1 and thus the Hilbert-Schmidt condition is
trivially satisfied. This matches with the conclusion of
Ref. [22]. Therefore, our evolution operator U is always
unitary. Note that in the finite dimensional case there is
nothing to check because there will be a finite number of
terms in Eq. (64) and U will be unitary. However, in the

BOGOLIUBOV TRANSFORMATION AND SCHRÖDINGER … PHYS. REV. D 108, 085028 (2023)

085028-9



infinite dimensional case Eq. (64) is a nontrivial condition
for ensuring the unitarity of Schrödinger dynamics.
What if one insists on specifying another complex

structure on the final slice, say, Jnew? In that case our
strategy would be to first use our Schrödinger equation (50)
to propagate the state until the final time slice to get an
element of HJðtfÞ and then perform a Bogoliubov trans-
formation to get a state inHJnew . From Eq. (44) in Sec. III C
the latter will be unitary if and only if ½Jnew − JðtfÞ� is
Hilbert-Schmidt, i.e., if and only if	

Jnew − JðtfÞ


ī
k

	
Jnew − JðtfÞ



k
ī < ∞; ð65Þ

where (anti)holomorphic projections are with respect
to Jnew.

VI. SUMMARY AND OUTLOOK

Quantum field theory on curved spacetime is usually
studied in the covariant picture. In this picture the covariant
operator algebra is given on the spacetime. The choice of
vacuum is equivalent to the choice of complex structure on
the covariant phase space. Once one chooses this complex
structure one can construct the wave functions which are
holomorphic functions with respect to this complex struc-
ture. Therefore the Hilbert space is labeled by this complex
structure and provides the representation space for the
representation of the covariant operator algebra. This is
done either in terms of creation/annihilation operators or by
geometric quantization as discussed in this paper. In
practical applications one specifies the complex structure
by choosing a basis of the solutions of the linear field
equation and decomposing them in terms of positive and
negative frequency. This induces a holomorphic structure
on the covariant phase space. In this approach dynamics is
carried by the operators and the state is considered fixed.
Correlation functions of operators in this state are the
observables of the theory. This Heisenberg picture of
quantum dynamics is sufficient and complete. However,
if one attempts to transfer the time dependence from the
operators to the states thus constructing a Schrödinger
picture of quantum dynamics one runs into the problem
noted in Refs. [8–21] that the Schrödinger dynamics turns
out to be nonunitary. This issue was resolved by Agullo and
Ashtekar in Ref. [22] who realized that the problem arises
because one is trying to construct the Schrödinger dynam-
ics on a fixed Hilbert space. If one insists on a fixed Hilbert
space then Eq. (1) indeed leads to the conclusion that the
operatorU is not unitary. However, if one allows the Hilbert
space to change during time evolution then Ref. [22]
postulated a generalized unitarity condition stated in
Eq. (2) which leads to a unitary U. The goal of our paper
is to understand the operator U that appears in Eq. (2).
In fact our objective is complementary to that of Eq. (2).
We postulated the Schrödinger dynamics directly by

constructing the Hamiltonian operator in Eq. (54) that
evolves the states infinitesimally. To this end we used the
Bogoliubov transformation implemented by the connection
in Eq. (32) first constructed in Refs. [26,27]. Operator U is
then the time-ordered exponential of the Hamiltonian,
Eq. (52). We then derived the generalized unitarity con-
dition of Ref. [22] and the Hilbert-Schmidt condition that
follows from it in Sec. V. Given that we postulated the
Schrödinger equation, one might wonder why did we have
to derive the generalized unitarity condition before check-
ing the unitarity of the Schrödinger dynamics. Indeed, it
would be nice to directly evolve the vacuum wave function
in Eq. (19) using our U, but we found it simpler to first
derive the generalized unitarity condition.
Note that the condition for unitarity of our U is that

½JðtfÞ − EJðtiÞE−1� be Hilbert-Schmidt. This is different
from the old unitarity condition which insisted on the
dynamics on a fixed Hilbert space HJ and which leads to
the condition that ½J − EJE−1� be Hilbert-Schmidt.
Moreover, the condition is not that ½JðtfÞ − JðtiÞ� be
Hilbert-Schmidt, which would be the case if were looking
for a kinematical identification between the initial and final
Hilbert spaces as in Sec. III C. In fact, as shown in the
cosmological example in Ref. [22], ½JðtfÞ − JðtiÞ� turns out
not to be Hilbert-Schmidt. The latter in particular implies
that in the infinite dimensional setting, for arbitrary
foliation of the background spacetime, the connection A
in Eq. (32) is not unitary. It is only that the dynamical
evolution by our Hamiltonian, only a part of which is A, is
unitary. This agrees with the insight of Ref. [22] where it
was phrased by saying that only the dynamical auto-
morphisms of the canonical operator algebra are unitarily
implementable.
Finally we would like to make some remarks regarding

the shortcomings of our study. Clearly, it would be
important to consider the infinite dimensional language
from the start, as it was in Ref. [22]. Although phrasing the
problem in the language of finite dimensions and taking the
limit to infinity is useful and physically insightful, there are
issues related to operator domains in Cauchy completions
etc. which arise in infinite dimensions that our analysis is
completely oblivious of. We leave this problem for those
who are better equipped than us in the functional analytical
issues and mathematical rigor (see, e.g., Ref. [30]). Another
important restriction is that, following Refs. [26,27], our
study was limited to translation invariant complex struc-
tures. While this covers some known cases (see, e.g.,
Ref. [6]), it certainly is not the most general situation.
Last but not least is the fact that the connection A is
projectively flat. Its curvature is F ¼ − 1

8
δJik̄ ∧ δJk̄i.

Finiteness of curvature looks like the infinitesimal form
of the Hilbert-Schmidt condition. At least in the finite
dimensional case the connection can be made flat by adding
the so-called metaplectic correction. In this paper, we have
not considered this. It would be interesting to understand
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the metaplectic correction and its dynamical consequences
in the context of generalized unitarity.
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APPENDIX: NORMALIZATION OF THE STATE

State to be normalized:

ψ ¼ N e
−i
2
ωī jφ

īφ
j

e
i
2
ωī jχ

ī
kφ

kφ
j

: ðA1Þ

From Eq. (20) we have the normalization condition,

1 ¼ jN j2
Z �Y2N

i¼1

dφi

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
ω

2π

�s
ψ�ψ : ðA2Þ

By explicitly inserting the holomorphic projections of
Eq. (15) in ψ we get

ψ ¼ N e−
1
4
φiðωJ2Þijφj

e−
i
4
φiðωχÞijφj−1

4
φiðωχJ2Þijφj

:

Hence for jψ j2 we get

jψ j2 ¼ jN j2e−1
2
φiðωJ2Þijφj

e−
1
2
φiðωχJ2Þijφj

:

The normalization equation has then just a Gaussian
integral,

1 ¼ jN j2
Z �Y2N

i¼1

dφi

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
ω

2π

�s
e−

1
2
φiMijφ

j
;

where M is the matrix M ¼ ωð1þ χÞJ2. The det factor in
the above integral can come out of the integral since our ω
is translation invariant. The remaining Gaussian integral
gives 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ðM=2πÞ
p . A part of this cancels the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðω=2πÞp

sitting outside and we are left with

1 ¼ jN j2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ½ð1þ χÞJ2�

p :

Now, the matrix ½ð1þ χÞJ2� can be decomposed in the
holomorphic and antiholomorphic parts with respect to J2,
and noting that χ has only mixed indices, we have

det ½ð1þ χÞJ2� ¼ det

��−iδī j̄ 0

0 iδij

�
þ
�

0 iχ īj

−iχij̄ 0

��
ðA3Þ

¼ det ½1 − χ2�; ðA4Þ

where the matrix χ2 ≔ χ ījχ
j
k̄. Note that χ īj and χij̄ are

complex conjugate matrices; therefore, χ2 is positive.
Now using that ln det ¼ tr ln, we get

det½1 − χ2� ¼ etr ln ½1−χ2� ðA5Þ

< e−trðχ2Þ: ðA6Þ

Hence the normalizationN is finite if only if trðχ2Þ is finite.
This is the case if and only if

ðJ2 − J1ÞīkðJ2 − J1Þkī < ∞; ðA7Þ

which is the Hilbert-Schmidt condition.
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