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Flavored modular differential equations sometimes arise from null states or their descendants in a chiral
algebra with continuous flavor symmetry. In this paper we focus on Kac-Moody algebras ĝk that contain a
level-four null state jN Ti which implements the nilpotency of the Sugawara stress tensor. We study the
properties of the corresponding flavored modular differential equations, and show that the equations exhibit
almost covariance under modular S-transformation, connecting null states and their descendants at different
levels. The modular property of the equations fixes the structure of g and the level k, as well as the flavored
characters of all the highest weight representations. Shift property of the equations can generate nonvacuum
characters starting from the vacuum character.
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I. INTRODUCTION

Conformal field theory (CFT) is one of the central
players in physics and mathematics. In two dimensions,
CFTs are strongly constrained by the infinite-dimensional
chiral symmetry algebras and the modular group, such that
a classification of 2d CFTs is an important and also a likely
approachable problem. Among all 2d CFTs, the rational
conformal field theories (RCFTs) are the simplest ones
from the classification point of view. One crucial tool to this
task is the null states,1 from which differential equations of
correlation functions on C can be derived and used to
constrain the correlation functions and the spectrum of the
primaries [1,2].
As a different approach of classification, holomorphic

modular bootstrap focuses on the modular properties of the
characters ch (and torus correlation functions) by studying
the modular differential equations they satisfy [3–11].
These ordinary differential equations are of the form

�
DðnÞ

q þ
Xn−1
k¼0

ϕ2kðτÞDðkÞ
q

�
ch ¼ 0; q ¼ e2πiτ; ð1:1Þ

where DðnÞ
q denotes the Ramanujan-Serre derivatives, ϕ2k

are modular forms of weight 2n − 2k for SLð2;ZÞ or
suitable congruence subgroup if fermions are present. The

equations themselves have relatively simple structure while
bringing considerable constraints on the allowed charac-
ters, and therefore provides a useful organizing principal of
RCFTs. The modular differential equation in the modular
bootstrap arises from the modular invariance of the RCFT,
which states that the characters of the associated chiral
algebra should form vector-valued modular form under the
modular group. Automatically, the characters and their
Ramanujan-Serre derivatives must satisfy an ordinary
differential equation whose coefficients are modular forms.
In this paper, we explore a refinement of the modular

bootstrap approach with flavored-modular differential
equations, which we expect to apply to more general
theories including nonrational ones. For RCFTs with flavor
symmetry, different characters of different highest weight
modules can have identical unflavoring limit, leading to
degeneracy which may be lifted by flavor refinement.
Moreover, highest weight modules of nonrational chiral
algebras generally do not have finite dimensional weight
space at a given conformal weight. In such cases, the
unflavored limit of the characters does not exist, and
therefore, they are simply invisible from looking at the
unflavored modular differential equations. Therefore, fla-
vor refinement improves the resolution and the range of
validity of the holomorphic modular bootstrap method.
However, with flavor refinement and nonrationality in

consideration, the derivation of modular differential equa-
tion based on the Wronskian does not apply. Therefore, we
consider another circumstance where modular differential
equations appear and serve as tool to classification of CFTs.
In [12] it is shown that if a null state

jN i ¼ Ls
−2j0i þ

X
a;b

a−h½a�−1jbi ð1:2Þ
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1Also refereed to as null vectors, singular vectors or just nulls
in the literature.
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exists in the chiral algebra, it may give rise to a modular
differential equation. In mathematical terminology, the null
state implies that the stress tensor T is nilpotent at the level
of the C2-algebra of the chiral algebra. This argument goes
beyond rationality, for example, it is employed in the
context of the 4d/2d correspondence where the relevant
chiral algebra is in general nonrational. Every 4d N ¼ 4
superconformal field theory (SCFT) T contains a protected
subsector of Schur operators that form a nonunitary and
often nonrational2 associated chiral algebra χðT Þ [15–22].
The Schur limit of the superconformal index of T is
mapped under this correspondence to the vacuum character
of χðT Þ, and the Higgs branch chiral ring is identified with
the reduced Zhu’s C2-algebra [23]. As a result, The non-
Higgs-branch strong generators in χðT Þ must be trivial at
the level of the reduced Zhu’s C2-algebra. In particular, the
stress tensor T must be nilpotent in the C2-algebra which is
often implemented by a null state N T in χðT Þ. Therefore,
by [12], the unflavored Schur index of a 4dN ¼ 2 SCFT T
is expected to satisfy some unflavored modular differential
equation following from the nilpotency of the stress tensor
[23–25], and this fact is used in the classification of a class
of 4d N ¼ 2 SCFTs [24]. In the 4d/2d correspondence
[16], the presence of continuous flavor symmetry implies a
nontrivial associated variety of χðT Þ and therefore non-
rationality of χðT Þ. Some of the nonvacuum characters of
χðT Þ are related to the Schur index of the T in the presence
of certain surface defects [23,26–29]. Therefore, the intri-
cate spectrum of the often nonrational χðT Þ also encodes
important information on the 4d physics.
The flavored modular differential equations are linear

partial differential equations involving the derivatives DðkÞ
q

(weight-two), Dbi (weight-one), and quasi-Jacobi coeffi-
cients ϕrðbi; τÞ. In [30], flavored modular differential
equations were applied to elliptic genera. In [29,31], such
flavored modular differential equations for some simple 4d
N ¼ 2 Lagrangian SCFTs were studied, where additional
solutions of those equations were found to have some 4d
physical origins; the index of vortex surface defects, the
residues of the integrand that computes the Schur index
(which is related to Gukov-Witten type surface defects),
and modular transformations of the Schur index (which is
related to surface defects from singular background gauge
fields coupled to the flavor symmetry).
To demonstrate some advantages of the flavor

refinement, we will mainly focus for simplicity on a
distinguished set of chiral algebras associated to the
Deligne-Cvitanović series of exceptional Lie algebras

g¼ða0⊂Þa1⊂a2⊂g2⊂d4⊂ f4⊂e6⊂e7⊂e8: ð1:3Þ

This set of chiral algebras provides an ideal laboratory as it
is very simple and includes algebras of several kinds, the
standard WZW models ĝk¼1 with integral representations,
Virasoro minimal model M2;5, admissible Kac-Moody

algebras such as dsuð2Þ−4=3 and some nonadmissible onescsoð8Þ−2; ðê6Þ−3; ðê7Þ−4; ðê8Þ−6.
To summarize, we will begin with a general Kac-Moody

algebra ĝk≠−h∨ associated to a simple Lie algebrag.We then
postulates a simplest null state N T that implements the
nilpotency of the stress tensor and satisfies Ln>0jN Ti ¼ 0.
From this, we explore the following aspects:

(i) Using Zhu’s recursion formula [28,31–33] we derive
the flavored modular differential equation that fol-
low from the null state jN Ti, and the equation from
the Sugawara stress tensor.

(ii) We impose “modularity” on the two equations. The
almost covariance [29] directly constrains the Lie
algebra g to the Deligne-Cvitanović series (1.3) and
level k to special values k ¼ 1;−h∨=6 − 1.

(iii) We discuss the relation between the “modularity”
with the Joseph relations and nulls at weight-three.
Roughly speaking, the S-transformation connects
(the descendants of) nulls at different levels,

jN Ti⟶S jN Ti ⊕ hi1jN Ti ⊕ hi1h
j
1jN Ti: ð1:4Þ

We argue that all highest-weight flavored characters
are determined by the two equations from N T and
T ¼ TSug, and modularity [31].

(iv) Finally, we explore the behavior of the equations
under some shift Tn∨ of the flavor fugacities bj,
which connects nulls at different levels,

jN Ti⟶
Tn∨ jN Ti ⊕ hi1jN Ti ⊕ hi1h

j
1jN Ti: ð1:5Þ

Therefore, we expect Tn∨ to generate new solutions
from the vacuum character.

From these discussions we see that the flavor refinement
grants direct access to important internal structure and the
representation theory of the chiral algebra, and is able to treat
general nonrational chiral algebras like the rational ones.
This paper is organized as follows. In Sec. II we briefly

recall some conventions and preliminaries on affine Lie
algebra and chiral algebra. In Sec. III we discuss the
constraints on the chiral algebra and characters imposed by
a weight-four null state, with the assumption of modularity.
In Sec. IV we apply the discussions to a few examples.

II. PRELIMINARIES

In this paper we will focus on Kac-Moody Lie algebras,
and let us begin by recalling some conventions and well-
known results. Consider a simple Lie algebra g of rank r.
The generators of g can be generically denoted as JA with
the commutation relations ½JA; JB� ¼ fABCJc. The roots

2The associated chiral algebras χðT Þ are expected to be
quasilisse; a chiral algebra is quasilisse if its associated variety
has finitely many symplectic leaves [13–15].
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and simple roots of g are denoted as α and αi, and the
collection of roots Δ ≔ fαg. The Killing form Kð·; ·Þ is
defined by

KðX; YÞ ≔ 1

2h∨ tradjXY; KAB ≔ KðJA; JBÞ;
∀ JA; JB; X; Y ∈g: ð2:1Þ

The Killing form induces an inner product ð·; ·Þ for the
weights, such that for any long root α, jαj2 ¼ ðα; αÞ ¼ 2.
The simple coroots are α∨i ≔ 2αi=jαij2 which are dual to
the fundamental weights ωi. Similarly, the dual basis of the
simple roots αi are the fundamental coweightsω∨

i , such that
ðαi;ω∨

j Þ ¼ ðα∨i ;ωjÞ ¼ δij. The longest root and the Weyl
vector are denoted by θ and ρ, and the dual Coxeter number
h∨ ≔ ðθ; ρÞ þ 1. The Cartan matrix of g is given by
Aij ≔ ðαi;α∨j Þ.
A Chevalley basis of generators of g is denoted by ei, fi,

hi with the (nonzero) commutation relations

½ei; fj� ¼ δijhj; ½hi; ej� ¼ Ajiej;

½hi; fj� ¼ −Ajifj; i ¼ 1;…; r: ð2:2Þ

In particular, hi span the Cartan subalgebra h ⊂ g. The
remaining ladder operators Eα corresponding to roots α can
be constructed by suitable nested commutators of e’s and
f’s, and in particular, ei ¼ Eαi , fi ¼ E−αi . In the end, all of
the hi and Eα form a nice basis of g, with the commutation
relations

½Eα; E−α� ¼
Xr

i¼1

fα;−αihi; ½Eα; Eβ� ¼ fαβγEγ

if γ ¼ αþ β∈Δ; ð2:3Þ

½hi; Eα� ¼ ðα; α∨i ÞEα: ð2:4Þ

In this Chevalley basis, the Killing form drastically
simplifies, and the only nonzero components are

Kij ≔ Kðhi; hjÞ ¼ ðα∨i ; α∨j Þ;
Xr
j¼1

KijKjk ¼ δki ; ð2:5Þ

Kα;−α ≔ KðEα; E−αÞ; Kα;−α ¼ ðKα;−αÞ−1: ð2:6Þ

In particular, for any two weights μ, ν

ðμ;νÞ¼
Xr

i;j¼1

Kijμiνi; where μ¼
Xr
i¼1

μiα
∨
i ; ν¼

Xr

i¼1

νiα
∨
i :

ð2:7Þ

The structure constants are also related to K,

fα;−αi¼
jαij2
2

mα
i K

α;−α; fiαα¼ðα;α∨i Þ; α¼
Xr
i¼1

mα
i αi:

ð2:8Þ
The generators of an affine Kac-Moody algebra ĝk

associated to g are denoted as JAn , where JA ¼ hi; Eα, with
the standard commutation relations

½JAm; JBn � ¼ fABCJcmþn þmkKABδmþn;0: ð2:9Þ

In terms of the vertex operators JAðzÞ ¼ P
n∈Z JAnz−n−1,

the above commutation relations are equivalent to the
standard one-pion exchange

JAðzÞJBðwÞ ¼ fABCJCðwÞ
z − w

þ kKAB

ðz − wÞ2 þOðz − wÞ;

KAB ≔ KðJA; JBÞ:

For any noncritical level k ≠ −h∨, one can define the
Sugawara stress tensor TSugðzÞ by the normal-ordered
product,

TSugðzÞ ¼
1

2ðkþ h∨Þ
X
A;B

KABðJAJBÞðzÞ ¼
X
n∈Z

Lnz−n−2:

ð2:10Þ
The modes Ln satisfy the standard Virasoro commutation
relations with a special central charge c,

½Lm; Ln� ¼ ðm − nÞLmþn þ
c
12

mðmþ 1Þðm − 1Þ;

c ¼ k dimg
kþ h∨ : ð2:11Þ

In other words, the affine Kac-Moody algebra ĝk contains a
Virasoro subalgebra Vc as long as k is away from criticality.
An affine primary jλi is a state annihilated by JAn>0 and

Eα>0
0 , with eigenvalues

hi0jλi ¼ λijλi; L0jλi ¼
ðλ; λþ 2ρÞ
2ðkþ h∨Þ jλi: ð2:12Þ

Starting from jλi one can build a highest weight repre-
sentation Mλ of ĝk by acting with JAn<0 and Eα<0

0 , and in
particular, the vacuum representation from j0i. States inMλ

besides jλi are call affine descendants of jλi. If in a highest
weight representation M one finds a descendant state jN i
that also satisfies the affine primary condition, then jN i is
called an affine null state which signals the reducibility of
Mλ with a subrepresentation generated by jN i. In general,
any highest weight representation of ĝk also decomposes
into irreducible representations of the Virasoro subalgebra
Vc. In this sense, one can also define Virasoro null states
that are annihilated by Ln>0.
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A null state jN i in the vacuum representation of ĝk
corresponds to a null field N ðzÞ by the state-operator
correspondence aðzÞ ↔ jai, where

aðzÞ ¼
X

n∈Z−ha

anz−n−ha ; oðaÞ ≔ a0: ð2:13Þ

The torus one-point function of a null field (and its
descendants) vanishes.3 Such a one-point function can
sometimes be preprocessed by the Zhu’s recursion formula

]28,32–34 ]. For a chiral algebra with a Uð1Þ affine current
J, and any two operators aðzÞ, bðzÞ in the chiral algebra
such that J0jai ¼ Qjai,

str oða½−ha�bÞxJ0qL0 ¼ δQ;0strMa0b0xJ0qL0 ð2:14Þ

þ
Xþ∞

n¼1

En

�
e2πiha

xQ

�
str oða½−haþn�bÞxJ0qL0 ; ð2:15Þ

and when n > 0,

str oða½−ha−n�jbiÞqL0xh

¼ ð−1Þn
Xþ∞

k¼1

�
k − 1

n

�
Ek

�þ1

xQ

�
tr oða½−ha−nþk�jbiÞqL0xh:

Here the square-mode a½n� follows from

a½z� ≔ eizhaaðeiz − 1Þ ¼
X

n∈Z−ha

a½n�z−n−ha : ð2:16Þ

III. FLAVORED MODULAR DIFFERENTIAL
EQUATIONS

A. Nulls and FMDEs

In [23], it is conjectured that the associated chiral algebra
χðT Þ of a 4d N ¼ 2 SCFT T encodes the Higgs branch of
the latter as its associated variety, the presence of which
signals nonrationality of the chiral algebra. As a result, the
stress tensor T of χðT Þ should be nilpotent at the level of
C2ðχðT ÞÞ,

Lk
−2j0i¼ jN Tiþφ; φ∈C2ðχðT ÞÞ; k∈N≥1: ð3:1Þ

Here N T is a null4 that bridges T and C2ðχðT ÞÞ is a vector
space

C2ðχðT ÞÞ ≔ spanfa−ha−1jbijaðzÞ; bðzÞ∈ χðT Þg: ð3:2Þ

As a consequence of the nilpotency, it is conjectured that
the Schur index should be a solution to a (unflavored)
finite-order modular differential equation [14,23]�

DðnÞ
q þ

Xn−1
k¼0

ϕrðτÞDðrÞ
q

�
ch ¼ 0; ð3:3Þ

where ϕr are SLð2;ZÞ or Γ0ð2Þ modular forms. This
equation comes from computing the torus one-point func-
tion of N T . Such logic applies to all quasilisse chiral
algebras, which include the more familiar rational chiral
algebras as the simplest instances having zero-dimensional
associated varieties, and the null N T is expected to play
some central role in general.
Let us now focus on affine Kac-Moody algebras ĝk. We

assume the presence of a g-neutral weight-four affine or
Virasoro null (or descendant of null) state jN Ti in the
vacuum module that is simultaneously Virasoro primary,5

which enforces the nilpotency of the stress tensor T. The
general form of such a state is given by6

jN Ti ¼
�
L2
−2 þ αL−4 þ βKABJA−3J

B
−1 þ γKABJA−2J

B
−2

þ δdABCJA−2J
B
−1J

C
−1
�j0i;

where dABC is the total symmetric cubic Casimir. In other
words,

L2
−2j0i ¼ jN Ti − ðαL−4 þ βKABJA−3J

B
−1 þ γKABJA−2J

B
−2

þ δdABCJA−2J
B
−1J

C
−1Þj0i;

where the second term on the right belongs to vector space
C2ðĝkÞ,

C2ðĝkÞ ≔ spanfa−ha−1jbijaðzÞ; bðzÞ∈ ĝkg: ð3:5Þ

For jN Ti to be Virasoro primary, we have
Ln>0jN Ti ¼ 0. Explicitly,

L1jN Ti¼
3þ5αþ3βðkþh∨Þþ4γðkþh∨Þ

kþh∨ KabJa−2J
B
−1j0i

þ2δdABCJA−1J
B
−1J

C
−1j0i¼0; ð3:6Þ

3Often we do not distinguish between nulls and descendants of
null, as they play more or less the same role in the discussions.

4State jN Ti can also be a descendant of some chiral null state,
which is also removed to form a simple chiral algebra.

5If jN Ti is also a Virasoro descendant, then jN Ti is a usual
Viraosro null state. This is the case in the a0 entry of the
nonunitary Deligne-Cvitanović series, where

jN Ti ¼
�
L2
−2 −

5

3
L−4

�
j0i: ð3:4Þ

6Since L2
−2j0i is neutral under g, the null jN Ti is also expected

to be neutral, hence all indices ABC… needs to contracted with
invariant tensors. To bridge between L2

−2j0i and C2ðĝkÞ, the
remaining terms in jN Ti should be of the form a−ha−1jbi, hence a
term like dABCDJA−1J

B
−1J

C
−1J

D
−1j0i shall not appear.
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L2jN Ti ¼ ð8þ cþ 6αþ 6ðh∨ þ kÞβÞL−2j0i ¼ 0; ð3:7Þ

Ln≥3jN Ti ¼ 0: ð3:8Þ

They impose conditions on the coefficients α, β, γ, δ,

β¼−
8þcþ6α

6ðkþh∨Þ ; γ¼2þc−4α

8ðkþh∨Þ ; δ¼0: ð3:9Þ

In particular,

β − 2γ ¼ −
22þ 5c

12ðkþ h∨Þ : ð3:10Þ

Besides jN Ti at weight-four, there is another trivial null
state N Sug at weight-two that is expected to be present in
any noncritical Kac-Moody algebra, corresponding to the
statement that the stress tensor of the Kac-Moody algebra is
given by the Sugawara stress tensor,

N SugðzÞ ¼ TðzÞ − TSugðzÞ ¼ 0: ð3:11Þ

This null field is also g-neutral like N T .
Let us now examine the flavored modular differential

equations from the two null states. Explicitly, we consider
the following equation of one-point function,7

0 ¼ hN ð0ÞiM ¼ yktrMN ð0Þð−1ÞFqL0− c
24

Yr
i¼1

b
hi
0

i ; ð3:12Þ

where hi are the Cartan generators in a Chevalley basis. In
the absence of an insertion N ð0Þ, the trace gives the
character of the module M,

chMðbi; q; yÞ ¼ chMðbi; τ;yÞ ¼ yktrMð−1ÞFqL0− c
24

Yr
i¼1

b
hi
0

i :

ð3:13Þ

We often omit the subscript M for brevity, and also write

q¼e2πiτ; aj¼e2πiaj ; bj¼e2πibj ; y¼e2πiy: ð3:14Þ

The corresponding derivatives are

q∂q¼
1

2πi
∂τ; Dbi ≔bi∂bi ¼

1

2πi
∂bi

; Dy≔y∂y¼
1

2πi
∂y:

ð3:15Þ

Applying Zhu’s flavored recursion formula to the one-
point function ofN T leads to a partial differential equation,

0 ¼ Dð2Þ
q chþ

�
c
2
þ 3krðβ − 2γÞ

�
E4ðτÞch

þ ðβ − 2γÞ
X
α∈Δ

Xr

i¼1

Kα;−αfα;−αiE3

�
1

bα

�
Dbich

þ 3kðβ − 2γÞ
X
α∈Δ

E4

�
1

bα

�
ch: ð3:16Þ

Here we denote

bα ≔
Yr
j¼1

b
λαj
j ; α ¼

Xr
i¼1

λαiωi ∈Δ: ð3:17Þ

Similarly, the Sugawara null vector N Sug leads to another
equation,

0 ¼
�
2ðkþ h∨ÞDð1Þ

q − KijDbiDbj

−
X
α

Kα;−αfα;−αiE1

�
1

bα

�
Dbi

− krE2ðτÞ − k
X
α

E2

�
1

bα

��
ch: ð3:18Þ

B. Modularity

Equations (3.16) and (3.18) are by no means the only
equations that the characters should obey. In fact, we will
argue that other equations (and nulls) are required to exist
by modularity. As mentioned in the introduction, the
Eisenstein series involved in the two flavored modular
differential equations are not standard modular form of
SLð2;ZÞ. Instead, they are quasi-Jacobi forms of SLð2;ZÞ.
Let us consider the following S-transformation

τ→−
1

τ
; bi→

bi

τ
; y→y−

1

k
1

τ

Xr
i;j¼1

Kijbibj≔y−
1

k
1

τ
b2:

ð3:19Þ
Here K is a r × r symmetric matrix to be determined by
modularity. It is easy to check that S2ðτ;b;yÞ ¼ ðτ;−b;yÞ
is the charge conjugation, and S4 ¼ id on these variables.
The change of variables leads to mixture of derivatives,

q∂q → τ2q∂q þ τ
Xr

i¼1

biDbi þ
1

k

Xr
i;j¼1

KijbibjDy

¼ τ2q∂q þ τ
Xr

i¼1

biDbi þ
Xr

i;j¼1

Kijbibj; ð3:20Þ

Dbi → τDbi þ
2

k

Xr
j¼1

KijbjDy¼ τDbi þ2
Xr

j¼1

Kijbj: ð3:21Þ
7Here the parity operator ð−1ÞF is redundant for affine Kac-

Moody algebra, but we keep it anyway. Also the y factor the
fugacity conjugate to the level k [35].
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Here we have anticipated that Dy ¼ k when acting on yk.
The Eisenstein series also transforms nontrivially, for
example,

E3

�
1

bα

�
→

i
48π3

ðlog bαÞ3 − τ

8π2
E1

�
1

bα

�
ðlog bαÞ2

þ iτ2

2π
E2

�
1

bα

�
logðbαÞ þ τ3E3

�
1

bα

�
;

where

logbα¼2πi
X
i

biλ
α
i ¼2πiðα;bÞ; b≔

X
i

biα
∨
i : ð3:22Þ

Let us now impose modularity, by that we require the
character to remain a solution to the S-transformed equa-
tions. We first explore its consequence with the N Sug

equation (3.18). After the S-transformation, we expect any
module characters ch to stay the kernel of the following
operator,

2ðkþ h∨Þðτ2Dð1Þ
q þ τbiDbi þKijbibjÞ − Kij

�
τDbi þ 2Kimbm

	�
τDbj þ 2Kjnbn

	
−
X
α

Kα;−αfα;−αi

�
τE1

�
1

bα

�
þ λαjbj

�
ðτDbi þ 2KimbmÞ − kr

�
τ2E2 −

τ

2πi

�
− k

X
α

�
τ2E2

�
1

bα

�
− τðλαjbjÞE1

�
1

bα

�
−
1

2
ðλαjbjÞ2

�
: ð3:23Þ

Here repeated indices i, j, m, n implies summation
from 1 to r. Variables τ and b’s being arbitrary implies
that the coefficients of τ2, τbi, and bibj should separately
annihilate the character. The τ2 part is obviously identical
the original N Sug equation (3.18). The bibj part is
given by

2ðkþ h∨ÞKijbibj − 4KijKimKjnbmbn

− 2
X
α

Kα;−αfα;−αiKimbmλ
α
nbn þ

k
2

X
α

λαmbmλ
α
nbn:

ð3:24Þ

After a bit of rewriting usingX
α

λαmbmλ
α
nbn ¼

X
α

ðα;α∨mÞðα;α∨n Þbmbn

¼ ðα∨m; α∨n Þbmbn ¼ 2h∨Kmnbmbn; ð3:25Þ

and

X
α

Kα;−αfα;−αiKimbmλ
α
nbn ¼ 2h∨Kimbn; ð3:26Þ

the bmbn part simplifies to

2ðkþ h∨ÞKmnbmbn − 4KijKimKjnbmbn

− 4h∨Kmnbmbn þ kh∨Kmnbmbn ð3:27Þ

¼ bTK−1ðk1 − 2KKÞðh∨ þ 2KKÞb; ð3:28Þ

where in the second line we adopted the matrix notation
with K ∼ Kmn, K−1 ∼ Kmn, and b ∼ ðb1;…;brÞT . For this
part to vanish, K is fixed to be

Kij ¼ k
2
Kij; or ;−

h∨
2
Kij: ð3:29Þ

In other words,Kij ∼ #
2
Kij for # ¼ k or −h∨. Consequently,

the τbj coefficient can be simplified to

2ðk−#Þ
�
Dbj þ

X
α

λαjE1

�
1

bα

��
; ∀ j¼1;…;r: ð3:30Þ

This finally fixes the S-transformation of y8

Kij¼ k
2
Kij; y⟶

S
y−

1

τ

1

2
Kijbibj¼y−

1

τ

1

2
ðb;bÞ;

b≔
X
i

biα
∨
i : ð3:32Þ

With this information, we move on to investigate the
modularity of theN T-equation (3.16). By “modularity” we
require the character to be annihilated by the following
differential operator after S-transformation,

8The solution to the equation�
Dbj þ

X
α

λαj E1

�
1

bα

��
ch ¼ 0 ð3:31Þ

can be easily solved by ch ¼ fðqÞQα ϑ1ðα;bÞ−1. However, this
is not a solution to the original N Sug equation.
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⟶
S
τ4Dð2Þ

q þ 2τ3
X
i

biDbiðDð1Þ
q þ E2Þ þ 2τ2b2ðDð1Þ

q þ E2Þ þ τ2
X
i;j

bibjDbiDbj

þ 2b2τ
X
i

biDbi þ ðb2Þ2 þ
�
c
2
þ 3krðβ − 2γÞ

�
τ4E4ðτÞ

þ ðβ − 2γÞ
X
α∈Δ

Xr

i¼1

Kα;−αfα;−αi

�
i

48π3
ðlog bαÞ3 − τ

8π2
E1

�
1

bα

�
ðlogbαÞ2

þ iτ2

2π
E2

�
1

bα

�
logðbαÞ þ τ3E3

�
1

bα

��
ðτDbi þ ð∂bi

b2ÞÞ

þ 3kðβ − 2γÞ
X
α∈Δ

�
−

1

384π4
ðlogbαÞ4 − iτ

48π3
ðlog bαÞ3E1

�
1

bα

�
−

τ2

8π2
ðlog bαÞ2E2

�
1

bα

�
þ iτ3

2π
ðlog bαÞE3

�
1

bα

�
þ τ4E4

�
1

bα

��
: ð3:33Þ

Here b2 ≔ Kijbibj ¼ k
2
ðb;bÞ. The τ4 part of the trans-

formed equation is identical to the original (3.16). Let us
now focus on the τ0 part of the transformed equation, which
reads

ðb2Þ2 þ iðβ − 2γÞ
48π3

X
α∈Δ

Xr

i¼1

Kα;−αfα;−αiðlog bαÞ3ð∂bi
b2Þ

−
3kðβ − 2γÞ
384π4

X
α∈Δ

ðlogbαÞ4:

Some straightforward algebra simplifies the τ0-part to

k2

4
ðb;bÞ2 þ k

24
ðβ − 2γÞ

X
α

ðα;bÞ4: ð3:34Þ

Note that the weight b is arbitrary. It turns out for the τ0-part
to vanish it imposes a very strong algebraic condition, that
only the following simple Lie algebras are allowed:

a1; a2; g2; d4; f4; e6; e7; e8; ð3:35Þ

which coincide with the well-known Deligne-Cvitanović
exceptional series of simple Lie algebras. For this series, it is
straightforward to check that

X
α

ðb; αÞ4 ¼ 6

�
h∨
6

þ 1

�
ðb;bÞ2; ∀b; ð3:36Þ

and it forces

k
4

�
kþ ðβ − 2γÞ

�
h∨
6

þ 1

��
¼ 0 ⇒ k ¼ 0;

or; ðβ − 2γÞ
�
−
h∨
6

− 1

�
: ð3:37Þ

Recall that for N T to be a Virasoro primary,

β − 2γ ¼ −
22þ 5c

12ðkþ h∨Þ ; ð3:38Þ

which implies a degenerate casewith c ¼ −22=5 and k ¼ 0:
this is nothing but the a0 entry of the Deligne-Cvitanović
exceptional series corresponding to the Lee-Yang minimal
model. If instead we assume k ≠ 0 and the Sugawara central
charge c ¼ k dimg=ðkþ h∨Þ, then the level k is further
constrained,

k ¼ 1; −
h∨
6

− 1; −
11

6
h∨: ð3:39Þ

This recovers the level-one and nonunitary Deligne-
Cvitanović exceptional series of affine Kac-Moody alge-
bras. The simply-laced type of finite Lie algebra, including
AN type, DN type, and the exceptional Lie algebra E6, E7,
and E8 (ADE) entries of the nonunitary series all have 4d
N ¼ 2 SCFT origin through the 4d/2d correspondence
[16,23]. The last possibility k ¼ − 11

6
h∨ can be excluded

by additionally requiring the jN Ti to partially satisfy the
affine null condition9

JAn¼2;3jN Ti ¼ 0: ð3:40Þ

Similarly, the τ1 part is given by

2b2
Xr

i¼1

biDbi ð3:41Þ

9It is unclear to the authors how to justify such a requirement,
or if there is other elegant argument to rule them out. In this paper
we shall only focus on the former two solutions of k.
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þ ðβ − 2γÞ
X
α

Xr

i¼1

jαij2
2

mα
i

�
−
ð2πiλαjbjÞ2

8π2
E1

�
1

bα

�
Kimbm

þ ið2πiλαjbjÞ3
48π3

Dbi

�
−

i
48π3

3kðβ − 2γÞ
X
α

ð2πiλαjbjÞ3E1

�
1

bα

�
; ð3:42Þ

where all the E1 terms cancel automatically, leaving

�
kþ

�
h∨
6

þ 1

�
ðβ − 2γÞ

�X
i

biDbi

⇒ k ¼ −
�
h∨
6

þ 1

�
ðβ − 2γÞ; ð3:43Þ

but this is not a new constraint.
By modularity, the τ3 and τ2 part are additional flavored

differential equations that the character should satisfy.
Concretely, the τ3 part is

2
X
i

biDbiðDð1Þ
q þ E2Þ − ðβ − 2γÞ

X
α;i

jαij2
2

mα
i E2

�
1

bα

�
ðα;bÞDbi − 2kðβ − 2γÞ

X
α

ðα;bÞE3

�
1

bα

�
; ð3:44Þ

which implies four equations, and τ2 part is

kðb;bÞðDð1Þ
q þ E2Þ þ bibjDbiDbj þ

1

2
ðβ − 2γÞ

X
α;i

jαij2
2

mα
i ðα;bÞ2E1

�
1

bα

�
Dbi þ

1

2
kðβ − 2γÞ

X
α

ðα;bÞ2E2

�
1

bα

�
; ð3:45Þ

implying additional rðrþ1Þ
2

equations. Under S-tranforma-
tion, (3.45) transforms back to itself ×τ2, while the
parts of lower weight vanish if Kij ¼ k

2
Kij and

k ¼ −ðh∨
6
þ 1Þðβ − 2γÞ. In a similar fashion, Eq. (3.44)

transforms into itself as the τ3 part, while the τ2 part
reproduces (3.45); parts of the lower weight vanish if the
above K and k solution is applied. Therefore, the partial
differential equation (3.16), (3.18), (3.44), and (3.45) form
a closed system under the S-transformation; by modularity,
they are expected to annihilate any module character ch.

C. Joseph ideal and highest weight characters

All of the above equations are expected to come from
additional null (descendant) states of the chiral algebra. Let
us focus on the level k ¼ − h∨

6
− 1. At weight-two it is

known that the affine generators JA satisfy the Joseph
relations [36]10

ðJAJBÞjR ∼ 0; ðJAJBÞj1 ∼ KABðJAJBÞ ∼ T; ð3:46Þ

where R is a representation of g in symm2adj ¼
1 ⊕ R ⊕ 2adj, and I2 ≔ R ⊕ 1 is called the Joseph
ideal. The representation R for the Deligne-Cvitanović
series are listed in Table I.
Within these Joseph relations, one can find null states

uncharged under the Cartanh ⊂ g, and they shall give rise to
nontrivial flavoredmodular differential equations ofweight-
two. From the table, we observe that for the ADE cases,

ADE∶ #ðcharge-zero states inRÞ þ 1 ¼ rðrþ 1Þ
2

: ð3:47Þ

Therefore,we expect that in these cases the rðrþ1Þ
2

weight-two
equations in (3.45) precisely correspond to those equations
that arise from (3.46). This is indeed the case for a1, a2, d4

by explicit construction of the null states. In other words, for
the ADE cases in the Deligne-Cvitanović series with
k ¼ −h∨=6 − 1, Eq. (3.16) alone is able to generate all
the weight-two flavored modular differential equations
including Eq. (3.18). For g2, f4, Eq. (3.45) are not enough
to account for all the Joseph relations. For (3.45) to contain
(3.18), ĝk should satisfy − kr

2ðkþh∨Þ ¼ 1, which is indeed true

for theADEcases but not forg2, f4. It would be interesting to
clarify the relation between the Joseph relations and
Eq. (3.45) rigorously.
More concretely, we conjecture that the rðrþ 1Þ=2

equations [(3.45)] and the r Eq. (3.44) arise from the

TABLE I. List of R.

g R
Number of charge-zero

states in R rðrþ 1Þ=2
a1 0 0 1
a2 8 2 3
g2 27 3 3
d4 35v ⊕ 35s ⊕ 35c 9 10
f4 324 12 10
e6 650 20 21
e7 1539 27 28
e8 3875 35 36

10Here ∼0 means the left-hand side is an affine null or affine
descendant. See all Theorem 4.2 of [36].
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zero-charge states hi1h
j
1jN Ti; hi1jN Ti at weight-two and

three. Loosely speaking, the null states at different levels
are connected by the S-transformation,

jN Ti⟶S jN Ti ⊕ hi1jN Ti ⊕ hi1h
j
1jN Ti: ð3:48Þ

For example,

JA1 jN Ti ¼ 2JA−1L−2j0i þ ðαþ 1þ βkþ 2γh∨ÞJA−3j0i
− ðβ − 2γÞfABCJB−2JC−1j0i:

The torus one-point function of the above field with JA ¼
hi gives�
2DbiD

ð1Þ
q þ 2E2ðτÞDbi

− ðβ − 2γÞ
X
α;j

jαjj2
2

mα
j ðα∨i ; αÞE2

�
1

bα

�
Dbj

− 2kðβ − 2γÞE3

X
α

�
1

bα

��
ch; ð3:49Þ

precisely reproducing (3.44); note that oðJA½−3�Þ ¼ 0. In

particular, for the ADE entries with k ¼ − h∨
6
− 1,

JA1J
B
1 jN TijR span the same subspace as JA−1J

B
−1j0ijR, while

for other cases the latter is a larger subspace.
The system of equations (3.16), (3.18), (3.44), and (3.45)

impose strong constraints on the allowed characters. Let us
focus on the case with level k ¼ − h∨

6
− 1; we conjectured

that this system is enough to fix the vacuum and all the
highest weight module characters.11 This can be achieved
by assuming an anzatz

ch ¼ qh
Xþ∞

n¼0

cnðb1;…; brÞqn; ð3:50Þ

and solving for cnðb1;…; brÞ order-by-order. To proceed,
the weight-four equation (3.16) is actually the simplest one,
because Dbi are all multiplied by E3½þ1

b �, which has the q
expansion

E3

�þ1

b

�
¼ −

b2 − 1

2b
qþOðq2Þ: ð3:51Þ

As a result, at the nth order, cnðb1;…; brÞ always appears
without derivatives, and cn is solved algebraically from
c0;…; cn−1: ultimately, all cn≥1 are completely determined
by c0 alone. The weight-four equation (3.16) also implies
only two solutions for h, h ¼ 1

12
ð1þ h∨Þ for the vacuum

character and the other h ¼ 1
12
ð1 − h∨Þ for the nonvacuum

characters. For the vacuum character ch0, c0 ¼ 1 and one
easily gets ch0 to arbitrary high-q order simply by applying
Eq. (3.16). The task of solving the nonvacuum solutions ch
reduces entirely to solving just one function c0ðb1;…; brÞ.
The weight-three equations (3.44) are all automatically
satisfied at the zeroth order once the nonvacuum h is
plugged in. Concretely, using E2½1b� ∼ E2ðτÞ ∼ − 1

12
þOðqÞ,

E3½1b� ∼OðqÞ, we see that the zeroth order of (3.44) is
proportional to

�
2h−

1

6
þ 1

6
h∨

�
Dbi ch!h¼ 1

12
ð1−h∨Þ

0; ch¼ qhc0ðb1;…; brÞ:
ð3:52Þ

Therefore, c0ðb1;…; brÞ is constrained by the rðrþ 1Þ=2
equations of weight-two [and additionally (3.18) for the
g2, f4 cases].
To solve c0, one can further propose an anzatz for the

function c0,

c0ðb1;…brÞ ¼ an11 …anrr
X
li≥0

c0;l1;…;lra
l1
1 …alrr : ð3:53Þ

Here ai are fugacities that are conjugate to the simple roots,

ai ≔
Y
j

b
ðαi;α∨j Þ
j ; Dbj ¼

Xr
n¼1

jαnj2
2

KnjDan: ð3:54Þ

In the new variables ai and denoting n ≔
P

j njαj,
Eq. (3.45) at leading order in q and ai gives the algebraic
equation

k

�
h −

1

12
−
h∨
12

ðβ − 2γÞ
�
ðb;bÞ

−
1

2
ðβ − 2γÞ

X
α>0

ðn; αÞðα;bÞ2 þ ðb;nÞ2 ¼ 0; ð3:55Þ

Additionally for g2, f4, Eq. (3.18) imposes at leading order

2ðkþ h∨Þh −
X
i;j

ðn;nÞ þ
X
α>0

ðα;nÞ þ k
12

dimg ¼ 0;

n ≔
X
j

njαj: ð3:56Þ

For the nonvacuum value h ¼ 1
12
− h∨

12
, the above two sets of

weight-two equations imply a finite number of solutions of
ðn1;…; nrÞ. We list all the solutions in Table II. We
immediately recognize that these values of n are precisely
the (minus of) highest weights of the modules listed in the
Table 1 of [36], but written in the αi basis. Based on these
observations, we made the following proposal:

11Solving explicitly for a1, a2, g2, and d4 cases was carried out
in [31]. We thank Wolfger Peelaers for sharing his results.
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(i) For the ADE Deligne-Cvitanović series with
k ¼ − h∨

6
− 1, the weight-four equation (3.16) com-

ing from the nilpotency of the stress tensor alone
completely fix all the highest weight characters
through modularity. These are chiral algebras have
known 4d N ¼ 2 SCFT correspondence.

(ii) For ĝ2; f̂4 with k ¼ − h∨
6
− 1, the Eq. (3.16) and the

weight-two equation (3.18) from the Sugawara
construction together fix all the characters through
modularity. These two chiral algebras do not have
known associated N ¼ 2 SCFT.

(iii) For the Deligne-Cvitanović series with k ¼ 1,
Eq. (3.16) and additionally (3.18) from the Suga-
wara construction together also fix the characters of
all the integral modules through modularity. Note
that for k ¼ 1 the Eq. (3.18) is outside of the S-orbit
of (3.16).

The modularity of the flavored modular differential
equations has another important implication: if chðb; τ;yÞ
is a module character, then its S-transformation chðb=τ;
−1=τ;y − 1

τ
1
2
ðb;bÞÞ is also a solution to all the above

partial differential equations, and is likely some linear
combination of the irreducible characters. For the repre-
sentation theory of rational chiral algebras like the integral
representations of the affine Kac-Moody algebras, or those
with admissible levels, this conclusion is simply the well-
known statement chi⟶

S P
i Sijchj for a suitable modular S

matrix Sij.
However for the d̂4, ê6;7;8 at nonadmissible level

k ¼ − h∨
6
− 1, the modular property of their characters is

less understood; we claim that they still enjoy some
similar modular property like the rest of the Deligne-
Cvitanović exceptional series, with the subtlety that their
characters are actually quasi-Jacobi forms, and logarith-
mic characters will be present in the SLð2;ZÞ-orbit of the
vacuum character. This is known from the literature, [14]
for example, by studying the unflavored modular differ-
ential equation

ðDð2Þ
q − 5ðh∨ þ 1Þðh∨ − 1ÞÞch0ðqÞ ¼ 0 ð3:57Þ

satisfied by the unflavored vacuum character. The fact that
it is second order indicates one logarithmic solution to the
equation in the case of d̂4, ê6;7;8 at level k ¼ − h∨

6
− 1. This

also implies that the SLð2;ZÞ-orbit is relatively small and
cannot generate all the solutions/characters of the Kac-
Moody algebra; there are r additional nonvacuum highest
weight modules. To learn more about these other non-
vacuum solutions/characters besides the logarithmic one,
we now study the shift property of the flavored modular
differential equations.

D. Shift property and characters

Besides almost S-covariance, the differential equations
discussed previously further enjoy simple properties under
shifts of the flavor fugacities bi and y. Let us consider shift

bi→biþniτ; y→y−
1

k

X
i

KiðbiþniτÞ−
1

k
Kττ: ð3:58Þ

Here K’s are constants to be determined by requiring
almost covariance under the shift, and the numbers ni
should satisfy

X
i

niλαi ¼ðn∨;αÞ∈Z; ∀ α∈Δ; n∨≔
Xr

i¼1

niα∨i : ð3:59Þ

Under the shift, the differential operators transform as

q∂q→q∂q−
X
i

niDbi þ
1

k
KτDy; Dbi ¼Dbi þKi: ð3:60Þ

The N Sug equation transforms into

TABLE II. Solutions of ðn1;…; nrÞ for k ¼ −h∨=6 − 1.

g n⃗
a1 ð1

3
Þ; ð2

3
Þ

a2 ð1
2
; 1
2
Þ; ð1; 1

2
Þ; ð1

2
; 1Þ

g2 ð2; 4
3
Þ; ð2; 5

3
Þ

d4 (1, 2, 1, 1), (1, 2, 2, 1), (1, 2, 1, 2), (2, 2, 1, 1)
f2 ð5

2
; 9
2
; 6; 3Þ; ð3; 9

2
; 6; 3Þ; ð5

2
; 5; 6; 3Þ

e6 (2, 4, 6, 4, 2, 3), (2, 4, 6, 5, 2, 3), (2, 4, 6, 5, 4, 3),
(2, 4, 6, 4, 2, 4), (2, 5, 6, 4, 2, 3), (4, 5, 6, 4, 2, 3)

e7 (4, 8,12, 9, 6, 3, 6), (4, 8, 12, 9, 6, 3, 7), (4, 9, 12, 9, 6, 3, 6), (6, 9, 12, 9, 6, 3, 6),
(4, 8, 12, 10, 6, 3, 6), (4, 8, 12, 10, 8, 3, 6), (4, 8, 12, 10, 8, 6, 6)

e8 (10, 20, 30, 24, 18, 12, 6, 15), (10, 20, 30, 24, 18, 12, 6, 16), (10, 21, 30, 24, 18, 12, 6, 15),
(12, 21, 30, 24, 18, 12,6,15), (10, 20, 30, 25, 18, 12, 6, 15), (10, 20, 30, 25, 20, 12, 6, 15),

(10, 20, 30, 25, 20, 15, 6, 15), (10, 20, 30, 25, 20, 15, 10, 15)
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→ 2ðkþ h∨Þ
�
Dð1Þ

q −
Xr

i¼1

niDbi þKτ

�
−KijðDbi þKiÞðDbj þKjÞ

−
X
α;i

jαij2
2

mα
i

�
E1

�
1

bα

�
− njλαj

�
ðDbi þKiÞ

− k
X
α

�
E2

�
1

bα

�
þ njλαjE1

�
1

bα

�
−
1

2
ðnjλαj Þ2

�
: ð3:61Þ

The weight-one part reads

−2ðkþ h∨ÞniDbi − 2KijKiDbj þ
X
α;i

jαij2
2

mα
i njλ

α
jDbi

ð3:62Þ

−
X
α;i

jαij2
2

mα
iK

iE1

�
1

bα

�
− k

X
α

njλαjE1

�
1

bα

�
ð3:63Þ

¼ −2ðknj þ KijKiÞDbj

−
X
α;i

jαij2
2

mα
i ðKi þ knjKijÞE1

�
1

bα

�
: ð3:64Þ

Again, this equation can only be satisfied if

Ki þ knjKij ¼ 0: ð3:65Þ

Similarly, the weight-zero part of the transformed
equation is

2ðkþ h∨ÞKτ þ ðkþ h∨ÞniKi ⇒ Kτ

¼ −
1

2

X
i¼1

niKi ¼ þ k
2

X
i

niKijnj: ð3:66Þ

To summarize, the shift transformation is fixed to be

bi → bi þ niτ; y → yþ
X
i

Kijnjbi þ
1

2
Kijninjτ;

ð3:67Þ

and under this shift, Eq. (3.18) transforms back to itself.
Equation (3.16) similarly transforms into itself and some

weight-zero, -one, -two, and -three parts. In particular, the
weight-zero and weight-one parts vanish identically when

the above solution of Kτ, Ki is applied. On the other hand,
the τ2 and τ3 part are precisely Eqs. (3.44) and (3.45) that
appear in the S-transformedN T , and they were all required
to be satisfied by the character from the modularity
assumption.
Similarly, it is also straightforward to show that the same

shift property is true for Eqs. (3.44) and (3.45) that appear
in the S-transformed (3.16).
The direct conclusion of the above, combined with the

modularity assumption, is that the shifted characters

chðbi; q; yÞ → ch

�
biqni ; q; y

Y
i

b
Kijnj
i qþ1

2
Kijninj

�
ð3:68Þ

remain solutions to Eqs. (3.16), (3.18), (3.44), and (3.45).
In terms of b ≔

P
i biα

∨
i , n

∨ ¼ P
i niα

∨
i , the shift can also

be written as

chðb; τ;yÞ → Tn∨chðb; τ;yÞ

≔ ch

�
bþ n∨τ; τ;yþ ðb;n∨Þ þ 1

2
ðn∨;n∨Þτ

�
: ð3:69Þ

This result is well-known for integrable and admissible
characters, and we are proposing that it generalizes to the
nonadmissible cases in the Deligne-Cvitanović series.

IV. EXAMPLES

A. csuð2Þ− 4=3
Let us elaborate in this simplest example csuð2Þ−4=3. It is

the associated chiral algebra of the Argyres-Douglas theory
ðA1; D3Þ in four dimensions in the infinite series
ðA1; D2nþ1Þ [19,37–39]. We take the basis of suð2Þ to be

J−¼
�
0 0

1 0

�
; J3¼1

2

�
1

−1

�
; Jþ¼

�
0 1

0 0

�
: ð4:1Þ

The adjoint representation suð2Þ is 3, and

3⊗3¼1⊕3⊕5¼1⊕∧2 3⊕2adj; R¼0: ð4:2Þ

Therefore, apart from the equation from the Sugawara
construction N Sug ¼ T − TSug, there is no additional null
state from the Joseph relations. At weight-three there is one
affine null state given by

jN þ
3 i ¼

�
−
13

9
Jþ þ 11

3
J3−2J

þ
−1 −

2

3
Jþ−2J

3
−1 þ J−−1J

þ
−1J

þ
−1 þ Jþ−1J

3
−1J

3
−1

�
j0i: ð4:3Þ
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Under the finite suð2Þ action, it generates a representation 3 with two other null descendants at the same level,

jN 3
3i ¼

�
−
22

3
J3−3 þ 3J3−2J

3
−1 − 4J−−2J

þ
−1 þ 4Jþ−2J

−
−1 þ 3J3−1J

3
−1J

3
−1 þ 3J−−1J

þ
−1J

3
−1

�
j0i

¼
�
L−2h−1 − e−1f−2 þ e−2f−1 −

2

3
h−3

�
j0i;

jN −
3 i ¼

�
þ 5

9
J− þ 1

3
J3−2J

−
−1 þ

2

3
J−−2J

3
−1 þ J−−1J

−
−1J

þ
−1 þ J−−1J

3
−1J

3
−1

�
j0i:

It is easy to verify that

JAn>0jN A
3 i ¼ 0; hN A

3 jN B
3 i ¼ 0; jN A

3 i ¼ JA1 jN Ti;
ð4:4Þ

and the zero-charge null descendant jN 3
3i corresponds

to a weight-three flavored modular differential equation.
At weight-four, there is jN Ti that enforces the nilpotency
of T, giving rise to the weight-four modular differential
equation. Note also that jN Ti is a null descendant
of jN þ

3 i,

jN 4i ¼
9

8

�
2J3−1jN 3

3i þ J−−1jN þ
3 i þ Jþ−1jN −

3 i
	
: ð4:5Þ

All of jN A
3 i and jN Ti are annihilated by Ln>0, and

J31J
3
1jN Ti ¼ 0 is consistent with R ¼ 0.
Concretely, the equations from the above nulls are�
Dð1Þ

q −
3

8
D2

b1
−
3

2
E1

�
1

b21

�
þ E2

�
1

b21

�
þ E2ðτÞ

�
ch ¼ 0;

ð4:6Þ
�
Db1D

ð1Þ
q −

�
2E2

�
1

b21

�
−E2ðτÞ

�
Db1 þ

16

3
E3

�
1

b21

��
ch¼0;

ð4:7Þ
�
Dð2Þ

q þE3

�
1

b21

�
Db1 −8E1

�
1

b21

�
−7E2ðτÞ

�
ch¼0: ð4:8Þ

These three equations form a closed system under
S-transformation, and in particular both (4.6) and (4.7)
sit in the S-orbit of (4.8),

Sðweight-4Þ ¼ τ4ðweight-4Þ þ 2τ3b1ðweight-3Þ

þ 8

3
τ2b2

1ðSugawaraÞ: ð4:9Þ

Although there are more equations at these con-
formal weights that comes from the descendants of the

lower-weight nulls,12 the above three equations [or equiv-
alently, (4.8) alone with modularity] are enough to fix all
three highest weight characters [31]. To proceed, one can
make an anzatz for the solution

ch ¼ qh
Xþ∞

n¼0

cnðb1Þqn; ð4:11Þ

and solve the coefficient function cnðbÞ order-by-order. For
example, at leading order, Eq. (4.8) fixes h ¼ − 1

12
or h ¼ 1

4
.

Then Eqs. (4.6) and (4.7) respectively instructs that if h ≠
− 1

12
then c0ðb1Þ must be constant, and if h ¼ − 1

12
, c0ðb1Þ

must satisfy

9b21c
00
0ðb1Þ þ 8c0ðb1Þ þ

9b1ð1þ b21Þc00ðb1Þ
b21 − 1

¼ 0; ð4:12Þ

with solutions given by

c0ðb1Þ ¼ c1
b2=31

1− b21
þ c2

b4=31

1− b21
; c1; c2 are constants:

ð4:13Þ

From this we can read off three possibilities,

ch¼q
1
4ð1þ���Þ; q−

1
12

�
b2=31

1−b21
þ���

�
; q−

1
12

�
b4=31

1−b21
þ���

�
:

ð4:14Þ
Once the leading term is fixed to be either one of the above,
higher-order terms are completely determined by (4.8)

12For example, at weight-three, there is another equation�
D3

b1
þ32

3
Dð1Þ

q E1

�
1

b21

�
−8

�
3E1

�
1

b21

�2
þ10

3
E2

�
1

b21

�
þE2ðτÞ

�
Db1

þ32E1

�
1

b21

�
E2

�
1

b21

�
þ416

9
E3

�
1

b21

��
ch¼0: ð4:10Þ

The S-orbit of this equation also contains Eq. (4.6) from the
Sugawara construction, and its weight-one and zero part also
fixes Kij ¼ k

2
Kij.
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alone. Obviously, they are precisely the three admissible
characters with highest weights

−
4

3
ω̂0; −

4

3
ω̂1; −

2

3
ω̂0 −

2

3
ω̂1: ð4:15Þ

These highest weight characters respectively can be written
in well-known closed forms,

ch0 ¼ y−4=3
ϑ1ð2bj3τÞ
ϑ1ð2bjτÞ

; ð4:16Þ

ch1 ¼ y−4=3b−2=3q
1
6
ϑ1ð2b − τj3τÞ

ϑ1ð2bjτÞ
; ð4:17Þ

ch2 ¼ y−4=3b−4=3q
2
3
ϑ1ð2b − 2τj3τÞ

ϑ1ð2bjτÞ
: ð4:18Þ

Obviously,

chnðb; τ;yÞ ¼ ð−1Þne2πiðb;n∨Þeπikðn∨;n∨Þτchðbþ nτ; τ;yÞ;
n∨ ¼ nα∨1 : ð4:19Þ

B. csuð2Þk= 1
At integral level k ¼ 1, the algebra contains a well-

known affine null state at level-two N hw
2 ≔ Jþ−1J

þ
−1j0i

which generates a subspace 5 with four other null descend-
ants at the same level. The zero charge state N 0

2 ≔ ðJ3−2 −
2J3−1J

3
−1 þ J−−1J

þ
−1Þj0i leads to an additional flavored

modular differential equation besides (3.18).
The level-four state

jN Ti≔
�
L2
−2−

1

2
KABJA−3J

B
−1þ

1

8
KABJA−2J

B
−2

�
j0i ð4:20Þ

enforces the nilpotency of T and is also an affine descend-
ant of N hw

2 . The level-two states JA1J
B
1 jN Ti also span the

subspace 5 led by jN hw
2 i, and the states J31jN Ti,

J31J
3
1jN Ti ¼ − 6

7
N 0

2 give rise to the weight-three and
weight-two Eqs. (3.44) and (3.45). Concretely, the equation
from the Sugawara condition is�
Dð1Þ

q −
1

12
D2

b1
−
1

3
E1

�
1

b21

�
Db1 −

1

6
E2−

1

3
E2

�
1

b21

��
ch¼0:

ð4:21Þ
Equations (3.16), (3.44), and (3.45) are given explicitly by

0¼
�
Dð1Þ

q þ1

2
D2

b1
−
3

2
E1

�
1

b21

�
Db1 þE2ðτÞ−

3

2
E2

�
1

b21

��
ch;

ð4:22Þ

0 ¼
�
Db1D

ð1Þ
q þ

�
E2 þ

3

2
E2

�
1

b21

��
Db1 þ 3E3

�
1

b21

��
ch;

ð4:23Þ

0¼
�
Dð2Þ

q −
3

2
E3

�
1

b21

�
Db1 −

7

4
E4−

9

2
E4

�
1

b21

��
ch: ð4:24Þ

These three equations form a closed subset under the
S-transformation, while the Sugawara equation is outside
of the S-orbit. The four equations above completely
fix the highest weight characters starting from an
anzatz ch ¼ qha0ðb1Þ. The weight-four equation fixes
h ¼ −1=24; 5=24. The two weight-two equations together
impose constraints

a00ðb1Þ ¼ 0; if h ¼ −
1

24
; ð4:25Þ

a00ðb1Þ ¼
b21 − 1

b1ð1þ b21Þ
a0ðb1Þ; if h ¼ þ 5

24
: ð4:26Þ

The former is simply the vacuum solution, while the second
case gives the integral character of highest weight ω̂1,

a0ðb1Þ ¼ b1 þ
1

b1
¼ χ2ðsuð2ÞÞ: ð4:27Þ

C. csuð3Þ− 3=2
The level k ¼ −3=2 is boundary admissible with respect

to g ¼ suð3Þ. At level-two, besides the Sugawara con-
dition T − TSug, there is one affine null state given by

jN hw
2 i ¼ ð3Eα1þα2

−2 þ 6Eα1
−1E

α2
−1 þ 2Eα1þα2

−1 ðh1−1 − h2−1ÞÞj0i:
ð4:28Þ

It generates an R ¼ 8 representation with seven affine
descendants at the same level that implement the Joseph
relations JAJBjR ¼ 0. Two uncharged states under the
Cartan h ⊂ suð3Þ lead to two flavor modular differential
equations, while the Sugawara condition gives an addi-
tional equation.
It is straightforward to verify that jN Ti is an affine

descendant of jN hw
2 i. At conformal-weight-three there are

no affine null states, but there are descendants of null N hw
2

given by JA1 jN Ti. In particular, the two null descendants
hi1jN Ti give rise to the two weight-three flavored modular
differential equations. Similarly, hi1h

j
1jN Ti give three

weight-two equations.
The algebra has four admissible modules with highest

weight

−
3

2
ω̂0; −

3

2
ω̂1; −

3

2
ω̂2; −

1

2
ðω̂0þ ω̂1þ ω̂2Þ: ð4:29Þ

The corresponding characters as q-series can also be solved
from the equations from the (3.16), (3.44), and (3.45) [31].
Their closed form are given by [35,40]
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ch0 ¼ y−3=2
ηðτÞ
ηð2τÞ

ϑ1ðb1 − 2b2j2τÞϑ1ð−b1 − b2j2τÞϑ1ð−2b1 þ b2j2τÞ
ϑ1ðb1 − 2b2jτÞϑ1ð−b1 − b2jτÞϑ1ð−2b1 þ b2jτÞ

; ð4:30Þ

ch1 ¼ −y−3=2
ηðτÞ
ηð2τÞ

ϑ4ðb1 − 2b2j2τÞϑ4ð−b1 − b2j2τÞϑ1ð−2b1 þ b2j2τÞ
ϑ1ðb1 − 2b2jτÞϑ1ð−b1 − b2jτÞϑ1ð−2b1 þ b2jτÞ

; ð4:31Þ

ch2 ¼ y−3=2
ηðτÞ
ηð2τÞ

ϑ1ðb1 − 2b2j2τÞϑ1ð−b1 − b2j2τÞϑ1ð−2b1 þ b2j2τÞ
ϑ1ðb1 − 2b2jτÞϑ1ð−b1 − b2jτÞϑ1ð−2b1 þ b2jτÞ

; ð4:32Þ

ch3 ¼ y−3=2
ηðτÞ
ηð2τÞ

ϑ4ðb1 − 2b2j2τÞϑ4ð−b1 − b2j2τÞϑ4ð−2b1 þ b2j2τÞ
ϑ1ð−b1 − b2j2τÞϑ1ðb1 − 2b2j2τÞϑ1ð−2b1 þ b2j2τÞ

: ð4:33Þ

It is straightforward to see that applying Tn∨ with n∨ ¼ α∨1 ; α∨2 ; α∨1 þ α∨1 generates all the highest weight characters,

ch0

�
b1 þ τ; τ;yþ Ki1bi þ

1

2
τ

�
¼ ch1; ch0

�
b2 þ τ; τ;yþ Ki2bi þ

1

2
τ

�
¼ ch2;

ch0ðb1 þ τ;b2 þ τ; τ;yþ b1 þ b2 þ τÞ ¼ ch3: ð4:34Þ

D. csoð8Þ− 2
The algebra csoð8Þ−2 is nonadmissible. It is the asso-

ciated chiral algebra of the 4d N ¼ 2 SUð2Þ gauge theory
with four fundamental flavors. The vacuum character,
which is the Schur index of the SUð2Þ gauge theory, has
been computed analytically [41],13

ch0¼
X4
j¼1

E1

�−1
mj

�
iϑ1ð2mjÞ

ηðτÞ
Y
l≠j

ηðτÞ
ϑ1ðmjþmlÞ

ηðτÞ
ϑ1ðmj−mlÞ

¼ ηðτÞ2Q
4
j¼1ϑ1ð2b̃jÞ

X
α⃗¼�

�Y4
i¼1

αi

�
E2

�
1Q

4
j¼1 b̃

αj
j

�
; ð4:35Þ

where m1;2 ¼ b̃1 � b̃2, m3;4 ¼ b̃3 � b̃4, and the flavor
fugacities mj are related to the ones in this paper by m1 ¼
b1;m2 ¼ b2 − b1, m3 ¼ −b2 þ b3 þ b4, m4 ¼ b3 − b4.
The flavored modular differential equations of the Schur

index ch0 were studied in [29,31], where there were 9þ 1
equations at weight-two, four equations at weight-three,
and one equation at weight-four. For soð8Þ, the represen-
tation R is decomposed into three 35, each comes
with three charge-zero states, and therefore account for
the nine weight-two equations. These equations were
shown to have four additional nonlogarithmic solutions
given by [29,31]

Rj ≔
i
2

ϑ1ð2mjÞ
ηðτÞ

Y
l≠j

ηðτÞ
ϑ1ðmj þmlÞ

ηðτÞ
ϑ1ðmj −mlÞ

; ð4:36Þ

which are the residues of the integrand that computes ch0.
These solutions are linear combinations of the characters of
the vacuum and other highest weight modules studied
in [36]. Explicitly, the irreducible characters are given by
spectral flows of the vacuum character, and they are related
to the residues Rj by [25]

ch−2ω̂1
¼ ch0 − 2R1; ð4:37Þ

ch−ω̂2
¼ −2ch0 þ 2R1 þ 2R2; ð4:38Þ

ch−2ω̂3
¼ ch0 − R1 − R2 − R3 − R4; ð4:39Þ

ch−2ω̂4
¼ ch0 − R1 − R2 − R3 þ R4: ð4:40Þ

In terms of the shift Tn⃗∨ in (3.69), we have14

ðT−2ωi
þ 1Þch0ðb; τ;yÞ ¼ 2ch−2ω̂i

;

ðT−ω2
þ 1Þch0ðb; τ;yÞ ¼ −ch−ω̂2

; ð4:41Þ

where we simply replace n∨ by −2ωi¼1;3;4 and −ω2 (in
α∨i basis).

E. ðê6Þ− 3
The vacuum character of ðê6Þ−3 is identified with the

Schur index IE6
of the E6 Minahan-Nemeschansky theory.

The E6 theory participates in a Argyres-Seiberg duality
which relates its Schur index with that of the SUð3Þ gauge

13See also [42–45] for analytic computations of many Schur
indices.

14This is similar to the spectral flow discussed in [25]. The
character of a twisted module is also accessible through spectral
flow by fractional unit.
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theory with six fundamental hypermultiplets, which allows
IE6

to be written in terms of ISUð3Þ [41,46,47],

IE6
ðc⃗ð1Þ; c⃗ð2Þ; ðwr; w−1r; r−2ÞÞ

¼
ISUð3ÞSQCD

�
c⃗ð1Þ; c⃗ð2Þ; w

1
3

r ;
w−1

3

r

	
w→q

1
2w

θðw2Þ

þ
ISUð3ÞSQCD

�
c⃗ð1Þ; c⃗ð2Þ; w

1
3

r ;
w−1

3

r

	
w→q−

1
2w

θðw−2Þ ; ð4:42Þ

where the elliptic theta function θ is related to the Jacobi
theta function ϑ1 by

θðzÞ≡ ϑ1ðzÞ
iz−

1
2q

1
8ðq; qÞ : ð4:43Þ

Note that the Schur index ISQCD and therefore IE6

have closed-form expressions in terms of ϑ and
Eisenstein series [41]. The index ISUð3Þ is written in the
form ISUð3Þðc⃗ð1Þ; c⃗ð2Þ; dð1Þ; dð2ÞÞ where c⃗ðiÞ denotes two
copies of SUð3Þ flavor fugacities and dðiÞ denotes two
copies of Uð1Þ flavor fugacities. The SUð3Þ3 ⊂ E6

flavor fugacities are then given by cð1;2Þ, and

c⃗ð3Þ ¼ ðwr; w−1r; r−2Þ. The fugacities cð1;2;3Þ can be further
reorganized into the b-variables with respect to E6,

r ¼
ffiffiffiffiffiffiffiffi
b6
b1=33

s
; w ¼

ffiffiffiffiffi
b6
b3

s
; cð1Þ1 ¼ b1=33

b1
;

cð1Þ2 ¼ b2
b2=33

; cð2Þ1 ¼ b4
b2=33

; cð2Þ2 ¼ b5
b1=33

;

and one has the Schur index written as IE6
ðb; τ;yÞ. At this

stage, applying shifts Tn∨ will generate new solutions to all
the flavored modular differential equations, and therefore
we believe that all highest weight characters of ðê6Þ−3 can
be obtained through suitable shift of the closed-form
index (4.42).
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