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Harvesting entanglement from the gravitational vacuum
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We study how quantum systems can harvest entanglement from the quantum degrees of freedom of the
gravitational field. Concretely, we describe in detail the interaction of nonrelativistic quantum systems with
linearized quantum gravity, and explore how two spacelike separated probes can harvest entanglement
from the gravitational field in this context. We provide estimates for the harvested entanglement for realistic
probes which can be experimentally relevant in the future, since entanglement harvesting experiments can
provide evidence for the existence of quantum degrees of freedom of gravity.
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I. INTRODUCTION

Arguably, the most important unsolved question in
theoretical physics is how to give a description for the
gravitational interaction that is consistent with our under-
standing of quantum matter. It is well known that the
coupling of classical gravity and quantum matter is
theoretically inconsistent [1,2], and as such we either need
a quantum description for gravity or a complete reformu-
lation of quantum theory. However, as of today, there is no
experimental confirmation of quantum behavior of gravity.
Promising experimental setups, such as gravity mediated
entanglement experiments, have been proposed to attempt
to verify quantum properties of the gravitational field [3-5].
Despite its promise, there is plenty of debate regarding
which quantum properties of the gravitational interaction
can be confirmed by such experiments [6—12]. The core of
this debate lies on how to identify genuinely quantum
degrees of freedom for the gravitational field.

One of the most remarkable differences between theories
for classical and quantum fields is their lowest energy state.
While in a classical field theory, the ground state corre-
sponds to a zero-valued field, the vacuum state of a
quantum field theory is, arguably, not truly empty. This
gives rise to nontrivial statistics for local measurements (see
e.g. [13—16]). Moreover, it is well known that the vacuum
state of a quantum field contains quantum correlations
between different spacetime regions. This is true even if
these regions are spacelike separated [17,18]. This fact is a
fundamental feature of quantum field theory in both flat
and curved spacetimes [19,20], and is instrumental to our

“trickperche @perimeterinstitute.ca
*bragula @uwaterloo.ca
*emartinmartinez @uwaterloo.ca

2470-0010/2023/108(8)/085025(58)

085025-1

understanding of phenomena such as the renormalization of
the stress-energy tensor [19], area laws in quantum field
theories [21-25] and black hole evaporation [26-31].

This vacuum entanglement can actually be detected:
localized probes can become entangled with each other
through the interaction with the field, even when they
are spacelike separated through their interaction. This is
the idea behind the protocol of entanglement harvesting
[32—-34]. In recent years, the protocol has been extensively
studied in many different scenarios [35-45], when probes
are coupled to different field operators [46,47] and in
different spacetimes [48-53].

Entanglement harvesting from spacelike separated
regions is only possible from a field with quantum degrees
of freedom: a classical field cannot contain entanglement
that can be extracted. This fact can be used to decide
whether a field is classical or quantum. In fact, it has been
argued that an entanglement harvesting protocol for the
gravitational field can be used to witness quantum gravity
(see, e.g., [12,54]). The main goal of this manuscript is to
perform a detailed study of this setup, and to quantify the
theoretical amount of entanglement that could be extracted
from a weak gravitational quantum field.

Previous studies of entanglement harvesting which take
gravity degrees of freedom into consideration typically
only couple to a scalar quantum field [55,56]. That is, the
effect of gravity in the protocol is indirect, so that the
detectors are still coupled to the scalar field in a classical
background spacetime. However, to the authors’ knowl-
edge no previous work has considered entanglement
harvesting directly from a quantum gravitational field.

This manuscript is organized as follows. In Sec. II we
review the protocol of entanglement harvesting using
two spacelike separated probes. In Sec. III we review
the formalism of linearized quantum gravity, and describe
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how nonrelativistic quantum systems couple to a weak
gravitational field. The protocol of entanglement harvesting
from the gravitational field is described in Sec. IV. We
present our first examples of entanglement harvesting from
the gravitational field in Sec. V. In Sec. VI we compare the
results found for the gravitational field with scalar model
analogues. In Sec. VII we study atoms coupled to quantum
gravity in the linearized regime. The conclusions of our
work can be found in Sec. VIIL

II. EXTRACTING ENTANGLEMENT FROM
QUANTUM FIELDS: THE ENTANGLEMENT
HARVESTING PROTOCOL

The goal of this section is to provide a brief review of the
protocol of entanglement harvesting from a scalar field, so
that we can later present a model for entanglement harvest-
ing from the gravitational field. In Sec. II A we review the
formalism for an Unruh-DeWitt (UDW) particle detector
interacting with a real scalar quantum field. In Sec. II B,
we review the protocol of entanglement harvesting from a
scalar field.

A. Particle detector models

In this section we review the UDW detector model
[57-59], where a localized two-level quantum system
interacts with a relativistic quantum field. This model
has been extensively used in the literature in order to
probe many features of different quantum field theories.
Among its applications are the ability to probe the Unruh
effect [57,60,61] and Hawking radiation [57,62], probe the
spacetime topology and geometry [53,63,64], describe
communication protocols in quantum field theory [65-68],
and, most relevant for this work, harvest entanglement from a
quantum field [35-56].

We consider a massless scalar quantum field in (3 + 1)-
dimensional Minkowski spacetime. We may express the
field in terms of a plane-wave mode expansion as

1 &’k
(2n): ) /2[k]

where we use inertial coordinates x* = (¢,x), so that
k* = (|k|, k). The operators &,t, ay represent creation and
annihilation operators, respectively, for a field mode of
momentum k. The creation and annihilation operators
satisfy the canonical commutation relations

(age™* + &Ze‘ik'x), (1)

(%)

[y, a))] = 8@ (k — k). )

In order to define the Hilbert space associated with the
quantum field, we define the vacuum state by @;|0) =0

for all k. The Hilbert space is then built from repeated

applications of the creation operators &;g on |0), and is

usually referred to as the Fock space.

As a first approach, we will consider our detector to
be modeled by a two-level system. This qubit detector
follows an inertial trajectory, z#(¢) = (t,x;), along which it
can interact with the quantum field. Moreover, the free
Hamiltonian of the detector is given by

Hp=Q6%6, (3)

where Q is the (proper) energy gap between the two levels.
We will denote the ground and excited states of the detector
by |g) and |e), respectively. Then, the ladder operators for
our detector are 67 = |e)(g|, and 6~ = |g)(e|. The asso-
ciated interaction between the detector and the field is
prescribed by the following Hamiltonian in the interaction
picture

A A

Hy (1) = A (0)p() (2, xo), (4)

where 1 is the coupling strength, y(¢) is the switching
function, which determines the duration of the interaction,
and f(r) is the time evolved monopole moment of the
detector, explicitly given by

a(t) = ¥t 4 U5, (5)

We can relax the idealization of the detector being a
pointlike system. To do so, we implement a smearing
function such that the localization of the detector is defined
by a function f(x) centered at x,,. In most physical setups,
the smearing function f(x) is given in terms of the wave
functions of the ground and excited state of the system (see,
e.g., [38,69]). In fact, if the system has a position degree of
freedom % and a canonically conjugate momentum operator
P, one can write the interaction with the field as [70]

H(1) = 2y (0 §(1.%). (6)

Assuming the energy levels of the free Hamiltonian of
the detector to be discrete, the interaction Hamiltonian can
then be expanded in terms of the system’s wave functions
as [38,69]

(0) = ix(0) [ )iy,
=50 [ @xu ey ()0 ) .
™)

where |x) (x|, denotes the operator |x) (x| in the interaction
picture, y,(x) = (x|n) is the eigenfunction associated with
the energy eigenvalue £, and Q,,, = E, — E,,. Restricting
the interaction to two levels, the wave functions of the
ground and excited states are simply w,(x) = (x|g)
and y,(x) = (x]e).
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We then notice that the diagonal terms of A, (f) commute
with the detector’s free Hamiltonian. This means that these
terms would not be able to produce detector excitations at
leading order in 4, and would simply shift the energy level
of the system. That is, these terms have no effect on the
detector dynamics at leading order, so that they can be
neglected. The interaction Hamiltonian in the interaction
picture then reads

H(t)=ﬂx(t)/d3x(f*(x)eig’?f++f(x) “UE7)h(x). (8)

where f(x) =y, (x)y;(x), and Q = E, — E, is the energy
gap of the detector.

In order to write the time evolution of our system in
terms of an integral in spacetime, we define the interaction
Hamiltonian density as

=g ((f* ()67 + f(x)e¥67)h(x). (9)

The relationship between the interaction Hamiltonian and
the interaction Hamiltonian density in Minkowski space-
time is explicitly given by

H(X)

H(r) = / drF(x). (10)

To study the interaction between the quantum field and
the detector, we will consider the detector to start in the
ground state and the quantum field to start in its vacuum
state. That is, we may write the initial density operator of
the detector-field system as

Po = 19)(9] & [0)(0]. (11)
To obtain the final state of the detector, we first time-evolve

the density operator p,. The time evolution operator in the
interaction picture is given by the time ordered exponential'

=T exp (—i / d4xﬂ,(x)>, (12)

where d*x = drd®x. Working perturbatively to second
order in A, we may write

U,=1+U0" +0? + 0, (13)

where, in terms of the Hamiltonian density, we have

0\ =1, (14)

'Notice that for smeared detectors the notion of time-ordering
can be ambiguous but we are going to work in regimes where this
is not an issue. See [71] for details.

o\ = —M/d‘*xﬂ,(x), (15)

0 =7 [ axax )00~ ). (16)

and 0(t) denotes the Heaviside theta function and imple-
ments the time ordering operation. Using the density
operator in Eq. (11), the time evolved density operator
may be written as a power expansion in 4,

p=p+p+p® + 0, (17)
where
P = po, (18)
P = U po + po U, (19)
PP = ng)ﬁo + 051)%051)* +[70(A]52>%. (20)

When a quantum field is measured, one does not have direct
access to the state of the field (only to the detector’s degrees
of freedom). To find the detector’s state after the interaction,
we compute the partial trace of p with respect to the field’s
Hilbert space. It is then possible to find an expression (up to
second order in 1) for the probability of the detector
transitioning from the ground to the excited state:

£=/12/d4xd4X)(() (")) f* () X Bx)p (X))o,
(21)

where

PRI = s [0 (2
* T (2n) ) 20k
is the two-point Wightman function of the quantum field in

the vacuum state. Given the two-point correlator in Eq. (22),
and defining the Fourier transforms of f(x) and y(¢) as

f@—/&ﬁmﬁﬂ (23)

#@) = [ e, 24

we can write the excitation probability, £, as an integral over
momenta

2 3
_(2/17)3/;: F(Q+ K)PIFER)E. (25
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B. Entanglement harvesting protocol

In this subsection, we will review the protocol of
entanglement harvesting using UDW detectors. Under-
standing entanglement in QFT is a nontrivial task, given
that most of our notions of entanglement depend on a tensor
product decomposition of the Hilbert space where the
theory is defined. However, in QFT, the Hilbert space of
the theory cannot easily be expressed as a tensor product
decomposition associated to localized regions of space (see,
e.g., [72] for the massive field case). This renders most of our
methods for discussing entanglement in nonrelativistic
quantum mechanics unsuitable for localized states in
QFT [25]. However, one can still use other methods in order
to quantify the field’s quantum correlations. For instance, one
can quantify the entanglement between probes that couple
locally to the quantum field, and use these to infer the
entanglement properties of the field. This phenomenology is
generally called entanglement harvesting.

In order to study the entanglement harvesting protocol,
we consider two approximately spacelike separated UDW
detectors locally interacting with a quantum field. The
interaction regions chosen later in this paper are approx-
imately spacelike separated in the sense that the effect of
communication between the two regions is negligible for
entanglement harvesting. See e.g., [73,74], for details. We
consider the probes to be spacelike separated throughout
their interaction, so that they cannot communicate with
each other. As a result, any entanglement acquired by the
probes must have come from the quantum field itself. We
will label our two detectors A and B, where the detectors
are inertial and comoving, so that their centres of mass
undergo trajectories with constant spatial coordinates,
x, =X, and x; = x, + L, with L being the spatial sepa-
ration vector between the detectors. Each detector will
interact with the field according to the interaction
Hamiltonian density (9):

Hii(X) = A (1) (5 (x) 6" + f,(x)e 67 )p(x), (26)

for1€ {A, B}. Here, we have that 4, is the coupling strength,
f1(x) is the smearing function localized around the trajec-
tory, x:(1) is the switching function, Q, is the energy gap,
61 = le){al, 67 = |g)(e;| are the ladder operators of
detector I, and |g,),|e,),|9s), |es) denote the ground
and excited states of the detectors.

We are interested in the case where both detectors are
initially in the ground state and the quantum field is initially
in its vacuum state. Thus, the resulting initial density
operator of the detectors-field system is given by

Po = 19)(9xl ® |gs)(9s] ® 10)(0]. (27)

The final interaction Hamiltonian density will then be the
sum of the individual Hamiltonian densities

A A

H (%) = Hya(x) + 7:[1,3 (x). (28)

The unitary time evolution operator in the interaction
picture will be given by Eq. (12) with the interaction
Hamiltonian density of Eq. (28). After applying the unitary
time evolution operator and tracing out the quantum field’s
degrees of freedom, we obtain the following density matrix
of the two-detector system at order O(4?) in the basis

{|9A9B>7 |gAeB>’ |eAgB>7 |€A€B>}
1—L,—Lg O 0o M

0 Legg L 0

o = T BRG
0 Lag  Laa 0
M 0 0 0

Here, the £,, and L, terms are the excitation probability
of detector A and B, respectively. The M, L,, and L,
terms capture nonlocal correlations acquired by the detec-
tors. In the case of two qubit detectors coupled to a scalar
quantum field, we can find expressions for £; and M.
Explicitly,

J (X/)>0€_i(glt_g‘t/)

X (O (0f1()f7 (*7), (30)

=M / dxd*X (§

M = —dyiy / dxdx (DX)DX)) (1 = 1)

x (TRt ()1 (¢) f () fu (X))
+ BTy () (D) f () f5(x)).- (31)

We wish to quantify the entanglement between the two
detectors after they have both locally interacted with the
quantum field. There are multiple entanglement measures
that can be used for this purpose. In this manuscript, we use
the negativity, which is a faithful entanglement measure for
a system of two qubits [75,76] (see, e.g., [53] for the
specific discussion in the context of entanglement harvest-
ing). The negativity of py, is defined as N' = =) 2<0 Ais
where the 4;’s are the eigenvalues of the partial transpose of
pp- To leading order in A, the negativity is then found to be

VIR
N = max (O, \/|/\/l|2 _ (L 4£BB) -

EAA + £BB
5 :
(32)

In particular, in the special case where the excitation
probabilities of the detectors are the same, we have that
Lin = Ly = L, and hence the negativity becomes

N = max(0, M| - L). (33)

This happens, for instance, in the case of identical inertial
detectors in Minkowski spacetime. In fact, from now on,
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we will assume that the detectors are identical, so that
A=A =41 Q,=Q;,=Q, and that the interaction
happens simultaneously in their frames, which implies
xa(t) = yu(t) = (1), and the smearings are identical
modulo a spatial translation.

Given that the quantum field is assumed to be in its
vacuum state, we substitute Eq. (22) into Egs. (30) and
(31), and we can write the transition probability and the
nonlocal term M in terms of the Fourier transform of the
smearing and switching functions as follows

_ A /C”‘;;*(Q+|k|);?(9+lk)f‘r(k)ff‘(k)’ (34)

"= 2y ) 2K
Andy [dK S o
M==0, / 3 QUKL () Full) T )T ).
(35)
where
O(lk. Q) = / dedry (1) (1) @K i@ Krg (s — 1)

(36)

and where we have defined the Fourier transform of f(x)
and y(¢) as Eqgs. (23) and (24).

The protocol of entanglement harvesting with two
UDW detectors coupled linearly to a scalar quantum field
has been extensively studied in the literature (see e.g.
[37,39,47,51,52,56,73,77-79]), and many properties of the
protocol are well understood by now.

It is important to mention that there are two ways in which
two probes can become entangled via an interaction with
a field [74]. The first way only relies on communication via
the field, and can be achieved through an interaction of a
quantum system with a classical field (see, e.g., [12]).
Two probes can only become entangled in this way if they
are in causal contact, and the role played by the field in this
case is a mere mediator that allows for an exchange of
information between the probes. The second way in which
detectors can become entangled after an interaction with a
field is by extracting (or harvesting) entanglement previously
present in the field. This entangling procedure can only be
performed when the probes are coupled to a quantum field,
which has its own local quantum degrees of freedom.
Moreover, this protocol for extracting entanglement from
a quantum field can be achieved even if the detectors are not
within causal contact, and we will refer to this as entangle-
ment harvesting to distinguish it from entanglement gen-
erated by communication.

When one couples two causally connected probes to a
quantum field, these probes become entangled both via
communication and via extracting entanglement from the
field. This makes it a hard task to identify which part of the

entanglement acquired by the detectors was extracted from
the field and which part is due to communication [74]. For
this reason, here we will be concerned with scenarios where
the probes are mostly spacelike separated and we make sure
that the entanglement acquired by the detectors is primarily
extracted from the field. Experimentally, this kind of setup
can be used to test whether a field possesses quantum
degrees of freedom: only a quantum field allows spacelike
separated locally coupled detectors to become entangled.

III. LINEARIZED QUANTUM GRAVITY
AND MATTER: A GRAVITATIONAL
DETECTOR MODEL

The goal of this section is to summarize the description of
the interaction of a nonrelativistic quantum system with
linearized quantum gravity. First, we review the quantization
of linearized perturbations of the metric in Sec. III A. Then,
in Sec. III B we describe the coupling of a particle detector
with the quantized perturbations of the gravitational field.

A. Quantum fluctuations in a Minkowski background

Einstein’s theory of general relativity describes space-
time as a four dimensional manifold with a Lorentzian
metric g,, that satisfies Einstein’s equations:

G,, = 8a£2T

pt v (37)

where G, is the Einstein tensor, T, is the stress-energy
momentum tensor and £, is the Planck length (recall that in

natural units £, = VG).

Einstein’s equations are highly nonlinear due to the
dependence of G,, on the metric. In order to describe
small fluctuations of the gravitational field around a given
background, we can consider perturbations y,, of the
spacetime metric, so that the effective metric becomes
9w + 7w and Eq. (37) defines an equation of motion for
Y- Considering |y,,| <1 one can then expand these
equations to linear order in y,, to obtain a linear equation
of motion for the metric perturbations. This approach is
commonly called linearized gravity, and the resulting
theory for the field y,, is invariant under gauge trans-
formations of the form y,, +— y,, +V,&, + V,&,, where
&, 1s the infinitesimal generator of such transformations.

In this manuscript we will be concerned with perturba-
tions around Minkowski spacetime, without the presence of
matter (7, = 0). In this case, the equations of motion for
Y simplify, so that in inertial coordinates (t,x,y,7) the
first order variation of the Einstein tensor can be written as

1 o 1 1 1 o
Gl(lb) (]/) = a(;ta Yv)a _EDJ/}HJ _Eaﬂauy_in/w(a aﬂya/} - D]/),
(38)
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where G(!)(y) denotes the Einstein tensor to linear order in
Yu» L) = 0,0% is the D’ Alembertian operator, y = 1"y, and
1 1s the Minkowski metric, which we use to lower and raise
indices. In the absence of matter, the linearized Einstein’s
equations for the gravitational perturbations then read

G (y) =0, (39)

which defines equations of motion for the linearized metric
perturbations whose solutions are typically called gravita-
tional waves. The theory for y,,, can also be thought of as a
theory for a tensor field associated with the action

1
Sly] = d*x
= T2 /

1 1
X (—Eaay,waay"” +5 0,70y — P y0™y o + ayy”“a”na> -

(40)

The action above can be obtained by evaluating the metric
in the Einstein-Hilbert action at 7, + y,,, and only consid-
ering the leading order terms in y,,.. In particular, extremizing
this action with respect to y,,,, yields Eq. (39). At this stage we
can see that the effective field theory treatment for y,,, defines
it as a dimensionless spin-two field. For convenience we will
work in terms of the field h,, = (87¢3)7"/?y,,, so that the
perturbed metric can be written as

nﬂy v fp h;w (4 1 )

Then, the field h,, has dimensions of energy, so that the
results we obtain later for the coupling of a system with
gravity can readily be compared with results for other bosonic
fields which have the same dimensions.

In order to solve the equation of motion for 4, it is
useful to perform gauge transformations. In order to do so,
we pick the traceless transverse gauge, which imposes the
following constraints:

h=n"h,, =0, h,, =0. (42)
Imposing these conditions, we find that the equation of
motion for 4, reduces to a wave equation for each of its
components,

Oh,, = 0. (43)

The solutions of the equation above are then given by the
same solutions we had for the scalar case [Eq. (1)] for each
of the components. Thus, we can write

W G Z/\/_k( k’seik~x_i_a’tpve—ik'X)E/(;)(k)’

(44)

where 5,&;,) (k) are polarization tensors satisfying
r]"”g,(;;) (k) =0 and, for k* = (|k|,k), we have k”é’f,‘? (k)=0,
which comes from the traceless transverse gauge conditions
in Eq. (42). However, there is still a residual gauge degree of
freedom in h,, which can be fixed, while still preserving
Eq. (43). In order to completely fix the gauge, we pick
an inertial observer with four-velocity u* = (1,0,0,0) and
perform a gauge transformation which imposes2 why,, =0.
In particular, this implies that the polarization tensors satisfy

u”é’,(,‘? (k) =0, so that 5,&2) (k) have no components in the
time direction of u#. Overall, we end up with two indepen-
dent polarization degrees of freedom for each mode, which
can be written as

£ (k) = \%((el(k)) (e1(K)), = (ex(k)), (e2(K)),),
£ (k) = % ((e1(k)), (e2(k)), + (e2k)),((e1(K)),), (45)

where the vectors e; (k) and e, (k) form a basis for the plane
orthogonal to k* and u*. An explicit expression for 8,(,? (k)
can be found in Appendix A. In particular, if I, (k) is the
projector onto the plane orthogonal to ## and k*, one obtains
the completeness relation

(S)
/wa/} Z gﬂl/ ,1/)’
=1

_ %(n,m(k)nyﬁ (k) + 1,5 (k)T , (k)

NS}

— 11, (k)14(k)). (46)

In this sense, P,,s(k) is the projector in the plane
perpendicular to k* and u#* which acts on two-tensors.
After completely fixing the gauge, a general solution to
Eq. (43) can be written as Eq. (44), where now the sum
happens over s = 1, 2, corresponding to the independent
polarizations of the linearized perturbations.

From the linearized solutions to Einstein’s equations,
one can obtain physically measurable quantities that are
affected by the perturbations to linear order. For instance,
the Riemann tensor reads

Ruep = V81l Ryyaps (47)

where

Rﬂl/(lﬂ = (aﬂaf)’hzxa + ayaah;l/} - aﬂaahzz/)’ - aya/}h;m)' (48)

| —

*This is analogous to what is done in electromagnetism, where
one picks vectors e;(k) and e,(k) which are spacelike and
orthogonal to u* and to the direction of propagation given by k.
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In this notation, R,,,s denotes the “curvature tensor”
associated with the dimensionful perturbations 4,,. It is
important to notice that Eq. (48) is gauge independent, as
any observable of the theory should be. In particular, in the
transverse traceless gauge, the curvature component R;; is
given by

ROin ; t}/lj \/_?’ﬂ a hlj (49)
As we will later see, this is also the component of curvature
that is relevant for the coupling with matter undergoing a
trajectory comoving with u*.

We proceed to quantization of the perturbations of the
background metric. We quantize the field 4, by imposing
commutation relations with its conjugate momentum. This
procedure can be done by promoting the coefficients ay
and gy _ to creation and annihilation operators, so that the

quantum field lAam,(X) can be expanded as

. dk 5 s
() s 4 iy e EL) (),

v

(50)

where the creation and annihilation operators &,t , and ay g
satisfy the canonical commutation relations

[aks’ak’ /] - 6\ s’é )(k k/) (51)

This quantization procedure leads to a Hilbert space
representation for the quantum field theory, where we
define the vacuum state |0) by a;|0) = 0 for all k and
s =1, 2. The Fock space of the theory is then built from
repeated applications of the creation operators &,t’x
vacuum state.

The quantum treatment for the dimensionless metric

perturbation can be obtained via 7,,(X) = v/8x7,

on the

o/ (X).
This also promotes all gravitational observables to operator
valued distributions. For instance, using Eqs. (44) and (49),
we can write the curvature fluctuations in the form

.  V2nt
Oin(X)— (2;; p /\/-| |2

@‘M+%;Mwwm (52)
where the latin indices i, j = 1,2, 3 correspond to spatial
coordinates in the inertial frame associated to the observer
with 4-velocity u*.

It is important to note that the quantization procedure
outlined above was performed in a specific gauge, which
considers the components hy, to be nondynamical. In
essence, this implies that in order to take into account
interactions which involve the scalar and vector parts of the

gravitational perturbation, one would have to prescribe the
dynamics of these components according to the linearized

Einstein equations with a source, G,(, = Smf%Tﬂy These
terms would then be associated to the Newtonian-like
gravitational potential and gravitomagnetism. This is analo-
gous to what happens in electromagnetism, when one
quantizes the electromagnetic potential in the Coulomb
gauge [80]. However, as we will see in Sec. III B, the scalar
and vector degrees of freedom will not be relevant for the
protocol of entanglement harvesting, so that our fixed
gauge quantization is consistent with the entanglement
harvesting model we will consider.

Finally, we comment on the fact that although one
expects this quantum treatment of gravitational perturba-
tions to be valid when the metric perturbations are small, it
cannot be consistently carried over to higher orders in
perturbation theory. In fact, when considering the higher
order expansion of Einstein’s field equations one obtains a
nonrenormalizable theory [81]. This is the main reason why
quantum field theory is often said not to provide a suitable
theory of quantum gravity at all scales. Nevertheless, the
technique employed here is often employed in the literature
to treat quantum gravitational perturbations [54,82-85]. In
fact, a similar treatment is employed to model the infla-
tionary period of our universe [86], where the fluctuations
of the gravitational field are responsible for the inhomo-
geneities of the cosmic background radiation.

B. Coupling of quantum matter with gravity

In general relativity matter couples to the geometry of
spacetime through its stress-energy tensor T, If there is a
Lagrangian description for matter in terms of an action Sy,
then the Stress energy tensor is given by

2 53)

T/U/ v
Nalla

In particular, this implies that the Lagrangian associated to
the interaction of the system with gravity, to linear order in
the metric variation is given by

1
L= 3 T 65g,,. (54)

The Hamiltonian density associated with this interaction is

then

1
Hy = =5 T8, (55)

Notice that for the case described in Sec. IIT A, where
9w = M + V8n&ph,,, one obtains an interaction des-
cribed by the Hamiltonian density

—V2rt,T"h,,, (56)
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where in Eq. (56) \/ﬂfp can be seen as an effective
coupling constant between the system and the linear
perturbations of the gravitational field.

We now turn our attention to the leading order coupling
between a localized system with nonrelativistic quantum
internal degrees of freedom and the gravitational field.
Consider a localized quantum system with an internal free
Hamiltonian A, which defines discrete energy levels, E,,
between different internal states associated to eigenstates
|n). We will refer to this system as “the detector.”” An
example of such a system could be the bound states of a
hydrogenlike atom. We will assume that the detector
undergoes an inertial trajectory in Minkowski spacetime,
which can be parametrized as z/(7) = (¢,x,), where x; is
the position of the “center of mass” of the detector’s wave
function y,(x) = (x|n) with respect to an inertial coor-
dinate system comoving with z#(t).

Our goal is to write down an interaction Hamiltonian
(which generates translations with respect to t) for this
system with an external weak gravitational field. There are
at least three different approaches that can be taken in order
to obtain the coupling of this system with gravity. One of
them was used in [54], where an effective Lagrangian
formulation for the quantum system is used,” and a
coupling Hamiltonian density is obtained via Eq. (56),
which can then be used to prescribe a time evolution
operator. However, this method gives rise to a gauge
dependent interaction, which depends directly on the
(gauge dependent) metric perturbation h,,. A second
way of obtaining the interaction of the system with gravity
consists on picking coordinates adapted to the detector’s
motion, where the main contribution to T, is given by its
proper mass m, with Toy = m, and it can be shown that
Y00 = —3Roio;x'x/. This method gives a coupling that
depends only on the spacetime curvature, and naturally
fits the gauge choices of Sec. III A. The third method can be
derived by considering a wave function in curved space-
times according to the formalism described in [90]. The
obtained interaction Hamiltonian agrees with the second
method, yielding the interaction Hamiltonian

N m o nini
H (1) = EROin(t,x)x X, (57)

where & denote the components of the internal position
degree of freedom relative to the center of mass.* We then

3Although this method gives a valid interaction between
the quantum system and gravity, it adds extra complications
that involve changing gauge in the detector’s wave functions in
order to keep track of the different gauge choices for the
gravitational field. For a discussion of this problem in the case
of electromagnetism see, e.g., [§7-89].

For example, in an Hydrogen atom this would be relative
motion position operator, typically approximated by the electron
position operator [91].

use Eq. (57) to model the interaction of our system with an
external gravitational field. In terms of the curvature tensor
R vap» associated with the dimensionful perturbations 4,,,
the interaction can be written as

H (1) = AR, (1. 2)3'%, (58)

where 1 = \/gm/ my, and m, is the Planck mass. In this
sense, A can be thought of as a dimensionless coupling
constant with a numerical value of the order of the
detector’s rest mass in Planck units.

The interaction Hamiltonian of Eq. (57) can then be
expanded in terms of the eigenbasis of the detector’s
Hamiltonian, A, as we did in Eq. (7),

H(1) = ARioj (1. %)% = /l/d3x720i0j(t,x)xixj|x> (x|,

Y / R0y (X0 i () %ot ) (m,
(59)

where fnm(x) = Wn(x)w;kn(x) and Qnm = En - Em- In
order to obtain a particle detector model similar to the
scalar UDW model presented in Sec. II A, we focus on two
energy eigenstates, |g) and |e), with E, < E, and imple-
ment a switching function’ y(z), responsible for controlling
the time duration of the interaction. Then, the interaction
Hamiltonian can be written as

(1) :/1;((1)/d3x(Fi-f*(x)ei9’6++Fi-7 (x)e‘ig’(}‘)ROioj(t,x),

(60)
where we defined
Q=Q,,=E, -E,
F(x) =y (x)y (x)x'x/,
o =le){gl. o =lg)(el (61)

Sof course, the gravitational interaction cannot be screened off
or switched off so it may sound strange to introduce a switching
function. However, in a realistic experiment the evolution from
local preparation of a detector (where we make sure the initial
state is the one we want) and the measurement of the detector
after some time under the interaction with the field is finite. The
switching function implements this finiteness. While thinking of
measurements and preparation as ideal projective measurement
would result in a discontinuous switching y(z) =1 in a given
interval and y(7) =0 outside of it, these processes are not
physically instantaneous so smoother functions are better suited
to model the finite time nature of the experiment. The use of
Gaussian switching later on is justified as a smooth implemen-
tation of this finiteness.
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In Eq. (60), F"/(x) can then be seen as smearing tensors for
the interaction of the detector with the linearized gravita-
tional field. We have also neglected the terms in Eq. (60)
which commute with the free Hamiltonian of the detector,
for the reasons discussed in Sec. IT A.

Equation (60) then defines the interaction of a localized
quantum system with classical gravitational perturbations.
If we quantize the gravitational perturbation, this equation
defines a detector model for the gravitational field. To
implement this, we consider the curvature field Ro;;(z,x)
to be given by the quantization procedure outlined in
Sec. IIT A. In essence, this amounts to the replacement
of Ro;(.x) in Eq. (60) by the operator-valued distribution
7A20,»0j(x) defined in Eq. (52). With this replacement, we
have a simple model for the interaction of a localized
quantum system with a weak quantum gravitational field.
Similar models have been previously studied in the
literature in different contexts (see e.g. [54,85]). In par-
ticular, to leading order in A, the excitation probability of
the detector after the interaction is given by

L6 = )2 / d4Xd4X/)((l‘))((t/)Fij(x)Fkl*(x/)e_ig(’_t/)

X <7i)'0i0j(x)7%0k01(x/)>0' (62)
Same as we had in the scalar case, this excitation prob-
ability can also be cast as a single momentum integral using

the following expression for the curvature two-point
function

<7A?’0i0 i (X)ﬁ)’OkOl (X))o =

1 BhkP
i 3 a S Path)

(63)

where P,,,5(k) is the rank two tensor projector defined in
Eq. (46). Then the detector’s excitation probability reads

£ (2/17r)3 /%% 2(Q + [K|)PPyju (k) FY (k) FH (k).

(64)

where F'(k) is the Fourier transform of the quadrupole
smearing tensor F(x), defined as

Fli(k) = / dBxFi(x)e*, (65)

Overall, we find many similarities with the scalar
UDW detector model presented in Sec. Il A. The only
differences between Eq. (64) and Eq. (25) are four powers
of |k| added to the integral, a factor of 4 and the
replacement |f(k)|> — P (k) F (k) F¥"* (k). The added
powers of |k| and the factor of 4 can be traced back to the

fact that the curvature tensor is one half the second
derivative of the field fzﬂy(x). The replacement of the scalar
function f(x) by the projected Fourier transforms of the
Fi(x) tensors is associated with the quadrupole nature of
the interaction.

IV. ENTANGLEMENT HARVESTING
FROM THE GRAVITATIONAL FIELD

In this section, we use the model developed in Sec. III to
harvest entanglement from the gravitational vacuum. After
this we propose a scalar model that may capture the
fundamental features of the quantum gravitational inter-
action in the same spirit as the UDW models can capture
fundamental features of the light-matter interaction [38,89].

A. The full gravitational model

We consider two comoving inertial detectors A and B
which couple locally to the gravitational field. We label the
ground and excited states of each detector by |g;) and |e;)
for 1€ {A, B}. The interaction Hamiltonian density of each
detector in the interaction picture is given by Eq. (60),

T.(%) = Ao (1) (Fy" (0) 67 + F (x)e 67 ) R0;(X),
(66)

where FY/ (x) =y . (x)x'x/y} ,(x) is the smearing of detec-
tor I'and y, ,(x) and v, ,(x) are its ground and excited wave
functions. For simplicity we assume 4, = A; = 4. Then the
final interaction Hamiltonian density for the detectors-
gravitational field system is the sum of the individual
Hamiltonian densities

7:fl(x) = 7:{1,A + ﬂI,B~ (67)

We are interested in the case where both detectors start in
the ground state, and /,,(X) starts in the vacuum state so
that the density operator of the system is initially given by

Po = 194 (9l ® |9s) {(gs| ® 0){0. (68)

Following the procedure described in Sec. ITA, we
time evolve p, using the unitary time evolution opera-
tor in Eq. (12), and take the partial trace of the time
evolved density operator with respect to the gravitational
field’s degrees of freedom. The resulting density opera-
tor is written in a matrix representation in the basis

{lgAgB>’ |gAeB>ﬂ |eAgB>’ €A€B>} as
1—LS L5 0 0 M
0 LS, LS
- O R
0 L3 LS,
ME 0 0 0
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where L£§, and L§, are the transition probabilities for
detectors A and B, respectively, and LS, L£5,, and ME®
represent the nonlocal terms. The matrix elements of p, are
explicitly given by

fi=r / d*xd*X (0 (1) FY () Ff* (x)e 0=
X <7%0:'0/' (X)ﬁOkOI(X/»Ov (70)

MO == / d4Xd4X/<7A€0i0j(x)7%0k01(xl)>09(t -1)

X b(A(t»(B (t’)FfZ(x)F/gl(x')ei(QAt-s—QBt’)
Oz (ORI PI)A@H20) (1)

Using Eq. (63), and assuming y, (1) = yy (1) = (1), it is
possible to write the transition probabilities and the non-
local terms in terms of Fourier transforms of the smearing
and switching functions as follows

2 PRKP o
5 — / CEE 120 4 W) PP F ) FS (k)

2r3) 2 4
7)
2 3 3
we == [ SR okl )P
< (FIWRF () + HOF).,  0)

where the tildes denote the Fourier transform according to
Egs. (24) and (65), and Q(|k|, Q) is given by Eq. (36). We
notice that the resulting equations for £ and M€ follow a
similar structure to that found in Egs. (34) and (35). The
main differences between these equations are the power of
|k| and the fact that Egs. (72) and (73) have a contraction
between the smearing tensors of each detector and the
projectors P, (k).

Since our detectors are being modeled by two-level
systems, we can again use negativity to quantify the
entanglement they acquire. Noting that the matrix repre-
sentation in Egs. (29) and (69) have the same form, the
negativity of the two-detector system is given by

NG — max <0’ \/|MG|2 _ (E(AEA ;»CSB)2 _ »C(/iA ‘;5313).

(74)

Considering two identical comoving inertial detectors we
find that the negativity reduces to

NS = max (0, | MC| — LC). (75)

Similar to what happens in the electromagnetic case
(and for the reasons we discussed in Sec. IT A), we have

neglected the effect of interactions which commute with the
free Hamiltonian of the detector in this protocol. In more
detail, our treatment has also excluded the Newtonian-like
gravitational potential between the probes. The reason that
we can neglect it is because it would generate an interaction
proportional to the system’s free Hamiltonian. This is
because the scalar degree of freedom of the metric
fluctuations would be sourced by the detector’s rest energy,
ml + H, where m is its rest mass. This term clearly
commutes with the detector’s free Hamiltonian, and can
be neglected for the purpose of entanglement harvesting.
Rigorously, the detector’s motion would also be affected by
the Newtonian-like gravitational potential between the
probes due to our choice of gauge. However, we consider
the detector’s trajectory to be given, under the assumption
that a stronger physical interaction is responsible for
localizing the detectors around their trajectories. These
localized detectors could be any quantum systems in a
trapping potential, such as atoms trapped by an electro-
magnetic field. In summary, our choice of gauge automati-
cally filters out the irrelevant interaction terms from the
protocol of entanglement harvesting.

Finally, as discussed in [12,54,74], only a quantum field
can be responsible for entangling spacelike separated
probes. Thus, this protocol might be used to witness the
quantum behavior of the gravitational field. In fact, an
experimental implementation of this protocol could poten-
tially be used to determine whether the gravitational field
admits an effective quantum field theory treatment and to
improve our understanding of the relationship between
gravity and quantum theory (as argued in [12]).

B. A scalar field analogue for the coupling
with curvature

In this subsection we present a model for a detector
coupled to a scalar field which attempts to mimic the
interaction of a localized system with curvature when angular
momentum exchange is not relevant (similar to how the
UDW model captures features of the light-matter interaction
[38]). In essence, we consider the coupling between a
detector and the second derivative of a scalar field, analogous
to the coupling of a detector with the second derivative of the
dimensionful metric perturbation izﬂ,,(x).

In Minkowski spacetime, we may express the scalar field
in terms of plane-wave modes according to Eq. (1). Then,
the second derivative of the field reads

i 1 d3k 3 . r )
92 £,x) = _—/_ kl2(a elk‘x—i—&re_lk'x ) 76
) (2n) Nolalnes e ). (76)
Defining R = —%0%5, we obtain a scalar field operator

which has an analogous behavior to each polarization of the
curvature tensor in Eq. (52). We then consider two two-
level detectors labeled by 1€ {A,B} undergoing inertial

085025-10



HARVESTING ENTANGLEMENT FROM THE GRAVITATIONAL ...

PHYS. REV. D 108, 085025 (2023)

comoving trajectories 74 (¢) = (1,x,) and z5(¢) = (t,xo+L).
We denote their energy gaps by €, their raising and
lowering operators by 67, and their ground and excited
states by |g) and |e,), respectively. We prescribe the
interaction of each detector with the second derivative of

the field according to the interaction Hamiltonian density

Ti(x) = A (0)|x P (7 (x) €657 + fi(x) e 67)R(x),
(77)

where R(x) = — : 9,9 (x), A, denotes the coupling constant,
f1(x) denotes the smearing function and y,(z) denotes the
switching function of detector I. We remark that f, is
centered around x, and f; is centered around x; + L.
Notice that we added a term |x|?> in Eq. (77) in order to
obtain a scalar analogue of the quadrupole coupling,
which is proportional to x’x/. This term also ensures that
the coupling constants are dimensionless, as in the previous
examples studied in Secs. Il A and III B. In order to have a
more direct comparison with the gravitational detector
model presented in Secs. III B and IV, we define the
modified smearing functions as F,(x) = |x|>f,(x), which
have the same units as the smearing tensors FV(x).
The modified smearing functions can also be written
as F(x) = 6i_iFfj(x).

Then, we follow the same entanglement harvesting
protocol outlined in the previous sections. Both detectors
start in their respective ground states, the field in its vacuum
state, and the comoving detectors interact simultaneously
(in the (7,x) frame), y,(t) = yy(7) = y(¢). We obtain the
following final state for the detectors system

1-L£%-L% 0 0 M°
0 ‘CgB ['gA 0
0 L L3 0
MO 0O 0 0

. (78)

where the matrix elements of p,, are

£ =1 [ aixax0p() F )5 )
x OB RYRRI  (79)

Bl [ axax @000 000 - )

Ot tt) (s (1) F () Fy (x')
+ TRy (1)1 (1) F 5 () Fy (x)). (30)

MO = —

x (e

Assuming the detectors to be identical, and writing
Egs. (79) and (80) in Fourier space, we can then write £2 =
L3, = L3, and MQ as

2 3 3
£ = [ T MO+ KIPEMF®). (51)
R [P
M= | T a0k
< (FA(=0)Fu(l) + Fo(—ROF()). (82

where Q(Jk|, Q) is given by Eq. (36), and the tildes denote
Fourier transform according to Egs. (23) and (24). At this
stage, the similarity between this scalar model and the
model for a detector coupled to linearized perturbations
of the gravitational field is evident by comparing
Egs. (79)—(82) with Egs. (70), (71)—(73). The main differ-
ence being the replacement of the contractions of the tensor
smearing functions FI’(x) = x'x/ f,(x) with the polariza-
tion tensors by the modified smearing functions F,(x) =
X2 fix) = ;i FY (x).

Once again we use negativity to quantify the entangle-
ment between the two detectors after the interaction. In the
next sections we will consider explicit examples of entan-
glement harvesting using two-level systems, and compare
the models presented so far.

V. HARVESTING ENTANGLEMENT
FROM THE GRAVITATIONAL FIELD
USING UDW DETECTORS

In this section we explore explicit examples of two UDW
detectors coupled to the gravitational field according to (66).
We are going to implement the entanglement harvesting
protocol outlined in Sec. IV. In Sec. VA we will analyze an
explicit example where the particle detectors have a Gaussian
spacetime profile and gravity mediates a transition between
levels of same angular momentum. In Sec. V B, we consider
transitions with exchange of angular momentum, analyzing
the differences with the previous case.

A. Entanglement harvesting
from the gravitational vacuum

In this section we consider the first example of entan-
glement harvesting from the vacuum of the gravitational
field, according to the protocol described in Sec. IV. In
order to provide an explicit example, we consider the
smearing functions to be given by Gaussians centered at
x = 0 and x = L for detectors A and B, so that

1 a2
fA(x) = (27[02)%6 27, (83)
falx) = 2] . ’ (84)

and the smearing quadrupole tensors are given by
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)

sxixie 2 (85)

F(x) = x'x/f(x) = 2n0l)

(,\:—L)2

xixle 2. (86)

Fil(x) = X/ f(x) =

1w

(2r6?)

With this choice, L = |L| is the separation between the
detectors, o determines the spatial width of the smearing
function. We also choose a Gaussian profile for the
switching functions, so that

—d) == ()

which correspond to detectors switched on at the same time
for a duration timescale 7. In this context, 7 can be used as
a reference scale for the other parameters, yielding dimen-
sionless parameters L/T, Q,T, Q,T and ¢/T.

Relevant to the discussion at the end of Sec. II B, at this
stage it should be noted that neither the smearing nor the
switching functions are compactly supported. This implies
that, in principle, the detectors are always in causal contact.
However, if the detectors’ separation L is sufficiently larger
than 7 and the detectors’ size o, we know that the
entanglement acquired by the detectors is genuinely har-
vested from spacelike correlations in the vacuum [74]. In
fact, the choices of Egs. (83), (84) and (87) are commonly
employed in the literature of entanglement harvesting, and
it can be shown that for sufficiently large separations, the
communication between the detectors does not contribute
significantly to the detectors’ final state (see [74] for more
details).

We further make the assumption that the detector’s gaps
are the same: Q, = Q, = Q, as this has been shown to
maximize entanglement harvesting for comoving detectors
in flat spacetimes [73]. We use the smearing and switching
functions defined in Egs. (85)—(87) and the interaction
Hamiltonian of Eq. (67). We then have that, after the
interaction, the final state of the detectors has the form of
Eq. (69). In particular, in this case the excitation proba-
bilities LS, and LS, are the same, LS, = LS, = L6, and the
negativity of the two detectors simplifies to NC =
max (0, | — L£9).

Given the choices of gaps and spacetime smearing
functions, the resulting expressions for the transition
probability £9 and nonlocal term M-S can be written as

xa(t) = xs(1)

L6 — ALZW d|k||k|9 —|k|*6? —T2(|k\+§z (88)
n?
T2 8 2 2 2 2
MS = —2 SI5o 2/d|k||k|4€_|k o o= T (k[ +0?)

x (1 —erf(i|k|T)(3|k|L cos(|k|L)
+ (|k|*L* = 3) sin(|k|L)). (89)

NIA?

8.x 10722 — L=80T
L=81T

6.x 10722}  L=82T
4.x107221 — L=83T
— L=84T

2.x10722f — L=85T

/&‘L . - QT

35 40 45 50 55 60

FIG. 1. Negativity as a function of the detectors’ gap € for
multiple values of the detector separation L. We fixed the size of
the detectors to be ¢ = 0.27 for each of the plots.

In Figs. 1-3 we plot the negativity as a function of the
detectors gap Q for different values of the parameters o
and L.

In Fig. 1 we plot the negativity of the two-detector
system as a function of the detectors’ energy gap, for
different values of the separation between them. We see that
there is a minimum threshold on the required energy gap
before any entanglement is acquired between the probes.
Once the threshold energy gap is met, there is a rapid
increase in the negativity, until it peaks. This is a similar
behavior to entanglement harvesting from a real scalar
field, where the detectors gap can be tuned to maximize the

NIA?
1.2x107"8}
1.x107"8}
o
6.x 107} —Z=0:35T
4.x107"%F — 0=040T
2.x107"%F
: . . = QT
40 45 50 55 6.0

FIG. 2. Negativity as a function of the detectors’ gap € for
multiple values of the detectors’ size 6. We fixed the separation
between the detectors to be L = 87T for each of the plots.

— L=80T

L=81T
— L=82T
— L=83T
— L=84T
— L=85T

0.25 0.30 0.35 040 045 050

NIA?

2.x10719}
1.5x107 "9}
1.x107"9F

5.x10720}

FIG. 3. Negativity as a function of the detectors size ¢ for
multiple values of the detectors separation L. We fixed the energy
gap of the detectors as QT = 4.7 for each of the plots.
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harvested entanglement (see, [73]). We also see that as
the separation between the two detectors increases, the
negativity decreases, and the peaks shift toward higher
values of Q.

In Fig. 2 we plot the entanglement acquired by the
detectors as a function of their energy gaps for varying
detector sizes. We conclude that as the detectors increase in
size, the harvested entanglement increases. This can be
traced back to the fact that the interaction of the detectors
with the gravitational field is proportional to their sizes
squared. For future comparison with scalar models, in
Fig. 3 we plot the negativity of the detectors state as a
function of ¢ for a fixed Q7 and varying values of L.
We clearly see a monotonic increase in the negativity
with 6. We also see the previously stated result that as the
separation between the detectors increases, the negativity
decreases.

Finally we comment on realistic scales for the entangle-
ment that can be harvested by a physical system interacting
with the gravitational field. Our plots for the negativity
yielded (at best) NS ~ 121078, Recall that the dimension-
less coupling constant 4 is given by \/gm /m,. If the mass
of the system is of the order of the mass of a hydrogen atom
we would have 1% ~ 10738, so that the harvested negativity
gives N~ 107, This result is orders of magnitude
smaller than the result obtained for harvesting correlations
from the electromagnetic field using hydrogenlike atoms,
where the harvested negativity is of the order of 1076 [38].
However, our results can be enhanced by the detector’s
mass. For instance, using the position degree of freedom of
nanospheres with 108 atomic mass units (e.g. [92]), one
could potentially increase the negativity to even surpass
that of the electromagnetic case.

B. Entanglement harvesting from the gravitational field
with exchanges of angular momentum

In this subsection we explore the effect of angular
momentum in the ability of detectors to harvest entanglement
from the gravitational field. We consider smearing functions
that can be obtained from quantum systems that start in a
ground state with zero expected angular momentum, and
transition to a state of nonzero angular momentum. To model
these states, we consider angular momentum excited states
for both detectors A and B. In order to define angular
momentum quantum numbers for each detector, we consider
two different directions corresponding to the z-axes of
reference frames centred at each atom, z, and zz. They
can be related by the Euler angles (w, 9, ¢) (see Fig. 4). The
excited and ground state wave functions can be written in
terms of a radial function and spherical harmonics:

Rnglg(lxDYll_qmg (0)’ (90)

)Y, (0), (O1)

Yig (x) =

Wie(x) =R

Zy

A

FIG. 4. Euler angles characterizing the relative orientation of
atoms A and B [93].

where 0 = (0, ¢) and (n,, l,, m,), (n,,l,, m,) are the quan-
tum numbers associated to the ground and excited states
energy levels, Y] (@) are spherical harmonics associated to
the direction of angular momentum of detector I and R ,;(|x|)
are the radial functions.

For the particular cases that we will study, we will
assume the ground states of detectors A and B to have zero
angular momentum, with [, = m, = 0. Then, we label the
excited states with angular momentum defined by [, =
and m, = m. In order to explore the specific example of
Gaussian detectors with angular momentum, we further
assume that R,,e,(|x|)RZgo(|x|) is a Gaussian, so that the

smearing functions f,(x) = . (x)y7,(x) can be written as

S () = el =3, (0). (92)
m 1 (=L
) = o O, )

where Y9 (@) and Y7} (6) are spherical harmonics associ-
ated to the direction of the vector x and the direction of the
angular momentum of detectors A and B, respectively. It is
then possible to write Y}, (@) explicitly in terms of the
spherical Harmonics aligned with the axis z,, Y7, (), using
the Wigner D-function according to (see e.g., [38,94])

lm E :

p=-l

n(y. 9.9)Y},(0), (94)

where D!, (w9, @) are the Wigner D-functions associated
with the Euler angles D', (., 9, ¢). The numbers [ and m
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then determine the total angular momentum momentum
and the angular momentum in the directions z; for the
detectors A and B.

Using these conventions, in Appendix B, we compute
the LS., L5s, and MC terms for general [ and m for
detectors A and B. In our examples we will focus on
transitions between the lowest nontrivial angular momen-
tum states, considering /[, = 0 and [, = 1,as wellas [, = 0
and [, = 2, in both cases with m;, = m, = 0. The M° term
identically vanishes for transitions from [, =0 to [, =1
states. Thus, we will focus on entanglement harvesting

when the wave function smearings are fI(ZO) (x), where the
detector transitions happen from angular momentum
ly=0,m;=0tol, =2, my=m,=0. In this case we
find that the £¢ and M terms can be written as a single
integral in |k| as

32T%"

LO=——
784007

/d|k||k|56_k|2”2g—T2(|k'*'52)2 (7 + |k|262)2,
95)

2T2 4
Mo — _%(1 +3c0s(29)) / k][5~ kP”

x e TR0 (7 4 1k 26?)2 (7o (k|L) + 10/, (k| L))
x (1 —erf(ik|T)). (96)

The explicit computations that lead to the results above are
performed in Appendix B.

In Figs. 5 and 6 we plot the negativity of the two-detector
state after the interaction with the gravitational field for
different values of Q, L and the relative angle between
the detectors, 9. Comparing Figs. 1 and 5, we see that
the harvested negativity is two orders of magnitude
larger than the case studied in Sec. VA (with no angular
momentum).

In Fig. 5 we plot the negativity of the detectors’ state as a
function of QT for multiple values of L, when the detectors
have angular momentum in the same direction (§ = 0).
Overall, we see the same behavior found in the case of no

NIR?
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3 %1020k —L=820T

— L=830T
2.x10720F — L=840T
1.x10-20F — L=850T

: : - QT
35 40 45 50 55 60

FIG. 5. Negativity as a function of the detectors energy gap QT

for multiple values of the detectors separation L. We fixed the
detectors’ size as ¢ = 0.2T for each of the plots.

NIN?

15x107"}
— L=80T

1.x 107"}
L=85T
— L=90T

5.x 10728}

1 3 o

s 3
2 7T S 27

FIG. 6. Negativity as a function of the detectors relative
orientation 9 for multiple values of the detectors separation L.
We fixed the energy gap of the detectors as Q7 = 6 and the
detectors’ size as ¢ = 0.2T for each of the plots.

angular momentum (see Fig. 1). That is, we see that for
certain energy gaps there is no entanglement acquired
between the detectors, and once a threshold energy gap
has been reached, the negativity peaks and then falls off as
the energy gap is increased. This is consistent with the
findings for scalar and fermionic entanglement harvesting
in [47,73]. We also see the dependence on the separation.
As expected, the negativity monotonically decreases as the
separation between the detectors is increased.

In Fig. 6 we plot the negativity as a function of the
relative orientation of the detectors, (the angle ). We find
that for this transition, the maximum entanglement har-
vested by the detectors happens when the z, and z, axes are
either parallel, or antiparallel, with smaller negativity peaks
when they are perpendicular to one another.

There are two main conclusions that can be taken from
this subsection. First, we found that transitions where
l,=0 and [, =1 cannot be used in order to harvest
entanglement from the gravitational field. We can link
this result with the fact that the metric perturbation l:z,w(x)
is described by a spin-two field, which will mostly
promote angular momentum transitions that differ by
even units of angular momentum. We also found that
when one considers wave functions that differ by angular
momentum [ = 2, the entanglement that is acquired by
the detectors increases by 2 orders of magnitude as
compared to the case with no exchange of angular
momentum. In the following section we will compare
these results with the case of detectors coupled to a scalar
field using the same smearing functions we used in this
subsection.

VI. COMPARISON BETWEEN GRAVITATIONAL
HARVESTING AND SCALAR FIELD
HARVESTING

In this section we consider the entanglement harvesting
protocol outlined in Secs. II B and IV B, where a particle
detector interacts linearly with a scalar quantum field, or
with its second derivative.
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A. Comparison with a scalar model with no orbital
angular momentum in the detectors’ smearing

First, we study the case where the detector smearing
functions have spherical symmetry and therefore no orbital
angular momentum. That is, we pick the switching and
smearing functions of Egs. (83), (84) and (87). For this
case, we compare gravitational harvesting with two differ-
ent scalar models models: (a) the regular scalar coupling in
Eq. (9), and (b) the scalar analogue of the coupling with
curvature that we prescribed in Eq. (77). We will denote the
expressions for the analogue scalar coupling with a
quadratic dependence on x with the super-index Q to
distinguish it from the usual UDW coupling, as we have
done in previous sections.

We also pick the detectors’ gaps to be the same Q, =
Q, =Q, as we did in the previous examples. Then,
Egs. (34), (35), (81) and (82) for £, M, L2 and M
can be cast as a single integral over |k|, as follows

2
2 I”
472

L=1 d|k||k|e~kPo* e=T*(KI+Q)* - (97)

2
M= =2 [ dllllebér e
T

x (1 —erf(i|kT))sinc(|k|L), (98)
T254 2.2 2 2
L£Q = )2 2/d|k||k|se‘k| o’ o= T (k| +Q) (|k|2 2 _ 3)2,
167
(99)
T?6*
MQ = )2 d‘k||k|5e—|k\2028—T2(\k|2+Q2)(|k|2 2 _ 3)2

1622

x (1 —erf(i|k|T))sinc(|k|L). (100)
In Figs. 7-10, we plot the negativity for these models,
using the same parameter choices as the ones used in
Sec. VA. We first look at the case of two detectors
coupled to the second derivative of the scalar field, where

NIN?
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FIG. 7. Negativity as a function of the detectors energy gap QT
for multiple values of the detectors separation L for two detectors
coupled to the second derivative of the scalar field. We fixed the
detectors’ size as ¢ = 0.2T for each of the plots.
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5.x107"7¢ — L=840T
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J - . . _olT
0.25 0.30 0.35 0.40 045 0.50
FIG. 8. Negativity as a function of the detectors size ¢ for

multiple values of the detectors separation L. We fixed the energy
gap of the detectors as QT = 4.7 for each of the plots.

the negativity is given by N? = |M®| - L°, whenever
Ne>o0.

In Fig. 7 we plot the negativity of the detectors (coupled
via |x|202¢) as a function of QT for multiple values of the
detectors separation L. We see that the negativity again
follows the same structure seen in the gravitational case
(see Fig. 1), where there is a minimum threshold energy gap
for harvesting to take place, then a peak in the negativity
followed by a decrease in the negativity as the energy gap
increases. The separation between the detectors also plays a
similar role as in the gravitational case, where we see a
decrease in the harvested entanglement as the detectors
separation increases. Moreover, notice that the detectors
negativity in this case is five orders of magnitude larger
than the one obtained in the gravitational case.

In Fig. 8 we plot the detectors’ state negativity (coupled
to |x|20%¢) as a function of their size. Same as we found in
the gravitational case, we find that as the size of the detector
increases, the entanglement between the two detectors
increases due to the fact that the interaction is proportional
to the size of the detector squared. The separation between
the detectors causes a decrease in the entanglement
acquired between the probes. Notice that we have only
considered ¢/T < 0.5 in order to ensure that the detectors
can be treated as approximately spacelike separated.

We now turn our attention to the scalar UDW coupling
outlined in Sec. II, where the detector couples linearly to a

scalar field g?b (as opposed to its second derivative). In Fig. 9

NIA2
8.x 10712}
— L=800T
6.x 107124 L=810T
—L=820T
4.x1071%¢ —L=830T
» — L=840T
2.x10°12}  L_ssoT
- QT

35 40 45 50 55 6.0

FIG. 9. Negativity for two detectors linearly coupled to a scalar
field as a function of the energy gap Q7 for various detector
separations. Here the size of the detector is fixed as ¢ = 0.27.
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FIG. 10. We plot the negativity as a function of the detectors’
size o/T for various detector separations. We have fixed the
energy gap of the detector to be QT = 4.7 for each plot.

we plot the negativity as a function of the energy gap of the
detectors. We see that we have a similar form to previous
plots for the negativity. In this case, the negativity is ten
orders of magnitude larger than the cases of detectors
coupled to gravity. We remark that this is only true for the
particular detector size chosen since the entanglement in
the gravitational model grows faster with the detector size
than in the scalar model.

In Fig. 10 we plot the negativity of the detectors (coupled

to (}) as a function of the detector size, 6. We see that as the
size of the detector increases, the negativity of the two
detectors state increases, but at a much slower rate than it
does for the second derivative and gravity couplings.
Overall we can conclude that the second derivative
coupling is a good model to simulate the gravitational
coupling for transitions which do not involve angular
momentum exchanges between the detectors. However,
as we will see, this model cannot be used as a faithful
comparison with the gravitational case when the detector
transitions involve angular momentum exchanges.

B. Detectors with orbital angular momentum
coupled to 0%¢

We now consider the case where the detector smearings
have orbital angular momentum and are coupled to the field
according to the interaction Hamiltonians of Eq. (77). The
smearing functions are then explicitly given by

2
Im Im X _x
P = A ) = e E e, (o
m m X 2 _Ge=n)?
R = ) = e e, a0

In order to make an explicit comparison with the gravita-
tional case, we will again consider the transitions between
the /=0, m =0, and [ =2, m = 0 angular momentum
states, where we saw a nontrivial result for detectors
coupled with gravity in Sec. V B. Here we find that £°
and MZQ can be written as

e j’2 T258 /d|k||k|9 —|k2o? ,—T?(jk|+Q)?
2567° '
T268 2,52
MO = ,127168 s (1+ 3cos(219))/d|k||k|9e"‘| ’
T

x e T (K49 (70 (|k|L) = 10/, (k| L))

x (1 — erf(i|k|T). (103)
In Figs. 11 and 12 we plot the negativity of the two
detectors for different values of 2, L and relative angles 9.
Fig. 11 is the analogue of Fig. 5 and Fig. 12 is the analog of
Fig. 6, and we pick the same parameters as we did in
Sec. V B. This allows the second derivative coupling to be
directly compared with the gravitational case. This is
because the coupling constant, field, switching and smear-
ing functions are prescribed to have the same units in
both models. Recall that the only difference between the
models is the replacement of the contraction of the
smearing tensors F/(x) with the curvature operator
7A€Oi0j(x) = —a,zfz,-j(x) by the product of the smearing
functions F(x) = §;;F"(x) with the second derivative of
the scalar field —02¢(X).

Despite the similarities between the models, in the
second derivative coupling, there was a decrease in the
entanglement harvested by one order of magnitude when

NiIr?
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FIG. 11. Negativity as a function of the detector energy gap QT

for various detector separations L. We fixed the relative angle and
the detector size to be 9 =0 and ¢ = 0.27.
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FIG. 12. Negativity as a function of the relative angle 9 between
the two detectors for various detector separations L. We have
fixed the energy gap of the detectors to be QT = 6 for each of
the plots.
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states with angular momentum were considered, while the
gravitational case displayed an increase of two orders of
magnitude. Thus, although the second derivative coupling
was able to grasp most features of the gravitational inter-
action when no angular momentum exchanges are consid-
ered, when different angular momentum states are con-
sidered for the detectors, the analogy between the models
does not hold.

VII. A REALISTIC EXAMPLE: A HYDROGENLIKE
ATOM COUPLED WITH GRAVITY

In this section we explore a real physical example of a
quantum system coupled with the gravitational field.
Namely, we describe the coupling of an electron in an
atom as our explicit physical system. This choice also
allows for direct comparison with the electromagnetic
harvesting results in [38], where the protocol of entangle-
ment harvesting from the electromagnetic vacuum was
studied in detail.

An electron in a hydrogenlike atom can be described by
the following Hamiltonian

A 2
p e

£ _ , 104

P 2u  4nr (104)

where y is the reduced mass of the electron-nucleus system
and e is the electron charge. In the expression above p
denotes the momentum operator for the electron, and 7
denotes the radial position operator. Then, the system admits
bound state solutions with eigenfunctions w,,,(x) =
(x|w ) With respective eigenenergies E, = E,/n?, where
E| = —a’u/2~-1.11 x 107" m,, and a~1/137 is the
fine structure constant. The eigenstates |y,,,) are then
labeled by three quantum numbers n€N, 0 </ <n -1
and —/ < m < [. These are associated to the energy E,, of the
state. The angular momentum state is characterized by the
corresponding eigenvalue of L% L2|y,;,,) = (1 + 1)|y i)
and the angular momentum in the z direction, L_|y,,,) =
m|y,m)- The wave functions are explicitly given, in spheri-
cal coordinates (for a frame centred at the electron-nucleus
center of mass) by

l//nlm(rv 0, 4)) :Rnl(r)Ylm(g’ ¢)’ (105)

where Y, (0, ¢) are the spherical harmonics and the radial
functions R,,;(r) are given by

R,(r) 2N\: [(n=1=-1) _(r 1L21+1 r
r)=—) /e 0| — —,
! na 2n(n +1)! ay) "\ ay

(106)
where a is the reduced Bohr radius, ay; = 1/au. In the
context of the particle detector models presented in Secs. 11

and III, the wave function smearing function associated to an
atomic transition between states labeled by the quantum
numbers n, [, m (ground) and »’, I', m’ (excited) reads

f(r’ 9’ ¢) = l//n’l’m’(r’ 97 ¢)W:lrn(r’ 67 ¢) (107)

= Rn’l’(r>Rnl<r)Yl’m’<9’ ¢>Y?m(67 ¢) (108)

In order to implement the protocol of entanglement
harvesting from the gravitational vacuum using hydrogenlike
atoms as detectors, we consider two atoms labeled by A and
B undergoing inertial trajectories in spacetime, according to
the protocol outlined in Sec. IV. We will be particularly
interested in the first atomic transitions, fromn = 1 ton = 2
and n = 3. We first consider atomic transitions without
exchange of angular momentum (I = m = 0).

In Figs. 13 and 14, we plot the negativity for the
transitions [yy00) = [w200) and [w100) = [w300). Since
the atomic wave functions are scaled by the Bohr radius,
ag, we write the energy gap between the two levels n = 1
and n =3 as Q, so that the Bohr radius has order of
magnitude of ay ~ a/2Q, which we consider for our plots.
That is for hydrogenlike atoms the detector size is depen-
dent on its energy gap. Overall, we see that for low energy
gaps, there is no entanglement acquired between the two
atoms, until QT reaches a certain threshold and then peaks.
As the energy gap is increased, the negativity quickly falls
off. Moreover, as the separation between the atoms is
increased, the maximum negativity decreases, and shifts to
larger values of the gap. This is the same behavior seen in
the other Harvesting setups explored so far.

When we consider nontrivial angular momentum exci-
tations, we must use the decomposition in terms of Euler
angles described in Sec. V B (see Fig. 4), in order to take
into account the fact that the atoms might be in states of
angular momentum which are aligned differently. Using
the techniques outlined in Appendix B, we then find the
corresponding M€, LS, , and L, terms for these processes.
In particular, we find that for transitions from /=0 to
[ =1, the MS term vanishes, as we found in Sec. V B.
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FIG. 13. Negativity as a function of the detectors gap Q for

multiple values of the detector separation L for the transition
[w100) = |wano)- We have fixed T as a scaling parameter and
considered ay = a/2Q for these plots.
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FIG. 14. Negativity as a function of the detectors gap Q for
multiple values of the detector separation L for the transition
[Wi00) = |w300)- We have fixed T as a scaling parameter and
considered ag = a/2Q for these plots.

That is, it is not possible to harvest entanglement in these
cases. However, the transition |y g0) = |w320) gives non-
trivial entanglement harvesting results, which we plot in
Figs. 15 and 16, using the following results derived for the
LY and M€ terms

2149908484*T?¢*
Lo = 2457[2 /d|k||k|5
. (729]k|*c* — 2016]k|*o” — 1792)2 ¢~ T (kl+0)*
(9k*6* + 16)! ’
(109)
537477122*T?6*
M = —Tﬂzg(l +3cos(29))

x /dlklIklserz("‘2*92)(7jo(|le) +10/2([k[L))

(1792 4+ 2016k|*c? — 729|k|*5*)?
(16 + 9]k[26%)12

(110)

In Fig. 15, we plot the negativity as a function of Q7 for
different values for the separation between the two
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FIG. 15. Negativity as a function of the energy gap QT, for

various detector separations for the transition |wo9) = |W320)-
We fixed T as a scaling parameter, 9 = 0, and considered a, =
a/2Q for these plots.

(1 —ert(ilk|T)).
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FIG. 16. Negativity of the hydrogenlike atom system as a
function of the relative orientation between the angular momen-
tum vector of the atoms. We fixed QT = 7 and ay = a/2Q for
this plot.

detectors. As expected, we find a similar behavior for
the negativity, with a threshold in QT before which there is
no harvesting. Then, we see a peak as a function of Q7', and
a decrease of negativity as the gaps grow. We also see an
increase of entanglement of 21 orders of magnitude when
considering a difference of two units of angular momentum
between the ground and excited states. This difference can
once again be traced back to the fact that the gravitational
field has spin two. In Fig. 16 we plot the negativity as
a function of the relative angle 9 between the detectors.
Here we see a dependence that allows the atom to harvest
entanglement for angles 9 around 0, z/2, #, and 37/2.
That is, atoms can harvest from the gravitational field when
their angular momentum is either approximately aligned,
perpendicular, or anti-aligned.

Overall, we found that, in principle, it is possible to
harvest entanglement from the gravitational field using
electron states in hydrogenlike atoms as probes. However,
when one takes into consideration that the electron mass is
given by m, ~ 4.2 x 1073 mj, so that the coupling constant
Ais given by ﬂme /m,, and that the highest value obtained

for negativity in our plots were of the order of N ~ 1210777,
we find that the harvested negativity is of the order of
10771, This is 25 orders of magnitude less than what was
found in [38] for entanglement harvesting from the electro-
magnetic field using hydrogenlike atoms. This result is
not surprising since electrons in atoms are coupled much
more strongly to the electromagnetic field than they are to
gravity.

VIII. CONCLUSIONS

In this manuscript we have extended the entanglement
harvesting protocol to particle detectors coupled to the
vacuum of the quantum gravitational field. The protocol
outlined here considers the interaction of a general, non-
relativistic two-level system coupled to a (weak) quantum
gravitational field. Our treatment uses an effective quantum
field theory description for quantum fluctuations of the
background spacetime metric, so that one can explicitly
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compute the final state of the detectors after the interaction
with the gravitational field.

We found that different spacelike separated physical
systems can become entangled after interacting for a
finite period of time with the gravitational field in its
vacuum state. This is due to the detectors harvesting
entanglement present in the quantum gravitational field
in a phenomenon known outside of gravity as entangle-
ment harvesting [17,18,32,33,36,47], and is a direct
consequence of the fact that the vacuum state in a
quantum field theory is an entangled state [17,18]. We
also found that when it is possible to increase the
entanglement acquired from the gravitational field by
considering probes that allow for transitions that differ
by even units of angular momentum.

Our results also indicate that, in principle, it is possible to
find physical systems which can harvest more entangle-
ment when coupled to gravity than atoms can harvest from
the electromagnetic field [38] (as discussed in Sec. VA).
This implies that it might be possible to measure entangle-
ment from the gravitational vacuum more easily than one
would naively expect. This is due to the fact that the
coupling with the gravitational field is proportional to the
system’s mass, and one can find systems with internal
quantum degrees of freedom whose masses which are few
orders of magnitude smaller than the Planck mass. For
instance, conglomerates of hundreds of atoms can reach
masses of the order of 10‘15mp, and still present quantum
behavior which could be exploited in order to harvest
entanglement from the gravitational vacuum [92].

Finally, we comment on the implication of our results
regarding the quantum behavior of the spacetime metric. As
of today, there is no experimental evidence of quantum
behavior of the gravitational field, and classical general
relativity is enough to account for most observable gravi-
tational physical phenomena. However, if the entanglement
harvesting protocol outlined in this manuscript could be
experimentally implemented and verified, it would reveal a
predicted genuinely quantum behavior of the gravitational
field (see [12]). Namely, it would show that the gravita-
tional field degrees of freedom contain quantum correla-
tions between spacelike separated regions, which can then
be used to entangle two spacelike separated quantum
systems.

2
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APPENDIX A: COMPLETENESS RELATION
OF POLARIZATION VECTORS

In this appendix we write an explicit expression for the
polarization tensors of the expansion of Eq. (44). The
polarization tensors associated to a freely propagating
gravitational wave can be obtained from the polarization
vectors e(k) and e,(k). These vectors are such that
{k,e,(k),e;(k)} form a positively oriented basis of R3.
Then, the polarization tensors can be written as

E(k, 1) (e(k) @ e (k) —er(k) ® ey(k)), (Al)

_ b
V2

E(k.2) = \%(«zl(k) ® ex(k) + es(k) ® €1 (k).

Employing spherical coordinates in momentum space with
k = (|k|, a, ), we can write

(A2)

k = |k|(sinacos e, + sin asin fe, + cos ae),
e, (a, p) = cosacos fle, + cosasin fle, —sinae,,
e(a, p) = —sin fe, + cos fle,.
Then, Egs. (Al) and (A2) give the following expressions

for the components of the polarization tensors in the
basis {e,.e,.e.}.

—sinacos acos f}

cos? asin® f — cos® 8 —sinacosasinf |, (A3)
—sinacos asin sin® a
cosacos’ ff —cosasin’ff  sinasinfp
2 cosasinffcos —sinacos f} (A4)
—sinacos 3 0
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APPENDIX B: EXPLICIT CALCULATION OF THE £¢ AND M¢ TERMS

In this appendix, we perform a step-by-step derivation of the M® and £° from Eq. (75) under the assumption that the
smearing tensors F}’(x) are given by

F:j (x) = WLG (x)xile//ig(x) = Rn(,lf (|x|)Rn_,]1g (|x|)YLme (0) Y%:my (a)xixj’ (Bl)

where we used the wave functions from Egs. (90) and (91) with the assumption that the radial functions are real. These
results correspond to any particle under the influence of a central potential, such as hydrogenlike atoms, interacting with the
gravitational field.

1. Local term

We start with the complete expression for the local term given by

L° Zﬂz/dll /dfz/d3x1 /dele(tl))((IZ)Fij(xl)Fkl*(x2)e_ig(tl_t2)<7A?'Oi0j(xl)ﬁOkOI(XZ»O
:,12/(1;1 /dfze_ig(t‘_m)((fl)ﬂf(fz)/d3x1 /d3x2¥/320(x1)V/Too(xl)V/ézo(xz)ll’mo(xz)

&k |k
X/<2”)3|8 —1\k| ti—ty) 1kx]e—1kx2x x1’Pukl< ) kxl7

&k k)P ) . .
:,12/d3x1 /d3sz320(x1)WToo(xl)W§20(x2)W100(x2)/W%M(W + Q)Pek*iemkxyxixiP (k) x*x!,  (B2)

where we have substituted the smearing function F(x) =y, (x)x'x/y}(x). It is then possible to decompose the last term in
the integrand above as

4 2 ‘3
. 1 1 1
8(27)° XX Py (k) xFx! = m(xl - x)? — W(xl “X5)(xy k) (% - k) —Tgﬂg@ﬁ “x1) (% X)
1 1 1
+W(x1 -x1)(x; - k)? +m(x2 -x,) (%) - k)? +W(x1 -k)*(x, - k)*. (B3)
i ‘s s

We will choose spherical coordinates for all of x;, x,, and k. It is then possible to decompose many of the terms into
spherical harmonics as follows:

Ynim (x) = Rnl(|x|)Ylm (0)7 (B4)

S DD IR I IATAIACS) (83)
=0 m——

£y = T elbIY (0 10(6,) ~ V(07 11 (8)) = Y1107 11(6,)] (B6)

To simplify the calculations, we separate Eq. (B2) into six parts, each one corresponding to a single term of Eq. (B3). We
will label the integral of each of these terms in £ as £;, i =1, ..., 6, so that

L= L. (B7)
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Starting with ¢, and substituting Eqs. (B4)-(B6) we obtain

Arp? IR
L:l T 0 d|k||k| |)( Q+|k| Z Z Z Z lll / d|x1||x1|4Rnglg(‘x1|)RnEle(

)i (Kl [x1])

x / b beal*R,, (52 Ro s, (2, (K ea]) / A (O ) V1m0 )
0

x / 4Q,Y ), (01,417}, (01.61)Y 70, (01 1) / dQ,Y;, (02 42)Yi,, (02,821, (62.02)
X [Ylo(alﬂ ¢1)Y10(92’ 4)2) - Y1—1(92’¢2)Y11(91’¢1) - Yl—l (917¢1)Y11(927 ¢2)]2’ (BS)

where we have used the property that Y,,,(—0) = (—=1)'Y,,,(0), and j,(x) are the spherical Bessel functions. Following in a
similar manner for the remaining terms, we find that

—/12/) dik| [k[*[7(Q + k][> Z > Z "11"/ dlaey ey [*Ro g, Py [)Ro, 1, (P )i, ([l ey ])
ly

L my=-1, ly my=-—

x / dbealal*Roy g, (122]) R, (et (K] / QY s (O ) Y1 (Orc i) (BY)

x / 4Q,Y}, (61.61)Y 1.0, (01.4)Y7,, (B1.01) / A,Y, (62 92) Y7, (62 $2)Y, (62.02)

1
Xzfi(91,¢1792,¢279k7¢k), (B10)
and
16
£ = Tﬂ [Y10(01.#1)Y10(02.2) = Y1_1(62.2) Y11 (01, b1) = Yi_1 (1. ¢1) Y 11 (62, 1), (B11)
12872
) =— 77 Y10(01,91)Y10(02, $2) = Y121(602, $2) Y11 (01, 1) = Y11 (01, 1) Y 11(62, $5)]
X [Y10(01,81)Y10(0r i) = Y1101, 1) Y121 (Ors hr) — Yi21(01, 1) Y11 (O, )]
X [Y10(02,$2)Y10(0k i) = Y11(02,$2) Y121 (O, hi) — Yi-1(02, h2) Y11 Ok, )] (B12)
A= ! B13
3= 75, (B13)
8
4= ;[Y10(927¢2)Y10(9k b)) = Y1102, 92)Y 121 (Op. i) = Y1_1(02. 1) Y11 (Or. )| (B14)
8
ls = g [Y10(01. 1) Y100 1) = Y11(01. 1) Y121 (O b)) — Y11 (01, 1) Y 11 (Ox. b))% (B15)
12873 5
Ce = 31 [Y10(01,81)Y 100 d) = Y11(01, )Y 121 Ok, i) = Y121 (01, 1) Y 11 (0k, di)]
X [Y10(02.2)Y 10O bi) = Y11(02.2) Y -1 (Or. ) = Y1_1(02. 2) Y 11 (Or. i) |- (B16)

It is then possible to evaluate each of integrals of the solid angles dQ; = sin(0;)d6;d¢;, using the following properties of
the spherical harmonics

/dQYlm(e ¢)Yl’m’(9 ¢) ( ) 51 l’5m —m’> (B17)
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P 0o (0.9) = 303D EDCEED (0 (02 ey 0. o)

0 0 0/\m m -m

where ( h b b ) represent the Wigner 3j-symbols.
my m; ms

Using Egs. (B17) and (B18), we can write each of L, ..., L¢ as follows

0

Ly = 16”22 Z Z Z D)= (=i)1i08) 4 80—, (20, + 1)(21, + )A dlk||kP|7(Q + k)

=0 m;=-1 [)=0 my=—I,

« / dey e [*R,, 1 ()R, (
x> >

1=0 1'=0 I"=0 4

|)J'zo(|k||x1|)A dlxy|lxa[* Ry, 1, (2 ) Ra, o, (Pe2]) i, (1Kl 2 ])

Ms

V2l + D20+ D21+ DRF+ D21 + 1)(24+ 1A, (B19)

Il
o

where

I, 1" 2 L1 N2/l 1 l L U
A£ = (_l)mﬁé().ml+m€—mg50,m0—m€+mg
0 0 O 0 0 0 0 0 0/\m,—my —-myz my—m,+m,
(lo l, l) ( ly l, l ) (ll l, l”)
X
0 0 O —mg m, mgy—m, 0 0 O
( [ [, " )( L " A )(1 1 1)2
X
-m; —-m, m;+m, mg, —my—m, mp+m,—m 0 0 0
PERNOP 5 <1 1 l’)(l 1 l)(l 1 /1>
=2,my+m,—m,Y2,my—m,+m, 00 0 11 ) 1 — )
<l L l’>< / L r )( [, l>< [ )(ll l, l”)
0 0 O me—my —mg, ny—m,+mg, 0 0 O m, - 0 0 O
< [ l, " )( L " > (1 1 A)
X
-my —-m, m;+m, mg —mp—m, mp+m,—m, 0 0 O
R SRR (R G O
=2,mg—m+myY2,m+m,~m, 1 -1 0 0 0 1 o)
x( l L v )(lo l, l)( ly l, )( l, l)
me—my —m, mg—m,+m, 0O 0 O —-mgy m, mgy—m, 0 0 O
( [ l, " )( L " A >(1 1 i)
X
—-my —m, m;+m, mg —my—m, I +m, — mg 0 00
1 1 1 1 1 1 1 10 117V [ Iy 7
+ 261—m0,m,—m95—m1—me,l—m
g \0 0 O 0o 1 -1 -1 0 1 0 0 O 0 0 O
<l ly v > <ll l, /1> < A l, A ) <le L l’)
X
1 —myg mg—1 0 0 O - -m, my;+m, 0 0 O
l, l( [
o )(" )
m, — m —m,
1 11 1 1 10 11 7V I Iy 7
+ 2(S—mom —m o —my—m,,—m
s CUN-1 1 0 0 0 0 -1 1 0 0 0 O 0 0 O
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(1 A z’><11 1, /1)( Lo, A )(1 I, 1/)
y :
0 —-mg my 0 0 O -m; —m, m;-+m, 0 0 O
[ [ v L 0 2
% e g g
<me —m, mg—me)<mg 0 —mg>
425 5 (1 1 l)(l 1 l><1 1 l“)(l 1 l”)
o=t 191 /o 0 0/\o 0 0/\o 1 -1
<l A /4 )(1 o 1’)(11 1, /1>< L1 A >(1 I, l’>
X
-1 -my my+1J\0 0 0oJ\0o 0 0)\-m, -m, m+m,/J\0 0 0

l, L, r I, 1" A
X ‘ ' ) (B20)
m, —m, mgz—m, mg 1 —my—1

(5]

L= snzi Z 3 Z i)hibo (= 1)’”9(2le+1)(21g+I)Amd|k||k|5|;?(§2+|k])|2

=0 m=—1, lh=0 my=—I,

x / by |11 'R, (b1 )Ry (

)i, (Il fe2])

|)j,0(]k||x1|)/0 dlxy[[x2*R,, 4, (X2 )R, 4, (

x iiii Qlp+ DL +1D)2I+ )2 +1)2I" +1)(22+ 1)(24 + 1)By, (B21)

=0 I'=0 "=0 =0 =0

where
5. _ 11 X Iy 1, X Iy I N l, 1" 2
‘(0 0 0)(0 0 0)<m0 m —mo—m1><0 0 0)
X|:(_1)m250.m—m+m<l l l’>( l l v ><lo l, l>( Iy l, l )
SN0 0 0/ \m,—my —my mog—m,+my;)\NO0 0 0)\-myg m, mg—m,
(mmenn(l 3 G
0=mg=my O0mi-tme=m, \ o 0 0 0
L " A I 1 2\2
X(my —my; —m, m1+me—mg><0 0 O)
1 17 1 1
+ 81 —mg—m, Oy —m, .1-m, ( 10 1 ) (0 0
( [ l, A )(lg " A )
X
-m; —m, m;+m, m, —1 1-m
(—1)'"52-m-m52m-m+m5-m-m-m(1 1 l’)(l 1 l”><1 1 l”><1 1 /1/)
oAy e\l 1 =2 /\ -1 1 0 00 0/\-1 -1 2
X( )( ) l r ><lo l, l)( Iy 1, l ><11 l, /1>
m,—my —m, my—m,+m, 0 0 O -my m, my—m, 0 0 O
L A I, 1" 2 1 17
( —-my  —m, m1+me><mg 0 _mg>(0 0 0)
SR S S S (1 1 l’)(l 1 l”)(l 1 l”)(l 1 /1’>
oTe TR oI I e T 1 =1 2 )\ =1 1 0/J\0 0 0/\1 1 =2
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I, U l L ! ly 1, 1 Iy l, l L I, A
X(O 0 0><me—m0 —m, mo—me—l—mg><0 0 0><—m0 m, mo—me><0 0 0)
[ l, A I, 1" 2 117
X(—ml —m, m1+me><mg 0 —mg><0 0 O)
+(—1)m“5—2m—m+m51—m—m5—m—m—m—1<1 1 l’><1 1 l”><1 1 l”)(l 1 /1’)
[ -1 -1 2 0 0 O 01 -1 01 -1
Lo, r l L r lo I, 1 Iy l, [ L 1, 2
(0 0 0><me—m0 —m, mo—me+mg><0 0 0><—m0 m, mo—me)<0 0 0>
[y l, A L, 1" A 1 17
X(—m1 -m, m1+me><mg 1 —my—1><0 0 O)
+(—1)m“5—2m+m—m50—m—m52m—m+m(1 1 l’>(1 1 A)(l 1 /1><1 1 l’)
S A AN B ) -1 -1 2 0 0 0/\-1 1 0
I, U / L v Iy 1, 1 Iy l, l L 1, v
(0 0 0><me—m0 —m, mo—me+mg>(0 0 0><—m0 m, mo—me)(o 0 O)
[ l, I [ " A 1 17
X(—m1 —m, m1+me><mg —my —m, ml—l—me—mg)(O 0 O)
+(—1)m“5-2m_m+m50_m_m52m+m_m(1 1 l/>(1 1 ﬂ)(l 1 A)(l 1 /1’>
R A | 0 0 0 1 1 =2 -1 1 0
L1, r l L I [ ly / L 1, v
X(O 0 0><me—m0 —m, mo—me+mg><0 0 0)( —my mo—me)<0 0 O)
[ l, 1" L " 1 17
x(—m1 —m, m1+me><mg —-m; —m, m1+m —mq><0 0 )
e L (I G TR
B A N I 0 0 0/\-10 00 0
11 X [ ly I [y 1 L 1, 4 1 l, A
X(l 1 —2)(—1 —my m0+1><0 0 O)(O 0 0)( m; —m, m,+me>
X(le L l’)(le L v )(lg " A >
0 0 O m, —m, mg—m, m, —1 1—-m
Fommnencn i (51 0) (000 0) (0 1) (o 0 o)
T e T e Ty -1 0 1)\0 0 0
11 X I Iy, 7 [ l, A I, 1, 1
X(O ! —1><0 0 0>< mo>< ><—m1 ~m, m1+me)<o 0 0>
X(le l U )(lg A >
m, —mg mg—m, m, — 1—mq
L (A TG TF
TR mmT e g 0 0J\0 1 —-1/\-1 0 1/\0 0 0
11X I Iy 7 [ I L 1, 2 [ l, A I, 1,1
X(—l 1 O)(O 0 0)(1 —my m0—1><0 0 O)(—ml —m, ml—l—me)(o 0 0)
X(le l r )(lg I A >
m, —mg mg—m, m, —1 1-m,
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s s 1_m<1 1 l)(l 1 1)(1 1 z"><1 1 l”>

T T T e\ g 0 0J\0 1 —-1)\-1 0 1/J\0 0 0

11 AN/l Iy I'\N/I I /4 L1, 2 I I, ! I, 1, I
X(o 0 0)(0 0 0)(1 —my m0—1><0 0 O>(—m1 —-m, m1+m6)<0 0 o)
y < I, 1, /4 )( l, U A )

m, —mg, mg,—nm, m, —1 1-m,
e s s <1 1 1)(1 1 1)(1 1 1//)(1 1 z”)

eI e T T e\ 0 1)\0 0 0/\-1 1 0/\0 0 0

11 X I /4 I I, I'N\/l; I, A A l, ! L, 1, U
X(o | —1><—1 —my m0—|—1><0 0 0)(0 0 0)<—m1 —m, ml—l—me)(O 0 o)
5 ( I, 1, /4 >(zg A )

m, —mg mg—m, m, 0 -—m,
o s s (1 1 1)(1 1 1)(1 1 l”)(l 1 1//)

TreTI e My EmIm e\ 101 0/\0 0 0/J\-1 1 0/\0 0 O

1 1 AN/l Iy I'\N/IL Iy UN/L I, A [ I, ! l, 1, U
X(—l 1 o>(o 0 o)(o —my m0><0 0 o><—ml —m, m1+me><0 0 0)
5 ( I, 1, ! ><zg A )

m, —mg, mg,—nm, m, 0 -m,
a 5 s 1(1 1 1)(1 1 1><1 1 z"><1 1 1">

om0 I e T\ 1 0 1J\0 0 0/\0 0 0/\0 1 -1

1 1 X I r I Iy I'\N/L I, 2 I I, A I, 1, I
X(—l 1 o><—1 —my m0+1><0 0 0)(0 0 o)(—m1 _m, m1+me><0 0 0)
y < I, 1, /4 )(zg I ! )

m, —mg, mg,—nm, m, 1 —m;—1
s s _m_1<1 1 1)(1 1 z><1 1 z"><1 1 1”)

Ty T mm e 10 1J\0 0 0/\0 0 0/\0 1 -1

11 X I ! I Iy I'N\N/l I, 2 I I, 2 l, 1, U
X(o 0 0><—1 —my m0+1>(0 0 0)(0 0 0><—m1 —m, m1+me>(o 0 0>
y ( I, 1, 4 >(zg I A >

m, —mg mg—m, m, 1 —mgz—1
s, 5 s 1(1 1 z><1 1 1)(1 1 z"><1 1 1")

TeTeTI I e My I eI g 0 0/\N0 1 —=1/J\0 0 0/\0 1 -1

11 XN\/I Iy I'N\N/1 I /4 L 1, 2 I I, ! I, 1, 1
X(—1 -1 2)(0 0 O)(l —my m0—1><0 0 O>(—m, —m, m1+me><0 0 o)
5 ( I, 1, /4 >(zg I A >

m, —mg, mg,—nm, m, 1 —m;—1
s G 5o <1 1 z><1 1 l><l 1 /1>2<1 1 ,1')

R TIR TR T T e\ 10 1 /\0 0 0/\0 0 0 0 1 -1

I r I Iy I'\N/L I, I" I I, I I, 1, I
X(—l —my m0+1><0 0 o)(o 0 0)<—m1 —m, m1+me><0 0 0)

l, L v L " A
% [
me —mg m,—n, my —mp—m, my+m,—m,
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s 5, s (1 1 z><1 1 z)<1 1 /1)(1 1 ,1>(1 1 1)
“rmmommEEmmemytmmomme\ 110 J\o 0 0J\o 0 0o/\1 1 —2/)\-1 -1 2
I Iy I'N/1 1y UN\/L 1, U Il l, I l, 1, U

X(o 0 0><o —my m0><0 0 O>(—m1 —m, m1+me><0 0 o)

y < I, 1, 4 )(19 I ! )

m, —mg Mmg—m, my —mp—m, mp+m,—mg

s 5 5 <1 1 z><1 1 1>(1 1 ,1)<1 1 z><1 1 A’)
TRty T mmomm o\ g J\o 0 0)\-1 -1 2/J\0 0 o/\1 1 =2
I Iy I'N/1 1y UN/L 1, U I I, I I, 1, I

X(o 0 0)(0 —my m0><0 0 0)(—m1 —m, m1+me)<0 0 o)

y < I, 1, /4 ><lg I ! )

m, —mg Mmg—m, my —mp—m, mp+m,—m,

s 5 5 (1 1 1)<1 1 1)(1 1 /1)(1 1 ,1><1 1 x'>
“emtmemg hmmomm Elmmome\ g g J\ o 1 -1/)\=1 =1 2/J\0 0 0/\0 1 -1
I Iy I'\N/1 r L 1, U I I, 1 l, 1, U

X<0 0 0><1 —my m0—1><0 0 0><—m1 —m, ml—l—me)(O 0 o)

y ( I, 1, 4 )(19 I ! )

m, —mg, mg—m, my —my—m, mp+m,—m,
s (1 1 ﬂ)
T -1 01
><<(—1)m260m_m+m5_m_m _m_1<1 1 z”)<1 1 1//)(1 l, 1/)
oty g 0 0J\N0 1 —=1)\0 0 0
I l, ! Iy 1, 1 Iy 1, ! I 1, 2
X<me—m0 —m, mo—me-i—mg)(O 0 0><—m0 m, mo—me><0 0 0>
[ I, A l, I A 11 I'\2
X<—m1 —m, ml—i—me)(mg 1 —mg—1><0 0 0>
S T (1 1 1')<1 1 1//)(1 1 1”)(1 1, 1’)
o TEI T e\ 1 =2 )\=1 0 1/J\0 0 0/\0 O 0
I l, ! Iy 1, 1 Iy 1, l L 1,

X( c—mg —m, mo—me+mg><o 0 0)("”0 m, mo—m)(o 0 0)

A I, A l, 1" A 117

<—m1 —m, ml—l—me)(mg -1 l—mg><0 0 0)

s 5 1(1 1 1)(1 1 1><1 1 1//><1 1 1")<z Iy 1/>(z Iy 1/)
T fgTRe I eT T\ 101 0J\0 0 0/\0 0 0/J\0 1 —1/\0 O 0/\O0 -my my
L 1, A A I, A I, 1, I'\N(1l I, A l, I !

X<0 0 0><—m1 -m, m1+me><0 0 0><me —m, mg—me><mg 1 —mg—1>

1 1 IN/1 1 IN/1 1 a2\/1 1 2 I /4

N I [ S A A

0 0 0/\o 0o 0/\1 1 =2 1 —mg my+1

X

s}

-1 0 1

<z lo l’)(ll 1, z")( Lol I )(1 1, 1/>
" ‘
00 0/J\o 0o 0/)\-m -m, m+mJ)\0 0 0
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[, ly ! L " A
« . ‘
m, —mg Mmg—n, my —my—m, my+m,—mg

P (1 1 l)(l 1 l)(l Iy l’)(l Iy 4 )(le lg l’)(le lg 14 )
tmomme\g 0 0J\0 1 =1)\0 0 0J\1 —-my my—1 0 0 0/\m, —my3 my—m,
(5 (l, l, l”) < [ l, 4 ) ( lg ! A > <1 1 /1>2
X m m,—m
Gmitmem\ g0 0 —-my  —m, my+m,) \my —my—m, mp+m,—m;)\0 0 0
1 1 7 1 1 ll le y) ll le A lg 1" 1
+ 5-"1 -—m,,—m, ’ (B22)
e\ 11 0J\0 0 0)\0 0 0)\-m -m, m+m,)\m, 0 -m,

£y=- 32,;22 3 S S 8 2+ 1) |7 ki @+ ki)

=0 my=—1y [h=0 my=—1I,

x / b b R, 1 (Bea )R ()i, (Kb ) / Al beal*R,, 1 (Real) R (b2l (Kbl
XD Y 8,000,807/ 21+ 1) (20 + 1) (21 + (21 +1)
=0 I'=0
Iy 1

e | Iy l, / LI, 0 A l, !
X , (B23)
0 0 O —-mg m, my-— 0 0 O m; —m, mp-+m,

2 = 1y 0 ly . .
Ly=33 3D YD (=) (=) By g, (200 + 1)(2L; + )/ d|k| |k [7(Q + |k[)[?
T 1720 my =1y 1o=0 my——1, 0
o [ e Ry 1 DR, e, () 0o Ro (D) Ry o, ), (s
<IN NN @+ 1)\/(21 +1)(21, + D21 + 1) (20" + 1)(24 + 1)Cy, (B24)
1=0 '=0 ["=0 A=0
where

C5:<1 1 A)( )(lo A )(lo l, l)( Iy l, / )(lq v l”)
0 0 O 0 0 0 my 0 — My 0 0 O —-my m, mgy—m, 0 0 O
x[ 261 B mlm<1 )(1 1 l’)(l 1 A)(ll l, l”>
o 0 0 0 O 0 1 -1 0 0 O
SRR AN
-my -m, m;+m, mg -1 1-m,
2, 5 i 1( l’)(l 1 l’)(l 1 /1)(11 l, l”)
T T 0/\0 1 -1)\-1 0 1/\0 0 0

1

0

L l, lg v "
<—m1 -m, my;+m, <m 1 —mg—1>

085025-27



PERCHE, RAGULA, and MARTIN-MARTINEZ PHYS. REV. D 108, 085025 (2023)

+s 5 <1 1 l”)(l 1 l”)(l 1 /1)(11 l, l’)
“rmmommBzmtmem\ g0 J\1 1 —2)\ =1 -1 2)\0 0 0
< Lo, I )(lg /4 I >

X
—ny —-m, nmy —+ m, mg —mp —m, mg —+ m, — mg

+s 5 <1 1 l”)(l 1 l”)(l 1 /1><ll l, l’>
“2mtmemm Z2emmm\ 12 J o 0 0o/J\1 1 —2/\0 0 o
< Lo 14 )(lg I I >

X
-my -—-m, my-+m, mg —my—m, mp+m,—m,

s (5 (1 1 /1)(11 I, l’)( L, r )
0,—mg—m; \ “0,m+m,—m, 00 0 0 0 0 —m, m +m,

T )
my, —mp—m, mp+m,—m, 0 0 O

1 1 N/l 170 1 AN/ 1,

+26—m —m,,—m

PP -1 1 0 0 0 O -1 1 O 0O 0 O
L1, I L, U

x , (B25)

-my -m, m;+m, m, 0 -m,

m:

0 ly ©
E E > (=)t (<i)8) 8y 4, (2l + 1)(2 + 1)[) d|k| |k 7(€ + [k|) [
=1, 1y=0 my—

3752
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Now, if we particularize to the case where [, =m, =0, [, =2, and m, = 0, we obtain the following results after
computing the integrals over the solid angle

AZ S S S B
L=t / dlk| / x| / s IS + k) P s R (1 D Rao () Raa (1 R (3]
16807~ /o 0 0
x [14jo(lk||x1])jo(lk||x2l) + 5572 (1|l |) j2 (K| x4 ])] (B30)
AZ ) ) 0 B
L=t / k] / x| / A 72+ K])[2bes s [* R (b D R 1o (2l R (1 ) Ra (2]
176407z- 0 0
X [Ja(klle1]) (1960 (k| x4 ]) — 6352 ([k||x2])) — 98 o ([Kkllx1]) o ([k||x2|) — 2/2 (k| |x2]))]. (B31)
22 S S ) B
L= /0 k] A x| A s P72 -+ [K]) Pl [ Bea[*Rao (1 R 1o (sl R (1 ) Ra (3]
x o (|k||x1]) 2 (|l x2]), (B32)
2 ® © ® 5i% 2 |4]v |4
54:_33607% A dk| A dfx,| A dloe | k[ |7 (Q + [K|) [y [* e |* Ryo (|1 | ) R1o (2 |) R32 (1 [ ) Raa (2 )
X o ([k||xy]) (140 (|k||x2]) = 552 (|k||x2])), (B33)
lz 0 0 00 5
£ ==z Akl [ il [ el Pl bl Ruo e Ruo e s e s s
< s (|2 ) (14 (1 1) — 5572 (Kl bea ). (B34)
2 © © © 515 2 1414 |4
Lo =smmo—> d|k| dlx,| dlxey ||k [7( 4 [k ) |* |y [* ]2 |*Ryo (] [ ) Ryo (2 ) R3a (1 | ) Raa (x2])
3528007z~ /o 0 0
x [14jo ([ 1) = 55 (k| e )] 145 (K| bea) — 5575 (V] ea)). (B35)

Then, using Eq. (B7), we obtain the following expression for the local term after performing the integration over the solid
angles

22 o o ) B
L= 2/ d|k|/ d|x1|/ dpeo ||k [7(Q + |k])|* e |* o2l * Rio (11 ) Rio (2] ) R3a (%1 ) R3a (|2 )
14700ﬂ 0 0 0

x [Tjo([k[le1]) + 102 (ki DI[7jo (1K le2]) + 102 ([k]x2])]. (B36)
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Finally, we use the definitions of the radial functions R o(x) and R3,(x), and perform the integration over |x;| and |x,| to
obtain

2149908484%c*

= oodkk5~Q k|)|?
=2 [T Akl @+ W)

(729K |*c* — 2016]k[262 — 1792)?
(9lk[26* + 16)12

We now compute |[7(Q + |k|)|* explicitly. We find

12 12
(O + k)P / dr, / dt2 (@K i@ k) 37 g3 — 2T, (B37)

With this, we obtain the final expression for £¢ as a single integral over |k| as

Lo =

21499084842T25* / e (729|k|*6* — 2016|k[26% — 1792)2¢~T" (K +Q)*

B38
24577 (9lk26? + 16)2 (B38)

2. Nonlocal term

From Eq. (71), we notice that there are two summands, which differ by a labeling of the indices A and B. In this part of
the appendix, we will compute the first summand, labeled by M*®, and derive the second summand from symmetry
arguments. We have the following expression for MA*®

o g2 / dr, / d, / dxy / oy, (1)s () FEL (61 FE (302) €202 (R (31 ) Rovor (%2) o
:/12/dll/dfz)(A(fl))(B(tz)ei(g“t'JrQ“'Z)/d3x1/d3x2‘//320(x1)ll/320(x2)V/Too(x1)V/Too(xz)

sk kP . ) o
% / (277:)3 % €—1|k\(t]—12)elk-x| e—lk~x2elk~Lx1x]'Pijkl(k)xkxl

&k kP
(27)* 8

(||, Q)e*1 o7k ik Lxixi P,y (k) xkx.

:lz/d3x1 /d3lel/320(x1)l//320(x2)l//Too(x1)WToo(xz)/

(B39)

We have substituted the smearing function F"/(x) =, (x)x'x/y;(x). We note that the nonlocal term has an explicit
dependence on the spatial separation between the detectors. We will define a shared frame of reference for the two detectors
by writing the spherical harmonics of detector B in terms of the reference frame of detector A. Then the angular wave
functions of detector B are given by

1
Y2, (Opdy) = D Y300 02) D (. 9, ). (B40)

u==l

It is also possible to orient the z-axis in the integral over k along L. This allows us to write

0 i
21
K= > Amilji((KL)5,0 ( + )Ylm(ekﬂ¢k> (B41)

[=0 m=-I
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We recall that

my my ms

1 1 1
= W(Jﬁ - X5)? —W(Jﬁ “x) (%1 k) (x5 - k) ~ 1385
1 1 1
b A A I
T g R R e )R

my ms mg

8(2n) XX Py g () x* x! (21 %) (x5 - x7)

(%, -k)2(x2 ‘k)z-

(B42)

Using Eqgs. (B4)—-(B6) we may obtain expressions for the nonlocal term in a similar manner as that found for the local term.
We have that

6
M =N M, (B43)
i=1

where

0 I co I

M =2 [ kPR > S DT S ST D D (1 (kL) /TH 2

=0 my=—1, [,=0 my=-1; lo=0 my=—I,

XA d|xl|xl|4Rnglg(|xl|)Rnel€(xl|)jlg(|k||x1|)A dpeollea*R,, 1, (ber )Ry, (J2]) 7o, (Kl lx2])

L

ll]
‘ ly e X
X E E Dﬂ.mg(ll/’&(ﬂ)(pn,me(‘/”19’(/7)) /d‘Q'leOmo(ek’¢k)Y11m1(9k1¢k)lem2(9k’¢k)

H==lgn==L,

x / A Y, (61.41)Y7,, (61 $1)Y7 (61.001) / Y, (05.2)Y7, (02 92)Y], (05.02)

X%mi(91,¢1’927¢2,9k’¢k)7 (B44)
and
3273/ 5
m=—y [Y10(01,01)Y10(02, $2) = Y1_1(02, $2)Y11(01, 1) — Y11 (01, 1) Y 11(602, $2)]°, (B45)
25672
my = —T[Y1o(91,¢1)Y10(92,¢2) =Y (02, 2)Y11(01, 1) = Y11 (01, 81)Y11(62, )]
X [Y10(01,81)Y10(0k, i) = Y1101, 1) Y11 (O, i) — Y121 (01, 1) Y11 (Ok, &)
X [Y10(02, $2)Y10(Ok, bic) = Y11(02, $2) Y11 Ok, i) — Y11 (02, $2) Y11 (Ok, )] (B46)
my = -% (B47)
167372 5
my =—g [Y10(62,$2)Y 100> D) = Y11(02, h2)Y 11 Ok, i) — Y121 (02, h2) Y 11 (Ok, )], (B48)
1673/2 5
ms=—g Yi0(01,01)Y10(0r i) = Y11(01, 1) Y1210k, i) — Y121 (01, 1) Y11 (O, )] (B49)
25677/2 5
me = g7 [Y10(01, 1) Y100k bic) = Y11(01, d1)Y 121 (Ok, bi) — Y11 (01, 1) Y11 (O, )]
X [Y10(62, 2) Y 10(Ok. 1) = Y11(02. 92) Y121 (O bi) = Y121 (62, 2) Y 11 (O, )] (B50)
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Using Eqs. (B17) and (B18), we can write each of M1{®, ..., M2® as follows

b

oo 1 oo Iy .
M 16”22 > Z > Z Z )20 1,81, 28y s (2L + 1) (2 +1) / d[il (k> O [k, €2) o, ([k|L)
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M‘Z‘stﬂzZ Z > Z > Z (= 1) (<i)hilotag, /)mdk||k|5Q<|k|,9>jzz<|le>
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n=-l, py=-I,
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Now, particularizing to the case where [, = m, =0, [, = 2, and m, = 0, we obtain the following expressions

22 [o's) o0 (s8]
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Using Eq. (B43), the first summand of the nonlocal term, after performing the solid angle integration, becomes

/’{2 o) o0 (s
M¥ =Ly 9.) / dlk / x| / dJ IS QK] ) s * R (b1 ) Rio (e ) Raa (1 Ra (2]
1029007z 0 0 0
< (Tjo(KIL) + 1075 (KIL)) (Tjo(lkl 11]) + 10j (kfx1[)) (T okl 1) + 10j (K[ ). (B69)

Finally, after substituting the definitions of the Wigner function D, and the radial wave functions R;,(|x|) and Rs,(|x|),
it is possible to then perform the integrations over |x;| and |x,| to obtain

(1792 42016k [26? — 729|k|*o*)?
(16 + 9|k [26?)2

3 537477122%6*

MAB =
171572

Q) (Tjo(kIL) + 10/ (|k|L))

(1+3cos(219))/d|k||k|5Q(|k
(B70)

In order to compute the second summand of the nonlocal term, we first perform a relabeling of the indices A <> B.
Naively, one might assume this is all that is necessary to compute the second summand. However, since we have written the
angular wave functions of detector B with respect to the reference frame of detector A, we need to perform the following
substitutions for the Euler angles

Yegsa = ~@Pr-ps Opa = —Ousp, Ppa = “Yasp- (B71)

Considering the expression in Eq. (B70), we can then compute M?®* by changing 9 — —3J. Thus, the complete nonlocal
term is given by

1074954242%6* (1792 + 2016|k|*c? — 729|k|*6*)?
=———(1+3 29 dik||[k]>Q(|k|, )(7jo(|k|L) + 10, (|k|L .
M s 1+ 3cos(29) [ kPO ) (Tin(kIL) + 1073 klL)) ST
(B72)
Finally, the Q(|k|, ) term given in Eq. (36) can be evaluated to a closed-form result given by
T2 _T2 kZ QZ .
O(|k|.Q) = (K9 (1 — erf (i|k|T)). (B73)
Thus, we obtain the final expression for MS as
537477122°T?%6*
e = =TT (14 3os(29)) [ a7 (IL) + 10]2(KIL)) (1 = ext(IT)
T
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