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The renormalization group flow of a Hermitian field theory is shown to have trajectories which lead to a
non-Hermitian parity-time (PT ) symmetric field theory for an axion coupled to a fermion in spacetime
dimensions D ¼ 4 − ϵ, where ϵ > 0. In this renormalizable field theory, the Dirac fermion field has a
Yukawa coupling g to a pseudoscalar (axion) field and there is quartic pseudoscalar self-coupling u. The
robustness of this finding is established by considering flows between ϵ dependent Wilson-Fisher fixed
points and also by working to three loops in the Yukawa coupling and to two loops in the quartic scalar
coupling. The flows in the neighborhood of the nontrivial fixed points are calculated using perturbative
analysis, together with the ϵ expansion. The global flow pattern indicates flows from positive u to negative
u; there are no flows between real and imaginary g. Using summation techniques we demonstrate a possible
nonperturbative PT -symmetric saddle point for D ¼ 3.
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I. INTRODUCTION

Non-HermitianPT -symmetric field theories are effective
theories, which may describe aspects of Beyond-the-
StandardModel physics (BSM) [1–15].P is a linear operator
(such as parity) and T is an antilinear operator (such as time-
reversal). A quantum mechanical system with unbroken
PT -symmetry [16,17] has a completely real spectrum
which leads to unitary dynamics [18]. Our aim is not to
pursue phenomenological aspects of BSM physics, but to
investigate in depth an intriguing behavior noticed in a
recent study of a field theory developed for gravitational
axion phenomenology and dynamical mass generation
[13,14,19,20]. We noticed a renormalization group flow
[19] fromHermitian values of the coupling to those of a non-
Hermitian butPT -symmetric version of the field theory in a
one-loop analysis. We examine here the robustness of these
findings by working with beta functions with nonzero ϵ and
by working to three loops in the Yukawa coupling and two
loops in the quartic scalar coupling [21–25]. The quantum
theory is performed using path integrals [26]. The issues
dealing with path integrals for PT -symmetric theories has
been studied at length recently [19,27].

In spacetime dimensions D, Hermitian quantum
mechanical systems are treated either in the language of
path integrals [28] or of operators acting on a Hilbert space
[29]. The bridge between path integrals and operator
descriptions is understood for Hermitian theories [30,31].
For PT -symmetric quantum theories in D ¼ 1 the observ-
ables are self-adjoint with respect to an inner product
[16,17,32] which is different from the usual Dirac inner
product and is specific to the theory being considered.
The path integral formulation of PT -symmetric theories in
D ¼ 1 has been shown in detailed examples to give the
same Green’s functions [19,33,34] as the operator treat-
ment. The general argument [33] justifying this in D ¼ 1 is
extended to D > 1 in [19]. In [19,27] it was shown that the
Feynman rules which describe the weak coupling behavior
of the theory around the trivial saddle point of the path
integral follow just from the Lagrangian of the theory and
produce the correct asymptotic series at weak coupling of
the theory.
An early example providing an indication that a

Hermitian field theory, when renormalized, may need a
reinterpretation as a PT -symmetric field theory [35,36] is
provided by the Lee model [37]. The Lee model has been
solved explicitly in D ¼ 1 and D ¼ 4. It has mass, wave
function and coupling constant renormalization in D ¼ 4.
However, the model does not have crossing symmetry and
the particles in the model do not obey the spin-statistics
theorem [38]. An important feature of the model is that the
bare coupling has a square root singularity in terms of the
renormalized coupling. This nonanalyticity leads to ghost
states in a conventional interpretation. In a PT -symmetric
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interpretation the Hamiltonian is self-adjoint with respect to
a different inner product [35]. A second example is the
emergence of unstable but PT -symmetric effective poten-
tial for the Higgs field in the Standard Model (discussed in
aD ¼ 1 approximation [19]). This effective potential arises
from renormalized one-loop effects [39,40].
It is known that there is an asymptotic weak coupling

perturbation theory [19,27] of a PT -symmetric field theory
in D ¼ 4. The key to this is the existence of path integrals
in PT -symmetric theories, which are steepest descent
paths and are associated with boundary conditions on
the complex-valued paths or Lefscchetz thimbles [41,42]
used in the path integral. When we come to consider
D ¼ 4, we have the additional issues of regularization and
renormalization associated with Feynman perturbation
theory around the trivial saddle point. Dimensional regu-
larization withD ¼ 4 − ϵ, where ϵ > 0 enables the study of
Wilson-Fisher fixed points [43]. Flow between such fixed
points remain perturbatively small because ϵ is small.
We consider a renormalizable field-theory for axion

physics, which is a massive Yukawa model [13,14] and
is also one of the simplest renormalizable field theories
[44]. The interaction terms have a conventional form but
can be tuned to have values which render the QFT no
longer Hermitian, but still PT -symmetric (as in [35]). The
model provides a framework for studying the interplay of
renormalization and PT symmetry in the presence of a
fermion and a pseudoscalar near four dimensions. Unlike
the Lee model [37,45] this model is a conventional cross-
ing-symmetric field theory. Our principal aim is to under-
stand, in a controlled way, the interplay of renormalization
and PT symmetry in a relativistic four-dimensional QFT
model, starting with a Hermitian theory. The massive
Yukawa model we consider is given by the bare
Lagrangian [19] in 3-space and 1-time dimensions in terms
of bare parameters with subscript 01

L ¼ 1

2
∂μϕ0∂

μϕ0 −
M2

0

2
ϕ2
0 þ ψ̄0ði=∂ −m0Þψ0

− ig0ψ̄0γ
5ψ0ϕ0 −

u0
4!

ϕ4
0: ð1Þ

L is renormalized in four dimensions through mass,
coupling constant and wave function renormalizations;
the scalar self-interaction is obtained from continuation
of δ to 2 in the manifestly PT -symmetric deformation
[16,17]

u0
4!

ϕ2
0ðiϕ0Þδ; ð2Þ

for u0; δ > 0, in any spacetime dimension D. To be clear,
the parameter being continued is δ and not u0; this is
essential for PT symmetry as will become clear when the

reality of path integrals is considered. This is the simplest
nontrivial renormalizable model of a Dirac fermion field ψ0

interacting with a pseudoscalar field ϕ0. In the Dirac
representation of γ matrices the standard discrete trans-
formations [46] on ψ0 are

Pψ0ðt; x⃗ÞP−1 ¼ γ0ψ0ðt;−x⃗Þ;
T ψ0ðt; x⃗ÞT −1 ¼ iγ1γ3ψ0ð−t; x⃗Þ; ð3Þ

T is an antilinear operator. Moreover, under the action of P
and T , the pseudoscalar field ϕ0ðt; x⃗Þ transforms as

Pϕ0ðt; x⃗ÞP−1 ¼ −ϕ0ðt;−x⃗Þ;
T ϕ0ðt; x⃗ÞT −1 ¼ ϕ0ð−t; x⃗Þ: ð4Þ

These definitions go through in D dimensions with the
Dirac gamma algebra given in (33). In dimensional
regularization, expressions for Green functions from covar-
iant perturbation theory, which are valid for integer D, are
analytically continued inD [47]. Lorentz covariants such as
γμ; pμ; gμν are treated as formal entities [48] that obey
prescribed algebraic identities. The specific values of
indices are not used.2 However the definition of γ5 requires
special consideration (see IVA).
If g0 is real, then the Yukawa term in (1) is Hermitian and

g20 > 0. If g0 is imaginary, then the Yukawa term is non-
Hermitian but isPT -symmetric and so g20 < 0. u0 is real but
it can be positive (Hermitian) or negative (PT -symmetric).
The plan of this paper is as follows:
(1) We briefly review the role of renormalizability in

PT -symmetric quantum field theory and the subtle-
ties in defining the corresponding path integrals
[17,19,27]. In particular we note:
(i) In the Lee model [36,37,45], a model of

historical importance in the study of renormal-
ization, the bare coupling has a nonanalytic
dependence on the renormalized coupling.
Moreover, the nonanalyticity is in terms of a
branch cut. The Lee model is a quantum
mechanical Hermitian model which allows
for (an exact treatment of) renormalization
starting with a Hilbert space with the conven-
tional Dirac inner product. The well-known
ghost problem [35], which develops due to
renormalization, is removed by interpreting
the model with a new inner product related
to the C operator of PT symmetry [49].

(ii) In order to understand PT -symmetric path
integrals it is instructive to consider D ¼ 0

1Our Minkowski-metric signature convention is ðþ;−;−;−Þ.

2These calculations differ from those required for the energy
eigenvalues of a Dirac equation in general integer dimensions
where the explicit representations of the gamma matrices are
used.
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PT -symmetric integrals using standard com-
plex analysis techniques. The related analysis
of D ≥ 1 can be found in [19,27]. The presence
of fermions does not change this analysis
qualitatively since massive fermions can be
integrated out (at one loop) to give an effective
potential contribution [50–52] to the scalar self-
interaction, in terms of logarithmic factors.

(2) Perturbation theory using Feynman diagrams is
applied to the Yukawa model. This gives an asymp-
totic series in the couplings that is valid near the
trivial saddle point. The contributions from the
nontrivial saddle points (due to bounces) are asymp-
totically subdominant in the weak coupling limit
[53]. However, the bounce (instanton) solutions give
rise to imaginary contributions to odd point Green’s
functions which would otherwise vanish [27,53].
Hence our approach, which ignores the subdominant
contributions from nontrivial saddle points, is based
on perturbation theory around the trivial saddle point,
which is valid for renormalization group flows
around all sufficiently weak-coupling fixed points.
We also comment on the subtleties of using dimen-
sional regularization in noninteger dimensions. Us-
ing a general purposeMathematica program RGBeta
[21], the perturbation theory is performed to three
loops in g and two loops in u. RGBeta has the feature
that it also accepts complex couplings. Beta func-
tions of the renormalization group flow [44,54] can
be calculated. We solve for the fixed points and
determine their stability. Going from ϵ ¼ 0 to non-
zero ϵ leads to the trivial fixed point spawning three
new ϵ-dependent fixed points, whose magnitudes are
directly controlled by ϵ. Furthermore, the flow in the
neighborhood of the fixed points is joined together to
give amore global flow picture. From this picture, we
can see how the Hermitian and non-Hermitian fixed
points interact with each other, i.e., how the flow is
organized around these fixed points. For one non-
Hermitian fixed point the ϵ expansion is stable, i.e.,
the coefficients do not increase rapidly with order, so
resummation techniques using Padé approximants
leads to a genuine fixed point inD ¼ 3, which is not
sensitive to variations in the form of Padé approx-
imants used. This fixed point has the stability of a
saddle point.

(3) We examine some aspects of applying finite loop-
order perturbation theory, and compare our model to
that presented in [55], where similar analysis is
performed.

(4) In the conclusions we discuss and summarise our
results. Furthermore, there are appendices giving
some additional details on our findings; we give
some checks of robustness of our main results
related to the effects of finite loop order in pertur-
bation theory.

II. THE LEE MODEL

The Lee model (LM) is a class of soluble simplified field
theories [37] used to study renormalization, which can be
carried out exactly. LM3 involves fermionic particles N and
V with operators ψN and ψV and a bosonic particle θ with
operator a (in D ¼ 1). The interactions in the model allow

V → N þ θ ð5Þ

and also the reverse process

N þ θ → V: ð6Þ

Because the field theory does not have crossing symmetry
the process N → V þ θ̄ is not allowed where θ̄ is the
antiparticle of θ. The fermions N and V do not have spin
and so the spin-statistics theorem [38] is not satisfied. The
interactions imply conservation rules for B and Q where

(i) B ¼ nN þ nV
(ii) Q ¼ nV − nθ,

and nN , nV , and nθ are the number of quanta for N, V and θ
respectively. This simplification facilitates the ability to
solve the model [35]. In D ¼ 1 the Hamiltonian H is
H ¼ H0 þH1 where

H0 ¼ mVψ
†
VψV þmNψ

†
NψN þ μa†a ð7Þ

and

H1 ¼ δmVψ
†
VψV þ g0ðψ†

VψNaþ a†ψ†
NψVÞ: ð8Þ

The sector with B ¼ 1 and Q ¼ 0 is spanned by the states
j1; 0; 0i and j0; 1; 1i. The eigenstates of H are denoted by
jVi and jNθi, with associated eigenvalues mV and ENθ

given by

mV ¼ 1

2

�
mN þ μþmV0

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ 4g20

q �

ENθ ¼
1

2

�
mN þ μþmV0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ 4g20

q �

where M0 ≡mN þ μ −mV0
and mV0

≡mV þ δmV . The
wave-function renormalization constant ZV is determined
[35] through the relation

ffiffiffiffiffiffi
ZV

p
¼ h0jψV jVi ð9Þ

which leads to [35]

ZV ¼ 2g20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ 4g20
p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ 4g20
p

−M0Þ
: ð10Þ

3AD ¼ 1version of the Leemodel suffices to show the essential
effect of renormalization present in the D ¼ 4 model [35].
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The renormalized coupling constant g satisfies

g2 ¼ ZVg20: ð11Þ
In terms of M≡mN þ μ −mV , a renormalized quantity, it
is straightforward to see that

M0 ¼ M −
g20
M

: ð12Þ

From (11) and (12) we can deduce the nonperturbative
result that

g20 ¼
g2

ð1 − g2

M2Þ
: ð13Þ

Hence g0 is related to g by a square root singularity with a
branch cut between −M and M. If g2 > M2, then the bare
coupling can become imaginary and the Hamiltonian is
non-Hermitian, but PT -symmetric [35]. Explicitly the
transformations due to P are

PVP ¼ −V PNP ¼ −N PaP ¼ −a

PV†P ¼ −V† PN†P ¼ −N† Pa†P ¼ −a† ð14Þ

and due to T are

T VT ¼ V T NT ¼ N T aT ¼ a

T V†T ¼ V† T N†T ¼ N† T a†T ¼ a†: ð15Þ

The non-Hermiticity of the Hamiltonian leads to
states with energies that are not real. Because of the
PT -symmetry, a new inner product was constructed for
the Hilbert space which removed ghost states from the
spectrum [35].4 The Lee model has some similarities with
L in (1). The massive Yukawa model has the trilinear
interaction between fermions and bosons as in the Lee
model but it has also a quartic boson self-interaction. It has
crossing symmetry and the spin-statistics connection,
features which are essential for any realistic fundamental
theory. PT symmetry in the Lee model emerges for a
nonweak coupling strength. Non-Hermiticity in the mas-
sive Yukawa model occurs for small couplings and hence is
amenable to a renormalization group analysis.

III. PT -SYMMETRIC PATH INTEGRALS

In the modern study of field theory, quantum aspects can
be explored through path integrals where the Hilbert space
structure is not paramount [44]. In non-Hermitian (but
PT -symmetric) field theory, this advantage persists and
simplifies calculations at weak coupling [34]. We concen-
trate on the modification inD ¼ 0 of paths for the existence

of path integrals in PT -symmetric framework. The dis-
cussion of semi-classical analysis and steepest descent
paths can be found in [19,27].
We shall focus on the bosonic part of the path integral

for L [19].5 and consider two forms of the bosonic path
integral, one which preserves manifest PT symmetry and
the other which does not

Zi ¼
Z

Dϕ exp ð−Si½ϕ�Þ; i ¼ 1; 2 ð16Þ

where Dϕ is the path integral measure and the action is
given by

Si½ϕ� ¼
Z

dDx

�
1

2
ð∂μϕÞ2 þ ViðϕÞ

�
ð17Þ

and

V1ðϕÞ ¼
1

2
m2ϕ2 þ u

4
ϕ2ðiϕÞδ; ð18Þ

V2ðϕÞ ¼
1

2
m2ϕ2 þ u

4
exp iζϕ4 ð19Þ

where we consider monotonic continuations in the param-
eters, with δ → 2 in the first case and ζ → �π in the second
case. In both cases we need the path integral to converge
and the contours of paths have to be chosen appropriately.
Although the limiting form of Vi in the parameter contin-
uations are

VðϕÞ ¼ 1

2
m2ϕ2 −

u
4
ϕ4 ð20Þ

the contours required with the different deformations are
distinct and we will see that Z1 ≠ Z2 in their imaginary
parts. The first deformation is PT -symmetric whereas the
second deformation is not since under P and T we require

(i) P∶ϕ → −ϕ;
(ii) T ∶ϕ → ϕ�; fi → −ig.

The δ deformation is central to PT symmetry. We shall
show that the δ deformation keeps the partition function
real while the coupling deformation leads to a Z with
imaginary parts.

A. D= 0

We consider the D ¼ 0 case6 to illustrate the importance
of PT -preserving deformations. Then we have

4An analogue version of the Lee model in the non-Hermitian
region has also been proposed [56].

5The fermions in the model give a logarithmic correction to the
quartic self-interaction when integrated out [50] of the path
integral and does not cause a significant change in the discussion.

6This case is an example of a trivial field theory at a single
spacetime point. It is useful in understanding the nature of the
deformations which are necessary to have a PT -symmetric path
integral.
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Z1 ¼
Z
C
dz exp

�
−
�
1

2
m2z2 þ u

4
z2ðizÞδ

��
ð21Þ

where C is a contour in the complex plane, which is a
deformation of the real line interval ð−∞;∞Þ such that Z is
finite and ϕ has been replaced by the variable z. The path
integral has become an integral whose convergence is
determined by the term proportional to u. On writing
z ¼ r expðiχÞ we have

z2ðizÞδ ¼ r2þδ exp
�
i
�
2χ þ δ

�
χ þ π

2

���
ð22Þ

and the integral for Z converges when

2nπ −
π

2
< ðδþ 2Þχ þ δ

π

2
<

π

2
þ 2nπ ð23Þ

where n is an integer defining Stokes wedges which defines
an opening in χ

χl < χ < χu ð24Þ

where χu ¼
π
2
ð1−δÞþ2nπ

δþ2
and χl ¼ 2nπ−π

2
ð1þδÞ

δþ2
. There are four

distinct wedges labeled by n ¼ 0, 1, 2, 3. The n ¼ 0 and
n ¼ 3 form a PT -symmetric set. By Cauchy’s theorem,
any contour in a wedge is equivalent to any other in its
contribution to the integral. Our choice will be to take the
contour through the center of the wedge. We shall call this
particular contour CPT, see Fig. 1.
It is convenient to rescale z → z=

ffiffiffi
u

p
, for the case δ ¼ 2,

which leads to

Z1 ¼
Z
CPT

dz exp
�
−
1

u

�
1

2
m2z2 −

z4

4

��
: ð25Þ

We will now evaluate Z1 over the CPT contour (for δ ¼ 2)
to show that it is real. We find

Z1 ¼ exp

�
−
iπ
4

�Z
∞

0

dr

�
cos

�
m2r2

2u

�
þ i sin

�
m2r2

2u

��

× exp
�
−
r4

4u

�
þ c:c: ð26Þ

¼ mπ

2
3
2

exp

�
−
m4

8u

��
I−1

4

�
m4

8u

�
þ I1

4

�
m4

8u

��
: ð27Þ

where c.c. refers to complex conjugation and the IνðxÞ are
the modified Bessel functions of the first kind. ZCPT is real

and has a nonzero small u expansion since IνðxÞ ∼
expðxÞffiffiffiffiffiffi
2πx

p ½1 − 4ν2−1
8x � as x → ∞ and the exponential pieces

cancel.

We will compare with the D ¼ 0 version of Z2, given by

Z2 ¼
Z
C
exp

�
−
1

2
m2z2 −

u
4
eiζz4

�
dz ð28Þ

Similarly, we let z ¼ reiθ. The integral in r converges if

−
π

8
ð4nþ 1Þ − ζ

4
< θ <

π

8
ð1 − 4nÞ − ζ

4
ð29Þ

The distinct Stokes wedges are for n ¼ 0 and n ¼ 1 when
ζ ¼ π. This wedge pair is not PT -symmetric. We shall call
this particular contour Crotation, see Fig. 2. The Hermitian
case is ζ ¼ 0 and C ¼ ð−∞;∞Þ.
On consideration of Z2 for the ζ ¼ π wedge pair, we find

that it is complex

Z2 ¼
mπ

2
ffiffiffi
2

p ð1− iÞexp
�
−
m4

8u

��
I−1=4

�
m4

8u

�
þ iI1=4

�
m4

8u

��
:

ð30Þ

We therefore see how the choice of contours is crucial for
defining a PT -symmetric theory and ensuring that the path
integrals are real.
Furthermore, we note that Green’s functions for odd

functions of ϕ are purely imaginary in the PT -deformed
theory, which is characteristic of PT symmetry. Explicitly
we have

FIG. 1. Stokes wedges (shown in blue, boundaries in red) and
contour CPT (shown in green) for δ → 2 in Z1.

RENORMALIZATION GROUP FLOWS CONNECTING A … PHYS. REV. D 108, 085024 (2023)

085024-5



hz2nþ1i ¼ inþ1

	Z
∞

0

drr2nþ1 exp

�
−
r4

4u

�

×
�
ð−1Þnþ1 exp

�
i
m2r2

2u

�
− exp

�
−i

m2r2

2u

��


ð31Þ

where n ¼ 0; 1; 2;…. These integrals can be written in
terms of modified Bessel functions.
The partition function and Green’s functions cannot be

calculated exactly for D > 0. However, we are interested in
weak coupling expansions of the PT field theories. Away
of analysing weak coupling expansions of partition func-
tions is through a saddle point analysis of the path integral
which is discussed in [19,27]. We have defined path
integrals in [19,27] appropriate for PT symmetry in weak
coupling using the method of steepest descents. The formal
arguments have been illustrated in a specific case [33,34]
where the Hamiltonian is

H ¼ 1

2
ðp2 þ x2Þ þ iλx3 ð32Þ

and Greens functions are also calculated using operator
methods. The two methods agree for D ¼ 1. The findings
of this concrete calculation have been supported more
generally by an argument for D ¼ 1 [33] (based on the
Schwinger construction [28] of the partition function in the
operator theory). It was also stated in [33], without an
explicit proof, that the arguments go through for D > 1.
The details of the generalization for D > 1 are given
in [19].

IV. THE YUKAWA MODEL

We have the basis for applications of path integral
quantization to our PT -symmetric model. The path inte-
gral is defined using complex deformation of paths or
thimbles in complex Morse theory [41,42,57] which
ensures that the integral converges. In D ¼ 4 a closely
related path-integral method was used to study false
vacuum decay in [58,59]. The feature missing from these
earlier treatments is the requirement of PT symmetry.
We are interested in the leading small coupling asymp-

totic expansion [60] using Feynman rules for the Yukawa
model. The perturbation expansion around the trivial saddle
point needs regularization and renormalization because of
well-known infinities of loop Feynman diagrams [44]. The
regularization is achieved by going to D ¼ 4 − ϵ where
ϵ > 0, i.e., by using the method of dimensional regulari-
zation [47]. The renormalization is achieved through
minimal subtraction.

A. Dimensional regularization
in scalar/fermionic theories

Although dimensional regularization is a well-estab-
lished technique, there are subtleties such as the consistent
treatment of chiral anomalies and evanescent operators [61]
in D dimensions. These, however, have been well inves-
tigated [48,62].
For our application, since we are not dealing with chiral

gauge theories, the procedures we adopt are mathemati-
cally consistent. For Hermitian theories it is generally
accepted that the continuation in dimension preserves
unitarity and causality. Our treatment of PT theories
involves an analytic continuation in the coupling or in a
deformation parameter in the scalar self-interaction.
Moreover we are following a flow from a Hermitian theory
to a non-Hermitian theory and so we assume that our
conclusions about flow to non-Hermitian theories is unaf-
fected by subtle issues in dimensional regularization.
The validity of the quantum action principle [63] within

the framework of dimensional regularization allows the
study of symmetries of Greens functions. The conse-
quences of symmetries such as Lorentz and gauge invari-
ance are preserved. Nonanomalous symmetry breaking is
removed by the use of evanescent operators. Explicitly for
vector gauge theories, gauge invariance is preserved by
dimensional regularization [64].
From the early days of dimensional regularization it was

noticed that it is impossible to require the relations

fγμ; γνg ¼ 2gμν; μ ¼ 1;…; D ð33Þ

fγ5; γνg ¼ 0; μ ¼ 1;…; D ð34Þ

since they imply

FIG. 2. Stokes wedges (shown in blue, boundaries in red) and
contour Crotation (shown in green) for ζ → π in Z2.
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Trðγ5γμγνγργσÞ ¼ 0; D ≠ 0; 2; 4: ð35Þ

This result cannot be continued to D ¼ 4 where

Trðγ5γμγνγργσÞ ¼ 4ϵμνρσ: ð36Þ
We follow the resolution proposed by ’t Hooft and Veltman
[64] by defining

γ5 ¼
1

4!
ϵμ1μ2μ3μ4γμ1…γμ4 ð37Þ

where the indices take values in (0, 1, 2, 3). This ensures the
validity of (37); however now

fγ5; γμg ¼ 0; μ ¼ 1;…; 4 ð38Þ

½γ5; γμ� ¼ 0; μ ¼ 5;…; D ð39Þ

This scheme is algebraically consistent. The work in [48]
has shown that Ward identities are preserved, at least when
chiral gauge theories are not involved.7 This is the relevant
situation for us; for our Yukawa model different schemes of
dimensional regularization have been explicitly shown to
be consistent [66].

B. Renormalization of the Yukawa model

Corresponding to the bare Lagrangian of the Yukawa
model, the associated renormalized Lagrangian L (in terms
of renormalized parameters without the subscript 0 and
with counterterms) is

L ¼ 1

2
ð1þ δZϕÞ∂μϕ∂μϕ −

M2
0

2
ð1þ δZϕÞϕ2

þ ð1þ δZψ Þψ̄ði=∂ −m0Þψ
− ig0ð1þ δZψÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δZϕ

p
ψ̄γ5ψϕ

−
u0
4!

ð1þ δZϕÞ2ϕ4; ð40Þ

where we have introduced the multiplicative renormaliza-
tions Zϕ, Zψ , Zg, Zu, Zm, and ZM defined through

ϕ0 ¼
ffiffiffiffiffiffi
Zϕ

p
ϕ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ δZϕ

p
ϕ; ð41Þ

ψ0 ¼
ffiffiffiffiffiffi
Zψ

p
ψ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ δZψ

p
ψ ; ð42Þ

M2
0Zϕ ¼ M2 þ δM2 ≡M2ZM; ð43Þ

m0Zψ ¼ mþ δm≡mZm; ð44Þ
g0Zψ

ffiffiffiffiffiffi
Zϕ

p ¼ gþ δg≡ gZg; ð45Þ
u0ðZϕÞ2 ¼ uþ δu≡ uZu: ð46Þ

We use dimensional regularization to evaluate the
counterterms, taking D ¼ 4 − ϵ and μ as the renormaliza-
tion scale. This leads to the perturbative renormalization
group (see, for example, [44]). From the discussion in
Sec. I, the perturbative renormalization group is unaffected
by the nontrivial saddle points [53], which give asymp-
totically subdominant contributions.
The field theoretic action S generally depends on these μ

dependent couplings such that

S½ZðμÞ1=2Φ; μ; giðμÞ� ¼ S½Zðμ0Þ1=2Φ; μ0; giðμ0Þ� ð47Þ

where ZðμÞ is the wave function renormalization (generally
a matrix) of the generic field Φ. As an example, for a scalar
field theory, we can write

S½ϕ;μ;gi�¼
Z

dDx

�
−
1

2
∂μϕ∂

μϕþ
X
i

μD−digiOiðxÞ
�

ð48Þ

whereOiðxÞ is a local operator of mass dimension di and gi
is dimensionless. The μ dependence of gi is determined
through functions βiðfgjgÞ

μ
dgiðμÞ
dμ

¼ βiðfgjgÞ; ð49Þ

which are the renormalization group equations.

C. Coupling constant analyticity

We have noted that in the Lee model, the bare coupling
has a square root singularity in the renormalized coupling.
The Lee model was constructed in such a way that
renormalization could be performed exactly. In realistic
theories, we cannot expect to obtain exact information
about renormalization. We use a renormalization (or sub-
traction point μ) to define our theory. If we could calculate
to all orders in perturbation theory then it is expected that
results for physical quantities would be independent of μ.
The renormalization group enforces this condition on
quantities calculated to low orders in the loop expansion.
In this sense, some of the important features of an exact
analysis are incorporated. However, the situation is more
complicated since the perturbation series are believed not to
be convergent, but only asymptotic [67–69]. This led to
investigations of the analyticity properties of physical
quantities such as the ground state energy (related to the
partition function) as a function of couplings (e.g., u)
[67,70–72] using large orders in perturbation theory.
We conjecture that square root singularities of the type

found in the Lee model may contribute to the emergence of
PT theories starting with a Hermitian theory. Such a result
would be extremely hard to prove. The presence of a square
root singularity implies that the coupling has a different
sign on either side of the cut. For the anharmonic oscillator
Bender and Wu [70] found an accumulation of square root

7Even for chiral gauge theories the scheme can be modified
with nongauge invariant finite counterterms [65].
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singularities in the complex coupling constant Riemann
sheets for the energy levels arbitrarily close to the origin.
However, on general grounds, it may be expected that

square root singularities will also be present in field
theories. Higher D field theories are much more compli-
cated than the D ¼ 1 anharmonic oscillator and so square
root singularities will not be expected to appear in the same
way as in the single component anharmonic oscillator [71].
Eigenvalue problems are ubiquitous in field theory and it is
argued persuasively8 in [60] that square root singularities
are generically the most likely singularities of eigenvalues
as functions of couplings continued to the complex
plane.

D. The renormalization group analysis

In terms of t ¼ log μ and h ¼ g2 the renormalization
group beta functions for h ≥ 0 are

dh
dt

¼ βh ðh; uÞ and
du
dt

¼ βu ðh; uÞ ð50Þ

where

βh ðh; uÞ ¼ −ϵhþ 1

ð4πÞ2 10h
2

þ 1

ð4πÞ4
�
−
57

2
h3 − 4h2uþ 1

6
hu2

�

þ 1

ð4πÞ6
��

−
339

8
þ 222ζð3Þ

�
h4 þ 72h3u

þ 61

24
h2u2 −

1

8
hu3

�
ð51Þ

and

βuðh; uÞ ¼ −ϵuþ 1

ð4πÞ2 ð−48h
2 þ 8huþ 3u2Þ

þ 1

ð4πÞ4
�
384h3 þ 28h2u − 12hu2 −

17

3
u3
�
:

ð52Þ

where ζ denotes the Riemann zeta function. These expres-
sions for the beta functions have been found from a
perturbative calculation to three loops for the Yukawa
coupling and two loops for the quartic coupling using
the Mathematica package RGBeta [21] and are indepen-
dent of m and M.9 When g is pure imaginary, h is negative
and so h positive or negative distinguishes between
Hermitian and PT -symmetric cases, respectively. The
expressions for the beta functions given here are only

applicable for h ≥ 0 (the case for which g is real). Our
qualitative conclusions are unaffected by the sign of h, and
the h ≥ 0 and h < 0 sectors do not mix, so for brevity in the
main text we restrict to h ≥ 0 (the Hermitian case for g).
However, we give the h < 0 (non-Hermitian in g) results
for completeness in Appendix C.
In the next subsections we shall consider:
(1) The zeros of the beta functions βu and βh which

determine the fixed points of the renormaliza-
tion group.

(2) The stability of the fixed points, which can be
determined from a linearized analysis around the
fixed points (except for the trivial fixed point when
ϵ ¼ 0).

(3) The full nonlinear flows connecting the different
fixed points. These flows are instructive, especially
for the epsilon-dependent fixed points emanating
from the trivial fixed point.

(4) Once we have an ϵ expansion of the fixed points it is
natural to enquire about any possible resummation to
determine information about fixed points and their
stability at D ¼ 3. We have used the method of Padé
approximants and made checks on the pole structure
[60] in the neighborhood of ϵ ¼ 1 to determine the
trustworthiness of anyD ¼ 3 fixed point determined
this way.

1. Fixed points for ϵ= 0

It is customary to denote the fixed point of h as h� and
the fixed point of u as u�. However, in the main text, for
clarity we will use fi;h (the fixed point value for h) and fu;h
(the fixed point value for u) for our numerical results for the
fixed points, given to three significant figures. When ϵ ¼ 0,
we have two fixed points
(1) The trivial (or Gaussian) fixed point: f1;h ¼ 0,

and f1;u ¼ 0.
(2) f2;h ¼ 0, and f2;u ≃ 83.6 which corresponds to a

quartic coupling ≃3.48 (rescaled by 1=4!); since the
f2;h and f2;u are non-negative this is a Hermitian
fixed point.

The trivial fixed point is the progenitor of the fixed
points for ϵ ≠ 0. We perform a linearized analysis first
for the fixed point f2. A nonlinear analysis is necessary
for f1.

E. Stability analysis

A linearized analysis around fixed points h� and u�
consists of examining the evolution of δh ¼ h − h� and
δu ¼ u − u�. A linearized stability analysis [73] is deter-
mined by

d
dt

�
δh

δu

�
¼ Mðh�; u�Þ

�
δh

δu

�
ð53Þ

8See Ch. 7, Sec. 7.5 of [60] for a comprehensive discussion.
9The flows form andM are dependent on the flows for h and u

however.
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where M is a 2 × 2 matrix.10 M is diagonalized to obtain
eigenvalues ðλ1ðh�; u�Þ; λ2ðh�; u�ÞÞ and corresponding
eigenvectors ðe⃗1ðh�; u�Þ; e⃗2ðh�; u�ÞÞ.
Here, we summarize the eigenvectors and eigenvalues

for f2;h:
(i) λ1ðf2h; f2uÞ ≈ −1.59, and e⃗1ðf2h; f2uÞ ¼ ð0

1
Þ

(ii) λ2ðf2h; f2uÞ ≈ 0.0282 and e⃗2ðf2h; f2uÞ ¼ ð1.85
1
Þ

1. Nonlinear analysis around trivial fixed point

The stability of the trivial fixed point requires a nonlinear
analysis, due to the vanishing of the eigenvalues of the
linear stability matrix M.
For the study of renormalization group flows in the

neighborhood of the trivial fixed point, βuðh; uÞ and
βhðh; uÞ can be simplified to

βuðh; uÞ ≃
1

π2

�
−3h2 þ 1

2
huþ 3

16
u2
�

ð54Þ

and

βhðh; uÞ ≃
5

8π2
h2: ð55Þ

The family of flows for h, parametrized with h0 and t0, is
given by

hðtÞ ¼ 8π2h0
8π2 − 5h0ðt − t0Þ

: ð56Þ

We define fðtÞ ¼ 8π2 − 5h0ðt − t0Þ for convenience. The
accompanying flow for u is

uðtÞ ¼ −
8π2h0
3fðtÞ

�
−pfðtÞn þ qc
fðtÞn þ c

�
ð57Þ

where c is an integration constant, p ¼ 1þ ffiffiffiffiffiffiffiffi
145

p
≈ 13,

q ¼ −1þ ffiffiffiffiffiffiffiffi
145

p
≈ 11, n ¼

ffiffiffiffi
29
5

q
≈ 2.4. The behavior is

complicated and when h or u becomes large, which occurs
due to the presence of a Landau pole, the perturbative
analysis is not valid. We can write uðtÞ in terms of hðtÞ
directly as

uðtÞ ¼ −
1

3
hðtÞ

�
−phn0 þ qc̃hðtÞn
hn0 þ c̃hðtÞn

�
ð58Þ

writing c ¼ ð8π2Þnc̃. This allows us to relate c̃ to h0 and
u0 as

u0 ¼ −
1

3
h0

�
−pþ qc̃
1þ c̃

�
ð59Þ

If we define k ¼ u0
h0
, then we find

c̃ ¼ p − 3k
3kþ q

ð60Þ

This suggests that if the h0 and u0 are sufficiently close to
the origin, then any straight line through the origin is
possible.

F. Renormalization group flows

We shall examine the flow around the fixed points fih
and fiu, for i ¼ 1, 2. For ϵ ¼ 0 the dimensionless couplings
are of Oð1Þ and are not small in any controlled fashion;
hence the flows derived from perturbation theory can only
be indicative of possible features of renormalization.
Moreover, geometric methods are best suited to visualize
the flows.11

In the figures, the vertical axis is the u-axis and the
horizontal axis is the h-axis. The h-axis (where present) is
shown in red, and any fixed points are shown in blue (color
online). Some features to be noted are

(i) There are no flows from positive to negative h and
vice versa.12

(ii) There are flows from positive u to negative u, i.e.
from a Hermitian to a PT -symmetric region.

(iii) The flows around the trivial fixed point f1 do not
show a simple source, sink or saddle-point behavior,
but rather a nonlinear flow. This flow is complicated
but an approximate solution is given in (58). In
Figs. 3 and 4, there are approximate lines of both
positive and negative slope crossing the h-axis,
which are an indication of this behavior.

Given that the analysis is based on perturbation theory,
flows in regions where the couplings are large compared
to 1 can only be misleading. However, near the trivial fixed
point, we can see evidence for flows from positive to
negative u, i.e., from Hermitian to PT -symmetric behavior.
This type of behavior is discussed and investigated below in
much more detail for a situation where there are four fixed
points which occur at small values of u and h. In our
context, this arises since there is a separate parameter which
controls the size of the couplings and makes perturbation
theory possible. This parameter is ϵ.

1. Fixed points for ϵ ≠ 0

We consider ϵ > 0 and examine the flows of (50). We
have fixed points which we denote by Fi, i ¼ 0; 1; 2;…; 4.
F0 ¼ f1 is the trivial fixed point. The remaining Fi are

10M will also have a dependence on ϵ in D ¼ 4 − ϵ.

11Solving individual trajectories as a function of t requires
initial conditions and the description of flows requires a grid of
initial conditions. A geometric method [74], whereby tangents to
the flows are pieced together as streamlines, is preferable.

12This has been verified by performing the analysis for h < 0,
see Appendix C.
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given in terms of series which are not typically convergent
but asymptotic as ϵ → 0. The expressions for the fixed
points are given in Appendix A. These expressions allow
tracking of fixed points as a function of ϵ and also, in some
circumstances, an extrapolation to ϵ ¼ 1 using the tech-
nique of Padé approximants. In the limit ϵ → 0, the fixed
point F4 → f2, and the fixed points Fi → f1 for i ¼ 1, 2, 3.
Hence the trivial fixed point becomes 4 fixed points for
ϵ ≠ 0: the trivial fixed point and 3 further fixed points
(Fi; i ¼ 1, 2, 3) which areOðϵÞ. For sufficiently small ϵ, F2

is a non-Hermitian (PT -symmetric) fixed point whereas F1

and F3 are Hermitian. The renormalization group flows in
the neighborhoods of Fi; i ¼ 1, 2, 3 and f1 are described

through perturbative analysis and are our main focus.
Although near F4 our analysis does indicate possible
new behavior (in terms of flows between Hermitian and
PT -symmetric regions in the h coupling) these latter
findings can only remain conjectural since perturbation
theory is unreliable for large couplings. As such, we ignore
this point in most of our analysis below. However, it is
worth noting that the emergence of PT symmetry in the
Lee model is in terms of h [35] and occurs at strong
coupling.

G. The stability of fixed points for ϵ ≠ 0

We follow the linear stability analysis of (53) for the
fixed points F0≡f1 and Fj; (j¼1, 2, 3). Fαðα ¼ 0, 1, 2, 3)
has two components: Fα;u, the fixed point value for u and
Fα;h, the fixed point value for h. The eigenvalues of
the stability matrix around Fα, will be denoted by
Λα;j; j ¼ 1, 2. The corresponding 2 component eigenvec-

tors will be denoted by E⃗αj; j ¼ 1, 2.

1. The renormalization group flow between
fixed points for ϵ ≠ 0

The renormalization group flows for 0 < ϵ≲ 0.027 are
qualitatively the same and so we shall consider the case
ϵ ¼ 0.01 as a representative flow. The flows are organized
by the different fixed points Fα. We determine the flows
numerically and nonperturbatively in ϵ.
As expected, many of the features from the ϵ ¼ 0 case

persist, particularly regarding flows across the coordinate
axes (see Figs. 5 and 6). However, the nonzero ϵ ensures that
the behavior of the flow near the origin can now be
characterized using linear stability analysis [73]; we find
an ultraviolet stable stellar node there (as shown in Fig. 7a).
Furthermore, three additional points emanate from the origin
as ϵ has increased. If we focus on the non-Hermitian (and
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(a) (b)

FIG. 4. The local flows around the fixed points for ϵ ¼ 0.
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FIG. 3. Global flow for ϵ ¼ 0.

LEWIS CRONEY and SARBEN SARKAR PHYS. REV. D 108, 085024 (2023)

085024-10



PT -symmetric) saddle fixed point F2 (Fig. 7c), we note that
(by examining Fig. 6):

(i) There is a flow that originates at the Hermitian
infrared fixed point F3 (Fig. 7d) in the IR (large
negative t) limit, which can flow to the non-Hermitian
saddle F2 in the UV (large positive t) limit.

(ii) There is a flow that originates at the stellar node at
the origin F0 (Fig. 7a) in the UV (large positive t)
limit, which can flow to the non-Hermitian saddle
F2 in the IR (large negative t) limit.

Some of these features have been noted previously in the
literature in the context of the Hermitian theory (for
example, in [55,75]), but we are now able to interpret
the flow to the non-Hermitian region for the coupling
constants in the framework of PT -symmetric theory [76].
Furthermore, we have additional control here from the use
of the engineering dimension ϵ.
As ϵ continues to increase, we reach a critical value

ϵc ∼ 0.027 where the behavior of the large-u fixed point
changes (in terms of the eigenvalues of the linear stability
analysis). However, this is not significant for our interests
here, since we cannot be sure of the validity of the analysis
for these fixed points in the perturbation theory of h and u.
The next critical value of ϵ for which the character of a
fixed point changes is ϵc0 ∼ 0.44, but this is likely too high
to trust within our perturbative expansion in ϵ. We inves-
tigate the robustness of our results in this section to
changing the loop orders of the computation, as well as
the effect of increasing ϵ, in Appendix B.
We note that the character of the non-Hermitian saddle

fixed point F2 seems to be preserved as we extend our
analysis to D ¼ 3 from above (and so ϵ → 1) with Padé
approximants.

V. PADÉ APPROXIMANTS AND THE
D= 3 FIXED POINT

The ϵ expansion is used in the study of critical phenom-
ena [43,77], but its convergence is not understood in any
systematic way. Although series using the ϵ expansion are
readily generated, the series are generally divergent. Hence
there is no radius of convergence ϵR such that the series is
convergent for jϵj < ϵR. If the perturbation series is
singular, it diverges for all nonzero ϵ. Padé approximants
can sometimes offer a way of summing such a series. The
partial sums of the ϵ series cannot be summed directly,
since for fixed ϵ the sequence of partial sums diverge.
If we have a formal power series PðϵÞ ¼ P

anϵn in ϵ
then the Padé approximant PN

MðϵÞ is defined by

PN
MðϵÞ ¼

P
N
n¼0 Anϵ

nP
M
n¼0 Bnϵ

n : ð61Þ

Without loss of generality we take B0 ¼ 1 and the first
M þ N þ 1 coefficients of

P
anϵn are used to determine

the coefficients A0; A1;…; AN; B1; B2;…; BM. PN
NðϵÞ is a

diagonal Padé sequence. All Padé approximants have pole
singularities from the denominator and zeros from the
numerator. If there are poles in the neighborhood of ϵ ¼ 1
then an extrapolation to ϵ ¼ 1 using Padé sequences is not
viable. By checking for the consistent predictions of fixed
points and their stability as N and M are varied, we decide
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FIG. 5. Global flow for ϵ ¼ 0.01. There are a group of four
fixed points that are close to the origin, and one high-u fixed point
that we ignore from concerns over its validity in perturbation
theory.

0.00 0.05 0.10 0.15 0.20 0.25

–0.5

0.0

0.5

h

u

FIG. 6. Flows around the group of fixed points near the origin
for ϵ ¼ 0.01.
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on the validity of our extrapolation [60] to ϵ ¼ 1. This is a
necessary (but not sufficient) criterion for a valid extrapo-
lation to D ¼ 3.
We consider the cases where PðϵÞ is truncated to ϵ2n, for

n ¼ 4, 5, 6, 7; then we examine the corresponding diagonal
Padé approximants PN

NðϵÞ for N ¼ 4, 5, 6, 7, as well as
off-diagonal Padé sequences PNþ1

N−1ðϵÞ and PN−1
Nþ1ðϵÞ. The

convergence of the various Padé approximants for the fixed
points Fα is only consistent for F2, a non-Hermitian fixed
point. The resultant fixed point at D ¼ 3 is

ðh�; u�Þ ¼ ð17.6;−32.3Þ ð62Þ

whose linearized stability is characterized by eigenvalues
Λ1 ¼ −1.16 and Λ2 ¼ 1.08. Hence the fixed point has
saddle-like stability. The eigenvectors E⃗j associated with
Λj, for j ¼ 1, 2 are

E⃗1 ¼ ð−0.0121; 1Þ ð63Þ

and

E⃗2 ¼ ð−4.21; 1Þ: ð64Þ

As ϵ has increased from small values this fixed point has
retained its non-Hermitian character and its Padé approx-
imants have been stable for diagonal and off-diagonal
sequences. Hence these computations provide some con-
fidence that this is a genuine nonperturbative fixed point for
D ¼ 3. The putative fixed point may be relevant to studies
of UV completions of the Nambu–Jona-Lasinio and Gross-
Neveu models between 2 and 4 dimensions [78] and
quantum phase transitions in electronic systems [79,80],
which is beyond the scope of this paper. We examine the

(a) (b)

(c) (d)

FIG. 7. The four trustworthy fixed points (in perturbation theory) for ϵ ¼ 0.01.
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robustness of our conclusions in this section as we change
the loop orders for the computations in Appendix B.

VI. PERSPECTIVE ON THE
PERTURBATIVE CALCULATIONS

The methods we apply are used in the study of critical
phenomena [81,82]. It is widely recognized that they are
applicable in the context of relativistic field theories in
particle physics [83]. Although in this work we have
focused on the emergence of a PT -symmetric field-theory
description emerging from a Hermitian theory, this
Hermitian theory is a prototype theory for axion physics.
The role of relativistic fermions in such models certainly
distinguishes them from the scalar field theories belonging
to the Ising universality class, which are influential in
critical phenomena.
The presence of fermions necessitates revisiting discus-

sions on the nature of perturbation series [67,84] and
dimensional regularization [47,62]. Our calculations raise
some technical issues that appear in the presence of
fermions, which we will discuss below.

A. The behavior of higher orders of perturbation
theory for our Yukawa model

In examining our results from IV, we ignore the high-u
fixed points (for the scalar self interaction), as we expect
them to be untrustworthy in perturbation theory. Here we
clarify our intuition on this point.
A naive expectation of perturbation theory in a coupling

u, is that for a quantity fðuÞ (such as a beta function or
partition function), there exists a sequence

fNðuÞ ¼
XN
n¼0

fnun ð65Þ

which converges to fðuÞ as N → ∞. In a field theory where
the perturbation is generated by Feynman diagrams, the
number of diagrams increases with n. This increases the
number of terms that contribute to fn and consequently fn
is expected to increase with higher n [67]; however in order
to understand the convergence it will be insufficient to just
have bounds on fn.
Major progress on estimating fn was made by Bender

and Wu [70] for the ground state energy of the anharmonic
oscillator in D ¼ 1 dimensions (the ϕ4 field theory for
quantum mechanics). The wave function for the energy
level with energy E satisfies the Schrödinger equation

−
d2

dx2
ψðxÞþ

�
x2

4
þu

x4

4
−E

�
ψðxÞ¼0; ψð�∞Þ¼0: ð66Þ

For E ¼ E0 the ground state energy has fn ∼
−ð 6

π3
Þ1=2ð−3ÞnΓðnþ 1

2
Þ. The resulting series is divergent

and is an example of an asymptotic series, where [60]

fðuÞ − fNðuÞ ¼ OðuNþ1Þ as u → 0: ð67Þ

If u is ϵ dependent, then ϵ is another control parameter that
one can use to make u small. This gives additional
confidence in the resulting fixed points.
The extension of Bender and Wu’s work to higher order

terms in field theory is intimately related to the contribu-
tions of instantons in false vacuum decay in a semi-classical
analysis of path integrals [67,85,86]. The resulting esti-
mates for the higher order terms are qualitatively similar to
that of Bender and Wu.
This analysis has been extended to D ≥ 3 for Yukawa

field theories involving a single fermion and scalar in [82].
Qualitatively similar results were found as for the ϕ4

theory.
Hence any finite number of higher order terms in

perturbation theory would not allow us to investigate
putative high-u fixed points for D near 4.

B. Comparison with a standard-model inspired
Yukawa theory

There is some similarity of our work with another
nongauge Yukawa model (which we denote by M2) that
is obtained from a simplification of the Standard Model in
the leptonic sector [55]. The fields in M2 are a left-handed
fermion doublet [under SUð2Þ], a right-handed fermion
SUð2Þ singlet and a SUð2) scalar doublet. There is a
Yukawa coupling of the fermions and scalars consistent
with the SUð2Þ structure. The fact that there are multi-
component (flavor) fields in M2 contrasts with the single
Dirac fermion and pseudoscalar field in the axion model
that we consider [87–91]. For two component pseudoscalar
fields, for example, it is not possible to distinguish a parity
transformation from a rotation. Therefore in the presence of
multicomponent fields it is not always possible to make a
PT transformation. Our axion model is manifestly
PT -symmetric when the couplings flow away from
Hermitician values.
We have two types of PT -symmetric extensions of

Hermitian theories in the axion model. One is in terms of a
negative self-coupling and the other is in terms of an
imaginary g (or negative h) [14]. Starting from a Hermitian
value of u the renormalization group flow to negative u is
possible. Such a feature was noted in the model of M2 as a
possibility but issues of PT symmetry were not discussed
there [55]. We have noted that renormalization group flows
do not connect positive h to negative h. However, the
renormalization group flows are symmetric about the axis
h ¼ 0 in the h–u plane. See Appendix C for more
discussion.

VII. CONCLUSIONS

In terms of a simple renormalizable field theory relevant
for axion physics involving a pseudoscalar field and a Dirac
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fermion, the role of renormalization in linking Hermitian
and PT -symmetric Hamiltonians in D ¼ 4 − ϵ has been
explored in depth. In order to carry out this investigation, it
has been necessary to use path integrals, which in turn has
depended on the complex deformations of path integrals
within the context of steepest descent paths [27]. This
deformation can be regarded as a nontrivial change in the
measure employed in the definition of the path integral. It
has been argued that on complexifying the bosonic path in
the path integral and invoking PT symmetry, that it is
possible to have a theory where Green’s functions can be
calculated in a weak coupling expansion [19]. In this limit,
the path integral is defined on a steepest descent contour (or
its higher dimensional generalization the Lefschetz thim-
ble). Expansions around individual stationary points on the
contour give rise to asymptotic series, of which the trivial
saddle point gives the dominant contribution.
The key to our analysis is the flow pattern between

ϵ-dependent fixed points which provides a degree of
control over the perturbation series [43] in terms of the
renormalized coupling, together with calculations of the
renormalization group performed at higher loop. More
recently, the possible emergence of unstable PT -symmet-
ric potentials in the Standard Model due to renormalization
has been considered within the framework of PT sym-
metry [19,76] (but restricted to D ¼ 1). This treatment can
be enhanced to address the issues for D ¼ 4 since we have
clarified

(i) the steepest descent-like paths in the path integral,
and the role of the trivial saddle points in function
space within the steepest descent path, together with
the sub-dominant contributions from the nontrivial
fixed points.

(ii) renormalization around the trivial fixed point and
introduction of Wilson-Fisher ϵ-dependent fixed
points.

(iii) the significance of beta functions from Feynman
perturbation theory and the renormalization group
flows of couplings.

(iv) the usefulness of RGBeta, a program in the symbolic
language program Mathematica, which can handle
complex values of couplings.

Our analysis has found that Hermitian to non-Hermitian
flows occur only in terms of the quartic self-couplings.
These flows have been observed previously in the context
of Hermitian theories, but can now be reinterpreted in the
context of PT -symmetric theory with full justification. We
conjecture that renormalization and the emergence of PT -
symmetric theory starting with a Hermitian theory may
well occur in other field theories. This conjecture is related
to the possibility of square-root type singularities in the
coupling appearing generically in other field theories
(just as in the Lee model). The robustness of these findings
in other renormalizable field theories is worthy of fur-
ther study.

ACKNOWLEDGMENTS

L. C. is supported by King’s College London through an
NMES funded studentship. The work of S. S. is supported
in part by the UK Engineering and Physical Sciences
Research Council (EPSRC) under the research grant
EPSRC Grant No. EP/V002821/1 and the UK Science
and Technology Facilities Research Council (STFC) under
the research Grant No. ST/T000759/1. We would like to
thank Wen-Yuan Ai, Carl Bender, Nick Mavromatos, Alex
Soto and Andy Stergiou for discussions.

APPENDIX A: DATA FOR FIXED POINTS
AND THEIR STABILITY FOR ϵ ≠ 0

In this appendix, we give the series results in ϵ for the fixed
points and their linear stability eigenvalues and eigenvectors.
Here, we provide these results to three decimal places (unless
exact, or where this would give no significant figures).

(i) F0h ¼ 0, F0u ¼ 0. This is the trivial Hermitian fixed
point. The stability matrix has degenerate eigenval-
ues: Λ0;1 ¼ Λ0;2 ¼ −ϵ. For ϵ ≠ 0 (and sufficiently
small), this is a UV-stable stellar node (so that
trajectories which begin near F0 approach F0 on
straight lines).

(ii) F1h ¼ 0, F1u ¼ 52.638ϵþ 33.142ϵ2 þ 41.735ϵ3þ
65.694ϵ4 þ 115.816ϵ5 þ 218.763ϵ6 þ 432.896ϵ7 þ
885.833ϵ8 þ 1859.156ϵ9 þ 3979.970ϵ10 þ
8656.771ϵ11 þ 19076.958ϵ12.

The stability matrix has eigenvalues Λ1;1 ¼ ϵ −
0.630ϵ2 − 0.793ϵ3 − 1.248ϵ4 − 2.200ϵ5 − 4.156ϵ6−
8.224ϵ7 − 16.829ϵ8 − 35.320ϵ9 − 75.610ϵ10 −
164.459ϵ11 − 362.419ϵ12 and Λ1;2¼−ϵþ0.019ϵ2þ
0.019ϵ3 þ 0.028ϵ4 þ 0.048ϵ5 þ 0.090ϵ6þ0.176ϵ7þ
0.359ϵ8þ0.750ϵ9þ1.601ϵ10þ3.472ϵ11þ7.636ϵ12,
with corresponding eigenvectors E⃗1;1 ¼ ð0

1
Þ and

E⃗1;2¼ðA1;2
1
Þ, with A1;2¼−0.750þ0.340ϵþ0.383ϵ2þ

0.566ϵ3 þ 0.960ϵ4 þ 1.765ϵ5þ3.425ϵ6þ6.905ϵ7þ
14.326ϵ8 þ 30.386ϵ9 þ 65.590ϵ10 þ 143.623ϵ11 þ
318.258ϵ12.

For ϵ ≠ 0 (and sufficiently small), this is a
Hermitian saddle fixed point.

(iii) F2h¼15.791ϵ þ 1.819ϵ2 þ 1.646ϵ3 − 0.757ϵ4 þ
0.405ϵ5 − 1.241ϵ6 þ 0.643ϵ7 −1.430ϵ8 þ 1.411ϵ9−
1.983ϵ10þ2.625ϵ11−3.393ϵ12, F2u ¼ −58.121ϵþ
16.812ϵ2 − 8.154ϵ3 þ 16.338ϵ4 − 9.360ϵ5 þ
17.343ϵ6 − 16.587ϵ7 þ 23.178ϵ8 − 28.866ϵ9 þ
37.721ϵ10 − 50.784ϵ11 þ 67.832ϵ12.

The stability matrix has eigenvalues Λ2;1 ¼
−2.408ϵ− 0.601ϵ2þ 1.301ϵ3− 0.089ϵ4þ 1.006ϵ5−
0.593ϵ6þ 0.986ϵ7 − 1.204ϵ8þ 1.462ϵ9 − 2.076ϵ10þ
2.641ϵ11− 3.691ϵ12 and Λ2;2¼ ϵ−0.115ϵ2 −
0.159ϵ3þ0.186ϵ4−0.072ϵ5þ0.255ϵ6 − 0.173ϵ7 þ
0.336ϵ8−0.383ϵ9þ0.546ϵ10−0.752ϵ11þ1.030ϵ12,
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with corresponding eigenvectors E⃗2;1 ¼ ðA2;1
1
Þ and

E⃗2;2 ¼ ðA2;2
1
Þ, with A2;1 ¼ 0.015ϵ− 0.013ϵ2þ

0.001ϵ3− 0.013ϵ4þ 0.006ϵ5 − 0.015ϵ6þ 0.014ϵ7 −
0.022ϵ8þ 0.029ϵ9 − 0.039ϵ10þ 0.055ϵ11− 0.077ϵ12

and A2;2 ¼ −0.272 − 0.188ϵ − 0.075ϵ2 − 0.159ϵ3−
0.087ϵ4 − 0.178ϵ5 − 0.080ϵ6 − 0.209ϵ7 − 0.051ϵ8−
0.262ϵ9 þ 0.014ϵ10 − 0.362ϵ11 þ 0.293ϵ12.
For ϵ ≠ 0 (and sufficiently small), this is a non-

Hermitian saddle fixed point.
(iv) F3h ¼ 15.791ϵ þ 6.749ϵ2 − 3.314ϵ3 − 12.829ϵ4−

11.559ϵ5 þ 9.263ϵ6 þ 37.770ϵ7 þ 28.770ϵ8 −
64.624ϵ9 − 196.697ϵ10 − 156.077ϵ11 þ 274.654ϵ12,
F3u ¼ 68.648ϵþ 29.392ϵ2 þ 2.112ϵ3 − 11.144ϵ4þ
26.493ϵ5 þ 143.046ϵ6 þ 300.979ϵ7 þ 383.667ϵ8 þ
347.310ϵ9 þ 566.087ϵ10 þ 2056.631ϵ11 þ
5955.454ϵ12.
The stability matrix has eigenvalues Λ3;1 ¼ ϵ−

0.427ϵ2 þ 0.785ϵ3 þ 1.460ϵ4 þ 0.700ϵ5 − 1.668ϵ6−
2.969ϵ7 þ 2.758ϵ8 þ 20.656ϵ9 þ 48.759ϵ10 þ
86.232ϵ11 þ 188.086ϵ12 and Λ3;2 ¼ 2.408ϵ−
2.406ϵ2 − 3.775ϵ3 − 2.340ϵ4 þ 1.815ϵ5 þ 4.386ϵ6−
3.621ϵ7 − 28.393ϵ8 − 59.880ϵ9 − 72.951ϵ10−
78.896ϵ11 − 238.428ϵ12, with corresponding eigen-
vectors E⃗3;1 ¼ ðA3;1

1
Þ and E⃗3;2 ¼ ðA3;2

1
Þ, with A3;1 ¼

0.230 − 0.000ϵ − 0.244ϵ2 − 0.768ϵ3 − 1.951ϵ4−
4.607ϵ5 − 10.748ϵ6 − 25.330ϵ7 − 60.213ϵ8 −
143.193ϵ9−339.680ϵ10− 806.636ϵ11 − 1998.394ϵ12

and A3;2 ¼ −0.018ϵ þ 0.019ϵ2 þ 0.060ϵ3 þ
0.141ϵ4 þ 0.332ϵ5 þ 0.867ϵ6 þ 2.439ϵ7 þ
6.966ϵ8 þ 19.714ϵ9 þ 55.425ϵ10 þ 156.092ϵ11þ
441.899ϵ12.
For ϵ ≠ 0 (and sufficiently small), this is a

Hermitian IR-stable fixed point.
(v) F4h ¼ 0, F4u ¼ 83.601 − 52.638ϵ − 33.142ϵ2 −

41.735ϵ3 − 65.694ϵ4 − 115.816ϵ5 − 218.763ϵ6 −
432.896ϵ7−885.833ϵ8−1859.156ϵ9−3979.970ϵ10−
8656.771ϵ11 − 19076.958ϵ12.
The stability matrix has eigenvalues Λ4;1¼

−1.588 þ 3.000ϵ þ 0.630ϵ2 þ 0.793ϵ3 þ 1.248ϵ4þ
2.200ϵ5þ4.156ϵ6þ8.224ϵ7þ16.829ϵ8þ35.320ϵ9þ
75.610ϵ10þ164.459ϵ11þ362.419ϵ12 and Λ4;2 ¼
0.028 − 1.024ϵ − 0.019ϵ2 − 0.019ϵ3 − 0.028ϵ4 −
0.048ϵ5 − 0.090ϵ6 − 0.176ϵ7 − 0.359ϵ8 − 0.750ϵ9−
1.601ϵ10 − 3.472ϵ11 − 7.636ϵ12, with corresponding

eigenvectors E⃗4;1 ¼ ð0
1
Þ and E⃗4;2 ¼ ðA4;2

1
Þ, with A4;2¼

1.854 − 7.949ϵ þ 14.292ϵ2−28.867ϵ3þ53.621ϵ4−
107.027ϵ5þ199.582ϵ6−398.417ϵ7þ740.733ϵ8−
1486.571ϵ9 þ 2742.767ϵ10 − 5559.741ϵ11 þ
10127.112ϵ12.
For ϵ ≠ 0 (and sufficiently small), this is a

Hermitian saddle fixed point.

APPENDIX B: ROBUSTNESS OF THE
LOOP ANALYSIS

In this appendix, we examine the consistency of our
results for the fixed points found in IVG, by varying the
orders of loops.13 In IV G, we gave, for example, the
renormalization group flows for ϵ ¼ 0.01 as a representa-
tive flow for the case 3þ 2where the 3 refers to calculation
of beta functions to 3 loops in the Yukawa coupling and 2
refers to 2 loops in the scalar self-coupling.
We report on the sensitivity of our results to loop order.

The package RGBeta allows changes to the order of the
loops. We compare the results for different loop orders:
1þ 1, 2þ 1, 2þ 2 and 3þ 2 in the Fig. 8 and focus on the
fixed points that spawn from the origin in coupling constant
space as ϵ is turned on.14

The resulting flows for ϵ ¼ 0.01 for the aforementioned
loop orders are plotted in Fig. 8. Qualitatively, we observe
that the flow diagrams in Fig. 8 appear very similar on
changing the loop order. Quantitatively, in terms of h and u,
the fixed points only vary at most with 1% relative
difference, as we change the loop orders in the manner
prescribed above. Since the magnitudes of the coupling
constants at the fixed points are small, it is consistent that
an increase of loop order only leads to small changes, i.e.
the additional terms that enter into the beta functions are
subdominant at this level. The changes of the fixed point
couplings are more significant at the lower end of the loop
orders (or equivalently the coupling constant values at the
fixed points are more stable at the higher end of the loop
orders).
Furthermore we can check whether this feature continues

to hold as we begin to increase ϵ. To probe this, we consider
ϵ ¼ 0.1 and perform the same analysis (through changing
the loop orders) as above. The resulting flows are shown in
Fig. 9. The flow diagrams in Fig. 9 remain similar as we
change the loop order. The relative difference of the fixed
point values vary at most by 5%, as we change the loop
orders. This maximum relative difference is moderately
strong for ϵ ¼ 0.1 compared to the corresponding result for
ϵ ¼ 0.01, and so indeed the higher loop corrections to the
beta function become more significant at larger ϵ (as we
would expect). As before, the changes are more significant
at the lower end of the loop orders.
We could continue increasing ϵ, but, as noted in

Sec. IVG, there is a critical value ϵc0 ∼ 0.44 beyond which
the character of one of the ϵ-dependent fixed points change.
By this point, the value of ϵ is likely too large to trust in the
perturbative expansion in ϵ; and simultaneously the result-
ing ϵ-dependent fixed points spawning from the origin also
become too large in magnitude to trust the perturbation
theory.

13This procedure has also been advocated in [55].
14The other fixed points are too large for perturbation theory to

be reliable.
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Therefore, from these tests, we conclude that within
the region of parameter space for which perturbation
theory is likely to be valid, the results from Sec. IVG
are robust.
We can also consider the robustness of the nonperturba-

tive results in Sec. V. There, we find a putative non-
perturbative D ¼ 3 fixed point, which is non-Hermitian
with saddle stability. Since we perform a Padé analysis and
set ϵ ¼ 1, we can only consider the robustness of these
results for different loop orders, taking 1þ 1, 2þ 1, 2þ 2
and 3þ 2 loops as above. We give the values of the
coupling constants ðh�; u�Þ, the eigenvalues Λ1;2 and the
eigenvectors E1;2, in each case as

(i) 1þ 1 loops: ðh�; u�Þ ¼ ð15.8;−58.1Þ, Λ1 ¼ −2.41,
Λ2 ¼ 1.00, E1 ¼ ð0; 1Þ, E2 ¼ ð−0.272; 1Þ.

(ii) 2þ 1 loops: ðh�; u�Þ ¼ ð17.9;−69.4Þ, Λ1 ¼ −3.00,
Λ2 ¼ 0.873, E1 ¼ ð0.0190; 1Þ, E2 ¼ ð−0.250; 1Þ.

(iii) 2þ2 loops: ðh�; u�Þ ¼ ð25.9;−76.7Þ, Λ1 ¼ −0.953,
Λ2 ¼ 1.82, E1 ¼ ð0.0858; 1Þ, E2 ¼ ð−0.0826; 1Þ.

(iv) 3þ 2 loops: ðh�; u�Þ ¼ ð17.6;−32.3Þ, Λ1 ¼ −1.16,
Λ2 ¼ 1.08, E1 ¼ ð−0.0121; 1Þ, E2 ¼ ð−4.21; 1Þ.

The values of the coupling constants, and the eigenvalues
and eigenvectors do not appear to be converging as the loop
orders increase. We should bear in mind that the application
to epsilon expansions of Padé approximants is long known
not to be rigorous [43]. However, in the results the fixed
points do remain of the same character in each case:
Hermitian in h, but non-Hermitian in u. In all of the loop
cases that we consider here, the relevant D ¼ 3 fixed point
is a non-Hermitian saddle. Hence this analysis is suggestive
that there is a non-Hermitian fixed point which is of saddle
type at D ¼ 3. Only a nonperturbative analysis, perhaps
using the functional renormalization group, can prove the
existence of such a fixed point rigorously.

(a) (b)

(c) (d)

FIG. 8. Flows (at the labeled loop orders) near the fixed points that spawn from the origin as ϵ is introduced, for ϵ ¼ 0.01.
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APPENDIX C: DISCUSSION OF h < 0

In the main text, we only consider h ≥ 0 in our renorm-
alization group analysis, where h ¼ g2, and g is the quartic
self-coupling in the Lagrangian (1). In particular, the beta

functions given in (51) and (52) are only valid for h ≥ 0.
When h < 0, g is imaginary, which causes alterations of the
beta functions through their dependence generally on g and
its complex conjugate ḡ. Instead, the beta functions in the
h < 0 case are

βhðh;uÞ ¼−ϵh−
1

ð4πÞ2 10h
2þ 1

ð4πÞ4
�
−
57

2
h3þ 4h2uþ 1

6
hu2

�
þ 1

ð4πÞ6
��

339

8
− 222ζð3Þ

�
h4þ 72h3u−

61

24
h2u2−

1

8
hu3

�

ðC1Þ

and

βuðh; uÞ ¼ −ϵuþ 1

ð4πÞ2 ð−48h
2 − 8huþ 3u2Þ þ 1

ð4πÞ4
�
−384h3 þ 28h2uþ 12hu2 −

17

3
u3
�
: ðC2Þ

(a) (b)

(c) (d)

FIG. 9. Flows (at the labeled loop orders) near the fixed points that spawn from the origin as ϵ is introduced, for ϵ ¼ 0.1.
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These h < 0 beta functions are identical to those given in
(51) and (52) for h ≥ 0, except for the relative signs
between terms. However, the signs work out such that
the differential equations (50) governing the renormaliza-
tion group flows for h < 0 are the same as those for h > 0,
but with h → −h. This ultimately causes a h → −h
reflection symmetry in the results.
We illustrate this in Fig. 10, showing the h < 0

results for
(i) The global flow for ϵ ¼ 0.
(ii) The global flow for ϵ ¼ 0.01.
(iii) The flows around the group of fixed points near the

origin for ϵ ¼ 0.01.
which are the analogues of the h ≥ 0 results presented in
Figs. 3, 5, and 6, respectively. Indeed, the figures show
identical results to the aforementioned h ≥ 0 counterparts,
except reflected in the vertical u-axis. Furthermore, no
flows cross the vertical u-axis, so the h ≥ 0 sector can
essentially be considered independently of the h < 0 sector
(and there is no flow from the Hermitian to non-Hermitian
values of h, or vice-versa). For each fixed point with h ≥ 0,
there is an identical one with h < 0, with the same jhj, but
opposite sign. The nature and stability of these fixed points
are also preserved. For brevity, we therefore restrict to
h ≥ 0 in the main text.
However, some nontrivial comments should be made:
(i) In the case of ϵ ¼ 0.01, there are two fixed points

with h ≠ 0, shown in the last plot in Fig. 10. These
are therefore both non-Hermitian fixed points in h.
Of particular interest is the point with h < 0 and
u > 0, which is non-Hermitian but also IR stable,
which may be significant for dynamical mass gen-
eration [19].

(ii) The symmetry gives rise to another non-Hermitian
(now both in g and u) saddle in the D ¼ 3 Padé
analysis with ðh�; u�Þ ¼ ð−17.6;−32.3Þ.

We further note that the possibility of negative h in
effective theories has been motivated previously [14] in
terms of a microscopic picture. The picture is string
inspired and is motivated by a mathematical ambiguity
in continuing from an Euclidean to a Minkowski formu-
lation. After compactification to four dimensions, the
closed string sector of heterotic superstring theory
[92,93] consists of spin 0 dilaton field Φ, spin 2 graviton
field gμν and spin 1 antisymmetric gauge field tensor Bμν,
the Kalb-Ramond field. To lowest order in the string Regge
slope α0, the Euclidean effective action of the closed
bosonic string is

SB ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
Rþ 1

6
HλμνHλμν þ…

�
ðC3Þ

where

HμνρðxÞ ¼ ∂½μBνρ�; ðC4Þ

R is the Ricci scalar, κ ¼
ffiffiffiffi
8π

p
MP

,MP is the Planck mass, and g
is the determinant of gμν. To this order in the expansion in
α0, SB can be interpreted as a modified gravity theory with
torsion [94,95] where the usual metric based connection
Γρ

μν is replaced by

Γ̄ρ
μν ¼ Γρ

μν þ
κffiffiffi
3

p Hρ
μν ≠ Γ̄ρ

νμ: ðC5Þ

For the heterotic string the Bianchi identity is

ϵμνρσH½νρσ;μ� ¼
α0

32κ

ffiffiffiffiffiffi
−g

p ðRμνρσR̃μνρσ − Fa
μνF̃aμνÞ

≡ ffiffiffiffiffiffi
−g

p
Gðω;AÞ ðC6Þ

(a) (b) (c)

FIG. 10. Some flow diagrams for h < 0.
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where Aa is a Yang-Mills gauge field with a Latin group
index a and

R̃μνρσ ¼
1

2
ϵμνλπRλπ

ρσ; F̃a
μ ¼

1

2
ϵμνλπFaλπ: ðC7Þ

with

ϵμνρσ ¼ sgnðgÞffiffiffiffiffiffi−gp ημνρσ ðC8Þ

and ημνρσ is the flat space Levi-Civita symbol with
η0123 ¼ 1. The Bianchi identity is implemented in the path
integral ZB through a delta function:

ZB ¼
Z

DH exp ð−SBÞ
Y
x

δðημνρσH½νρσ;μ�ðxÞ − Gðω;AÞÞ:

ðC9Þ

The axion field bðxÞ appears as a Lagrange multiplier field
implementing the delta function

Z
Db exp

�
−i

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞ

p �
1ffiffiffi
3

p ∂
μbðxÞημνρσHνρσðxÞ þ bffiffiffi

3
p Gðω;AÞ

��
ðC10Þ

On integrating over H, ZB becomes

ZB ¼
Z

db exp

�
−
Z

d4x
ffiffiffiffiffiffiffiffi
gðEÞ

q 	
1

2κ2
Rþ 1

12
ηðEÞμνρλη

μνρσðEÞ
∂
λb∂σbþ bffiffiffi

3
p Gðω;AÞ


�
: ðC11Þ

The Euclidean formulation is emphasized by using the
superscript (E). There is an ambiguity (or ordering issue)
[96] on continuing back from Euclidean to Minkowski
space. In [14] it was stressed that one has two choices:
(1) Before continuing back to Minkowski space we can

replace ηðEÞμνρλη
μνρσðEÞ with 6δσλ .

(2) After continuing back to Minkowski space we can
replace ηðEÞμνρλη

μνρσðEÞ with −6δσλð¼ ημνρλη
μνρσÞ and

also redefine the phase of b by π=2 in order to
get the canonical sign for the kinetic term. This leads
to the redefinition b → ib. A Hermitian b transforms
as T ∶b → −b [29]; hence with the field redefinition
we get the transformation in (4).

On introducing fermions the above ambiguity
leads to a Yukawa term

Sb−F ¼ const ×
Z

d4x
ffiffiffiffiffiffi
−g

p
iξbðxÞ∇μðψγ5γμψÞ;

ðC12Þ

with ξ ¼ 0 or 1, depending on the way we analyti-
cally continue. Consequently it is not surprising that
we did not find any renormalization group flow
between the Hermitian and non-Hermitian sectors of
the Yukawa coupling constant g.
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