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Carrollian field theories at the classical level possess an infinite number of space-time symmetries,
namely the supertranslations. In this article, we inquire whether these symmetries for interacting Carrollian
scalar field theory survive in the presence of quantum effects. For interactions polynomial in the field, the
answer is in the affirmative. We also study a renormalization group flow particularly tailored to respect the
manifest Carroll invariance and analyze the consequences of introducing Carroll-breaking deformations.
The renormalization group flow, with perturbative loop-level effects taken into account, indicates a new
fixed point apart from the Gaussian ones.
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I. INTRODUCTION

The proposal of celestial holography [1–9], nucleated by
ideas from (i) asymptotic symmetries (BMS group) of
asymptotically locally flat space-time, and (ii) soft theo-
rems of gluon and graviton scattering amplitudes and 2D
conformal field theories (CFTs) has garnered great impor-
tance in the past decade. The key ingredient in this direction
is the observation that the soft theorems for graviton
S-matrix elements in asymptotically flat space-time can
be considered equivalent to the Ward identities for
asymptotic symmetries (large gauge transformations for
gluons). On the (celestial) spherical sections of null infinity
Iþ, the asymptotic symmetry group acts as conformal
transformations and supertranslation along the null
directions off the sphere. As an example of the success
of the above proposal, it was shown that tree-level

gluon/graviton1 scattering amplitudes in a Mellin-trans-
formed basis have the same form as correlation functions of
a 2D CFT [10,11].
In this context, the first caveat to note is that these

correlation functions are distribution valued on the celestial
sphere. In particular, they are ultralocal in space due to
additional constraints of bulk translation invariance [12].
Second, in the earlier studies, the dual CFTwas proposed to
live on the codimension-2 celestial sphere, and hence the
amplitudes are null-time independent. However, the defi-
nition of the modified Mellin transform (for UV finiteness
of graviton amplitudes) makes it more natural to consider
[13] the celestial conformal primary field to have null/
retarded time dependence throughout the null infinity. In
this setting, the celestial primaries transform under the full
BMS group with nontrivial action corresponding to the null
time coordinate.
Both the above points strongly indicate physics on a

Carrollian space-time [14]. This is mainly because, from a
field theory point of view, it is reasonable to argue that a
theory without spatial gradient terms has ultralocal corre-
lations, of course, at the cost of losing Lorentz invariance.
This is expected as Iþ on its own is a non-Riemann
manifold; rather it is a Carrollian one to be precise. Studies
on dynamical Carrollian theories have a moderately rich
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1Note that for gravity, the Mellin transform prescription needs
to be modified to regulate UV divergences.
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history [15,16]. In the past decade, it has been established
that conformal Carrollian isometries are isomorphic to the
BMS group [17–19]. Unlike Lorentz-invariant theories, the
global part of the conformal Carrollian isometries does not
uniquely fix the propagator. There are a couple of pos-
sibilities, with one of them being time dependent. This
particular branch of the two-point function is Dirac delta
valued and hence ultralocal in space. It is noteworthy that
initial investigations into ultralocal quantum field theories
date back almost seven decades [20].
The above set of ideas led to [21] a more generic proposal

for Carrollian holography, which states that correlation
functions in a conformal Carrollian field theory give the
scattering amplitudes in asymptotically flat space-time, in
the modified Mellin basis. This was further strengthened
[22] by reproducing 3D (including one null time-like
direction) conformal Carroll correlation functions by taking
the flat-space limit of AdS4 Witten diagrams. Another
parallel approach of connecting celestial holography with
Carroll-symmetric dual field theory via sourced Carroll
Ward identities [23,24], and a pure intrinsic-symmetry-
based treatment [25] were recently developed. It should
also be mentioned that for 2þ 1-dimensional bulk, many
results have been derived using the 2D boundary conformal
Carrollian theories. These include thermal and entanglement
entropy [26–28], progress towards the bootstrap program
[29], and bulk reconstruction [30] among others.
The studies of Carrollian theories in connection with flat-

space holography rely on conformal Ward identities for
Carroll primaries. Keeping in mind that the Carrollian
holographic proposal was motivated by a concrete model of
free scalar field theory and its two-point function, it is now
natural to inquire how far one can probe the structures of
the correlation function beyond the two-point function by
incorporating interactions, particularly when quantum
effects are considered by going to loop-level calculations.2

While working towards this goal in an example of scalar
field theory, we came across curious notions regarding
Carrollian energy scales. As one approaches the ultra-
relativistic limit from a Lorentzian setup c → 0, along with
decoupling of space and time, energy and momenta also get
decoupled. Because of the degenerate Carroll metric, there
is no notion of plane-wave solutions, and high-energy
degrees of freedom do not necessarily describe physics at
short wavelengths. Throughout this paper, we study a
number of loop-level quantum features of such interacting
field theories to understand various facets of this idea. The
decoupling of high-energy behavior from short-wavelength
ones results in drastically different divergence structures in
loop calculations. In fact, the high-energy contribution to

the loop integrals is finite, similar to the case of single-
particle quantum mechanics. On the other hand, spatial
ultralocality gives rise to delta-function divergences, which
we regulate using a spatial lattice cutoff.
One of the driving forces behind studying Carrollian field

theories [31–37] was the tantalizing property of an infinite
number of space-time symmetry generators. Hence, a
pertinent question along these lines should be:what happens
to the infinite number of supertranslation symmetry gen-
erators in the presence of interactions? In this article, we
address this in a couple of ways: (i) by directly verifying the
supertranslationWard identities for higher-point functions at
loop level, and (ii) by studying a renormalization group (RG)
flow towards the infrared (IR). The latter procedure has been
tailor-made to suit Carroll backgrounds. In particular, low-
ering the energy is kept decoupled from spatial scaling. This
procedure manifestly keeps the supertranslation symmetries
nonanomalous.
The article is organized as follows. In Sec. II, we briefly

review the kinematical space-time symmetry generators of
a flat Carrollian manifold and how the global parts of these
symmetries, including the conformal ones, constrain the
two-point functions. In Sec. III, we introduce the Carrollian
scalar action. After briefly reviewing existing results from
canonical quantization, we discuss the generic features of
the spectrum of such a theory and the effect of ultralocality
on the entanglement structure of energy eigenstates. In
Sec. IV we carry out the lowest-order loop calculation in
the perturbative quantization of the Carrollian scalar field in
three and four dimensions, respectively. The results include
renormalization of the mass and supertranslation Ward
identities of correlation functions. In Sec. V, we introduce
an RG program suited for scalar Carrollian theory and
study RG flow. We find a new fixed point in the small
dimensional parameter subspace for the theories in d ¼ 3
and d ¼ 4. We conclude in Sec. VI, alluding to a number of
interesting studies worth investigating in the near future.

II. BRIEF REVIEW OF CONFORMAL
CARROLLIAN SYMMETRIES

The most straightforward way to understand the struc-
ture of the Carroll (flat) manifold [38–40] is by looking at
the ultrarelativistic limit [31,32,34,37,41] of d-dimensional
Minkowski space-time:

xi → xi; t → ϵt; ϵ → 0 ð1Þ

where i ¼ 1;…; d − 1. This is the same as the c → 0 limit
of [14]. This can equivalently be understood as an Inönü-
Wigner contraction of the conformal symmetry group of
Minkowski space. Operationally, we apply (1) on the
relativistic conformal generators [17] and regularize them.
The generators resulting from this procedure are listed in
Table I.

2Of course we cannot aim at reproducing flat-space scattering
amplitudes with a single scalar of fixed weight because the Mellin
amplitudes require primary fields whose weights are parame-
trized by a real number.
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These generators form a Lie algebra [42] called the finite
conformal Carrollian algebra (CCA). The nonvanishing
brackets are given by [35,43]

½Jij; Bk� ¼ δk½jBi�; ½Jij; Pk� ¼ δk½jPi�;

½Jij; Kk� ¼ δk½jKi�; ½Bi; Pj� ¼ −δijH;

½Bi; Kj� ¼ δijK; ½D;K� ¼ K;

½K;Pi� ¼ −2Bi; ½Ki; Pj� ¼ −2Dδij − 2Jij;

½H;Ki� ¼ 2Bi; ½D;H� ¼ −H;

½D;Pi� ¼ −Pi; ½D;Ki� ¼ Ki: ð2Þ

One interesting property of the CCA is that it admits an
infinite-dimensional extension. The generators for the
infinite extended algebra in d dimensions can be written
as [32]

Mf ¼ fðx1; x2;…; xd−1Þ∂t≕ fðxÞ∂t: ð3Þ

Here, fðxÞ are arbitrary tensors and transform under
irreducible representations of soðd − 1Þ. If we take fðxÞ ¼
ð1; xi; xkxkÞ we get the finite generators Mf ¼ ðH;Bi; KÞ
respectively. The finite generators with Mf form the
infinite-dimensional CCA. The transformations generated
by Mf are known as supertranslation transformations.
The Lie brackets between the finite set and the infinite

generators are given by

½Pi;Mf� ¼M∂if; ½D;Mf� ¼Mh; where h¼ xi∂if−f;

½Ki;Mf� ¼Mh̃; where h̃¼ 2xih− xkxk∂if;

½Jij;Mf� ¼Mg; where g¼ x½i∂j�f;

½Mf;Mg� ¼ 0: ð4Þ

From this point onward, we do not need components of the
spatial coordinates explicitly and use the notation ðt;xÞ for
temporal and spatial coordinates.
The finite part of CCA, generated byH, Pi, Bi, Jij, D, K

and Ki, just like the conformal group of Minkowski space,
is sufficient to constrain the two- and three-point functions.

However, a couple of distinct solutions to the Ward
identities lead to the correlation functions. Specifically
for the two-point function, the trivial one [32] is time
independent:

hΦΔðt1;x1ÞΦΔ0 ðt2;x2Þi ∼
1

jx1 − x2jΔþΔ0 δΔ;Δ0 ; ð5Þ

where Δ are the conformal dimensions of these spinless
fields (for simplicity, we do not include spin). On the other
hand, there is another, time-dependent solution [21,22,44],
namely the “delta function branch,” which takes the form

hΦΔðt1;x1ÞΦΔ0 ðt2;x2Þi ∼
δd−1ðx1 − x2Þ

ðt1 − t2ÞΔþΔ0−dþ1
: ð6Þ

The realization of this delta function branch3 was corrobo-
rated using the example of a free scalar field of massm → 0
in [21].

III. SPECTRUM OF CARROLLIAN
QUANTUM FIELD THEORY

In this section, we start by reviewing some of the
results in [21] in reference to the canonical quantization
of the simple free Carrollian scalar in arbitrary spatial
dimensions. Then we move on to extract a more thorough
structure of the Hilbert space, for both the free and
interacting theories.
A field that transforms trivially under the action of

rotation generators Jij ¼ x½i∂j� will be called a scalar. The
most straightforward theory of an interacting scalar in a d-
dimensional flat Carroll manifold is of the form

S ¼
Z

dt dd−1x

�
1

2
ð∂tϕÞ2 − VðϕÞ

�
: ð7Þ

The supertranslation transformations (3) act on the scalar
field as

ϕ → ϕþ fðxÞ∂tϕ: ð8Þ

The absence of a spatial derivative in the Lagrangian makes
the theory manifestly invariant under supertranslation
transformations. For classical aspects of scalars on a
generic Carroll background, see Ref. [45].
Notably, although space-time democracy is lost in the

inherent geometric structure of Carroll space-time, the
dilatation-generating vector field retains the same form
D ¼ t∂t þ xi∂i as that of Minkowski space-time, as shown

TABLE I. Conformal Carrollian generators.

Transformations Generators

1. Translation H ¼ ∂t, Pi ¼ ∂i
2. Rotation Jij ¼ ðxi∂j − xj∂iÞ
3. Boost Bi ¼ xi∂t
4. Scale

transformation
D ¼ ðt∂t þ xi∂iÞ

5. Special conformal Kj ¼ 2xjðt∂t þ xi∂iÞ − ðxixiÞ∂j,
K ¼ xixi∂t

3One way to understand the rotational invariance of (6) is by
smearing the delta function with two arbitrary test functions:R
dd−1x1dd−1x2δ

d−1ðx1−x2Þfðx1Þgðx2Þ¼
R
dd−1xfðxÞgðxÞ. The

final answer remains the same whether x orRx ½R∈Oðd − 1Þ� is
used as the dummy integration variable.
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in Table I. This sets the naive scaling dimension Δϕ ¼ d−2
2
.4

The generic theory is therefore classically symmetric under
the scaling and special conformal transformations (K, Ki)
only for VðϕÞ ∼ ϕ6 in d ¼ 3 and for ϕ4 in d ¼ 4.
We do not attempt to quantize the classically confor-

mally invariant theory discussed above but rather introduce
a mass term. The reasons are twofold. First, as there are no
spatial derivatives, the free theory Lagrangian consists of
just the temporal derivative term ∼ 1

2
ð∂tϕÞ2 and can be

thought of as an (uncountably infinite) bunch of free
particles each designated by a point in the real space. As
free particle energy eigenstates are not well defined,
keeping a mass term is a good idea so that the system is
now replaced by a bunch of harmonic oscillators already
decoupled in real space. The second rationale comes from
the Wilsonian renormalization group point of view. In a
Lorentz-invariant scalar theory, even if one starts from a
massless theory at some scale, as one flows towards the IR,
it gains mass in the presence of coupling (we are concerned
about marginal ones here), breaking scale invariance. As
we will see later in the paper, this feature is also true in our
Carrollian scalar. Also, a massive theory on a compact
spatial manifold, e.g. a (d − 1) sphere, can still be con-
formally invariant when the mass is identified with the
inverse radius of the sphere. However, we do not attempt to
do that and keep the spatial topology as Rd−1. For recent
developments on Carroll scalars on curved manifolds,
please refer to [46].

A. Spectrum of the free theory

Let us start with the free massive scalar field on a flat
Carrollian manifold:

S ¼
Z

dt dd−1x

�
1

2
ð∂tϕÞ2 −

1

2
m2ϕ2

�
: ð9Þ

This leads to the Euler-Lagrange equation of motion

ð∂2t þm2Þϕðt;xÞ ¼ 0: ð10Þ

It is easily seen that the Heisenberg picture scalar field
operator can be expressed in terms of creation-annihilation
fields,

ϕðt;xÞ ¼ 1ffiffiffiffi
m

p ½a†ðxÞeimt þ aðxÞe−imt�; ð11Þ

which satisfy the canonical quantization condition

½aðxÞ; a†ðx0Þ� ¼ 1

2
δðd−1Þðx − x0Þ: ð12Þ

In contrast with the usual Lorentzian quantum field theory
(QFT), the creation and annihilation operators are defined
here in real space-time. Finally, the normal-ordered
Hamiltonian is given by

H ¼ 2m
Z

dd−1xa†ðxÞaðxÞ: ð13Þ

Without normal ordering, one gets an irrelevant but
infinitely diverging additive piece

R
δðd−1Þð0Þ which can

be ignored. The vacuum state j0i, satisfyingHj0i ¼ 0 gives
rise to

aðxÞj0i ¼ 0; ∀x: ð14Þ

The first quantum excitation is

jxi ¼ a†ðxÞj0i ¼ mj0i; ð15Þ

and has energy m, which is irrespective of x, a direct
consequence of the fact that the Hamiltonian (13) has trivial
dispersion.5 As opposed to the particle interpretation in
relativistic QFTs, we see the quantum fluctuations are
synchronized throughout space, as all such excitations have
the same energy. The time-ordered two-point function6

follows straightaway from the quantization condition and
the definition of the vacuum state as

h0jTðϕðt1;x1Þϕðt2;x2ÞÞj0i

¼ 1

2m
e−imjt1−t2jδd−1ðx1 − x2Þ: ð16Þ

Of course, it diverges as m → 0, which is expected because
then the system is just a bunch of free particles whose
wave functions are not normalizable. But with the mass
term present, we can systematically track the divergences.
For small m, we get from (16), the two-point function
∼ð 1

2m − i
2
jtjÞδd−1ðx1 − x2Þ, where t ¼ ðt2 − t1Þ is the

temporal separation between the two fields. The time-
dependent term matches exactly, with (6), keeping in mind
that Δ ¼ d−2

2
. This can be compared with the apparent

vanishing or blowing up of the normalization constants in
two-point functions in Carrollian theories viewed from the
celestial perspective [22]. There, finiteness [48] requires a
subtle adjustment between the mass of the celestial massive
operators, the dimensions Δ and the AdS radius R, which
would eventually be set to zero for asymptotically flat
space-time, whose duals are expected to be Carrollian

4However, we will see later in Sec. V, that there is a separate
idea of dimensions of operators that becomes more appropriate
for Carrollian theories.

5Dispersionless free Hamiltonians are extremely important
from the perspective of the present-day understanding of corre-
lated electrons, observed in Moire pattern condensed matter
systems [47].

6Similar contact term behavior has been recently reported for
propagators in Carrollian gauge theories as well [35].
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theories. Higher excited states are obtained by repeated
application of a†ðxÞ, e.g. consider the state

jx12…Ni ≔ a†ðxNÞa†ðxN−1Þ…a†ðx1Þj0i

¼
YN
j¼1

a†ðxjÞj0i; ð17Þ

analogous to an N-particle state of relativistic QFT. In fact,
these excited states are also infinitely degenerate:

Hjx12…Ni ¼ Nmjx12…Ni ð18Þ

(see Fig. 1 for an illustration of the spectra in relativistic and
Carrollian theories.). Each energy level being infinitely
degenerate is a direct consequence of the infinite number of
conserved charges associated with supertranslation sym-
metries. Another obvious but noteworthy point to mention
is that at the limit m → 0, all the states collapse to the
ground state of zero energy due to the restoration of scaling
symmetry. A similar observation has been made for
tensionless strings [49,50], where all perturbative closed
string excitations collapse to the induced vacuum of the
open string. This is interesting and more than a mere
coincidence because the tensionless string theory world
sheet enjoys Carrollian symmetry in a conformal gauge.
Just after the appearance of the first version of the present
article another interesting piece of work [51] appeared,

which emphasized that the infinite degeneracy poses a
problem in defining the canonical partition function and
one way to bypass that might be via going to a grand
canonical ensemble.

1. Degeneracies in the interacting theory

As argued earlier, any action of the form (7) is invari-
ant under Carrollian supertranslation symmetries δϕ ¼
fðxÞ∂tϕ, including the Carrollian boost. Hence, we choose
the interaction VðϕÞ ¼ λϕn for simplicity.
Although the full spectrum of the above theory could, in

principle, be found perturbatively, one can make a few
qualitative remarks immediately based on simple reasoning
without getting into the details.
We recall that the free Carrollian scalar field theory is a

collection of linear harmonic oscillators localized at each
point in real space, completely decoupled from one another,
all having the same frequency. Since the perturbation∼

R
ϕn

does not violate ultralocality, the degeneracies found in the
free theory are intact. More concretely, under perturbation,
the single excitation free theory state jxi → jxi0 has the
samedegeneracy, i.e. same energy irrespective of the point x.

B. Entanglement entropy

The measurement of quantum entanglement between the
degrees of freedom between two subregions of a quantum
field theory is best captured by the entanglement entropy.

FIG. 1. Left: single-particle a†kj0i and two-particle spectra a†k1a
†
k2
j0i of a relativistic massive free theory in 1þ 1 dimensions. Right:

degeneracy in a massive Carrollian theory for the single a†ðxÞj0i and double excitations a†ðx1Þa†ðx2Þj0i.
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This, for free relativistic theories in the ground state, has
been calculated in [52–55].
A direct consequence of the ultralocality or absence of

any coupling between neighboring degrees of freedom in
the concerned Carrollian theory is the vanishing of the
subregion entanglement entropy (here, we only focus on
subregions at equal time, unlike the more generalized
version of the covariantized entanglement entropy [56])
in the ground state. The easiest way to see this is that the
ground state (14) is a tensor product of the ground states of
all the local oscillators (11) sitting at each point of space.
Hence, the ground state density matrix ρ ¼ j0ih0j gives us
zero von Neumann entropy between any two subregions of
space at a given time. The same conclusion holds true for
the free Carrollian fermions discussed in [42], whose action
is of the form

SF ∼
Z

ddx ψ̄Γ∂tψ : ð19Þ

However, there are free Carrollian theories (not considering
Carrollian gauge theories [31,32,35,37,41,57–59]), at least
for fermions, whose actions may contain spatial derivatives
as well. One such prominent example is the dynamics of
electrons in a bilayer graphene Moire pattern at “magic
angles,” as expounded in [42]. Just like the case of the free
ultralocal theory described above, this also is dispersionless
and has Carrollian symmetry. However, there are neighbor-
hood site couplings, bringing in nonzero entanglement
entropy between two subregions.

1. Entanglement entropy for d = 2

The case of two-dimensional Carrollian theories requires
special discussion. The symmetry group, including con-
formal transformation, is generated by the BMS3 algebra
[19,26,60]:

½Ln; Lm� ¼ ðn −mÞLmþn þ
cL
12

ðn3 − nÞδmþn;0;

½Ln;Mm� ¼ ðn −mÞMmþn þ
cM
12

ðn3 − nÞδmþn;0;

½Mm;Mn� ¼ 0: ð20Þ

This also serves as the asymptotic symmetry group of
asymptotically flat space-times in three bulk dimensions.
Hence it is natural that d ¼ 2 conformal Carrollian theories
are putative dual candidates to gravity in asymptotically flat
space-time. The proposal of this duality has been sub-
stantiated via a large number of checks [27,28,61–63]. One
such check is the subregion entanglement entropy in the
dual field theory. For a one-dimensional subregion of
spatial extent lx and temporal extent lt, the entanglement
entropy is given by

S ¼ cL
6
ln

�
lx
a

�
þ cM

6

�
lt
lx

�
: ð21Þ

For Einstein gravity in the bulk, cL ¼ 0 and cM ¼ 3
G (G is

Newton’s constant for 3D gravity). The answer for the
subregion entanglement entropy for a purely spatial sub-
region lt ¼ 0, for a Carrollian theory dual to Einstein
gravity must be equal to zero.
On the other hand, the arguments we made for a

vanishing subregion entanglement entropy for ultralocal
Carroll theories would hold for arbitrary m and even for
m ¼ 0, i.e. for classically conformal field theories. Hence,
we can claim that d ¼ 2 Carrollian theories with ultralocal
behavior are feasible candidates for a theory dual to
Einstein gravity in asymptotically flat space-time in the
three-dimensional bulk.

IV. PERTURBATIVE QUANTIZATION

A. The lattice regularization

For the purpose of perturbative quantization, we start
with the lattice-regularized version of (7). For the time
being, we focus on the d ¼ 3 case, where the marginal
deformation is ϕ6. Keeping this in mind, the lattice-
discretized Hamiltonian takes the form [there are no
neighbor hopping terms due to the ultralocalization of (7)]

H ¼
X
i

P2
i

2M
þ 1

2
KX2

i þ
Λ̃
6!
X6
i ; ð22Þ

where Λ̃ is the coupling with mass dimension seven. The
discretized theory is equipped with the usual canonical
commutation relations.
The time-ordered7 two-point function in the vacuum of

the perturbed Hamiltonian (22) is

hXðtÞXð0Þi ¼
X
n>0

jh0̃jXjñij2e−iðẼn−Ẽ0Þjtj; ð23Þ

where jñi are the eigenstates and Ẽn are the eigenvalues of
the interacting Hamiltonian (22).
Up to the first order in Λ̃, the sum in the above

correlation function receives a contribution only from
jñi ¼ j1̃i, and the expression is given by

hXjðtÞXkð0Þi ¼
ℏ

2Mω

�
1 −

Λ̃
64

ℏ2

M3ω4
þO

�
Λ̃2ℏ4

M6ω6

��

× e−iωð1þ
Λ̃
64

ℏ2

M3ω4
þOð Λ̃2ℏ4

M6ω6
ÞÞjtjδjk; ð24Þ

7All correlation functions appearing below are time ordered.
Hence hTðXðt1ÞXðt2ÞÞi is written as hXðt1ÞXðt2Þi.
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where ω ¼ ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
. Here Oð Λ̃2ℏ4

M6ω6Þ denotes perturbative
corrections beyond first order. Refer to Appendix A for the
steps leading to (24). Assuming that we have defined our
Hamiltonian (22) on a square lattice with lattice parameter
a, the continuum version can be reached by the following
substitutions:

Pi=ð
ffiffiffiffiffi
M

p
aÞ → πðxÞ; Xi

ffiffiffiffiffi
M

p
=a → ϕðxÞ;ffiffiffiffiffi

K
M

r
→ m;

a4Λ̃
M3

→ λ̃: ð25Þ

Finally, taking a → 0 yields the following continuum
Hamiltonian:

H ¼
Z

d2x
�
1

2
π2 þ 1

2
m2ϕ2 þ λ̃

6!
ϕ6

�
; ð26Þ

where π ¼ ϕ̇. With the scaling rules (25), the two-point
function (24) takes the following form with explicit cutoff
dependence:

hϕðt;xÞϕð0;x0Þi ¼ 1

2m

�
1 −

λ̃

64m4a4

�

× e−imð1þ λ̃
64m4a4

Þjtjδ2ðx − x0Þ; ð27Þ

in units where ℏ ¼ 1. Defining the effective mass mR ¼
mð1þ λ̃

64m4a4Þ,

hϕðt;xÞϕð0;x0Þi ¼ 1

2mR
e−imRjtjδ2ðx − x0Þ; ð28Þ

is the one-particle irreducible (1PI) effective two-point
function. We emphasize that this is correct only up to first
order in λ̃. The next-to-leading-order corrections are of the
form mR ¼ mð1þ λ̃

64m4a4 þOð λ̃2

m8a8ÞÞ, which follows from
the form of the higher-order terms appearing in (24).
Equation (28) has the same behavior as reported in [21],
where the mass has now been renormalized. The renorm-
alization is, of course, divergent as one goes to the
continuum limit and can be absorbed by introducing a
counterterm as is routine in QFTs.
The above analysis for a bunch of anharmonic oscillators

on a 2D lattice was designed to capture the physics of a
d ¼ 3 Carroll scalar. By following similar routes, we get
equivalent results for a d ¼ 4 theory with ϕ4 coupling. The
discretized Hamiltonian, in this case, is

H ¼
X
i

P2
i

2M
þ 1

2
KX2

i þ
Λ
4!
X4
i ; ð29Þ

with the mass dimension of the coupling constant Λ being
five. Here, the two-point function for t > 0, up to first order
in perturbation theory (in Λ) is8 once one replaces the
amplitude by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hX2ð0Þi

p
, calculated in the free vacuum.

hXjðtÞXkð0Þi ¼
ℏ

2Mω

�
1 −

Λ
4!

3ℏ
M2ω3

�
e−iωð1þ

Λ
4!

3ℏ
M2ω3

Þjtjδjk:

ð30Þ

With proper dimensions, the equivalent of the continuum
limit prescription (25) for this case would be

Piffiffiffiffiffiffiffiffiffi
Ma3

p → πðxÞ; Xi

ffiffiffiffiffi
M
a3

r
→ ϕðxÞ;

ffiffiffiffiffi
K
M

r
→ m;

a3Λ
M2

→ λ: ð31Þ

The Hamiltonian in a → 0 limit becomes

H ¼
Z

d3x

�
1

2
π2 þ 1

2
m2ϕ2 þ λ

4!
ϕ4

�
: ð32Þ

The continuum version of the two-point function (30) takes
exactly the same form as (28), except now we have the
three-dimensional Dirac delta function, and the effective
mass is

mR ¼ m

�
1þ λ

8m3a3
þO

�
λ2

m6a6

��
: ð33Þ

A comment regarding the effective mass formulas (28) and
(33) is in order. Note that we could produce these results
starting from a single-particle quantum-mechanical calcu-
lation only because the field theory is ultralocal in nature
and the frequency renormalizations observed in (24) and
(30) are finite. We did not face the usual divergences faced
in relativistic QFTs while performing the equivalent of the
one-loop calculation above because the free version of the
theory (26) is dispersionless, and all the oscillator modes
have the same ground state energy. In fact higher-order
perturbative corrections, as suggested in (24) and (33), and
also expected from the quantum mechanics of anharmonic
oscillators (see, for example [66] and references therein),
do not produce any divergence from loop integrals.
However, the divergence is manifest only on a small length
scale a. Hence, it would be apt to say that this Carrollian
theory is super-renormalized in the true ultraviolet (no
divergence coming from high frequencies), but is plagued

8This can be comparedwith the classical perturbation analysis of
a quartic anharmonic oscillator, where one needs to “renormalize”
the natural frequency to get a bounded solution. Consequently, it
matches exactly with the classical result (see for example Sec. 6.3
of [64], or Sec. 29 of [65]).
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with small-wavelength divergence. In the absence of non-
trivial dispersion, these two behaviors are decoupled.

B. The diagrammatic approach
and higher point functions

In this section, we study the Carrollian ϕ6 theory and ϕ4

theory. These are classically invariant under the generators
of Carrollian algebra (not under CCA owing to the mass
term). The main goal of this section is to get the two-point
correlation function in the interacting Carrollian scalar
field theory (both ϕ4 and ϕ6) with the possible one-loop
corrections.

1. The two-point function revisited

Before moving to higher point functions, we would first
establish that the traditional diagrammatic approach in
continuum field theory, when applied to the interacting
Carrollian scalars, reproduces the same two-point functions
obtained in the last section from the many-body quantum-
mechanical system.

The d ¼ 4 case. To this end, we first consider the d ¼ 4

Carroll scalar with ϕ4 coupling:

S ¼
Z

dt d3x

�
1

2
ð∂tϕÞ2 −

1

2
m2ϕ2 −

λ

4!
ϕ4

�
: ð34Þ

The Feynman propagator for the free Carrollian theory
(λ ¼ 0) is found by inverting the operator ∂2t þm2 with an ϵ
prescription, and is given by

ΔFðt;xÞ ¼
1

ð2πÞ4
Z

d3pdω
eiðp:x−ωtÞ

ðω2 −m2 þ iϵÞ
¼ −

i
2m

e−imjtjδ3ðxÞ: ð35Þ

This exactly reproduces (28) for λ ¼ 0, as was also shown
in [21]. A caveat regarding the definition of the Feynman
propagator, which serves as the time-ordered two-point
function comes via the integration contour or ϵ prescrip-
tion. If one is not strict regarding the time-ordered
correlator and rather concentrates on the principal value

of the integration
R
dω e−iωt

ðω2−m2Þ, the result is ∼ sin ðmtÞ
m δ3ðxÞ.

This, unlike the time-ordered two-point function, has a
well-defined limit as m → 0.
We denote the propagator (35) diagrammatically as

in Fig. 2.

Let us observe the effect of interaction on the 1PI
propagator. At linear order in λ, the correction to the
two-point function is diagrammatically represented by the
connected Feynman graph in Fig. 3. The contribution of
this real-space diagram is

�δhϕðx1Þϕðx2Þi ¼
λ

2
ΔFð0Þ

Z
d4zΔFðz − x2ÞΔFðz − x1Þ:

ð36Þ
Clearly the ΔFð0Þ is divergent as δ3ð0Þ, as can be seen from
(35). However, at this point, we regulate this by defining an
upper cutoff in the spatial momentum integral of (35) and
hence introducing a small length cutoff a. This is the same
spatial cutoff we used for the lattice, at each point of which
we kept uncoupled anharmonic oscillators in the previous
section. Hence, from now on, we read

ΔFð0Þ ¼ −
i

2ma3
: ð37Þ

Combining the free propagator and the one-loop diagram in
Fig. 3 for the 1PI, we get the propagator corrected to first
order in perturbation theory as

hϕðx1Þϕðx2Þiλ ¼
i

ð2πÞ3
Z

e−ip:x

ðω2 −m2 þ iϵÞ

×

�
1þ

i
2
λΔFð0Þ

ðω2 −m2 þ iϵÞ
�
d3pdω: ð38Þ

For small λ, the term in the brackets above can be written as

ð1 − i
2
λΔFð0Þ

ðω2−m2þiϵÞÞ
−1
. Therefore, the above becomes

hϕðx1Þϕðx2Þiλ ¼
i

ð2πÞ3
Z

e−ip:x

ðω2 −m2 − i
2
λΔFð0Þ þ iϵÞ

× d3pdω: ð39Þ
We see that hϕðx1Þϕðx2Þiλ possesses a pole at

ω2 ¼ m2 þ i
2
λΔFð0Þ ¼ m2

R; ð40Þ

wheremR is the one-loop corrected mass, matching exactly
with the one in (33), upon using the prescription (37). This
results in, up to the first order in the λ perturbation,

hϕðx1Þϕðx2Þiλ ¼
1

2mR
δ3ðx1 − x2Þe−imRjt1−t2j; ð41Þ

with mR matching exactly with the expression (33).FIG. 2. Two-point correlation function.

FIG. 3. Correction to two-point function in ϕ4 theory.
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The Feynman propagator, i.e. the free theory time-
ordered two-point function, is found by inverting the
manifest supertranslation-invariant operator ∂

2
t þm2.

The one-loop renormalized two-point function (41) has
the same form as the free theory with the mass renormal-
ized. Hence it satisfies the supertranslation Ward identities.

The d ¼ 3 case. A very similar line of analysis applies for
the ϕ6 theory in d ¼ 3:

S ¼
Z

dt d2x

�
1

2
ð∂tϕÞ2 −

1

2
m2ϕ2 −

λ̃

6!
ϕ6

�
: ð42Þ

Exactly as before one gets the Feynman propagator as

hϕðt1;x1Þϕðt2;x2Þi ¼ iΔFðt1 − t2;x1 − x2Þ

¼ 1

2m
e−imjt1−t2jδ2ðx1 − x2Þ ð43Þ

The first order in λ̃ correction to the two-point function is
two loop, given by the diagram in Fig. 4.
In real space this evaluates to the following two-loop

integral:

−
λ̃

8
ΔFð0ÞΔFð0Þ

Z
ΔFðz − x2ÞΔFðz − x1Þd3z: ð44Þ

Just as in (37), here we regulate the divergent factor δ2ð0Þ
appearing in ΔFð0Þ by introducing the spatial lattice cutoff
a, i.e. setting ΔFð0Þ ¼ − i

2ma2. Adding this to the free
propagator, we get the first-order corrected two-point 1PI
correlation function:

hϕðx1Þϕðx2Þiλ̃
¼ i
ð2πÞ3

Z
e−ip:x

ðω2 −m2 þ 1
8
λ̃ΔFð0ÞΔFð0Þ þ iϵÞd

3p: ð45Þ

We see that hϕðx1Þϕðx2Þiλ̃ possesses a pole at

ω2 ¼ m2 −
1

8
λ̃ΔFð0ÞΔFð0Þ ¼ m2

R; ð46Þ

where mR is the one-loop corrected mass, matching exactly
with the one in (28). Here we have replaced ΔFð0Þ with
− i

2ma2. Hence the one-loop corrected two-point function
with the renormalized mass takes the form

hϕðx1Þϕðx2Þiλ̃ ¼
1

2mR
δ2ðxÞe−imRjtj: ð47Þ

This expression represents the two-point correlation func-
tion of Carrollian ϕ6 theory.

2. Four-point function

Now we focus on four-point functions in the d ¼ 4
theory (34). Even before performing the perturbation
calculation, we can comment that the higher point func-
tions’ temporal/frequency space behavior should be exactly
the same as that of a one-dimensional harmonic oscillator
with a quartic perturbation. On the other hand, the spatial
part is governed by the ultralocalized contact terms. In
perturbation theory, the four-point function up to second
order in λ is given by the connected diagrams depicted
in Fig. 5.
It is convenient to express the correlation functions in a

partial Fourier basis, where we go to frequency space by
performing a Fourier transform in temporal coordinates and
leave the spatial parts alone:

τðω1;…;ωN ;x1;…;xNÞ

¼
Z
…

Z
dt1…dtNe−iω1t1…−iωNtN hϕðx1Þ…ϕNðxNÞi: ð48Þ

Before presenting an explicit calculation of the loop
diagrams, it is worthwhile to mention using standard
QFT notions applied to a 0þ 1-dimensional field theory,
that the superficial degree of divergence of any diagram
arising from the energy integrals is ¼ 1þ E=2 − 3n.
Additionally, subgraph divergences do not occur here
because they do not involve any external lines. Here, E
is the number of external lines, and n is the number of
vertices in a particular diagram.

FIG. 4. Correction to the two-point function in the ϕ6 theory.
FIG. 5. Feynman diagrams contributing up to two loops in the
four-point function.
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The partial Fourier-space version of the Feynman propa-
gator (35) we use to evaluate (48) is

Δ̃Fðω;xÞ ¼
1

ω2 −m2 þ iϵ
δ3ðxÞ: ð49Þ

The vertex, on the other hand, contributes a factor of −iλ as
usual. For the loop diagrams, the coincident contact terms

render a factor of δ3ð0Þ as in the case of the two-point
function, and we regularize it by our splitting prescription
by replacing it with 1=a3. That is the only source of
singularity, as obviously there is no UV divergence
appearing from the loop integrals. For instance in the
“s-channel,” i.e. the second diagram in Fig. 5, the loop
integral is

lim
ϵ→0

Z
dω

ðω2 −m2 þ iϵÞððω1 þ ω2 − ωÞ2 −m2 þ iϵÞ ¼
2πi

mð4m2 − ðω1 þ ω2Þ2Þ
. ð50Þ

Considering the tree-level vertex and all three channels at one loop, we summarize the four-point function in the partial
Fourier space as

τðfωig; fxigÞ ¼ −i
�Y4

i¼1

i
ω2
i −m2 þ iϵ

�
ð2πÞδ

�X4
i¼1

ωi

�
δ3ðx1 − x2Þδ3ðx1 − x3Þδ3ðx1 − x4Þ

×

�
λ −

λ2

2ma3

�
1

s − 4m2
þ 1

t − 4m2
þ 1

u − 4m2

��
; ð51Þ

where s¼ðω1þω2Þ2, t ¼ ðω1 þ ω3Þ2 and u ¼ ðω1 þ ω4Þ2.
To check the Ward identity for a supertranslation transformation δfϕ ¼ fðxÞ∂tϕ for this four-point function, we use the

inverse partial Fourier transform

δfhϕðx1Þ…ϕðx4Þi ¼
X4
k¼1

fðxkÞ∂tk
�

1

ð2πÞ4
Z

dω1…dω4eiω1t1…þω4t4τðfωig; fxigÞ
�
: ð52Þ

This identically vanishes due to the spatial delta functions,
forcing all spatial insertions to coincide. The steps for this
proof are given in Appendix B.
We explicitly checked the above supertranslation Ward

identity for the four-point function in ϕ4 theory up to one
loop in perturbation theory. However, as discussed in
Appendix B, this holds true even after including higher
loop diagrams appearing in higher order in perturbation
theory. This includes the special cases for the ϕ6 theories
we discussed earlier, in d ¼ 3 dimensions.
The Ward identity for contributions from disconnected

diagrams works pairwise for disconnected parts, as all the
spatial insertions are now not forced to be coincidental.

V. FLOWING OF THE COUPLING CONSTANTS

Consider a class of scalar field theories in d dimensions.
The Carroll invariant Euclidean action takes the form

S0½ϕ� ¼−
Z

ddx

�
1

2
∂tϕ∂tϕþ1

2
m0

2ϕ2þ
X∞
n¼4

λ0;nϕ
n

�
: ð53Þ

Here m0 is the mass, and λ0;n are the coupling constants at
the energy scale at which the theory (53) is defined. In this
Euclidean action, we keep only the Z2-symmetric terms so

that the Hamiltonian is bounded from below. We briefly
describe our proposed Wilsonian renormalization pro-
cedure for the Carrollian field theories described above.
One key feature in Carrollian field theories of the form

(53) is that there are no spatial derivatives. Hence conven-
iently, we can expand the field in terms of energy modes:

ϕðt;xÞ ¼
Z

dω
2π

eiωtϕωðxÞ: ð54Þ

As usual, for our theory, the RG procedure will involve
integrating out high-energy modes, rescaling energy, and
rescaling the fields. However, it is important to note here
that, unlike Lorentzian theories, the high-energy modes are
not equivalent to short-wavelength ones. Hence, the RG
procedure we carry out here is tailor made for Carrollian
theories of the type (53) and respects Carroll symmetry at
each step. This has drastic consequences in terms of scaling
of operators, as we will see below. We should also point out
that, due to the decoupling of the spatial scale and energy
scale, the RG problem becomes closely analogous to the
one in a 0þ 1-dimensional QFT, i.e. in a quantum-
mechanical anharmonic oscillator system. Hence, the
following discussion can be compared to the Callan-
Symanzik flow equations for OðNÞ-symmetric anharmonic
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oscillator models presented recently in [67]. We would also
like to point out that the renormalization group flow for
systems with a single degree of freedom was studied in
[68], where the couplings ran with a time scale (equivalent
to an energy cutoff scale).
The path integral for the free theory is of the form

Zfree ¼
Z

Dϕe−
R

dd−1xdω 1
4πðω2þm2ÞϕωðxÞϕ−ωðxÞ:

But, as is well known [69], this diverges, even for the
0þ 1-dimensional theory, unless one puts an upper cutoff
in the ω variable. Hence we define our theory with an
upper cutoff in energy Ω i.e. ϕω ¼ 0, jωj > Ω. We also
introduce an intermediate cutoff Ω0 ¼ Ω

ζ , where ζ > 1 and
split the energy modes as low-energy (ϕ−

ω) and high-energy
ones (ϕþ

ω )

ϕω ¼
�
ϕ−
ω; if ω < Ω0;

ϕþ
ω ; if Ω0 < ω < Ω:

ð55Þ

Accordingly, the Euclidean action can be decomposed into
high-energy and low-energy modes:

S½ϕω� ¼ S0½ϕ−
ω� þ S0½ϕþ

ω � þ SI½ϕ−
ω;ϕþ

ω �: ð56Þ

Here SI½ϕ−
ω;ϕþ

ω � involves terms that mix the high- and low-
energy modes. After integrating out the high-energy modes,
the partition function becomes

Z ¼
Z

Dϕ−e−S
0½ϕ−�; ð57Þ

where the Wilsonian effective action S0½ϕ−� is given by

e−S
0½ϕ−� ¼ e−S0½ϕ−�

Z
Dϕþe−S0½ϕþ�−SI ½ϕ−;ϕþ�: ð58Þ

At the next step of the Wilsonian procedure, we rescale the
intermediate energy scale ω0 ¼ ζω. To obtain the scaling w
of the fields with the energy scale ϕ−

ωðxÞ ¼ ζwϕ0
ω0 ðxÞ we

refer to the free Euclidean theory:

S0½ϕ� ¼
Z

ddx

�
1

2
ϕ̇2 þ 1

2
m2

0ϕ
2

�
: ð59Þ

After performing the trivial Gaussian path integral and the
rescaling, one finds that the kinetic term remains canonical
only if w ¼ 3=2. Hence the fields scale with energy as
ϕ−ðt;xÞ ¼ ζ1=2ϕ0ðt0;xÞ or ϕ−

ωðxÞ ¼ ζ3=2ϕ0
ω0 ðxÞ. x behave

as spectator coordinates in this scaling process. This scaling
behavior is the same as that of RG studies in the context of
quantum mechanics [67,68]. In the present context it is
intrinsic to understanding flow in the energy scale in
Carrollian theories. Hence the Carroll dimensions of fields

are different than the canonical dimensions, defined by
the infinitesimal transformation t∂t þ x · ∇, which essen-
tially are d dependent. Mass, on the other hand, scales
as expected: m2ðζÞ ¼ ζ2m2

0. The tree-level scaling of the
operators λ0;nϕn is reflected in the flow λðζÞ ¼ ζ1þn=2λ0;n.

9

Hence all of these couplings are relevant in the Carrollian
sense at tree level.
A curious upshot of this scaling behavior of the fields is

the emergence of Lorentz invariance. To understand this,
let us add to (59) a deformation c2∇ϕ · ∇ϕ, for c2 ≪ 1. As
a consequence of the above scaling law, c2 scales as
c2 → ζ2c2. This implies that as one goes deeper into the
IR, the c2∇ϕ · ∇ϕ deformation is relevant in a Carroll
sense and at a scale well in the IR, one can reach c ¼ 1
with Lorentz symmetry emerging. This is similar to the
z ¼ 2 (space-time anisotropic scaling exponent) Lifshitz
scalar [70] flowing to z ¼ 1 in the IR making Lorentz
symmetry emergent [71]. In fact any operator of the form
ϕ∇2γϕ, for γ > 1 is relevant. Hence, such a Carroll-
breaking deformation can lead one to Lifshitz fixed points
for different values of γ.
In addition to that, this observation reiterates the newer

findings [72] in the context of fluids at a very high-energy
scale. Fluids at that scale are described by Bjorken flow
moving ultrarelativistically and have emergent Carrollian
symmetry. Similar descriptions of Carroll fluids on nonflat
null manifolds have been studied in the context of flat
holography in [73].
While integrating out higher-energy modes perturba-

tively, we need the following two-point function at coinci-
dent spatial points (x → x0):

hϕþ
ωðxÞϕþ

ω0 ðx0Þiþ ≔
Z

Dϕþϕþ
ωðxÞϕþ

ω0 ðx0Þe−S0½ϕþ�

¼ 2πδðωþω0ÞG0ðωÞδd−1ðx−x0Þ; ð60Þ

where G0ðωÞ ¼ 1
ω2þm2

0

is the Green’s function of the free

theory. In order to make sense of the divergence coming
from the δd−1 function, we use the same lattice regulari-
zation as used in Sec. IVA to infer

lim
x→x0

hϕþ
ωðxÞϕþ

ω0 ðx0Þiþ ¼ 2πδðωþ ω0ÞG0ðωÞ
1

ad−1
; ð61Þ

where a is the lattice scale. Finally, comparing the
Wilsonian effective free theory with the starting action,
we can read off the change in the mass and the coupling
constants order by order. These are expressed in terms of
the beta functions,

9To be contrasted with Lorentz-covariant scaling: λðζÞ ¼
ζd−nðd−2Þ=2λ0;n in d space-time dimensions.
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β ¼ −Ω0 dg
dΩ0 ¼ −

dg
ds

where s ¼ lnðΩ=Ω0Þ ¼ ln ζ: ð62Þ

To understand how this specific RG flow in Carrollian
theories compares with Lorentzian ones, we focus on
marginal local couplings in Lorentzian theories. A couple
of such examples are ϕ4 coupling in d ¼ 4 and ϕ6 in d ¼ 3.
We explicitly calculate the beta functions in these theories
up to first order in perturbation theory and search for
nontrivial fixed points in the space of parameters.

A. ϕ4 theory in d = 4 dimensions

Consider the Euclidean form of the action (34) in d ¼ 4
dimensions

S0½ϕ� ¼
Z

d4x
�
1

2
∂tϕ∂tϕþ 1

2
m0

2ϕ2 þ λ0
4!
ϕ4

�
; ð63Þ

where m0 is the mass and λ0 is the coupling constant for ϕ4

theory. From the discussion above, we now observe that
both the terms m0

2ϕ2 and λ0ϕ
4 are relevant at tree level.

Hence any deformation in the fm; λg coupling subspace,
near the Gaussian fixed point m ¼ 0 ¼ λ makes it flow
away from the point with RG. Carrying out the Wilsonian
RG process described above, we see that at linear order in
λ0, the mass flow is given by

m2ðζÞ ¼ ζ2
�
m2

0 þ
λ0
2π

1

a3

Z
Ω

Ω
ζ

dω
ω2 þm2

0

�
; ð64Þ

whereas the effective lower-energy coupling is

λðζÞ ¼ ζ3
�
λ0 −

3λ20
2π

1

a3

Z
Ω

Ω
ζ

dω
ðω2 þm2

0Þ2
�
: ð65Þ

The integrals appearing above are elementary. Expanding
the above loop integrals in a power series around ζ ¼ 1, the
beta functions turn out to be

βm ¼ −
dm2

ds
¼ −2m2 −

λ

2π

1

a3
Ω

Ω2 þm2
;

βλ ¼ −
dλ
ds

¼ −3λþ 3λ2

2π

1

a3
Ω

ðΩ2 þm2Þ2 : ð66Þ

One striking feature of the result (66) is that at the Gaussian
fixed point (m2 ¼ 0 ¼ λ), both mass and the coupling are
relevant at tree level. This is in contrast to the Lorentzian
counterpart, where the coupling is marginal at tree level and
becomes marginally irrelevant as quantum effects are
included. We will explore more about the flows and fixed
points below.
As per the Carrollian RG program described above, we

consider flows from higher energy to lower energies, and
do not consider any coarse graining along the spatial

dimensions. Hence, the spatial lattice parameter a will
be kept fixed while analyzing (66). Clearly, apart from the
Gaussian fixed point, m2 ¼ 0, λ ¼ 0 an additional non-
trivial fixed point is there:

m2
⋆ ¼ −Ω2=3; λ⋆ ¼ 8π

9
ðaΩÞ3: ð67Þ

Since a is independent of Ω, we can choose it so that λ⋆ is
small and this fixed point is perturbatively accessible. To
understand the flow of mass and the coupling constant near
this fixed point, we perform a linearized variation of the
beta functions (66) around this point

m2 ¼ m2
⋆ þ δm2; λ ¼ λ⋆ þ δλ; ð68Þ

to arrive at

−ζ
d
dζ

�
δm2

δλ

�
¼

� −1 − 3
4πΩa3

−8πΩa3 3

��
δm2

δλ

�
: ð69Þ

The eigenvalues of the above matrix are 1� ffiffiffiffiffi
10

p
. Hence

one of the directions is marginally relevant and the other is
marginally irrelevant and the fixed point is not stable.

B. ϕ4 +ϕ6 theory in d = 3 dimensions

We start off with an action of the form

S0½ϕ� ¼
Z

d3x

�
1

2
∂tϕ∂tϕþ1

2
m0

2ϕ2þλ0
4!
ϕ4þ λ̃0

6!
ϕ6

�
; ð70Þ

wherem0 is the mass, λ0 is the coupling for the field ϕ4 and
λ̃0 is the coupling constant of the field ϕ6. Here, unlike (42),
we keep all the relevant couplings in d ¼ 3. At λ0, the
effective mass is given by

m2ðζÞ ¼ ζ2
�
m2

0 þ
λ0
2π

1

a2

Z
Ω

Ω
ζ

dω
ω2 þm2

0

þ λ̃0
16π2

1

a4

�Z
Ω

Ω
ζ

dω
ðω2 þm2

0Þ
�

2
�
; ð71Þ

and the corresponding beta function is

βm ¼ −
dm2

ds

¼ −2m2 −
λ

2π

1

a2
Ω

Ω2 þm2
−

λ̃

16π2
1

a4
ð2sÞ Ω2

ðΩ2 þm2Þ2 :

ð72Þ

We calculate the beta function for each coupling separately
using the same RG procedure. The low-energy effective λ
and the corresponding beta function are given by
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λ ¼ ζ3
�
λ0 −

3λ0
2

2π

1

a2

Z
Ω

Ω
ζ

dω4

ðω2
4 þm2

0Þ2
�
;

βλ ¼ −
dλ
ds

¼ −3λþ 3λ2

2π

1

a2
Ω

ðΩ2 þm2Þ2 : ð73Þ

Similarly, the effective low-energy λ̃ and the corresponding
beta function are

λ̃ ¼ ζ4
�
λ̃0 −

15λ̃20
16π2

1

a4

Z
Ω

Ω
ζ

dω0
1dω

0
2

ðω02
1 þm2

0Þ2ðω02
2 þm2

0Þ
�
;

βλ̃ ¼ −4λ̃þ 15λ̃2s
8π2

1

a4
Ω2

ðΩ2 þm2Þ3 : ð74Þ

To search for fixed points in the parameter space, we solve
the beta functions (72), (73) and (74) set to zero for
negligibly small s. Apart from the Gaussian fixed point,
there is only one other solution which is perturbatively
accessible

m2
⋆ ¼ −Ω2=3; aλ⋆ ¼ 8π

9
ðaΩÞ3; λ̃⋆ ¼ 0: ð75Þ

The flow in the neighborhood of this fixed point is given by

−ζ
d
dζ

0
B@
δm2

δλ

δλ̃

1
CA¼

0
B@

−1 − 3
4πΩa2 0

−8πa2Ω 3 0

0 0 −4

1
CA
0
B@
δm2

δλ

δλ̃

1
CA:

ð76Þ

The eigenvalues of the above matrix are 1� ffiffiffiffiffi
10

p
in the

fδm2; δλg subspace and −4 in the δλ̃ space. Hence the δλ̃
direction is relevant, whereas the δλ̃ ¼ constant submani-
fold has one relevant and one irrelevant direction.
Therefore, this fixed point is unstable. At this point, a
few comments are in order. First, the effect of ϕ̃6 coupling
in the flow of the mass (71), and to λ̃ itself appear at two-
loop level. Hence the effects of these are small as we
integrate out modes in the range ½Ω=ζ;Ω�. Second, note that
the flow λ̃ is not affected by λ as in Lorentzian theory.
However, just as in the four-dimensional case, the ϕ6

coupling is not marginal at tree level in our Carrollian
scheme of Wilsonian RG. A comparison of the beta
functions of the Carrollian theories and their Lorentzian
counterparts is given in Appendix C.
A few takeaways from the fixed point analysis are as

follows.
(1) We have adopted an RG scheme suited for the

Carrollian scalar theories, where energy scales are
decoupled from spatial scales. This drastically dif-
fers from the Wilsonian RG for (Euclideanized)
Lorentz-covariant theories. As a result, the opera-
tors’ relevance, irrelevance or marginality in a

Carrollian theory are not the same as those in a
Lorentz-covariant theory. For example, a ϕ4 cou-
pling in a four-dimensional Lorentzian theory is
marginal but is relevant in a Carrollian theory, as is
evident from (65).

(2) There exist nontrivial fixed points in Carrollian
scalar field theories. One may compare the situation
with the Wilson-Fisher fixed point for scalar field
theories, encountered in the “ε” expansion of dimen-
sional regularization. First, the mass term that
appears has a negative sign, and second, one of
the flow directions is marginally relevant while the
other is marginally irrelevant. Both these features are
prominent in the Wilson-Fisher fixed point of the
relativistic ϕ4 theory.

(3) The interplay between the RG scheme and Carrollian
symmetrymanifestly keeps the supertranslation sym-
metry intact at each point of the flow.

VI. CONCLUSIONS

In the present article we probed into the quantization of a
simple interacting Carroll scalar with manifest ultralocal
behavior at the one-loop level. The study was inspired by
ultralocal features of celestial CFTs. The supertranslation
invariance, although intuitively plausible, was explicitly
shown to hold even after incorporation of one-loop quan-
tum effects. A number of results we presented in the present
paper including the existence of a disentangled ground
state, the structure of the one-loop two-point function, and
supertranslation Ward identities for n-point correlators can
be argued to hold true without digging deeper into the
technical details. This is because we did not have any
spatial gradient term in the theory. In Carrollian physics
literature [74], these manifestly ultralocal theories are
named the “electric” type. However, there are examples
of Carrollian gauge theories [32,35,38], fermions [42], and
gravity [75] containing spatial derivatives, named the
“magnetic” type. It would be crucial to check which of
the results presented in this paper are universal for
Carrollian field theories, i.e. if they continue to hold for
theories of magnetic type.
In particular, there exists lattice models in two spatial

dimensions with nearest-neighbor couplings (hence not
ultralocal) which show dispersionless and hence Carrollian
features [42]. From a condensed matter/quantum informa-
tion perspective it is crucial to see the entanglement
structure of this type of Carrollian many-body theories.
That would be a concrete probe into the power of Carrollian
symmetries in higher dimensions (the 1þ 1-dimensional
case at the critical point and its universality of entanglement
has already been established in [28] using symmetry
principles alone).
The issue of the conformal Ward identity at the level of

the tree-level time-ordered two-point function is subtle,
since them → 0 limit is not trivial. Rather one has to extract
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the physically meaningful piece at the massless limit to see
conformal invariance. Similar nontrivialities plague the
higher point functions even at the tree level. It would be
crucial to check the global conformal Ward identities for
higher point functions. Especially for the d ¼ 3 theory,
apart from the global conformal symmetry the extended
BMS group demands symmetry with respect to the 2D
stress tensor, which includes the super-rotation generators
as well. From the perspective of Carrollian holography
proposal, the study of super-rotation Ward identities and
their anomaly structure at loop level would be an important
component of further studies.
We invested a considerable amount of effort in under-

standing the role of the energy scale for the “electric”-type
Carrollian scalar. Contrary to the standard Wilsonian point
of view of scales, we worked with the idea that at least for
the present set of theories, the concept of spatial scales is
decoupled from that of the energy scales. Hence it becomes
practical to study the scaling properties of operators from
the point of view of just energy scales. As a direct
consequence of this approach, these properties become
essentially different from the canonical scaling dimensions.
Pursuing further along these lines, we focused on the IR
flow tailor made for electric-type Carrollian theories. We
observed that a deformation like c2∇ϕ · ∇ϕ near the
Gaussian fixed point is relevant, and a sufficient amount
of (finite value of the flow parameter) flow towards the IR
takes one to c ¼ 1, thus instating Lorentz invariance. As a
complementary point of view, it would be interesting to see
Carroll symmetry emerging, starting from a Lorentz-
invariant theory with a marginal deformation, if possibly
one can integrate out lower-energy modes. Such a com-
plementary viewpoint is going to appear soon in [76].
Notably, a concept of dialing a current-current deformation
strength in a CFT, to flow from the Lorentzian to the
Carrollian regime was alluded to in [77].
Up to lowest order in the perturbative analysis, we

scanned for RG fixed points in the parameter spaces, albeit
restricted to a substantially small-dimensional subspace.
The motivation behind choosing ϕ4 coupling in d ¼ 4 and
ϕ4 þ ϕ6 in d ¼ 3 was to keep only those operators which
are relevant/marginal in the Wilsonian sense. However,
these notions no longer hold true in the RG program we
worked with. Even within this small set of parameters we
unveiled new fixed points apart from the Gaussian ones.
These are strictly different from the Wilson-Fisher ones,
which are close to the Gaussian ones. A number of future
studies can be proposed from here. (i) It would be
interesting to study sigma models with Lie group internal
symmetries to uncover richer features of spontaneous
symmetry breaking at nontrivial fixed points like this.
(ii) These fixed points are not conformal critical points
from the traditional sense of criticality in the Lorentzian (or
their Euclidean versions) sense. However, now letting the
spatial scale a vary, one should investigate Ward identities

for dilatation t∂t þ r · ∇ at these points. (iii) Since none of
the power-law ultralocal operators respecting Carroll
invariance are irrelevant or marginal and since, from a
practical point of view, the loop integrals are much more
tractable, it would be plausible to enlarge the parameter
space by including more relevant operators and then search
systematically for more nontrivial fixed points.
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APPENDIX A: DERIVATION OF (24)

For a hexic perturbation Λ̃X6=6! to a harmonic oscillator
the nth perturbed energy and perturbed state vector up to
first order in perturbation are given by

Ẽn ¼ E0 þ
Λ̃
6!
hnjX6jni;

jñi ¼ jni þ Λ̃
6!

X
m≠n

hmjX6jni
En − Em

jmi: ðA1Þ

Since the operator X is a sum of creation and annihilation
operators, it is easy to see that the matrix elements
hmjX6jni appearing in the state perturbation are nonzero
when the positive integer m∈ Cn ¼ fmjjm − nj ≤ 6;

m ≠ ng. Keeping in mind that we need jh0̃jXjñij2 up to
first order in Λ̃ the following simplified form is useful:

jñi ¼ jni þ Λ̃
X
m∈ Cn

βmjmi; ðA2Þ

where α1, βm are coefficients involving matrix elements
hmjX6jni. A quick look at (A2) now leads us to conclude
the following Λ̃ dependencies:
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h0̃jXj1̃i¼OðΛ̃0ÞþOðΛ̃1Þ; h0̃jXjñijn≠1 ¼OðΛ̃1Þ: ðA3Þ

Hence out of all elements h0̃jXjñi, only the one for n ¼ 1

contributes a linear Λ̃ term in jh0̃jXjñij2.
For the easiest computation of the elements like

hmjX6jni, we use Mathematica [78] to compute integrals
of the form

∼
Z

e−x
2

x6HmðxÞHnðxÞ:

Following these steps we end up with the final expression:
jh0̃jXj1̃ij2 ¼ ℏ

2Mω ð1 − Λ̃
64

ℏ2

M3ω4Þ. Higher-order perturbative

corrections are of the form Oð Λ̃2ℏ4

M6ω6Þ.

APPENDIX B: PROOF OF THE
VANISHING OF (52)

The right-hand side of (52) is

∼
Z

dω1…dω4eiω1t1…þω4t4

�X4
k¼1

fðxkÞiωk

�
τðfωig; fxigÞ;

ðB1Þ

but the form of τ, according to (B2) is

τðfωig; fxigÞ ¼ gðfωig; λ; m; aÞδ
�X4

i¼1

ωi

�
δ3ðx1 − x2Þ

× δ3ðx1 − x3Þδ3ðx1 − x4Þ; ðB2Þ

where g is a meromorphic function of the ω’s, which have
isolated poles. Now the three spatial delta functions force
the points x2, x3, x4 to be identified with x1. Hence (B1)
becomes

fðx1Þ
Z

dω1…dω4eiω1t1…þω4t4

�X4
k¼1

iωk

�
δ

�X4
l¼1

ωl

�

×gðfωig;λ;m;aÞδ3ðx1−x2Þδ3ðx1−x3Þδ3ðx1−x4Þ¼ 0:

ðB3Þ

The above arguments can be generalized to N-point
correlators in a Carrollian scalar theory with the interaction
of the form ∼λϕm. Let now, τNðfωig; fxigÞ as in (48), be
the correlation function correct to any finite order in
perturbation theory, consisting only of connected diagrams
with one or more loops involved. If we assume that none of
the loop integrals in ω diverge, then the structure of τN
takes a form similar to (B2):

τNðfωig; fxigÞ

¼ gNðfωig; λ; m; aÞδ
�XN

i¼1

ωi

�YN
i¼2

δ3ðx1 − xiÞ: ðB4Þ

The Dirac delta in frequencies appears due to energy
conservation. On the other hand, the product of the spatial
delta functions is found by performing the real-space loop
integrals, which enforce the external points to be coinci-
dental. Once again gN is a meromorphic function in the
N-dimensional frequency space with isolated poles, whose
detailed structure is unimportant for the proof of the Ward
identity. Hence, the above logic of the vanishing of (B3)
also applies here.
One can readily verify this, for example for the three-

loop diagram in Fig. 6 appearing at fourth order in
perturbation theory for ϕ4 theory.

APPENDIX C: COMPARISON OF THE
BETA FUNCTIONS

In this appendix, we compare the beta functions of the
Carrollian and Lorentzian field theories. The results are
summarised in Tables II and III below.

FIG. 6. A three-loop diagram, fourth order in perturbation
theory for the ϕ4 interaction.

TABLE II. Comparison of beta functions in d ¼ 4 dimensions.

d ¼ 4 Lorentz/Euclidean case d ¼ 4 Carrollian

Action:
R
d4x½1

2
∂μϕ∂

μϕþ 1
2
m0

2ϕ2 þ λ0
4!
ϕ4� Action:

R
d4x½1

2
∂tϕ∂tϕþ 1

2
m0

2ϕ2 þ λ0
4!
ϕ4�

Beta function (βm):
dm2

ds ¼ −2m2 − λ
16π2

Λ4

Λ2þm2 Beta function (βm):
dm2

ds ¼ −2m2 − λ
2π

1
a3

Ω
Ω2þm2

Beta function (βλ):
dλ
ds ¼ 3λ2

16π2
Λ4

ðΛ2þm2Þ2 Beta function (βλ):
dλ
ds ¼ −3λþ 3λ2

2π
1
a3

Ω
ðΩ2þm2Þ2
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m0

2ϕ2 þ λ0
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ϕ4 þ λ̃0
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ϕ6� Action:

R
d3x½1

2
∂tϕ∂tϕþ 1

2
m0
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4!
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ϕ6�

Beta function (βm): −2m2− λ
4π2

Λ3
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λ̃
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2π

1
a2

Ω
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16π2
1
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Beta function (βλ): dλ
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4π
Λ3
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1
a2

Ω
ðΩ2þm2Þ2

Beta function: dλ̃
ds ¼

˜15λ2

32π2
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