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Landau’s work on the singularities of Feynman diagrams suggests that they can only be of three types:
either poles, logarithmic divergences, or the roots of quadratic polynomials. On the other hand, many
Feynman integrals exist whose singularities involve arbitrarily higher-order polynomial roots. We
investigate this apparent paradox using concrete examples involving cube roots and roots of a degree-
eight polynomial in four dimensions and roots of a degree-six polynomial in two dimensions and suggest
that these higher-order singularities can only be approached via kinematic limits of higher codimension
than one, thus evading Landau’s argument.
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I. INTRODUCTION

This paper tries to reconcile two seemingly contradictory
facts. First, there is the folk wisdom that Feynman diagrams
have only three types of singularities: poles, square roots,
and logarithms. This folk wisdom can be traced back to
Landau, who demonstrated it in Ref. [1], though his
argument included one oft-forgotten caveat: the restriction
only holds for singularities approachable at kinematic
configurations of codimension one. Second, we now have
something Landau did not: an extensive body of work on
the singularities of perturbative scattering amplitudes—
especially in the case of planar, maximally supersymmetric
(N ¼ 4) super Yang-Mills (sYM) [2–10]—where exam-
ples are known to involve roots of arbitrarily high-order
polynomials in the kinematics. Consider for example the
following on-shell diagram (Fig. 1) involving 40 external
particles at 37 loops:

ð1Þ

This diagram encodes a function where all internal lines are
taken to be on shell, with the particular parities of each
three-point vertex indicated in the diagram. But it turns out
that there are 210(!) distinct solutions to the cut conditions
with this particular set of three-point parities—with each
encoding a different, specific on-shell function involving the
various roots of some 1024th-degree polynomial [9,10].
Simpler examples of higher-than-quadratic roots arise at

much lower loop orders. In massless theories, nested
quadratic roots make their first appearance at two loops,
but the first example of an irreducible cubic root appears at
three loops involving 11 massless particles. For massive
Feynman integrals, integrals involving sextic roots also
appear at three loops. This raises a natural question: do these
examples contradict Landau’s analysis? Or if not, why not?

*bourjaily@psu.edu
†c.vergu@nbi.ku.dk
‡matthew.vonhippel@ipht.fr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 085021 (2023)

2470-0010=2023=108(8)=085021(24) 085021-1 Published by the American Physical Society

https://orcid.org/0000-0002-3340-5667
https://orcid.org/0000-0002-6328-2936
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.085021&domain=pdf&date_stamp=2023-10-26
https://doi.org/10.1103/PhysRevD.108.085021
https://doi.org/10.1103/PhysRevD.108.085021
https://doi.org/10.1103/PhysRevD.108.085021
https://doi.org/10.1103/PhysRevD.108.085021
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In this work, we suggest a simple resolution to the
apparent paradox: cubic- (or higher-) root singularities can
and do occur in Feynman integrals but correspond to
singularities of amplitudes at codimension two or higher.
Specifically, this means that such roots cannot be accessed
by any codimension-one kinematic limit. To access such
higher-order singularities, one may first consider starting
from a set of restricted kinematics in which some dis-
criminant locus vanishes. This may be possible in some
cases but is not in the cases we investigate here: the
discriminant locus is not merely vanishing, but singular in
these restricted kinematics, which makes further mono-
dromies ill defined.
Our work is organized as follows. We begin in Sec. II

with some useful background material and review; spe-
cifically, we review how one finds singularities via the
Landau equations in Sec. II A, and revisit Landau’s argu-
ment regarding the types of singularities that arise in
Sec. II B, before finishing the section by discussing some
useful facts about the roots of higher-degree polynomials.
We then study the implications of these ideas for three
concrete examples in considerable detail. In Sec. III we
describe the first example of a cube root arising in the case
of theories of massless particles in four dimensions. We
show how this root is required when one tries to represent
the on-shell space of the diagram in terms of a rational
parametrization of the external kinematics and how any

codimension-one kinematic limit will nonetheless isolate a
pole, not a cubic root. We also discuss how one could set
up the Landau equations in this kinematic parametrization.
In Sec. IV we discuss a similar example with more generic
kinematics, where the on-shell space is described by two
degree-eight polynomials. In this example the Landau
equations can be fully solved, and we describe a para-
metrization of the kinematics which rationalizes the roots
present, analogously to the way one can rationalize the
square root in the one-loop box. Finally, in Sec. V we
describe an example involving sextic roots that arises for
massive theories in two dimensions, where we can once
again solve the Landau equations.

II. PRELIMINARIES

A. Where do amplitudes have singularities?

It has been known since the work of Landau (see Ref. [1]
but also Ref. [11]) that the singularities of scattering
amplitudes or Feynman integrals are given by the solutions
to Landau equations. The scalar Feynman integral

IðpÞ ¼
Z

dnk
s1ðp; kÞ…smðp; kÞ

ð2Þ

has singularities when a subset of the denominators vanish
and there exist a not-all-vanishing set α1;…; αm such that

Xm
e¼1

αedseðp; kÞ ¼ 0; ð3Þ

where the differential is taken with respect to the integration
variables k only.
The perhaps more familiar form of the Landau equations

is obtained by using seðp; kÞ ¼ q2e −m2
e where qe is a

linear combination of independent external momenta p ≔
fpag and independent loop momenta k which depends on
the graph we are studying. Then Eq. (3) yields a vector
equation for each independent loop momentum, which are
normally called the Landau equations.
Mathematically, the condition in Eq. (3) arises as a

critical value condition for a map between the on-shell
space defined by the vanishing of a subset of denominators
and the space of external momenta (see Refs. [12–14]).
Reference [15] introduced a physical way of understanding
Landau diagrams as real scattering processes of on-shell
particles—where the Landau equations arise as the con-
dition for the closure of the loops.

B. What kind of singularities can amplitudes have?

In the original paper Ref. [1], Landau studied not only
the location of the singularities, but also their nature: how
scattering amplitudes behave when approaching these
singularities. Similar results were obtained by Leray in

FIG. 1. The swallow-tail singularity of Eq. (12). The blue
curves depict the locus where three roots coincide, while the red
curve depicts the locus where two pairs of roots coincide. At the
point where these curves intersect, all roots coincide.
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Ref. [11] (see also a review of Leray’s results in Ref. [12],
p. 109, Chap. VI). A more detailed derivation following
Landau’s original idea was presented in Ref. [16]. The
asymptotic expansion around these singularities has been
used recently in Ref. [17] to impose constraints on the
symbol of polylogarithmic integrals.
The derivation of the behavior of a Feynman integral in

the neighborhood of a Landau singularity is slightly too
technical for our current needs, so we will not present it in
detail. Instead, we refer the reader to the result of Ref. [12]
(which uses slightly different notation from ours).
Consider an integral of the form [18]

IðpÞ ¼
Z

ωQ
m
e¼1 seðp; kÞδe

; ð4Þ

where δ1;…; δm > 0 are integers and ω is some holomor-
phic differential n-form on the k’s independent of the
external momenta p. We will find it useful to define
δ ≔

P
m
e¼1 δe [19].

The integral is regular unless the contour of integration is
trapped (or pinched) by the singularity hypersurfaces
s1ðp; kÞ ¼ � � � ¼ smðp; kÞ ¼ 0, so that it cannot be
deformed away from them. A detailed discussion of the
geometry of the contour pinching can be found in Ref. [12].
The integral is potentially singular for p such that we have a
set of not-all-vanishing variables α1;…;αm such that there
exists a function lðpÞ with

dlðpÞ ¼
Xm
e¼1

αedseðp; kÞ; ð5Þ

where now on the right-hand side the differential is taken
with respect to both p and k. The left-hand side is
independent of k by virtue of Eq. (3). We can then choose
a constant factor so that the equation of the Landau
singularities is lðpÞ ¼ 0 (see Ref. [14] for more details).
Some technical assumptions are necessary here. First, we

assume that the Landau locus lðpÞ ¼ 0 arises from a single
Landau diagram.
Second, we take p → p� where p� is smooth point of the

Landau locus [lðp�Þ ¼ 0]. This is necessary to be able to
define homotopy paths going around the complexified
Landau locus. Roughly, one needs to be able to define a
complex transversal space where the Landau locus sits at
the origin. Then in this transversal space one can construct
a homotopy path as a loop around the origin. However, at a
singular point the tangent space is not well defined and
therefore one can not define a transversal space either. The
Landau loci are themselves generically singular so this
restriction is necessary (we present an example at the end of
Sec. II D). Third, the pinching has to happen for a unique
value of internal momenta. Related to this, a certain Hessian
(see Ref. [17], Appendix E, for a more detailed discussion)
which appears in the denominator of the coefficient A below
must not vanish.
Finally, we will approach the Landau locus only at

generic points, which are not also singular points for other
Landau singularities. Indeed, Landau loci generically
intersect other Landau loci. These intersections have been
the subject of study, for example in connection with
Steinmann relations (see Ref. [17]).
In this notation and under the conditions described

above, we have the following asymptotic behavior for
IðpÞ when lðpÞ → 0:

(1) if nþm − 1 is odd, then

IðpÞ ¼ −
N
2

ð2πiÞmAðpÞQm
i¼1ð−αiÞδiQ

m
i¼1ðαi − 1Þ!

lðpÞnþm−1
2

−δ

Γð1þ nþm−1
2

− δÞ ð1þ oðlðpÞÞÞ þ hf; ð6Þ

(2) if nþm − 1 is even and nþm − 1 ≥ 2δ, then

IðpÞ ¼ N
ð2πiÞm−1AðpÞQm

i¼1ð−αiÞδiQ
m
i¼1ðαi − 1Þ!

lðpÞnþm−1
2

−δ

ðnþm−1
2

− δÞ! logðlðpÞÞð1þ oðlðpÞÞÞ þ hf; ð7Þ

(3) if nþm − 1 is even and nþm − 1 < 2δ, then

IðpÞ ¼ −N
ð2πiÞm−1AðpÞQm

i¼1ð−αiÞδiQ
m
i¼1ðαi − 1Þ!

ð− nþm−1
2

þ δ − 1Þ!
ð−lðpÞÞ−nþm−1

2
þδ

ð1þ oðlðpÞÞÞ þ N logðlðpÞÞhf þ hf 0; ð8Þ

(4) if m ¼ nþ 1, we have the more specific result that

IðpÞ ¼ ð−1Þnþ1N
ð2πiÞnAðpÞQm

i¼1 α
δi
iQ

m
i¼1ðαi − 1Þ!

ðδ − n − 1Þ!
lðpÞδ−n ð1þ oðlðpÞÞÞ þ hf: ð9Þ
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Here, n is the number of integrations [see Eq. (2)], “hf”
(and hf 0) denote any holomorphic function and oðlðpÞÞ is
any holomorphic function which vanishes at the Landau
locus. The quantity AðpÞ is essentially the inverse of the
square root of a Hessian, while N is an intersection index
which is purely numerical. Explicit expressions can be
given for N and AðpÞ, but we will not need their detailed
form in what follows.
From this discussion wemay conclude that there are three

basic types of singularities that may arise in the neighbor-
hood of a Landau locus: polar, square root, and logarithmic.
The ramification type of each in the neighborhood of a
Landau locus can also be determined from a homological
analysis, as was done in Ref. [12], p. 96, Sec. 2.6.

C. Nonexamples

Let us list a number of cases which might look like they
violate the result in the previous subsection but do not
satisfy the conditions we require.
First, one might think about removing the square-root

singularities by a change of coordinates, which amounts to
going to a double cover. Such transformations are some-
times useful but we want to study the singularities in the
original coordinates, which can be either Mandelstam
invariants or momentum components in a special frame.
We do not study second-type singularities, for which the

pinch happens at infinite values of loop momenta. In
principle this case can also be studied after an appropriate
compactification of the internal kinematic space has been
made. Then one can change coordinates to parametrize the
points at infinity and do the same analysis. The numerator
enters in an essential way in this analysis; for pinches at
finite values of momenta the numerators can only cancel
singularities, not create new ones.
Another seeming counterexample is that of the massless

box in six dimensions. This is a finite integral, which up to
a global factor can be computed to be

log2 s
t þ π2

sþ t
: ð10Þ

It might look like terms of type log2 contradict the general
results in Eqs. (6)–(9).
However, this example violates several of the require-

ments we have imposed above. First, the kinematics is such
that the momentum of each external massless particle is at
the threshold. Therefore, the integral has a permanent
pinch. For integrals which have such permanent pinches
even the existence of an analytic continuation in kinematic
variables is not guaranteed. Another problem is that s ¼ 0
or t ¼ 0 correspond to multiple Landau loci. They arise in
bubble Landau singularities as well as in triangle and box
singularities. The bubble and triangle singularities are
particularly troublesome since the pinching in internal
momenta does not happen for some fixed values of the

momenta, but for a one-parameter family of values. This
precludes the usual construction of vanishing homology
classes which arise in the application of Picard-Lefschetz
theory (see Ref. [12] and also Ref. [17]).
Despite these problems, at least the prefactor of the

integral (which is a second-type singularity in six dimen-
sions) can be analyzed in dimensional regularization and
computed to all orders in ϵ. It is also interesting to note that,
since this second-type singularity cannot appear in the
physical region, when s ¼ −t the numerator vanishes so
as to cancel the pole. This uniquely fixes the π2 term once
we know there is a log2 s

t term. We believe this kind of
constraint should provide a handle on “beyond the symbol
terms” (or “initial conditions” in a differential equations
language).
In general, we expect that cases such as these should give

rise to higher powers of the singularities described in the
previous section (higher poles, powers of square roots, and
powers of logarithms), as they correspond to factorizable
singularities. We do not expect them to give rise to new
types of singularities, such as higher roots.

D. Roots of polynomial equations

Consider what happens to the roots of an algebraic
equation when taking its coefficients along some closed
path. As the coefficients change, the various roots follow
always continuous paths themselves and return to the
same locations as at the beginning—but possibly up to
permutation.
If we have a square-root singularity at codimension one,

this means that going twice around the singularity must
always return the roots to where they began: if they had
been exchanged in going once around, then going twice
would return them to their initial locations.
When the discriminant of their defining polynomial

vanishes, the two roots coincide, and the singularity is
therefore at codimension one.
A cubic-root singularity would correspond to a situation

where three roots simultaneously coincide. This however
can only happen at higher than codimension one for an
intuitive reason: the equality of any pair of roots imposes
one constraint on the coefficients of the polynomial, and
collapsing the pair with the remaining one requires one
further constraint. Thus, all three roots collide only at
codimension two.
Consider for example the depressed cubic equation

x3 þ pxþ q ¼ 0. Its discriminant is (up to a sign)
Δ ¼ 4p3 þ 27q2. Δ ¼ 0 implies only that two of the roots
have collided. One could easily make all three collide by
requiring p ¼ q ¼ 0, but this demand clearly constitutes
two conditions. Incidentally, the vanishing of the discrimi-
nant locus is itself a cuspidal cubic in terms of p, q, and it
has a cuspidal singularity when p ¼ q ¼ 0—precisely at
the locus where the three roots coincide.
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The case of a general cubic hypersurface 0 ¼ x3þ
a2x2 þ a1xþ a0 can be understood similarly. If two roots
coincide and equal u while the third equals v we have
2uþ v ¼ −a2, u2 þ 2uv ¼ a1 and u2v ¼ −a0. After
eliminating u and v we find

a21a
2
2 − 4a0a32 − 4a31 þ 18a0a1a2 − 27a30 ¼ 0: ð11Þ

It turns out that this surface has a singularity when three
roots coincide. To see this, we set v ¼ u and after

eliminating u we find a0 ¼ a3
2

27
and a1 ¼ a2

2

3
, which is the

equation of a rational normal curve. It is now easy to see that
if we take the differential of Eq. (11) we find zero, upon
replacing the solutions for a0 and a1 in terms of a2 [21].
This means that the surface defined by Eq. (11) is singular
along the curve where three roots coincide.
To illustrate the complexities that can arise for higher

degrees, let us discuss the quartic equation. To find when
the depressed quartic x4 þ a2x2 þ a1xþ a0 ¼ 0 has multi-
ple solutions we take the roots r1, r2, r3, r4, which are such
that r1 þ r2 þ r3 þ r4 ¼ 0. If we set r3 ¼ r4 we can solve
r3 ¼ r4 ¼ − 1

2
ðr1 þ r2Þ. Plugging back in the expressions

for a0, a1, a2 and eliminating r1 and r2 we find

4a21a
3
2 − 16a0a42 þ 27a41 − 144a0a21a2 þ 128a20a

2
2

− 256a30 ¼ 0: ð12Þ

For the quartic we can also have three roots coinciding or
two pairs of roots coinciding. In general, the type of
coincident root locus is specified by a partition of the
degree of the equation. In the case (3, 1), that is when three
roots coincide, we have

a22 þ 12a0 ¼ 0; 9a21 − 32a0a2 ¼ 0: ð13Þ

In the case (2, 2), that is when two pairs of roots coincide,
we have

a1 ¼ 0; a22 − 4a0 ¼ 0: ð14Þ

Again, it can explicitly checked that the differential of
Eq. (12) vanishes along the (3, 1) locus and along the (2, 2)
locus, which means that the surface defined by Eq. (12) is
singular there.
The (3, 1) locus intersects the (2, 2) locus in the (4) locus,

where all the roots coincide. In the case of the depressed
quartic, this means that all the roots vanish (since their sum
vanishes). In the neighborhood where all four roots
coincide the vanishing discriminant locus has a swallow-
tail singularity.

III. EXEMPLI GRATIA: A CUBE ROOT
AT THREE LOOPS

Consider the scalar three-loop scalar Feynman integral

where we have used dual momentum coordinates with
pa ≕ xaþ1 − xa and where we have defined the shorthand
ðajbÞ ≔ ðxa − xbÞ2. This integral contributes to 11-particle
amplitudes in both pure and maximally supersymmetric
ðN ¼ 4Þ super Yang-Mills theory.
Here, we will establish that, in order to represent this

integral in a reasonable parametrization of the kinematic
space, we require cubic roots. We will primarily establish
this by examining the on-shell space, and in particular the
value of the integral on this space (i.e. at the leading
singularity). We will confirm this by parametrizing the
integrals in a nonredundant, rational manner, to show that
this is not just an artifact of a poor choice of parametriza-
tion. However, as suggested by the discussion in Sec. II, we
will find that in this nonredundant parametrization it is
impossible to approach these roots in a codimension-one

limit [22]. Having established what we set out to, we briefly
discuss how one might set up the problem of determining
the Landau singularities of the diagram, leaving a full
derivation for future work.

A. On-shell space

To begin, let us discuss the on-shell space. This integral
has 16 locations in the (complexified) space of loop
momenta which put all its 12 propagators on shell—
corresponding to the solutions to its “maximal-cut” equa-
tions. These solutions may be organized according to which
particular solution to the cut equations is involved at each
three-particle vertex, which can take one of two forms: with
all spinor-helicity variables λ of the participating on-shell
momenta being proportional (white) or all their conjugate
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λ̃’s proportional (blue). When represented in momentum-
twistor space [23], these correspond to the cases where the
lines (representing the loop momenta li and the external
dual-momentum points xa) pass through each other at a
single point (white) or when they are coplanar (blue).
As there is a three-particle vertex in the middle of the

loop integrand, we can divide the 16 solutions into two
groups of eight according to whether the lines representing
ðliÞ in momentum-twistor space intersect at a point or not
(white and blue, respectively). Of these eight, there are
three rational solutions, two (a pair) that involve quadratic
roots, and three which involve the roots of an irreducible
cubic. We would like to analyze and describe these cube-
root solutions to the maximal cut equations explicitly.
Let us start with a concrete parametrization of a subset

of solutions to the next-to-maximal cut [that for which
ðl1j3Þ ≠ 0)—those associated with the parity and coloring
of three-particle vertices as indicated in the following
contour diagram:

ð15Þ

We may parametrize this one-dimensional family of sol-
utions to the cut equations in momentum-twistor space by
writing ðl1Þ ≔ ð2̂ 4̂Þ, ðl2Þ ≔ ð5̂ 9̂Þ, ðl3Þ ≔ ð9̂ 2̂Þ, where

2̂ðαÞ≔ z2 þ αz1; 5̂ðαÞ≔ ð54Þ ∩ ð67 9̂Þ;
4̂ðαÞ≔ ð43Þ ∩ ð5̂ 9̂ 2̂Þ; 9̂ðαÞ≔ ð98Þ ∩ ð1011 2̂Þ: ð16Þ

It is not hard to verify that this one-parameter family of
liðαÞ satisfies the 11 cut equations and that they corre-
spond to the particular branch indicated by the coloring of
vertices in (15). Readers interested in the details on how
such a parametrization can be constructed may consult
Appendix A.
To access the leading singularities (that is the singu-

larities arising from the pinch of all the internal lines)
of the initial integral from this 11-cut, we must cut the
final propagator—that is, take residues about the solutions
to ðl1j3Þ ∝ hl12 3i ¼ h2̂ 4̂ 2 3i ¼ αh1 4̂ 2 3i ¼ 0. There
are four solutions to this final-cut equation: one rational
(α ¼ 0) and three roots of an irreducible cubic. The α ¼ 0
solution corresponds to a rational leading singularity with
the following coloring of vertices:

ð17Þ

To see this, notice that when α ¼ 0, the line in momentum-
twistor space corresponding to ðl1Þ ≔ ð2̂ 4̂Þ [as parame-
trized in (16)] passes directly through the point z2 (as 2̂ →
z2 when α → 0).
We are interested in the other leading singularities—

those involving the three solutions to the final-cut equation,
where h14̂23i¼h123ð43Þ∩ ð5̂ 9̂ 2̂Þi∝ h2̂ 5̂ 9̂3i¼0, which
would correspond to leading singularities associated with
the following contour diagram:

ð18Þ

It is not hard to check that this final-cut equation
is (irreducibly) cubic in the parameter α. In particular, it
is given by

qðαÞ ≔ h2̂ 5̂ 9̂ 3i≕ c0 þ c1αþ c2α2 þ c3α3 ð19Þ

with

c0 ≔ h235̂2 9̂2i; c1 ≔ h135̂2 9̂2iþh235̂1 9̂2iþh235̂2 9̂1i;
c2 ≔ h235̂1 9̂1iþh135̂2 9̂1iþh135̂1 9̂2i; c3≔ h135̂1 9̂1i;

ð20Þ

where we have introduced 5̂i ≔ ð5 4Þ ∩ ð6 7 9̂iÞ and
9̂i ≔ ð9 8Þ ∩ ð10 11 iÞ.

B. Cube-root leading singularities of an amplitude
in N = 4 sYM

For maximally supersymmetric Yang-Mills theory
(sYM), we can give an explicit formula for the three on-
shell functions associated with these cube-root-dependent
leading singularities of the original Feynman integral. To
do this, we start by first computing the on-shell function for
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the 11-cut of (15). Representing maximally helicity violating (MHV) and MHV tree amplitudes by blue and white vertices,
respectively, the 11-cut on-shell diagram corresponds to

ð21Þ

where the latter is one realization of the former, using one of the (two) Britto-Cachazo-Feng-Witten (BCFW)
representations of the four-particle MHV amplitude appearing on the lhs. Thus, we can recognize the on-shell function
for the 11-cut as the one-parameter BCFW shift of the following, purely rational leading singularity in sYM:

ð22Þ

This on-shell function has a permutation label given by f9; 6; 7; 11; 8; 3; 10; 5; 1; 4; 2g [9,10] and has a representation in
terms of R invariants given by the expression above—where

R½a b c d e� ≔ δ1×4ðηahb c d ei þ ηbhc d e ai þ ηchd e a bi þ ηdhe a b ci þ ηeha b c di
ha b c dihb c d eihc d e aihd e a bihe a b ci : ð23Þ

[The formula given in (22) was found using [10] and recognizing it (via its permutation label) as a series of inverse-soft
factors; in general, any leading singularity that could have arisen via BCFW bridges may be constructed recursively by
recognizing factorized graphs among its bridge boundaries.]
To implement the BCFW shift as required to represent the 11-cut on-shell function, we merely need to replace

z2 ↦ bz2 ≔ z2 þ αz1 and include the prefactor of 1=α in the bosonic part of the superfunction. Thus,

ð24Þ

where 2̂, 5̂, and 9̂ were defined above in (16). This on-shell function corresponds to a 19-dimensional cell in the
momentum-space Grassmannian Grþð11; 5Þ labeled by the permutation f9; 6; 7; 11; 8; 2; 10; 5; 1; 4; 3g.
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From this 11-cut on-shell function, the 12-cut on-shell
functions involving the cube roots can be obtained by
taking a simple residue about one of the poles arising from
h2̂ 5̂ 9̂ 3i ¼ 0 (which appears in the denominator of the
bosonic part of the third R-invariant factor appearing in
the expression above). Notice that this is precisely the
same cubic as encountered in the final-cut condition
above. When a residue is taken on any one of the cube
roots, the resulting on-shell function would be labeled by
the path permutation f9; 7; 6; 11; 8; 2; 10; 5; 1; 4; 3g for an
18 ¼ ð2 × 11 − 4Þ-dimensional cell in Grþð11; 5Þ; using
the tools of [9,10], it can be easily confirmed that this
cell in the Grassmannian has “intersection number” (with
kinematics) equal to 3—meaning that there are three
solutions to the constraints connecting the auxiliary
Grassmannian to kinematic data. These three particular
leading singularities correspond to the particular roots of
the cubic used to define the cell via (24).
The existence of three leading singularities here leads to

an unusual situation. Typically, we expect leading singu-
larities to serve as prefactors of polylogarithmic functions
in the integrated expression for an amplitude. Here, we
have three distinct possible prefactors, corresponding to
distinct residues of Eq. (24) at the roots α�i in Eq. (19).
The presence of these distinct possible prefactors raises

the question of whether such an integral has differential
equations that can be written in canonical form (cf. [24]).
This form generally demands pure functions, and there is
no normalization under which this integral is pure.
This issue is still present even for a scalar version of the

diagram. There the leading singularities are just residues of
1

qðαÞ on its three poles, of the form 1
ðα�i−α�j Þðα�i−α�kÞ. As these

must sum to zero, we do have one identity:

1

ðα�1 − α�2Þðα�1 − α�3Þ
¼ −

1

ðα�2 − α�1Þðα�2 − α�3Þ
−

1

ðα�3 − α�1Þðα�3 − α�2Þ
: ð25Þ

Thus, we can express one residue in terms of the others, but
there are still two independent prefactors.
This situation does not arise for quadratic equations. In

that case we have the possible residues 1
α�
1
−α�

2

and 1
α�
2
−α�

1

; but

since these can differ only by a sign, we can pull out a
global factor 1

α�
1
−α�

2

, for example.

The appearance of this situation for cubic roots is perhaps
not so surprising and is a behavior we expect to continue to
higher orders. The final amplitude is, in any event, not
generally pure: it has nontrivial leading singularities, which
can in fact depend upon arbitrarily high-order algebraic

roots involving the kinematics. This behavior is natural from
the point of view of unitarity methods, where amplitude
integrands are rational differential forms on the space of
loop momenta; thus, when representing an amplitude using
unitarity in terms of any basis of master loop integrands,
whatever algebraic normalizations one uses must always
conspire with algebraic coefficients (leading singularities) to
yield a rational loop integrand.

C. Cluster coordinates for the integral

Following the above, we arrive at an expression for the
loop momenta on the leading singularity in terms of
momentum-twistor four-brackets. As four-brackets satisfy
identities, it is not immediately obvious that the cube root
is not reduced to something simpler upon application of
these identities. To rule this out, we find expressions on
the leading singularity in terms of an explicit twistor chart.
As we are considering an 11-point diagram, one

might naively expect to describe it with 3ð11Þ − 15 ¼ 18

variables. However, this diagram is simpler than a generic
11-point dual-conformal diagram because of the presence of
pairs of legs at the same corner, forming “masses”: (5, 6),
(7, 8), (9, 10), and (11, 1). As such, the diagram only
depends on the seven dual points x2, x3, x4, x5, x7, x9,
and x11. Massless legs contribute three lightlike conditions,
bringing the correct number of variables to 4ð7Þ−
3 − 15 ¼ 10. We would thus ideally want a ten-parameter
twistor chart.
In Ref. [25], two of the present authors found twistor

charts for a variety of integrals with appropriate numbers of
parameters by specializing to particular positroid cells.
Unfortunately, this strategy does not suffice here, as there
are no ten-dimensional boundaries of the 11-point top cell
that preserve dependence on the required dual points.
Instead, we will follow a strategy outlined in Ref. [26]
based on cluster algebras, finding a subquiver of Gð4; 11Þ
with ten X -coordinates that spans the correct space of
dual points.
To carry out this strategy, we begin with a quiver for

Gð4; 11Þ and then mutate on all possible nodes. For each
mutation, we check to see if there is a subset of its X -
coordinates that is independent of the dual points of our
integral. We keep only the mutations with the largest sets of
X -coordinates that satisfy this condition. We stop when we
find at least one quiver which contains eight X -coordinates
that are independent from the seven dual points of our
diagram, which in this case happens after 14 mutations.
Setting these eight X -coordinates to one in a twistor
parametrization of the quiver, we find a twistor paramet-
rization with the minimal ten parameters for our diagram.
In terms of momentum-twistor four-brackets, these ten

parameters can be written as follows:
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e1 ¼
hð3 5Þ ∩ ð4 6 7Þ4 8 9i
h3 4 8 9ih4 5 6 7i ;

e2 ¼
hð4 5Þ ∩ ð3 8 9Þ3 10 11ihð8 9Þ ∩ ð2 10 11Þ4 6 7i
h2 3 10 11ih8 9 10 11ihð3 5Þ ∩ ð4 6 7Þ4 8 9i ;

e3 ¼
h3 4 6 7ihð4 5Þ ∩ ð3 8 9Þ3 10 11i
h3 4 10 11ihð4 5Þ ∩ ð3 6 7Þ3 8 9i ;

e4 ¼
h3 4 10 11ih8 9 10 11ihð3 5Þ ∩ ð4 6 7Þ4 8 9ihð4 5Þ ∩ ð3 6 7Þ3 8 9i

h6 7ð3 4 5Þ ∩ ð8 9ð10 11Þ ∩ ð3 4 5ÞÞih3 4 8 9ihð8 9Þ ∩ ð3 10 11Þ4 6 7i ;

e5 ¼
h3 4 8 9ihð1 2Þ ∩ ð3 4 5Þ3 10 11i
h1 2 3 4ihð4 5Þ ∩ ð3 8 9Þ3 10 11i ;

e6 ¼ −
h1 2 10 11ih2 3 4 5ihð8 9Þ ∩ ð3 10 11Þ4 6 7i

hð1 2Þ ∩ ð3 4 5Þ3 10 11ihð8 9Þ ∩ ð2 10 11Þ4 6 7i ;

e7 ¼
h6 7ð3 4 5Þ ∩ ð8 9ð10 11Þ ∩ ð3 4 5ÞÞih1 2 3 4ih2 3 10 11i
h6 7ð3 4 5Þ ∩ ð8 9ð10 11Þ ∩ ð1 2 3ÞÞih2 3 4 5ih3 4 10 11i ;

e8 ¼
h8 9ð3 10 11Þ ∩ ð4 6 7Þihð4 5Þ ∩ ð3 6 7Þ3 8 9i
h3 4 6 7ih6 7 8 9ihð4 5Þ ∩ ð3 8 9Þ3 10 11i ;

e9 ¼ −
h6 7ð3 4 5Þ ∩ ð8 9ð10 11Þ ∩ ð1 2 3ÞÞihð4 5Þ ∩ ð3 8 9Þ3 10 11i
h8 9 10 11ihð1 2Þ ∩ ð3 4 5Þ3 10 11ihð4 5Þ ∩ ð3 6 7Þ3 8 9i ;

e10 ¼ −
h6 7ð3 4 5Þ ∩ ð8 9ð10 11Þ ∩ ð3 4 5ÞÞih3 4 8 9i
hð3 5Þ ∩ ð4 6 7Þ4 8 9ihð4 5Þ ∩ ð3 8 9Þ3 10 11i : ð26Þ

We give an explicit parametrization of the momentum
twistors in these coordinates in Appendix B and also
include them in Supplemental Material [27].

1. Structure of the cubic root

Out of 18 cluster X-coordinates, we retain ten coordi-
nates ei in our ten-parameter chart. In this chart, the cubic
equation for α takes the following form:

9

4
e42e3e

4
4e

2
5e

2
7e8e

2
9e

2
10ðe8e2 þ e2 þ 5Þ4½c0 þ c1α

þ c2α2 þ c3α3� ¼ 0: ð27Þ
The coefficients in this expression are quite long, so we
omit them from the main text. They are presented in
Appendix B and in Supplemental Material [27].
For a general cubic equation c0 þ c1xþ c2x2þ

c3x3 ¼ 0, one can write the three solutions as

xk¼−
1

3c3

�
c2þζkCþ Δ0

ζkC

�
; where k∈f0;1;2g: ð28Þ

Here we have ζ a third root of unity and define

C ≔

0B@Δ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1 − 4Δ3
0

q
2

1CA
1
3

; ð29Þ

with

Δ0 ≔ c22 − 4c3c1;

Δ1 ≔ 2c32 − 9c3c2c1 þ 27c23c0: ð30Þ

It is clear that, in order for the leading singularity of this
diagram to have a singularity that goes as ρ1=3 as some
kinematic parameter ρ → 0, we must have C → 0 in this

limit. This in turn demands that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1 − 4Δ3
0

q
→ Δ1 and thus

that Δ0 → 0. Generically, in a limit where Δ0 → 0, C
behaves as

C ∼

 
Δ1 � ðΔ1 − 2

Δ3
0

Δ1
þOðΔ6

0ÞÞ
2

!1
3

∼

 
Δ3

0

Δ1

þOðΔ6
0Þ
!1

3

∼
Δ0

Δ1=3
1

þOðΔ4
0Þ: ð31Þ

Thus, C will generically vanish linearly, not as a third
power, in such limits. C only vanishes as a third power if
both Δ0 and Δ1 simultaneously vanish, as suggested by the
form of Eq. (31). This is a codimension-two limit and thus
not forbidden by Landau’s analysis.
There are two potential loopholes in this general behav-

ior. If Δ0 vanishes identically for generic kinematics, then
we only need a codimension-one limit to uncover the cubic
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root. If Δ0 and Δ1 both vanish in the same kinematic limit,
then it might also be possible to achieve a cubic-root
singularity.
In our case, these loopholes can be addressed by the

explicit forms of Δ0 and Δ1. These are too complicated to
print in full here, but their relevant structure is easy to
display:

Δ0 ¼ e26PðeiÞ;
Δ1 ¼ e36QðeiÞ: ð32Þ

PðeiÞ and QðeiÞ are both complicated polynomials, but
crucially for our purposes they have no common factors.
This means that we can only have a cube-root singularity
when a common factor of Δ0 and Δ1 vanishes, namely

when e6 → 0. As e6 → 0, we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1 − 4Δ3
0

q
∼

ffiffiffiffiffi
e66

q
,

and thus C ∼ e6. Thus, there exists no codimension-one
limit of this integral that behaves like ρ1=3, as expected [28].

D. Landau equations

The behavior established in the previous section should
also be able to be made manifest at the level of the Landau
equations. Here we will describe how this calculation may
be initiated, though at this time we have found it too
computationally intractable to be worth pursuing.
Examining the leading Landau singularity (with all

propagators on shell), one must in addition impose the
Landau loop equations.
For the box integral below

ð33Þ

the Landau loop equations in dual coordinate language read

α1ðx1 − x0Þ þ � � � þ α4ðx4 − x0Þ ¼ 0: ð34Þ

This equation is not manifestly dual-conformal invari-
ant. As such, it is not straightforward to represent it in
terms of a nonredundant parametrization of the kinematics.
To make the equation dual-conformal invariant, we may
upgrade it to an equation in embedding space, where each
dual point is represented as a six-dimensional null vector
Xi≕ ðxμi ; Xþ

i ; X
−
i Þ with metric such that

Xi · Xj ≔ Xþ
i X

−
j þ X−

i X
þ
j − xi · xj; ð35Þ

where for any nonzero real constant c we take Xþ
i ¼ c for

all i and X−
i ¼ 1

2c x
2
i . Indeed, using the Landau equations in

Eq. (34) and the on-shell conditions it can be shown that in
a gauge where Xþ

i is a constant independent on i,

α1ðX1 − X0Þ þ � � � þ α4ðX4 − X0Þ ¼ 0: ð36Þ

For example, suppose we gauge Xþ
i ¼ 1 for all Xi. Then

the equations for the xμi components are identical to those
in Eq. (34), while the Xþ

i equation is trivial, so we only

need to check X−
i . In this gauge X−

i ¼ x2i
2
, so the equation

for this component becomes

α1ðx21 − x20Þ þ � � � α4ðx24 − x20Þ ¼ 0: ð37Þ

Since we have imposed that the propagators are on shell,
we have ðxi − x0Þ2 ¼ 0 for all i. Thus,

x2i − x20 ¼ x2i − x20 − ðxi − x0Þ2
¼ 2xi · x0 − 2x20

¼ 2x0 · ðxi − x0Þ; ð38Þ

which shows that the equation for the X−
i components is

implied by our original equation in x space.
Using this type of manifestly dual-conformal invariant

form of the Landau equations for the three-loop integral we
have discussed in this section, and writing the dual points of
the loop momenta as XA, XB, XC, we find

0 ¼ α1ðXA − X3Þ þ α2ðXA − X4Þ þ α3ðXA − XBÞ
þ α4ðXA − XCÞ þ α5ðXA − X2Þ; ð39Þ

0 ¼ α6ðXB − X5Þ þ α7ðXB − X7Þ þ α8ðXB − X9Þ
þ α9ðXB − XCÞ þ α3ðXB − XAÞ; ð40Þ

0 ¼ α10ðXC − X9Þ þ α11ðXC − X11Þ þ α12ðXC − X2Þ
þ α4ðXC − XAÞ þ α9ðXC − XBÞ: ð41Þ

Separating these component by component gives 18
equations in the 12 αi, with coefficients that are algebraic
functions in the cluster X-coordinates. Some of these
equations are redundant, but 12 are independent, giving a
12-by-12 matrix of coefficients. The leading Landau
singularity occurs when the determinant of this matrix
vanishes.
It would be interesting to find and factorize the deter-

minant of this matrix. One would expect that it would have a
factor in common with Δ0 and thus that it vanishing would
lead a pair of roots of the cubic to coincide. Unfortunately,
we are unable to confirm this due to the complexity of the
coefficients present [29].
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Before presenting a less computationally intensive
approach in the next section, we make a few brief comments
about the geometry of the problem. Much as the conserva-
tion of loop momentum is solved by the introduction of dual
coordinates, one can formally solve the Landau loop
equations by introducing new auxiliary coordinates asso-
ciated to the vertices of a diagram that incorporate the
variables αi. Then the solution to the Landau equations can
be characterized as a set of geometrical constraints on both
the momentum twistors and a set of twistors corresponding
to these new auxiliary coordinates.
We can briefly illustrate this approach with the example

of the one-loop box integral [see Eq. (33)]. Here in analogy
with the dual coordinates xa − x0 ≕ λaλ̃a, we have intro-
duced auxiliary coordinates ya such that αaλaλ̃a≕
yaþ1 − ya. One can then think of the problem as a set
of geometric constraints linking the momentum twistors
and dual momentum twistors

Z ¼ ðλ; iλxÞ; Z̃ ¼ ð−ixλ̃; λ̃Þ; ð42Þ

with similar objects introduced for the auxiliary variables,
Yi ¼ ðλ; iλyiÞ and Ỹi ¼ ð−iyiλ̃; λ̃Þ. This approach appears
promising, and we will pursue more applications of it in
future work.

IV. EXEMPLI GRATIA: A PAIR OF OCTICS

In this section we analyze the singularity arising
from the Landau diagram in Fig. 2. We do not take
hAiBiAiþ1Biþ1i ¼ 0 so this is a more general case of
the kinematics analyzed before, but it has the advantage of
being more symmetric. In this case, we can describe the
Landau locus in a particularly compact manner. We
analyze only the case where the three-point amplitude
in the center is MHV, so the λ spinors of the internal lines

are proportional. This means we can set the corresponding
twistors equal; as a result, they are all labeled as C in the
diagram. The parity-conjugate case can be obtained by
projective duality. Projective duality exchanges points and
planes and sends lines to lines so the dual of three lines
intersecting in one point is a configuration of three lines
belonging to the same plane.

A. On-shell space

We begin by discussing the on-shell space, using some
notions from projective geometry. In order for all propa-
gators of the diagram in Fig. 2 to be on shell, we must have
that the lines in twistor spaceC ∧ D1, C ∧ D2, andC ∧ D3

intersect with all of the lines defining their adjacent dual
points.
To begin, we focus on solving the on-shell conditions for

the propagators on the outside of the diagram. The skew
lines A1 ∧ B1, A2 ∧ B2 and A3 ∧ B3 are contained in a
unique quadric surfaceQ1. Similarly for A4 ∧ B4, A5 ∧ B5,
A6 ∧ B6 which determine a unique quadric Q2 and for
A7 ∧ B7, A8 ∧ B8, A9 ∧ B9 which determine a quadricQ3.
Through any point of Q1 passes a line which intersects
A1 ∧ B1, A2 ∧ B2 and A3 ∧ B3. Conversely, any line which
intersects these three lines is completely contained in the
quadric Q1. Thus, in order for the propagators surrounding
this loop to be on shell, we must have that the line
parametrizing the loop momentum is contained in Q1. In
order to parametrize this line, we may write a generic point
PA1B1

on the line A1 ∧ B1 with

PA1B1
¼ A1 þ ν1B1: ð43Þ

Then we can write the space of lines I1 contained in the
quadric Q1 as

I1 ¼ ðPA1B1
A2B2Þ ∩ ðPA1B1

A3B3Þ
¼ ðPA1B1

∧ A2ÞhB2; PA1B1
; A3; B3i

− ðPA1B1
∧ B2ÞhA2; PA1B1

; A3; B3i: ð44Þ

Following this same procedure for the quadrics Q2 and Q3,
one obtains three lines I1, I2, and I3 parametrizing the
three-loop momenta in terms of three parameters ν1, ν2, ν3.
Finally, we must impose the on-shell conditions of the

internal lines. These are enforced by demanding that the
lines parametrizing the loop momenta intersect. We need
hI1I2i ¼ hI1I3i ¼ hI2I3i ¼ 0. We have evaluated these
equations for generic external kinematics using SageMath

[31]. Two of the variables can be eliminated rationally,
resulting in a degree-16 polynomial in the final ν3. This
polynomial is reducible: it factors into two irreducible
degree-eight polynomials. Thus, the on-shell space for this
polynomial involves roots of irreducible octics.

FIG. 2. Three-pentagon cubic-root singularity. We have
described the dual points of the diagram in terms of lines in
twistor space.
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B. Landau equations

We now proceed to describe the Landau equations for
this integral. We introduce dual embedding space coor-
dinates

Xi ¼
Ai ∧ Bi

hIAiBii
; Wa ¼

C ∧ Da

hICDai
: ð45Þ

The components ðαα̇Þ of these embedding space dual
coordinates are the usual four-dimensional dual coordinates
(which we denote by lowercase letters).
In terms of these four-dimensional dual coordinates the

Landau loop equations read

α1x1 þ α2x2 þ α3x3 þ α02w2 − α03w3

¼ ðα1 þ α2 þ α3 þ α02 − α03Þw1; ð46Þ

α4x4 þ α5x5 þ α6x6 þ α03w3 − α01w1

¼ ðα4 þ α5 þ α6 þ α03 − α01Þw2; ð47Þ

α7x7 þ α8x8 þ α9x9 þ α01w1 − α02w2

¼ ðα7 þ α8 þ α9 þ α01 − α02Þw3: ð48Þ

When upgraded to twistor language we get

α1
A1 ∧ B1

hIA1B1i
þ α2

A2 ∧ B2

hIA2B2i
þ α3

A3 ∧ B3

hIA3B3i
þ α02

C ∧ D2

hICD2i
− α03

C ∧ D3

hICD3i
¼ ðα1 þ α2 þ α3 þ α02 − α03Þ

C ∧ D1

hICD1i
: ð49Þ

In the following it will be convenient to redefine

αi → αihIAiBii; α0a → α0ahICDai: ð50Þ

The three-loop Landau equations are

α1A1 ∧ B1 þ α2A2 ∧ B2 þ α3A3 ∧ B3 þ α02C ∧ D2 − α03C ∧ D3

¼ α1hIA1B1i þ α2hIA2B2i þ α3hIA3B3i þ α02hICD2i − α03hICD3i
hICD1i

C ∧ D1; ð51Þ

α4A4 ∧ B4 þ α5A5 ∧ B5 þ α6A6 ∧ B6 þ α03C ∧ D3 − α01C ∧ D1

¼ α4hIA4B4i þ α5hIA5B5i þ α6hIA6B6i þ α03hICD3i − α01hICD1i
hICD2i

C ∧ D2; ð52Þ

α7A7 ∧ B7 þ α8A8 ∧ B8 þ α9A9 ∧ B9 þ α01C ∧ D1 − α02C ∧ D2

¼ α7hIA7B7i þ α8hIA8B8i þ α9hIA9B9i þ α01hICD1i − α02hICD2i
hICD3i

C ∧ D3: ð53Þ

By wedging with C it follows that

α1A1∧B1∧Cþα2A2∧B2∧Cþα3A3∧B3∧C¼0; ð54Þ

α4A4∧B4∧Cþα5A5∧B5∧Cþα6A6∧B6∧C¼0; ð55Þ

α7A7∧B7∧Cþα8A8∧B8∧Cþα9A9∧B9∧C¼0: ð56Þ

From the first equation we obtain that

α1hA1B1CA3i þ α2hA2B2CA3i ¼ 0; ð57Þ

α1hA1B1CB3i þ α2hA2B2CB3i ¼ 0: ð58Þ

If we impose the condition that these two equations are
compatible for nonvanishing α1 and α2, we obtain that

hA1B1CA3ihA2B2CB3i − hA1B1CB3ihA2B2CA3i ¼ 0:

ð59Þ
This is just the condition that C belongs to the quadric
containing the lines A1 ∧ B1, A2 ∧ B2 and A3 ∧ B3.
There are three such quadrics. Recall that we have

denoted by Q1 the quadric generated by the lines
A1 ∧ B1, A2 ∧ B2 and A3 ∧ B3, etc. The three quadrics
Q1, Q2 and Q3 in P3 intersect in 2 × 2 × 2 ¼ 8 points. We
will discuss the surprisingly rich geometry of these inter-
section points in Sec. IV C.
We can use the equations above to solve for α2 and α3 in

terms of α1, etc. We obtain

α2 ¼ −α1
hA1B1CA3i
hA2B2CA3i

; α3 ¼ −α1
hA1B1CA2i
hA3B3CA2i

: ð60Þ
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We can also contract the first Landau loop equation (51)
with a line which is transversal to A1B1, A2B2, A3B4 and
CD2. Recall that four skew lines always have at least two
(possibly coinciding) transversals. One of the transversals
is CD1. To obtain the other, we use that the quadric which
contains the lines A1B1, A2B2 and A3B3 has equation

hA1B1A3XihA2B2B3Xi − ðA3 ↔ B3Þ ¼ 0: ð61Þ

Even though this expression looks like it is not symmetric
under permutations of the lines AiBi for i ¼ 1, 2, 3, it can
be shown (via Plücker identities) that it is symmetric. The

line CD2 intersects this quadric in two points, which are
given by the solutions of the following quadratic equation
in μ:

hA1B1A3ðCþμD2ÞihA2B2B3ðCþμD2Þi− ðA3 ↔B3Þ ¼ 0:

ð62Þ

One of the solutions is μ ¼ 0 since C belongs to the
quadric (see above). Then the other solution can be found
straightforwardly:

μ ¼ −
hA1B1A3D2ihA2B2B3Ci þ hA1B1A3CihA2B2B3D2i − ðA3 ↔ B3Þ

hA1B1A3D2ihA2B2B3D2i − ðA3 ↔ B3Þ
: ð63Þ

If we denote this intersection point by P12 ¼ Cþ μD2, then the second transversal line can be taken to be
L12 ¼ ðP12A1B1Þ ∩ ðP12A2B2Þ. Then, using the transversality property we have

hA1B1L12i ¼ hA2B2L12i ¼ hA3B3L12i ¼ hCD2L12i ¼ 0; ð64Þ

so upon contraction with the Landau loop Eq. (51) with L12 we find

−α03hCD3L12i ¼
α1hIA1B1i þ α2hIA2B2i þ α3hIA3B3i þ α02hICD2i − α03hICD3i

hICD1i
hCD1L12i: ð65Þ

We can similarly build a transversal L13 to A1B1, A2B2, A3B3 and CD3 (which is different from CD1). Contracting the
Landau loop Eq. (51) with L13 we find

α02hCD2L13i ¼
α1hIA1B1i þ α2hIA2B2i þ α3hIA3B3i þ α02hICD2i − α03hICD3i

hICD1i
hCD1L13i: ð66Þ

Hence,

α02
α03

¼ −
hCD1L13ihCD3L12i
hCD2L13ihCD1L12i

: ð67Þ

Similarly, we find

α03
α01

¼ −
hCD2L21ihCD1L23i
hCD3L21ihCD2L23i

;

α01
α02

¼ −
hCD3L32ihCD2L31i
hCD1L32ihCD3L31i

: ð68Þ

Taking the product of these ratios we find

hCD1L13ihCD3L12ihCD2L21ihCD1L23i
× hCD3L32ihCD2L31i þ hCD2L13ihCD1L12i
× hCD3L21ihCD2L23ihCD1L32ihCD3L31i ¼ 0: ð69Þ

This equation expresses a codimension-one constraint on
the external kinematics, written in terms of lines in twistor
space parametrizing the loop momenta in the on-shell space
and transversals to those lines. It is the leading Landau
singularity for this diagram, defining points at which the
integral can develop a branch cut.

C. Intersection of three quadrics

In practice, even when an algebraic root is needed to
describe the on-shell space for an initial choice of kinematic
variables, it is often possible to find other variables which
rationalize the root. One fruitful way to find such variables
is to consider the problem geometrically and find variables
that naturally parametrize the on-shell space. These varia-
bles will typically be complicated to express in terms of the
external kinematics, as they are in some sense derived
“outside in,” starting from the solution to the on-shell
conditions and deriving a parametrization of the external
kinematics from that. As such, one should not think of the
existence of these parametrizations as evidence that a
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diagram lacks a given root: rather, they move the complexity
of the root to the complexity of the external kinematics.
A familiar example of this kind is that of the four-mass

box integral (with massless internal lines). It is known that
this integral can be computed in terms of two quantities z
and z which are the roots of a quadratic equation in the
Mandelstam invariants of external lines (see Ref. [32] for a
discussion). Unlike the case of the two-loop six-point planar
MHVamplitude inN ¼ 4 super Yang-Mills (see Ref. [33]),
these square roots do not disappear even if we use
momentum twistors to parametrize the external kinematics.
However, we can choose to parametrize the kinematics in a
different way instead. It turns out (see Ref. [32]) that the
quantities z and z̄ have the following geometric interpre-
tation: in momentum twistor space the external kinematics
of a four-mass box is represented by four skew lines in P3.
Such four lines generically have two transversals (lines
which intersect all four of them). On each of these trans-
versals there are four intersection points. Taking the cross-
ratio of these four points on one of the transversals one
obtains z and on the other transversal z̄ [34]. Using this
result, we can parametrize the on-shell space of the massive
box integral as follows. We first pick the two transversals;
then we pick four pairs of points, with the first member of
the pair on the first transversal and the second on the second
transversal. These four lines are the lines corresponding to
the dual external points in twistor space and therefore we
have specified the kinematics completely. However, in this
parametrization the variables z and z̄ arise naturally and do
not involve any square roots.
We will now attempt a similar exercise for the three-loop

diagram in Fig. 2. Consider three quadrics in P3 which are
in general position. Then, by Bezout’s theorem they
intersect in eight points. However, the converse does not
hold. That is, given eight points in general position (that is
no four of them coplanar and therefore no three of them
collinear) it is not possible to find three quadrics containing
all of them. Indeed, suppose it was possible to find such
three quadrics Q1, Q2, Q3. Then we have a two-parameter
(parametrized by points in P2) quadric λ1Q1 þ λ2Q2 þ
λ3Q3 which also passes through all eight points. However,
given seven points in general position (meaning that they
impose independent conditions on the coefficients of a
quadric containing them) they determine seven of the nine
independent coefficients (up to scaling) of a generic
quadric. In other words, two coefficients remain undeter-
mined. But through eight points in generic position passes
only a one-parameter family of quadrics. The resolution of
this paradox is that specifying seven of the points uniquely
determines the eighth.
This is an instance of what is sometimes called Cramer’s

paradox. This paradox first arose in the study of the
intersection of cubic curves in the projective plane. The
polynomial defining a cubic curve in P2 has ten terms.

Considered up to rescaling by a nonvanishing quantity,
such a cubic is parametrized by a point in P9. Imposing that
a point is contained in the curve imposes one constraint. If
we impose that the curve contains nine points (and if these
conditions are independent), then the cubic is completely
determined. Now consider the intersection of two such
cubic curves. According to Bezout’s theorem, they intersect
in 3 × 3 ¼ 9 points. However, we have shown that through
nine points in generic position passes a single cubic. The
conclusion is that the nine intersection points are not
independent. Indeed, one can show that if two cubic curves
pass through eight points, then they pass through a ninth
point as well and this ninth point is uniquely determined by
the other eight.
If we denote the eight intersection points of three

quadrics by 1;…; 8, we should be able to express the
constraints on the eighth point in terms of four-brackets.
Indeed, Turnbull (see Ref. [35]) has given such constraints.
A necessary condition is

det

� h1256ih3476i h1258ih3478i
h1276ih3456i h1276ih3458i

�
¼ 0: ð70Þ

If points 1;…; 7 are kept fixed, this is the equation of a
quadric in the coordinates of the eighth point. It can be
easily checked that the determinant in Eq. (70) vanishes
when point 8 coincides with any of 1;…; 7. See also
Ref. [36], p. 153.
Eight points which are the intersection of three quadrics

are sometimes called a Cayley octad. Their geometry has
been studied more recently by Dolgachev and Ortland (see
Ref. [37]). Interestingly, their description of the space of
Cayley octads is in terms of a concept called Gale duality.
The general form of this duality can be described very
concretely as follows (see Ref. [38] for an introduction).
Given m points in Pn (with m > nþ 2), we can represent
their configuration by a ðnþ 1Þ ×m matrix, with a left
action of PGLðnþ 1Þ. If this configuration is generic, then
we can, by this left action, make the left ðnþ 1Þ × ðnþ 1Þ
minor the identity. Then the configuration is parametrized
by a ðnþ 1Þ × ðm − n − 1Þ matrix A. This matrix A fits in
ðm − n − 1Þ ×m matrix ð1m−n−1; ATÞ. The matrix AT , in
turn, corresponds to a configuration of m points in Pm−n−2.
It is advantageous to apply this duality when the dimension
of the embedding projective space decreases. This has also
been described, in a related geometric context, in Ref. [39],
p. 299 (see also Refs. [33,40] for applications). The
constraints linking these eight points can be described as
follows: the configuration of the eight intersection points of
three quadrics in P3 is Gale self-dual.
The eighth point can be parametrized rationally in terms

of the other seven, as described in Ref. [41], Proposition
7.1. Indeed, we can take the first seven points to have
homogeneous coordinates

BOURJAILY, VERGU, and VON HIPPEL PHYS. REV. D 108, 085021 (2023)

085021-14



ð1∶0∶0∶0Þ; ð0∶1∶0∶0Þ; ð0∶0∶1∶0Þ; ð0∶0∶0∶1Þ; ð71Þ

ð1∶1∶1∶1Þ; ðα6∶ β6∶γ6∶δ6Þ; ðα7∶β7∶γ7∶δ7Þ: ð72Þ

Then, the eighth point has coordinates ðα8∶β8∶γ8∶δ8Þ given by

α8 ¼
−γ6β7 þ δ6β7 þ β6γ7 − δ6γ7 − β6δ7 þ γ6δ7

−β6δ6β7γ7 þ γ6δ6β7γ7 þ β6γ6β7δ7 − γ6δ6β7δ7 − β6γ6γ7δ7 þ β6δ6γ7δ7
; ð73Þ

β8 ¼
−γ6α7 þ δ6α7 þ α6γ7 − δ6γ7 − α6δ7 þ γ6δ7

−α6δ6α7γ7 þ γ6δ6α7γ7 þ α6γ6α7δ7 − γ6δ6α7δ7 − α6γ6γ7δ7 þ α6δ6γ7δ7
; ð74Þ

γ8 ¼
−β6α7 þ δ6α7 þ α6β7 − δ6β7 − α6δ7 þ β6δ7

−α6δ6α7β7 þ β6δ6α7β7 þ α6β6α7δ7 − β6δ6α7δ7 − α6β6β7δ7 þ α6δ6β7δ7
; ð75Þ

δ8 ¼
−β6α7 þ γ6α7 þ α6β7 − γ6β7 − α6γ7 þ β6γ7

−α6γ6α7β7 þ β6γ6α7β7 þ α6β6α7γ7 − β6γ6α7γ7 − α6β6β7γ7 þ α6γ6β7γ7
: ð76Þ

To check that these eight points belong to three inde-
pendent quadrics we proceed as follows. We start with
a quadric

qðxÞ ¼
X3
i;j¼0

qijxixj; ð77Þ

with qij ¼ qji. Imposing that the first five points belong to
this quadric implies that q00 ¼ q11 ¼ q22 ¼ q33 ¼ 0 and
q01 þ q02 þ q03 þ q12 þ q13 þ q23 ¼ 0. The conditions
that the last four points belong to the quadric are linear
constraints on the ðq01; q02; q03; q12; q13; q23Þ which can be
put in the form of a 4 × 6 matrix:0BBBB@

1 1 1 1 1 1

α6β6 α6γ6 α6δ6 β6γ6 β6δ6 γ6δ6

α7β7 α7γ7 α7δ7 β7γ7 β7δ7 γ6δ7

α8β8 α8γ8 α8δ8 β8γ8 β8δ8 γ8δ8

1CCCCA: ð78Þ

Then we can check that with the values in Eq. (73) all
the 4 × 4 minors of this matrix vanish. This means that the
eighth point is automatically contained in any quadric that
contains the other seven.
Hence, it is possible to parametrize the on-shell kin-

ematics rationally, in a sense from the “inside out.” That is,
we first pick seven points as above and an eighth point
whose coordinates are given by Eq. (73). Then we find
three quadrics such that these eight points are their
intersection. Then, in each quadric we pick three lines,
member of the same ruling and not containing any of the
eight intersection points. Finally, we take these nine lines as
the external lines AiBi for i ¼ 1;…; n. The ability to
rationally parametrize the on-shell spaces is connected

with the possibility of computing the integral in terms of
polylogarithms (see Ref. [42]). It would be interesting to
understand better the relation between this parametrization
and those in terms of cluster variables (see Appendix B).
Finally, let us discuss possible degenerations of these

configurations of eight points (which are the on-shell space
of the diagram in Fig. 2). This has been studied in
Dolgachev and Ortland (see Ref. [37], p. 176). They found
three classes of possible degenerations:
(1) Two of the eight points become coincident.
(2) Four points become coplanar (when this happens the

other four points also become coplanar as follows
from Gale duality).

(3) The eight points lie on a twisted cubic. This is a
codimension-two condition.

The physical interpretation of the second and third pos-
sibilities is mysterious, with third in particular able to
correspond to a codimension-two Landau singularity. The
first, on the other hand, is exactly the Landau locus of
Eq. (69), as we confirm below.
When two points P7 and P8 of a Cayley octad

become coincident, we have hm; n; 7; 8i ¼ 0. Therefore
by Gale duality, the four-bracket of the complementary
points hi j k li ¼ 0 where the points fPm; Pn; P7; P8g ∪
fPi; Pj; Pk; Plg ¼ fP1;…; P8g. Since this is true for all
groups of four points in fP1;…; P6g, this means that the
points P1;…; P6 belong to the same plane. In fact, they also
belong to the same conic, since if they did not then they
would not belong to a quadric (since the intersection of a
quadric with a plane is a conic). Six points do not generically
belong to a conic, a conic being determined by five points
(in general position in the same plane).
Since the points P1;…; P6 belong to the same plane we

can pick them without loss of generality to have zero fourth
component. We take
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P1 ¼ ð1∶0∶0∶0Þ; P2 ¼ ð0∶1∶0∶0Þ; ð79Þ

P3 ¼ ð0∶0∶1∶0Þ; P4 ¼ ð1∶1∶1∶0Þ; ð80Þ

P5 ¼ ða1∶ b1∶c1∶0Þ; P6 ¼ ða2∶b2∶c2∶0Þ: ð81Þ

If the equation of the conic is

c00x20 þ 2c01x0x1 þ 2c02x0x2 þ c11x21 þ 2c12x1x2

þ c22x22 ¼ 0; ð82Þ

then imposing that the points P1;…; P6 belong to it implies
that c00 ¼ c11 ¼ c22 ¼ 0, a12 ¼ −a01 − a02. The condi-
tions for the last two points to belong to this conic are

c01
c02

¼ −
c1ða1 − b1Þ
b1ða1 − c1Þ

¼ −
c2ða2 − b2Þ
b2ða2 − c2Þ

: ð83Þ

This first equality can be used to determine the coefficients
cij (up to a multiplicative factor) while the last equality can
be used to determine c2.
Without loss of generality we take the remaining

(coinciding) two points to be

P7 ¼ P8 ¼ ð0∶0∶0∶1Þ: ð84Þ

Note that this parametrization cannot be obtained from the
one in Eq. (73) for finite values of α, β, γ, δ. This not
unexpected when one considers that a configuration where
two points coincide lies on the boundary of the space of
those parameters.
A quadric Q ⊂ P3 is defined by a general equationX

0≤i≤j≤3
qijxixj: ð85Þ

Imposing the conditions that the points P1;…; P6 ∈Q we
obtain that qij ¼ cij if i; j∈ f0; 1; 2g. If we impose the
condition that P7; P8 ∈Q, we obtain q33 ¼ 0. The coef-
ficients q03, q13 and q23 remain undetermined.
We therefore obtain three natural quadrics which contain

all eight points:

Q1ðxÞ ¼
X

0≤i≤j≤2
cijxixj þ q03x0x3; ð86Þ

Q2ðxÞ ¼
X

0≤i≤j≤2
cijxixj þ q13x1x3; ð87Þ

Q3ðxÞ ¼
X

0≤i≤j≤2
cijxixj þ q23x2x3: ð88Þ

It can be checked that these quadrics are generically
smooth, by computing the determinants of the associated

symmetric matrices. We can set the coefficients q03, q13 and
q23 to one without loss of generality.
Next, we need to choose three skew lines in each of

these quadrics. To find a line in a smooth quadric Q ¼P
3
i;j¼0 qijxixj we first pick a point on Q with coordinates

ðξ0∶ ξ1∶ξ2∶ξ3Þ. We can find this point by, for example,
picking ξ0, ξ1, ξ2 and solving for ξ3, which is a linear
equation.
The (projective) tangent plane to Q at ξ is given by the

equation
P

ij qijxiξj ¼ 0. The intersection of this tangent
plane with the quadric consists of two lines. Doing this
three times we obtain six lines and we can choose three
which are skew. Then we repeat this construction for Q1,
Q2 and Q3 to obtain the lines AiBi for i ¼ 1;…; 9.
In practice, we can build these lines using the Segre map.

For example, we have

Q1ðxÞ ¼ x0ðc01x1 þ c02x2 þ x3Þ þ c12x1x2: ð89Þ

Then, the condition imposed by this quadric can be
solved by

x0 ¼ α0β0; c01x1 þ c02x2 þ x3 ¼ α1β1; ð90Þ

− c12x1 ¼ α0β1; x2 ¼ α1β0: ð91Þ

Then for every point C on the surface defined byQ1 we can
find coordinates ðᾱ0∶ ᾱ1Þ and ðβ̄0∶β̄1Þ. The lines through C
are given by α being constant or β being constant. The
points where Q1 vanishes can then be parametrized by

x0 ¼ α0β0; x1 ¼ −
α0β1
c12

; ð92Þ

x2 ¼ α1β0; x3 ¼ α1β1 þ
c01
c12

α0β1 − c02α1β0: ð93Þ

For Q2 we have

Q2ðxÞ ¼ x1ðc01x0 þ c12x2 þ x3Þ þ c02x0x2: ð94Þ

We can then solve this constraint by

x0 ¼ α0β0; x1 ¼ α0β1; ð95Þ

x2 ¼ −
α1β1
c02

; x3 ¼ α1β0 − c01α0β0 þ c12
α1β1
c02

: ð96Þ

Finally, for Q3 we have

Q3ðxÞ ¼ x2ðc02x0 þ c12x1 þ x3Þ þ c01x0x1; ð97Þ

which can be solved by
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x0 ¼ α0β0; x1 ¼ −
α1β1
c01

; ð98Þ

x2 ¼ α0β1; x3 ¼ α1β0 − c02α0β0 þ c12
α1β1
c01

: ð99Þ

Next, we pick C to be one of the points P1;…; P8 and
find the pointsD1,D2,D3. The point C can be either one of
the two coinciding points P7 ¼ P8 or one of the six
conconic points P1;…; P6. We consider one example of
each kind.
If we pick C ¼ P7 ¼ ð0∶0∶0∶1Þ, then we can take

D�
1 ¼

(
ð0∶0∶β0∶ β1 − c02β0Þ;
ð0∶ − α0∶0∶c12α1 þ c01α0Þ;

ð100Þ

D�
2 ¼

(
ð0∶0∶ − β1∶c02β0 þ c12β1Þ;
ðα0∶0∶0∶α1 − c01α0Þ;

ð101Þ

D�
3 ¼

(
ð0∶ − β1∶0∶c01β0 þ c12β1Þ;
ðα0∶0∶0∶α1 − c02α0Þ:

ð102Þ

We can in principle analyze all of these possibilities,
but to illustrate let us just pick Dþ

1 , D
þ
2 and Dþ

3 . Then, we
can show that Eq. (69) holds as follows. We first notice
that hCD2L21i ¼ hCD1L21i (up to a multiplicative factor)
since C, D1, D2 are collinear. Then, hCD1L21i ¼ 0 since
L21 is a line transversal to CD1 in Q2. Similarly, we have
hCD1L12i ¼ hCD2L12i ¼ 0.
We can instead pickC ¼ P1 ¼ ð1∶0∶0∶0Þ. Then we find

D�
1 ¼

8<: ðα0∶ 0∶α1∶ − c02α1Þ;�
β0∶ −

β1
c12

∶0∶ c01β1
c12

�
;

ð103Þ

D�
2 ¼

(
ðα0∶0∶0∶α1 − c01α0Þ;
ðβ0∶β1∶0∶ − c02β0Þ;

ð104Þ

D�
3 ¼

(
ðα0∶0∶0∶α1 − c02α0Þ;
ðβ0∶0∶β1∶ − c02β0Þ:

ð105Þ

As before, let us pick the case Dþ
1 , D

þ
2 and Dþ

3 to
analyze in detail. Here we have that Dþ

2 ¼ Dþ
3 . Then,

we have hCD2L13i ¼ hCD3L13i ¼ 0 and hCD3L12i ¼
hCD2L12i ¼ 0. Plugging this in Eq. (69) we find that it
is satisfied.
Checking for the other cases, we find that, in general,

making two of the points P1…P8 coincident lands us on the
Landau locus, as expected.

V. EXEMPLI GRATIA: A SEXTIC IN TWO
DIMENSIONS

Let us now consider the following integral for
two-dimensional kinematics:

ð106Þ

This integral involves six propagators and three, two-
dimensional loop momenta; as such, its leading singular-
ities would correspond to residues around which all
propagators become on-shell. How many solutions to the
cut equations do we get?
Let us consider the case where all external momenta are

massive, with p2
i ≕M2

i , and for the “all-mass” case of
internal propagators: where the qi propagators have poles at
q2i ≕m2

i and the li propagators have poles at l2
i ≕ μ2i .

To determine the leading singularities of this Feynman
integral, it is useful to introduce dual coordinates
p1 ≕ x3 − x2, etc., and l1 ≕ y3 − y2, etc. [43]; in terms
of these, we have qi ¼ yi − xi. Without loss of generality,
we may translate the xi’s and express them in light-cone
coordinates so that

x1 ≔ ð0;0Þ; x2¼ðM3=M2;M3M2Þ; x3≕ðxþ3 ;M2
2=x

þ
3 Þ;

ð107Þ

where

xþ3 þ 1

xþ3
≔

M2
2 þM2

3 −M2
1

M2M3

: ð108Þ

Next, we may parametrize the solutions to the on-shell
conditions for q1, l2 and l3 by expressing

y1 ≔ ðyþ1 ; m2
1=y

þ
1 Þ; y2≕ ðψþ

2 ; μ
2
3=ψ

þ
2 Þ þ y1;

y3 ≕ ðψþ
3 ; μ

2
2=ψ

þ
3 Þ þ y1: ð109Þ

In terms of these variables, the on-shell condition for l1

(l2
1 ¼ μ21) now reads

l2
1 ¼ ðy3 − y2Þ2 ¼ ðψþ

3 − ψþ
2 Þ
�
μ23
ψþ
2

−
μ22
ψþ
2

�
; ð110Þ
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which can be reexpressed as the condition that

μ3ψ
þ
3

μ2ψ
þ
2

þ
�
μ3ψ

þ
3

μ2ψ
þ
2

�
−1

¼ μ22 þ μ23 − μ21
μ2μ3

: ð111Þ

This leaves only the final two on-shell conditions

q22 ¼m2
2 ¼ ðx2 − y2Þ2 and q23 ¼m2

3 ¼ ðx3 − y3Þ2 ð112Þ

to solve.
Let us define

a ≔ xþ3 ; b ≔
μ3ψ

þ
3

μ2ψ
þ
2

; and let x ≔
μ2

M2ψ
þ
2

;

y ≔
M2y

þ
1

m1

: ð113Þ

We may think of a, b as being fixed by external kinematics
since

aþ a−1 ¼M2
2 þM2

3 −M2
1

M2M3

and bþ b−1 ¼ μ22 þ μ23 − μ21
μ2μ1

;

ð114Þ

leaving us only with x and y to determine using the final
equations (112).
In terms of x, y, the final-cut conditions (112) are

given by

m2
2 ¼M2

3þμ23þm2
1þm1μ3

�
xyþ 1

xy

�
−M3μ3

�
xþ 1

x

�
−m1M3

�
yþ 1

y

�
;

m2
3 ¼M2

2þμ22þm2
1þm1μ2

�
xy
b
þ b
xy

�
−M2μ2

�
b
ax

þax
b

�
−m1M2

�
y
a
þa
y

�
: ð115Þ

To count the number of solutions to these cut equations,
we may proceed as follows. Notice that the equations (115)
take the following form in y:

0 ¼ A1ðxÞ þ B1ðxÞyþ C1ðxÞy−1;
0 ¼ A2ðxÞ þ B2ðxÞyþ C2ðxÞy−1; ð116Þ

where Ai, Bi, Ci are some rational functions of x. Such a
system which is linear in y and y−1 may be solved with the
compatibility condition����A1 C1

A2 C2

��������B1 A1

B2 A2

���� ¼����B1 C1

B2 C2

����2 ð117Þ

which takes the general form (in terms of x) of

c3x3 þ c2x2 þ c1xþ c0 þ c−1x−1 þ c−2x−2 þ c−3x−3 ¼ 0;

ð118Þ

where the coefficients c−3;…; c3 are rational functions of
the external kinematic variables a, b, μi, mi, Mi. It is clear
that there are generally six solutions in x to (118), and for
each of them we may uniquely specify the corresponding
point y. Therefore, there are six roots in ðx; yÞ to the final-
cut conditions.
Explicit expressions for the coefficients ci in (118) can

be given but turn out to be rather cumbersome; for example,

c3 ¼ −
M2

2M3a2m2
1μ2μ

2
3

b
þM2

2M3a2m2
1μ

2
2μ3

b2

þM2M2
3am

2
1μ2μ

2
3

b
−
M2M2

3am
2
1μ

2
2μ3

b2
:

In all, the coefficients c−3;…; c3 involve sums of 4, 29, 86,
124, 86, 29, and 4 monomials, respectively. We have
checked (using generic numerical values for the masses)
that the roots of the sextic (118) are not expressible in terms
of radicals.
The Landau equations imply that singularities of the

diagram occur when some of these six roots coincide, and
this happens when the discriminant of the degree-six
equation in Eq. (118) vanishes. The discriminant of a
polynomial of degree n is homogeneous in the coefficients
with degree 2n − 2, so for a degree-six polynomial we
obtain a discriminant of degree ten. For our case the
discriminant is a degree-ten polynomial in c−3;…; c3 with
246 terms [44].
Let us now discuss the Landau loop equations. The

Landau equations read

0 ¼ α2q2 þ β3l3 − β1l1;

0 ¼ α1q1 þ β2l2 − β3l3;

0 ¼ α3q3 þ β1l1 − β2l2: ð119Þ

Okun and Rudik (see Ref. [46]) take the cross-products
[47] with qi, which removes the terms dependent on α.
Doing this we obtain

β3½l3q2� ¼ β1½l1q2�;
β2½l2q1� ¼ β3½l3q1�;
β1½l1q3� ¼ β2½l2q3�: ð120Þ

Taking the product and simplifying we obtain

½l1q3�½l2q1�½l3q2� ¼ ½l1q2�½l2q3�½l3q1�: ð121Þ
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This has the geometrical interpretation that the lines
through xi and yi intersect in a single point. Let us show
that this is indeed the case.
The lines through the points ðxi; yiÞ intersect in a single

point if there exist t1, t2 and t3 such that

y1 þ t1ðx1 − y1Þ ¼ y2 þ t2ðx2 − y2Þ ¼ y3 þ t3ðx3 − y3Þ:
ð122Þ

Using the fact that qi ¼ yi − xi, l1 ¼ y3 − y2, l2 ¼ y1 −
y3 and l3 ¼ y2 − y1 we find

y1 − y2 þ t1ðx1 − y1Þ − t2ðx2 − y2Þ ¼ 0;

y2 − y3 þ t2ðx2 − y2Þ − t3ðx3 − y3Þ ¼ 0;

y3 − y1 þ t3ðx3 − y3Þ − t1ðx1 − y1Þ ¼ 0; ð123Þ

which implies

−l3 − t1q1 þ t2q2 ¼ 0;

−l1 − t2q2 þ t3q3 ¼ 0;

−l2 − t3q3 þ t1q1 ¼ 0: ð124Þ

Taking the cross-product with the li, separating the
remaining terms in the left-hand side and right-hand side
and taking their product we obtain

½q1l3�½q2l1�½q3l2� ¼ ½q2l3�½q3l1�½q1l2�: ð125Þ

This equation and its derivation look similar to Eq. (69)
arising in the N ¼ 4 super Yang-Mills theory.
We have presented this example as two-dimensional

(massive) cousin of our four-dimensional (massless) exam-
ples; indeed, the pentagon loops in four dimensions are
similar to triangle loops in two dimensions. Due to the fact
that it arises already at three points, it is possible to analyze
this example in full detail, with fewer algebraic complex-
ities. The geometry of the problem is also much easier to
understand thanks to the two-dimensional nature of the
problem.
This example also serves to show that higher-order

polynomials arise quite generically once the equations
enforcing the on-shell condition are sufficiently coupled.
As such, we expect such examples to become more
common in the literature as the community investigates
more complicated diagrams.

VI. CONCLUSIONS AND DISCUSSION

As we have shown, leading singularities in Feynman
diagrams can indeed involve cubic or higher roots, con-
trary to the naive expectation one might have from
Landau’s analysis. However, Landau’s analysis is still
correct: as we have argued, these cubic or higher roots

do not lead to forbidden behavior on codimension-one
singularities, because any such singularity will only make
two roots coincide. To make more roots coincide requires a
singularity of higher codimension. We have illustrated this
behavior in three concrete examples, a cubic root in a
diagram in planar N ¼ 4 super Yang-Mills, roots of a pair
of octic polynomials for a more general diagram in the
same theory, and roots of a sextic polynomial for massive
scalars in two dimensions.
The existence of cubic-root and more unusual singular-

ities in higher codimension limits may have several impli-
cations. It would be interesting to see how their existence
interacts with approaches that attempt to derive, not just
leading, but iterative singularities of general Feynman
diagrams [17,48,49], in which one would expect to need
to take into account these singularities of higher codimen-
sion in some way. They should also be relevant for series
expansions of Feynman diagrams. In particular, there should
be special kinematic limits in which these codimension-two
limits are uncovered as leading behavior. It would be
interesting to see if there is a kinematic limit of physical
interest in which these singularities are especially relevant.
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APPENDIX A: EXTENDED DISCUSSION
OF THE LEADING SINGULARITY

Due to our choice of a blue vertex in the center of the
on-shell diagram in Eq. (15), we have l1 ¼ A ∧ B, l2 ¼
B ∧ C and l3 ¼ A ∧ C. This solves the on-shell condi-
tions for the internal lines. We are left with the following
on-shell conditions:

hAB12i ¼ hAB34i ¼ 0; ðA1Þ

hBC45i ¼ hBC67i ¼ hBC89i ¼ 0; ðA2Þ

hAC12i ¼ hAC89i ¼ hAC; 10; 11i ¼ 0: ðA3Þ

Consider the following two equalities: hBC89i ¼
hAC89i ¼ 0. If C and z8 and z9 are not collinear, then
we have that A and B belong to the plane spanned by C and
z8 and z9. Equivalently, we can say that z8 and z9 belong to
the plane spanned by A, B and C.
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Similarly, from hAC12i ¼ hAB12i ¼ 0 if A and z1 and
z2 are not collinear, then we have that B and C belong to the
plane spanned by A and z1 and z2. Equivalently, we have
that z1, z2 belong to the plane spanned by A, B and C. This
means that the lines z8 ∧ z9 and z1 ∧ z2 belong to the same
plane A ∧ B ∧ C, which means that they must intersect.
But this is only possible if h1289i ¼ 0.
So instead, let us take A on the line z1 ∧ z2 and C on the

line z8 ∧ z9. This means that the two three-point vertices
neighboring the middle three-point vertex are white, which
implies that the lines A ∧ B and A ∧ C and z1 ∧ z2
intersect in a point and similarly, the lines A ∧ C, B ∧ C
and z8 ∧ z9 intersect in a point.
We have the following constraints left to satisfy:

hBC45i ¼ hBC67i ¼ hAC; 10; 11i ¼ hAB34i ¼ 0: ðA4Þ

Since A belongs to the line z1 ∧ z2 we have A ¼ z2 þ
αz1 ¼ 2̂ for some complex α. Next, the constraint
hAC; 10; 11i ¼ 0 can be solved by taking C to belong to

the plane A ∧ z10 ∧ z11. Since C also belongs to the line
z8 ∧ z9, we have C ¼ ð89Þ ∩ ð2̂; 10; 11Þ ¼ −9̂.
The three remaining constraints involve the point B:

hBC45i ¼ hBC67i ¼ hAB34i ¼ 0. Geometrically this
means that B belongs to the planes C ∧ z4 ∧ z5, C ∧ z6 ∧
z7 and A ∧ z3 ∧ z4, so it must belong to their intersection

B ¼ ðC45Þ ∩ ðC67Þ ∩ ðA34Þ ¼ ð9̂45Þ ∩ ð9̂67Þ ∩ ð2̂34Þ:

If desired, the intersection ð9̂45Þ ∩ ð9̂67Þ can be
expanded as

ð9̂45Þ∩ ð9̂67Þ ¼ z9̂ ∧ z4h59̂67i− z9̂ ∧ z5h49̂67i ¼−z9̂ ∧ z5̂;

where we have introduced z5̂¼ð54Þ∩ ð679̂Þ¼ z5h4679̂i−
z4h5679̂i.
Each hatted variable is linear in α so B is cubic in α. The

final on-shell condition we impose is hAB23i ¼ 0 which is
αh123Bi ¼ 0. If we take α ≠ 0, we obtain a cubic poly-
nomial in α from h123Bi ¼ 0.

APPENDIX B: EXPLICIT PARAMETRIZATION OF THE CUBIC ROOT

In this appendix we present a few expressions that were too long for the main text, regarding the cluster parametrization
in Sec. III C.
First, we give our parametrization for the momentum twistors in terms of our cluster chart, as these were too long for the

main text:

Z1 ¼ ð2e6 þ 1; e7ðe2ðe8 þ 1Þ þ 5Þ; 0; 0Þ; ðB1Þ

Z2 ¼ ð1; 0; 0; 0Þ; ðB2Þ

Z3 ¼ ð0; 0; 0; 1Þ; ðB3Þ

Z4 ¼
�
0; 0;

3

2
e2e4e10; ðe2ð2e7e6 þ e6 þ 1Þe4 þ e4 þ 1Þe10 þ 1

�
; ðB4Þ

Z5 ¼
�
0;−e1e22e3e4e8ðe2ðe8 þ 1Þ þ 5Þe10;

3

2
e2e4ððe3ðe5 þ 1Þe1 þ e1 þ 1Þe8e2 þ e2 þ 5Þe10;

e2 þ ððe2 þ 5Þðe2ð2e7e6 þ e6 þ 1Þe4 þ e4 þ 1Þ
þ e2ðe4ðe3 þ e2ððe3 þ 1Þðe6 þ 1Þ þ 2ðe3ðe5 þ 1Þ þ 1Þe6e7Þ þ 1Þe1
þ e1 þ e4 þ e2e4ð2e7e6 þ e6 þ 1Þ þ 1Þe8Þe10 þ 5

�
; ðB5Þ
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Z6 ¼
�
−e2e3e24e8e29e10;

− e2e3e4ðe2ðe8 þ 1Þ þ 5Þððe8ððe7 þ 1Þe9e4 þ e4 þ 1Þ þ 1Þe10e9 þ e9 þ 5Þ;
3

2
e2e4ðe9 þ e3ððe5 þ 1Þðe9 þ 5Þ

þ e9ðe8ðe4ðe9 þ 1Þ þ 1Þe5 þ e5 þ e8 þ 1Þe10Þ þ 5Þ;
e4ððe3 þ e2ððe3 þ 1Þðe6 þ 1Þ þ 2ðe3ðe5 þ 1Þ þ 1Þe6e7Þ þ 1Þðe9 þ 5Þ
þ e3e9ðe2ðe8 þ e6ðe8 þ e7ð2ðe8 þ 1Þ

þ e5ðe8ðe4ðe9 þ 2Þ þ 2Þ þ 2ÞÞ þ 1Þ þ 1Þ þ 1Þe10Þ þ 5

�
; ðB6Þ

Z7 ¼
�
−e2e3e24e8e29e10;

− e2e3e4ðe2ðe8 þ 1Þ þ 5Þððe8ððe7 þ 1Þe9e4 þ e4 þ 1Þ þ 1Þe10e9 þ e9 þ 4Þ;
3

2
e2e4ðe9 þ e3ððe5 þ 1Þðe9 þ 4Þ

þ e9ðe8ðe4ðe9 þ 1Þ þ 1Þe5 þ e5 þ e8 þ 1Þe10Þ þ 4Þ;
e4ððe3 þ e2ððe3 þ 1Þðe6 þ 1Þ þ 2ðe3ðe5 þ 1Þ þ 1Þe6e7Þ þ 1Þðe9 þ 4Þ
þ e3e9ðe2ðe8 þ e6ðe8 þ e7ð2ðe8 þ 1Þ

þ e5ðe8ðe4ðe9 þ 2Þ þ 2Þ þ 2ÞÞ þ 1Þ þ 1Þ þ 1Þe10Þ þ 4

�
; ðB7Þ

Z8 ¼
�
−ðe2 þ 4Þe4e9;−ðe2ðe8 þ 1Þ þ 5Þððe2 þ 4Þe4ððe7 þ 1Þe9 þ 1Þ þ 4Þ;

3

2
e5ððe2 þ 4Þe4ðe9 þ 1Þ þ 4Þ þ 6;

e6ðe7ðe5ððe2 þ 4Þe4ðe9 þ 2Þ þ 8Þ þ 8Þ þ 4Þ þ 3

�
; ðB8Þ

Z9 ¼
�
−ðe2 þ 3Þe4e9;−ðe2ðe8 þ 1Þ þ 5Þððe2 þ 3Þe4ððe7 þ 1Þe9 þ 1Þ þ 3Þ;

3

2
ðe5ððe2 þ 3Þe4ðe9 þ 1Þ þ 3Þ þ 3Þ;

e6ðe7ðe5ððe2 þ 3Þe4ðe9 þ 2Þ þ 6Þ þ 6Þ þ 3Þ þ 2

�
; ðB9Þ

Z10 ¼
�
−1;−

1

3
ð3e7 þ 2Þðe2ðe8 þ 1Þ þ 5Þ; e5;

1

3
e5e6e7

�
; ðB10Þ

Z11 ¼ ð−4;−2ð2e7 þ 1Þðe2ðe8 þ 1Þ þ 5Þ; 3e5; 0Þ: ðB11Þ

Second, we presented our cubic polynomial in the cluster coordinates in Eq. (27) in terms of coefficients ci. These were
also too long for the main text and are presented here:
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c0 ¼ e4e22 þ e1e4e8e22 þ e1e3e4e8e22 þ e4e8e22 þ e4e9e22 þ e4e7e9e22 þ e1e4e8e9e22

þe1e3e4e8e9e22 þ e4e8e9e22 þ e1e4e7e8e9e22 þ e1e3e4e7e8e9e22 þ e4e7e8e9e22

þe1e3e4e5e7e8e9e22 þ 2e4e2 þ e1e8e2 þ e1e4e8e2 þ e1e3e4e8e2 þ e4e8e2 þ e8e2

þ2e4e9e2 þ 2e4e7e9e2 þ e1e4e8e9e2 þ e1e3e4e8e9e2 þ e4e8e9e2 þ e1e4e7e8e9e2

þe1e3e4e7e8e9e2 þ e4e7e8e9e2 þ e1e3e4e5e7e8e9e2 þ e2 þ e4 þ e4e9 þ e4e7e9 þ 1; ðB12Þ

c1 ¼ e4e22 þ 4e4e6e22 þ e1e4e8e22 þ e1e3e4e8e22 þ e4e8e22 þ 4e1e4e6e8e22 þ 4e1e3e4e6e8e22

þ 4e4e6e8e22 þ e4e9e22 þ 4e4e6e9e22 þ 4e4e6e7e9e22 þ e1e4e8e9e22 þ e1e3e4e8e9e22

þ e4e8e9e22 þ 4e1e4e6e8e9e22 þ 4e1e3e4e6e8e9e22 þ 4e4e6e8e9e22 þ 4e1e4e6e7e8e9e22

þ 4e1e3e4e6e7e8e9e22 þ 4e4e6e7e8e9e22 þ 4e1e3e4e5e6e7e8e9e22 þ 2e4e2 þ 10e4e6e2

þ 5e6e2 þ e1e8e2 þ e1e4e8e2 þ e1e3e4e8e2 þ e4e8e2 þ 5e1e6e8e2 þ 5e1e4e6e8e2

þ 5e1e3e4e6e8e2 þ 5e4e6e8e2 þ 5e6e8e2 þ e8e2 þ 2e4e9e2 þ 10e4e6e9e2

þ 10e4e6e7e9e2 þ e1e4e8e9e2 þ e1e3e4e8e9e2 þ e4e8e9e2 þ 5e1e4e6e8e9e2

þ 5e1e3e4e6e8e9e2 þ 5e4e6e8e9e2 þ 5e1e4e6e7e8e9e2 þ 5e1e3e4e6e7e8e9e2

þ 5e4e6e7e8e9e2 þ 5e1e3e4e5e6e7e8e9e2 þ e2 þ e4 þ 6e4e6 þ 6e6 þ e4e9

þ 6e4e6e9 þ 6e4e6e7e9 þ 1; ðB13Þ

c2 ¼ e6ð2e4e26e22 þ e4e22 þ 4e4e6e22 þ 2e1e4e26e8e
2
2 þ 2e1e3e4e26e8e

2
2 þ 2e4e26e8e

2
2

þ e1e4e8e22 þ e1e3e4e8e22 þ e4e8e22 þ 4e1e4e6e8e22 þ 4e1e3e4e6e8e22 þ 4e4e6e8e22

þ 2e4e26e9e
2
2 þ e4e9e22 þ 4e4e6e9e22 þ 2e4e26e7e9e

2
2 þ 3e4e6e7e9e22 þ 2e1e4e26e8e9e

2
2

þ 2e1e3e4e26e8e9e
2
2 þ 2e4e26e8e9e

2
2 þ e1e4e8e9e22 þ e1e3e4e8e9e22 þ e4e8e9e22

þ 4e1e4e6e8e9e22 þ 4e1e3e4e6e8e9e22 þ 4e4e6e8e9e22 þ 2e1e4e26e7e8e9e
2
2

þ 2e1e3e4e26e7e8e9e
2
2 þ 2e4e26e7e8e9e

2
2 þ 2e1e3e4e5e26e7e8e9e

2
2 þ 3e1e4e6e7e8e9e22

þ 3e1e3e4e6e7e8e9e22 þ 3e4e6e7e8e9e22 þ 3e1e3e4e5e6e7e8e9e22 þ 8e4e26e2 þ 4e26e2

þ 3e4e2 þ 14e4e6e2 þ 6e6e2 þ 4e1e26e8e2 þ 4e1e4e26e8e2 þ 4e1e3e4e26e8e2

þ 4e4e26e8e2 þ 4e26e8e2 þ e1e8e2 þ e1e4e8e2 þ e1e3e4e8e2 þ e4e8e2 þ 6e1e6e8e2

þ 6e1e4e6e8e2 þ 6e1e3e4e6e8e2 þ 6e4e6e8e2 þ 6e6e8e2 þ e8e2 þ 8e4e26e9e2

þ 3e4e9e2 þ 14e4e6e9e2 þ 8e4e26e7e9e2 þ 10e4e6e7e9e2 þ 4e1e4e26e8e9e2

þ 4e1e3e4e26e8e9e2 þ 4e4e26e8e9e2 þ e1e4e8e9e2 þ e1e3e4e8e9e2 þ e4e8e9e2

þ 6e1e4e6e8e9e2 þ 6e1e3e4e6e8e9e2 þ 6e4e6e8e9e2 þ 4e1e4e26e7e8e9e2

þ 4e1e3e4e26e7e8e9e2 þ 4e4e26e7e8e9e2 þ 4e1e3e4e5e26e7e8e9e2 þ 4e1e4e6e7e8e9e2

þ 4e1e3e4e6e7e8e9e2 þ 4e4e6e7e8e9e2 þ 4e1e3e4e5e6e7e8e9e2 þ e2 þ 8e4e26 þ 8e26

þ 2e4 þ 12e4e6 þ 12e6 þ 8e4e26e9 þ 2e4e9 þ 12e4e6e9 þ 8e4e26e7e9 þ 8e4e6e7e9 þ 2Þ; ðB14Þ
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c3 ¼ e26ðe4e22 þ 2e4e6e22 þ e1e4e8e22 þ e1e3e4e8e22 þ e4e8e22 þ 2e1e4e6e8e22

þ 2e1e3e4e6e8e22 þ 2e4e6e8e22 þ e4e9e22 þ 2e4e6e9e22 þ 2e4e6e7e9e22 þ e1e4e8e9e22

þ e1e3e4e8e9e22 þ e4e8e9e22 þ 2e1e4e6e8e9e22 þ 2e1e3e4e6e8e9e22 þ 2e4e6e8e9e22

þ 2e1e4e6e7e8e9e22 þ 2e1e3e4e6e7e8e9e22 þ 2e4e6e7e8e9e22 þ 2e1e3e4e5e6e7e8e9e22

þ 4e4e2 þ 8e4e6e2 þ 4e6e2 þ 2e1e8e2 þ 2e1e4e8e2 þ 2e1e3e4e8e2 þ 2e4e8e2

þ 4e1e6e8e2 þ 4e1e4e6e8e2 þ 4e1e3e4e6e8e2 þ 4e4e6e8e2 þ 4e6e8e2 þ 2e8e2

þ 4e4e9e2 þ 8e4e6e9e2 þ 8e4e6e7e9e2 þ 2e1e4e8e9e2 þ 2e1e3e4e8e9e2 þ 2e4e8e9e2

þ 4e1e4e6e8e9e2 þ 4e1e3e4e6e8e9e2 þ 4e4e6e8e9e2 þ 4e1e4e6e7e8e9e2

þ 4e1e3e4e6e7e8e9e2 þ 4e4e6e7e8e9e2 þ 4e1e3e4e5e6e7e8e9e2 þ 2e2 þ 4e4 þ 8e4e6

þ 8e6 þ 4e4e9 þ 8e4e6e9 þ 8e4e6e7e9 þ 4Þ: ðB15Þ
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