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We study the separability of the Dirac equation in the background of four dimensional charged rotating
asymptotically flat black hole solution of supergravity and the low energy string theory known as STU
black hole. In particular, we analyze in detail the separability conditions in the pairwise equal charge STU
black hole space-time [M. Cvetič and D. Youm, Phys. Rev. D 54, 2612 (1996).]. While in the latter case the
minimally coupled Dirac equation is not separable, the introduction of a specific torsion term ensures the
separability. The source of the torsion is the Kalb-Ramond field, which is an integral part of string theory,
but further aspects of its properties and coupling to fermionic fields remain to be studied. To derive the
torsion, two different approaches are used in conformally related frames, showing that the torsion is not
unique. The correspondingly modified Dirac equations in the Einstein and string frames are shown to be
separable. Furthermore, the massless radial and angular wave equations are examined; they show close
similarity with corresponding equations for the standard Kerr background. A generalization of the
Teukolsky equation for the pairwise equal case is conjectured. We also briefly analyze a technically
sophisticated radial equation in the massive case.
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I. INTRODUCTION

Recent progress in the gravitational waves detection
[1,2] stimulated considerable interest in studies of various
aspects of gravitational theories [3,4]. The very important
issue is related to consistency of theoretical gravitational
models with modern observational tests [2,5]. Some of
those issues have a rather long history, in particular, studies
of quantum fields in general relativity settings. Those
studies are important from the point of view of stability
of the black hole space-times [6], caused by different types
of perturbations, including gravitational ones.
The gravitational theories considered to be alternatives to

the standard general relativity should satisfy a number of
important conditions. First of all, those theories should
allow a well-posed initial value formulation. The second,
stress-energy tensors for matter fields should satisfy

sensible energy conditions. The third, stability require-
ments should be imposed on black hole solutions. Finally,
any time-dependent field in the corresponding gravita-
tional background should show causal propagation.
Additional requirements may also be imposed for a
particular study.
It is known that within string theory, as a preeminent

candidate for consistent theory of quantum gravity, at
least the first two mentioned requirements are satisfied.
Moreover, the black hole solutions of string theory provide
an important testing ground to study the mesoscopic and
microscopic properties of black holes in a consistent theory
of quantum gravity. In particular, the so-called STU black
holes of the effective toroidally compactified string theory
play an important role in this program due to the explicit
form of the space-time metric and other field sources. The
general STU black holes are specified by the mass, angular
momentum, four electric, and magnetic charges and they
were only relatively recently obtained [7–9] by employing
a solution generation technique.1 On the other hand, in this
paper we shall focus on the explicit four charges examples
of STU black holes [12–16] and provide detailed technical
results for the pairwise equal charges case. We should note
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1Its BPS limit was obtained in [10,11].
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that further specialization of the Cvetič-Youm dyonic black
hole is the Kerr-Sen solution [17,18] where two of the four
charges are set to zero. The Kerr-Sen solution spurred
serious interest to black holes in the framework of string
theory, particularly in supergravity [7–9,12–16,19–22].
Even though the STU black hole is not treated as a

physically motivated alternative to the Kerr solution, it can
rather be considered as a useful mutiparametric generali-
zation of the latter one, obtained within the well-defined
theory. The other advantages of STU models are the facts
that being Lagrangian theories they in principle allow well-
defined initial value formulation and matter sectors of those
models satisfy the strong, weak, and dominant energy
conditions of general relativity.
STU black holes became important models for inves-

tigation of implications of supergravity and in general string
theory in the gravitational sector, particularly onmesoscopic
properties of black holes. On the other hand, due to the rich
matter sector of STU models, the issue of considerable
importance is the study ofmaterial fields on STUblack holes
backgrounds. Being multiparametric deformations of the
standard Kerr solution, STU black holes allow one to obtain
more general features of classical and quantum fields on
generalized rotating black hole backgrounds, subject to
consistency conditions and thus representing an important
testing ground beyond the Kerr space-time.
To the best of our knowledge, only scalar fields and, in

particular, a minimally coupled probe scalar field on
rotating STU black hole space-times, have been studied
extensively so far. One of the most important issues in
studies of any type of fields is a separability of correspond-
ing field equations [23,24] for suitably chosen coordinates.
The separability is not just a mere technical issue making
corresponding equations tractable, but it is directly related
to the existence of Killing and Killing-Yano tensors, which
reflect symmetry properties of the background geometry
and are related to conserved charges and the quantum case.
Moreover they are crucial for a general notion of integra-
bility of various field equations [25–27].
Symmetry properties were also studied in the context of

establishing relations with conformal field theory (CFT),
particularly near horizon geometry of the rotating STU
black holes examined [23,24]. Studies of quantum fields in
the near horizon limit not only revealed “hidden conformal
symmetry” [23,24,28] but also deepened the understanding
of the space-time geometry and its thermodynamic proper-
ties [28–30]. Conformal symmetry played an important role
for studying stability [31], Love numbers [32], even though
stability was considered in a more general setup [33,34].
Several other issues, for instance vacuum polarization on
STU black hole backgrounds, were also studied [35–37].
In contrast to the scalar sector in STU supergravity, the

fermionic one is much less studied. The fermionic sector is
also important to understand how fermions can be coupled
to the fields in the bosonic sector. In this work our purpose

is much more modest; namely, we are to examine the
Dirac equation on the rotating STU black hole background
[12,16] which is characterized by its mass, angular
momentum, and four independent charges, but for technical
reasons we study the case when the charges are equal in
pairs (pairwise equal charges geometry).
It should be emphasized that nonetheless the fact that the

STU solutions are known for more than 20 years, the
fermionic and other higher spin field equations were hardly
studied for the STU black hole backgrounds. As far as we
know only the Dirac equation in the Kerr-Sen space-time
with equal electric charges was considered [38] together
with a related concept of the torsional Killing-Yano
tensor; the symmetries of the Dirac operator were studied
in an accompanying paper [39]. We point out that similar
concepts for the five-dimensional string theory inspired
models appeared a little bit earlier [40,41] and torsional
generalization of the Killling-Yano tensor was pro-
posed [42].
The Dirac equation on the Kerr-Sen space-time was

shown to have additional coupling to the scalar sector of the
STU model, since the torsion term which was taken into
account to provide separability was associated with the
Kalb-Ramond field or using “dual” description to the axion
field [39] and the latter ones are an essential part of string
theory. We also point out that for the five-dimensional case
the torsion was shown to be related to Chern-Simons terms
[40,41], but it can also be associated with the Kalb-Ramond
field. Being an integral part of string theory, the Kalb-
Ramond field gives natural contribution to the Dirac
equation and this coupling should be a characteristic feature
for certain fermionic fields in string theory. In order to have
a more comprehensive picture of this coupling, its peculiar
features of the fermionic sector of the corresponding
supergravity models should be studied. But one of the
most important consequences caused by this additional
coupling which can already be claimed is, namely, the
torsion gives rise to the generalized Killing-Yano tensors
and it modifies symmetry properties of the Dirac equa-
tion [27,39].
We consider the Dirac equation on the rotating STU

black hole background for the so-called pairwise equal
charges case, when the electric and magnetic charges are set
equal in pairs. Due to lack of studies in this vein, it can be
considered as a further step in examination of fermionic
fields on STU solutions backgrounds in comparison with
the paper [38], where a particular case of the Kerr-Sen
solution was studied. At the same time deriving more
general results than in [38] the current work gives a more
general and more detailed view of the transformational
properties of the Dirac equation and corresponding
wave functions due to transformation of the frames we
work with.
This paper is organized as follows. In the next section

we give a sketchy analysis of the black hole metric in the
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Einstein frame. In Sec. III the massive Dirac equation in the
Einstein frame is considered, namely, after amodification its
separability is demonstrated. The Dirac equation in the
string frame is examined in Sec. IV, and some peculiarities
related to the frame transformation are also discussed. In
Sec. V we study the equations for the radial and angular
components of the Dirac wave function in themassless case.
In Sec.VI a brief analysis of the radialwave equations for the
massive case is given. Finally, the last section contains some
conclusions and a discussion of obtained results. There are
also two appendixes which clarify some technical areas for
the current study and also some conceptual issues.

II. THE FOUR-DIMENSIONAL ROTATING STU
BLACK HOLE IN THE EINSTEIN FRAME

Four-dimensional STU supergravity can be derived
in the heterotic formulation, namely ten-dimensional

supergravity is toroidally reduced on T6 with appropriate
truncations. It allows one to derive four-dimensional
N ¼ 2 supergravity which is coupled to three vector
multiplets. The other approach which gives rise to the
four-dimensional STU supergravity is based on reduction
of eleven-dimensional supergravity on S7 together with
appropriate truncation from N ¼ 8 to N ¼ 2 supersym-
metry and turning off the gauge coupling constant. We
point out that within classical supergravity, STU solutions
have SLð2;RÞ3 symmetry and any of those SLð2;RÞ
corresponds to a duality, namely dilaton-axion, complex
Kahler form, and complex structure field. The SLð2;RÞ3
might be broken down to SLð2;ZÞ3 by quantum correc-
tions or quantization of charges.
The bosonic sector of theN ¼ 2 supergravity coupled to

three vector multiplets in the four-dimensional case can be
cast in the form [8,9,16]

L4 ¼ R � 1 − 1

2

X3
j¼1

�
�dϕj ∧ dϕj þ e2ϕj � dχj ∧ dχj

�
−
1

2
e−ϕ1

�
eϕ2−ϕ3 � F1 ∧ F1

þ eϕ2þϕ3 � F2 ∧ F2 þ eϕ3−ϕ2 � F 1 ∧ F 1 þ e−ϕ2−ϕ3 � F 2 ∧ F 2

�
− χ1ðF1 ∧ F 1 þ F2 ∧ F 2Þ; ð1Þ

where R is the scalar curvature, ϕj and χj denote dilaton
and axion fields, respectively, and the Fi and F i, i ¼ 1, 2
are the gauge field strengths defined in terms of potentials,
namely they can be written as follows:

F1 ¼ dA1 − χ2dA2; ð2Þ

F2 ¼ dA2 þ χ2dA1 − χ3dA1 þ χ2χ3dA2; ð3Þ

F 1 ¼ dA1 þ χ3dA2; ð4Þ

F 2 ¼ dA2: ð5Þ

We point out that other forms of the model, its symmetries,
and dualities are given in [9]. It is known that the four-
dimensional Lagrangian (1) can be obtained via reduction
of a six-dimensional supergravity Lagrangian which in-
cludes the Ricci scalar, dilaton, and Kalb-Ramond fields;
more details about the reduction and relations to other
approaches can be found in [9,16,43,44].
The model defined by the Lagrangian (1) allowed one to

construct a rotating black hole solution with two electric
and two magnetic charges [12,13,16]. Recently its gener-
alization was also used to derive a more general solution

with eight Uð1Þ charges (four electric and four magnetic
charges) [8,9]. To derive the solution with multiple charges
the Kerr space-time is used as a seed solution; therefore, the
obtained space-time can be treated as a natural generali-
zation of the Kerr one, as well as the generalization of the
earlier derived Kerr-Sen solution where only electric
charges are taken into account [17,18].
The rotating black hole space-time with four indepen-

dentUð1Þ charges [12] can be written as a 4D fibration over
3D base space [16,24] and in the Einstein frame it takes the
form

ds4¼−Δ−1=2
0 GðdtþAÞ2þΔ1=2

0

�
dr2

X
þdθ2þX

G
sin2θdφ2

�
;

ð6Þ

where

X ¼ r2 − 2mrþ a2; ð7Þ

G ¼ r2 − 2mrþ a2 cos2 θ; ð8Þ

A ¼ 2ma sin2 θ
G

�ðΠc − ΠsÞrþ 2mΠs

�
dφ; ð9Þ
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Δ0 ¼
Y3
I¼0

�
rþ 2m sinh2 δI

�þ 2a2 cos2 θ

�
r2 þmr

X3
I¼0

sinh2 δI

þ 4m2ðΠc − ΠsÞΠs − 2m2
X

I<J<K

sinh2 δI sinh2 δJ sinh2 δK

�
þ a4 cos4θ; ð10Þ

where the following abbreviations are used:

Πc ¼
Y3
I¼0

cosh δI; Πs ¼
Y3
I¼0

sinh δI; ð11Þ

and here δI , I ¼ 0, 1, 2, 3 denote the Uð1Þ charges.
We note, that explicit relations for all of the bosonic sector
fields of the model (1) are given in [16]. The asymptotic
charges of the black hole can be parametrized as
follows:

G4M ¼ 1

4
m
X3
I¼0

cosh 2δI; G4J ¼ maðΠc − ΠsÞ;

G4QI ¼
1

4
m sinh 2δI; I ¼ 0; 1; 2; 3; ð12Þ

and here G4 is a four-dimensional gravitational constant.
In the following we consider a particular case of the

metric (6), namely when δ0 ¼ δ2 and δ1 ¼ δ3 that is the
so-called pairwise equal charges case; the general solution
will be examined elsewhere. For this particular case, the
factor Δ0 can be reduced to a considerably simpler form,
namely:

Δ0 ¼
�ðrþ 2m sinh2δ1Þðrþ 2m sinh2δ2Þ þ a2 cos2 θ

�
2:

ð13Þ

If all of the charges are set equal to each other, the metric
(6) and the factor Δ0 reduces to the dyonic solution with
equal electric and magnetic charges, and if all the charges
are set to zero the metric turns to be the Kerr one.
The Boyer-Lindquist form of the metric for the Kerr

black hole is very convenient for various applications; in
particular, it makes the separation of variables for wave
equations more transparent and easier to handle. We also
note that for the minimally coupled scalar field [24] a
particularly chosen frame for the metric (6) is not impor-
tant, since it is sensitive to the metric only, but not to the
frame; a similar conclusion is valid also for the Hamilton-
Jacobi equation. The given form of the metric (6) is not
the Boyer-Lindquist one, but after simple transformations
it can be rewritten in the desirable form; namely, we
obtain

ds2 ¼ −
X

Δ1=2
0

�
dtþ 1

G

�
Ā − aΔ1=2

0 sin2θ
�
dφ

�
2

þ Δ1=2
0

�
dr2

X
þ dθ2

�
þ sin2θ

Δ1=2
0

�
adt −

1

G

�
Δ1=2

0 X − aĀ
�
dφ

�
2

; ð14Þ

where Ā ¼ 2maððΠc − ΠsÞrþ 2mΠsÞsin2θ. For the
particular case when the charges are equal in pairs, the
Boyer-Lindquist form (14) can be considerably simplified;
namely we obtain

ds2¼−
X

Δ1=2
0

ðdt−asin2θdφÞ2þΔ1=2
0

�
dr2

X
þdθ2

�
þsin2θ

Δ1=2
0

�
adt−

�ðrþ2ms21Þðrþ2ms22Þþa2
�
dφ
�
2
;

ð15Þ

where si ¼ sinh δi, i ¼ 1, 2 for simplicity. It should be
noted that here only the factor Δ0 depends on both r and θ
while in the initial form (6) even for this particular case, two
functions, namely G and Δ0, depend on both arguments
r and θ. It is easy to check that if δ1 ¼ δ2 ¼ 0 the
metric (15) reduces exactly to the Boyer-Lindquist form
of the Kerr metric. As it was noted above, in the following
we will examine only the pairwise equal charges case (15),
leaving the general case for further studies.
Having the metric for this case rewritten in the Boyer-

Lindquist form (15), it is easy to extract the corresponding
tetrad which will be used in the following calculations:

e0 ¼
ffiffiffiffi
X

p

Δ1=4
0

ðdt − asin2 θdφÞ; e1 ¼ Δ1=4
0ffiffiffiffi
X

p dr;

e2 ¼ Δ1=4
0 dθ; e3 ¼ sin θ

Δ1=4
0

ðadt − FðrÞdφÞ; ð16Þ

where FðrÞ ¼ ðrþ 2ms21Þðrþ 2ms22Þ þ a2. We point out
that upper indices in the left-hand sides of the relations (16)
enumerate the frame fields. Obviously the Boyer-Lindquist
tetrad (16) is Lorentzian. It should be noted that the Boyer-
Lindquist tetrad can be written for the general metric
represented in the suitable form (14).
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The pairwise equal black hole space-time can be also
derived as a solution of field equations for a truncated
version of the Lagrangian (1) which in Einstein frame takes
the form [16]

L¼ R � 1− 1

2
� dϕ ∧ dϕ−

1

2
e2ϕ � dχ ∧ dχ −

1

2
e−ϕ

× ð�F1 ∧ F1 þ�F2 ∧ F2Þ−
1

2
χðF1 ∧ F1 þF2 ∧ F2Þ;

ð17Þ

where for simplicity we denoted ϕ≡ ϕ1 and χ ≡ χ1 and the
other dilaton and axion fields are set equal to zero. We also
note that the latter condition gives rise to the relation for
gauge fields Fi ¼ F i, i ¼ 1, 2 since corresponding charges
become equal in this limit. We also note that the truncation
giving rise to the Lagrangian (17) is consistent [16].
Using a Legendre transformation for the axion field χ, or

equivalently a dualization procedure, one can rewrite the
Lagrangian (17) in the form where instead of the axion
field the Kalb-Ramond field appears. The latter form of
the Lagrangian, as we will see in the Sec. IV, is more
convenient for separation of variables in the Dirac equation.
Details of the transformation of the axion field are given in
Appendix B.

III. THE DIRAC EQUATION IN THE EINSTEIN
FRAME

In a curved space-time the massive Dirac equation for a
neutral particle takes the form

γ̂μð∂μ þ ΓμÞΨþ μeΨ ¼ 0; ð18Þ

where γ̂μ are space-time gamma matrices, Γμ denotes
space-time components of the spinor-connection one-form,
and μe is the fermion mass. Space-time gamma matrices γ̂μ

can be decomposed in terms of more convenient Lorentzian
gamma matrices γ̂A as follows:

γ̂μ ¼ eμAγ̂
A; ð19Þ

where eμA are components of an inverse tetrad. The gamma
matrices γ̂A satisfy the standard anticommutation relation:

fγ̂A; γ̂Bg≡ γ̂Aγ̂B þ γ̂Bγ̂A ¼ 2ηAB ð20Þ

and here ηAB is the inverse of the Lorentzian metric ηAB.
Here the Lorentzian metric is chosen to take a mostly
plus signature, namely ηAB ¼ diagð−1;þ1;þ1;þ1Þ. The
Lorentzian gamma matrices are chosen as follows [45]:

γ̂0 ¼ i

�
0 Î

Î 0

�
; γ̂1 ¼ i

�
0 σ̂3

−σ̂3 0

�
;

γ̂2 ¼ i

�
0 σ̂1

−σ̂1 0

�
; γ̂3 ¼ i

�
0 σ̂2

−σ̂2 0

�
; ð21Þ

where Î is the 2 × 2 identity matrix and σi, i ¼ 1, 2, 3 are
the Pauli matrices. The spinor connection Γ is defined in the
following form:

Γ ¼ 1

8
½γ̂A; γ̂B�ωAB ¼ 1

4
γ̂Aγ̂BωAB ð22Þ

and here ωAB are components of a spin-connection one-
form. The latter ones satisfy the torsion-free Cartan
equation:

deA þ ωA
B ∧ eB ¼ 0; ð23Þ

where eA ¼ eAμdxμ is the tetrad (frame field) for our metric.
Having the relation (22), it is easy to write the space-time
components of the spinor connection, namely,

Γμ ¼
1

4
γ̂Aγ̂BωABμ: ð24Þ

Using the relations (A1)–(A6) for the spin-connection one-
forms given in the Appendix A one can obtain the explicit
expression for the contracted product γ̂μΓμ:

γ̂μΓμ ¼
1

2Δ1=2
0

��
Δ1=4

0

ffiffiffiffi
X

p �0
γ̂1 þ 1

sin θ

�
Δ1=4

0 sin θ
�
;θ
γ̂2

þ aF0

2Δ1=4
0

sin θγ̂3γ̂0γ̂1 −
a
ffiffiffiffi
X

p

Δ1=4
0

cos θγ̂3γ̂0γ̂2
�
: ð25Þ

As we have noted above, the standard Dirac equation in
the Kerr-Sen space-time was not separable [38]; nonsepar-
ability was also confirmed for the five-dimensional Dirac
equation for another supergravity background [40]. To cure
the difficulty a specific term dubbed as the torsion, due to
its complete antisymmetry, was introduced [38,42]. We
point out that the source of the torsion is the Kalb-Ramond
field which is an essential part of string theory, and more
persuasive confirmation of this fact will be given in the
following section. Therefore the torsion form reflects
additional coupling between the Dirac and Kalb-Ramond
or axion fields. To have more comprehensive understanding
of this coupling, especially in different frames, a thorough
study of the fermionic sector is needed, but it goes far
beyond the main scope of this work.
On the other hand, separability of the Dirac equation in a

curved space-time is naturally related to the existence of a
Killing-Yano tensor and its conformal cousin [25,27,46]. It
was shown that for string theory backgrounds the standard
Killing-Yano tensor (KYT) or conformal Killing-Yano
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tensor (CKYT) should be replaced by the generalized
Killing-Yano tensor (GKYT) or generalized conformal
Killing-Yano tensor (GCKYT) respectively [38,42].
GCKYT can be written in terms of standard tensor
notations or more concise differential forms notations,
what makes its definition more transparent. Namely, for
the generalized conformal Killing-Yano k-form ω in an
n-dimensional space-time we write:

∇T
Xω −

1

kþ 1
iXdTωþ 1

n − kþ 1
X♭ ∧ δTω ¼ 0; ð26Þ

where X is a vector field, defined on the space-time
manifold (or more precisely on a tangent bundle over
the space-time manifold), iX is the interior product, X♭

denotes a one-form constructed via the canonical (“musi-
cal”) isomorphism for the field X, symbols ∇, d, and δ
correspond to covariant, exterior derivatives and coderiva-
tive, respectively, and the superscript T denotes their
torsion modified counterparts which are defined as follows:

∇T
Xω ¼ ∇Xωþ 1

2
iXT∧

1
ω; ð27Þ

dTω ¼ dω − T∧
1
ω; ð28Þ

δTω ¼ δω −
1

2
T∧

2
ω; ð29Þ

and in the right-hand sides of the upper relations T is the
torsion form and specific contracted wedge products are
used. The contracted wedge product is defined as follows:

χ∧
0
η ¼ χ ∧ η; χ∧

j
η ¼ iXaχ ∧

j−1
iXa

η: ð30Þ

Here we point out that vector fields Xa form an ortho-
normal basis gðXa;XbÞ ¼ ηab and there is a summation
over a in the contracted product (30).
Instead of differential form representation for the gen-

eralized Killing-Yano form, the standard tensor notations
can be used. In particular, since we are interested
in the Killling-Yano tensors of the rank two in the four-
dimensional space-time, the generalized conformal Killing-
Yano tensor kμν satisfies the following equation:

∇ðTÞ
μ kλκ ¼ ∇ðTÞ

½μ kλκ� þ
2

3
gμ½λ∇ðTÞ

jσj k
σ
κ�; ð31Þ

where ∇ðTÞ
μ is the torsion-modified covariant derivative

which acts on a tensor Wλκ as follows:

∇ðTÞ
μ Wλκ ¼ ∇μWλκ þ

1

2
Tμλ

σWσκ −
1

2
Tμκ

σWλσ: ð32Þ

The bracket ½� for subscript indices in (31) means anti-
symmetrization over the indices enclosed by the bracket.

Using the tetrad basis (16) we write the generalized
conformal Killing-Yano two-form ω and its Hodge dual,
namely, generalized Killing-Yano form f in the following
way:

ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ 2ms21Þðrþ 2ms22Þ

q
e0 ∧ e1 � a cosθe2 ∧ e3;

ð33Þ

f� ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ 2ms21Þðrþ 2ms22Þ

q
e2 ∧ e3 � a cosθe0 ∧ e1:

ð34Þ

We point out here that for the particular cases when all the
charges are set equal (equal charges dyonic solution) or set
to zero (Kerr case), the generalized Killing-Yano forms (33)
and (34) are reduced to the ordinary Killing-Yano forms (or
tensors in tensor notations) satisfying the standard torsion-
less Killing-Yano equations.
We also note that for the torsionless forms, for instance

for the above-mentioned particular cases the conformal
Killing-Yano form ω� is closed, namely dω� ¼ 0 and the
Killing-Yano form f� is co-closed δf� ¼ 0; therefore, it
simplifies the torsionless counterpart of Eq. (26). Since we
take into account the torsion to maintain the structure of the
Killing-Yano equation for a particularly chosen Killing-
Yano form, it is natural to assume that instead of the
closed and co-closed forms there is a T-closed form ω� and
T-co-closed form f� respectively; namely, it means that
dTω� ¼ 0 and δTf� ¼ 0 correspondingly.
It can be shown that the form ω� (33) is the generalized

conformal Killing-Yano form with respect to the torsion:

T� ¼ a

Δ3=4
0

�
r1 þ r2 � 2χðrÞ�

×

�
sin θe0 ∧ e1 ∧ e3 ∓

ffiffiffiffi
X

p
cos θ

χðrÞ e0 ∧ e2 ∧ e3
�
;

ð35Þ

where for simplicity we denote ri ¼ rþ 2ms2i , i ¼ 1, 2 and
χðrÞ ¼ ffiffiffiffiffiffiffiffiffi

r1r2
p

. For the particular case when all the charges
are equal (δ1 ¼ δ2), namely for the dyonic black hole with
equal electric and magnetic charges, as well as for the Kerr
case, the torsion T− turns to be zero, whereas Tþ does not.
Therefore, only the Killing-Yano tensors ω− and f−
correspond to the standard limit, and the tensors ωþ
and fþ represent a “new” physical system. It was pointed
out in [38] that similar peculiarity takes place for the Kerr-
Sen solution.
If the torsion is taken into consideration the Dirac

operator D̂ ¼ γ̂μð∂μ þ ΓμÞ should be replaced by the
following operator:
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D̂ ¼ D̂ −
1

24
TABCγ̂

Aγ̂Bγ̂C; ð36Þ

where TABC are the Lorentzian components of the torsion
form (35) and γ̂A are the Lorentzian gamma matrices (21).
The second term in (36) can be written in a space-time basis
as well. The operator D̂may be called the generalized Dirac
operator.
Having defined the generalized Dirac operator (36) we

write the generalized (modified) Dirac equation as follows:

D̂Ψþ μeΨ ¼ 0: ð37Þ

Since the torsion contribution into the modified Dirac
operator (36) is just an algebraic term it means that the
modified Dirac equation (37) can be derived via a standard
variational procedure from the massive counterpart of the
modified Dirac action (A27) given in Appendix A.
Now we are able to write the explicit form for the

modified Dirac equation (36) in the Einstein frame (16):

	
γ̂0

1

Δ1=4
0

ffiffiffiffi
X

p ðFðrÞ∂t þ a∂φÞ þ γ̂1
ffiffiffiffi
X

p

Δ1=4
0

�
∂r þ

1

2Δ1=4
0

ffiffiffiffi
X

p
�
Δ1=4

0

ffiffiffiffi
X

p �0�
þγ̂2

1

Δ1=4
0

�
∂θ þ

1

2Δ1=4
0 sin θ

�
Δ1=4

0 sin θ
�
;θ

�
− γ̂3

1

Δ1=4
0

�
a sin θ∂t þ

1

sin θ
∂φ

�

∓ γ̂3γ̂0γ̂1
aχðrÞ
2Δ3=4

0

sin θ � γ̂3γ̂0γ̂2
a
ffiffiffiffi
X

p ðr1 þ r2Þ
4χðrÞΔ3=4

0

cos θ þ μeÎ4



Ψ ¼ 0: ð38Þ

To obtain the separation of variables the Dirac spinor Ψ is
taken in the following form:

Ψ ¼

0BBB@
F1

F2

G1

G2

1CCCA: ð39Þ

Therefore equations for the components of the spinorΨ can
be written as follows:

i
ffiffiffiffi
X

p

Δ1=4
0

�
D̂− þ g�ðr; θÞ

�
G1 þ

i

Δ1=4
0

�
L̂− þ f�ðr; θÞ

�
G2

þ μeF1 ¼ 0; ð40Þ

i

Δ1=4
0

�
L̂þ þ f�ðr; θÞ

�
G1 −

i
ffiffiffiffi
X

p

Δ1=4
0

�
D̂þ þ g�ðr; θÞ

�
G2

þ μeF2 ¼ 0; ð41Þ

−
i
ffiffiffiffi
X

p

Δ1=4
0

�
D̂þ þ g��ðr; θÞ

�
F1 −

i

Δ1=4
0

�
L̂− þ f��ðr; θÞ

�
F2

þ μeG1 ¼ 0; ð42Þ

−
i

Δ1=4
0

�
L̂þ þ f��ðr; θÞ

�
F1 þ

i
ffiffiffiffi
X

p

Δ1=4
0

�
D̂− þ g��ðr; θÞ

�
F2

þ μeG2 ¼ 0; ð43Þ

where the following operators are introduced:

D̂� ¼ ∂r ∓ 1

X
ðFðrÞ∂t þ a∂φÞ; ð44Þ

L̂� ¼ ∂θ ∓ i

	
a sin θ∂t þ

1

sin θ
∂φ



; ð45Þ

and the functions g�ðr; θÞ and f�ðr; θÞ are defined as
follows:

g�ðr;θÞ¼
r−m
2X

þr1þr2
4χρ��

; f�ðr;θÞ¼
cot θ
2

� ia sin θ
2ρ��

:

ð46Þ

Here ρ� ¼ χðrÞ � ia cos θ and the asterisk means complex
conjugation; it is obvious that Δ1=2

0 ¼ ρ�ρ��. We point out
here that ρþ and ρ− are complex conjugates to each other,
and consequently the same is true for the functions g�ðr; θÞ
and f�ðr; θÞ, but we emphasize that indices � for the
functions ρ and consequently for g and f are introduced to
distinguish the cases which correspond to two values of the
torsion T� (35). It should be noted that separability of the
radial r and angular over θ parts in the system (40)–(43) is
closely related to a specific relation for derivatives of the
functions g and f, namely ðg�Þ;θ ¼ f0�.
Further simplification of Eqs. (40)–(43) can be achieved

if the Dirac spinor Ψ is taken in the form

Ψ ¼ 1ffiffiffiffi
X4

p ffiffiffiffiffiffiffiffiffi
sin θ

p

0BBBBB@
ρ−1=2� F̄1

ρ−1=2� F̄2

ðρ��Þ−1=2Ḡ1

ðρ��Þ−1=2Ḡ2

1CCCCCA: ð47Þ
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Substituting the components of the Dirac spinor (47) into
the system (40)–(43) and after some transformations, we
can rewrite the upper system in the formffiffiffiffi

X
p

D̂−Ḡ1 þ L̂−Ḡ2 − iμeρ��F̄1 ¼ 0; ð48Þ

L̂þḠ1 −
ffiffiffiffi
X

p
D̂þḠ2 − iμeρ��F̄2 ¼ 0; ð49Þffiffiffiffi

X
p

D̂þF̄1 þ L̂−F̄2 þ iμeρ�Ḡ1 ¼ 0; ð50Þ

L̂þF̄1 −
ffiffiffiffi
X

p
D̂−F̄2 þ iμeρ�Ḡ2 ¼ 0: ð51Þ

The above system of equations can be represented in an
equivalent matrix form:0BBBBB@

−iμeρ�� 0
ffiffiffiffi
X

p
D̂− L̂−

0 −iμeρ�� L̂þ −
ffiffiffiffi
X

p
D̂þffiffiffiffi

X
p

D̂þ L̂− iμeρ� 0

L̂þ −
ffiffiffiffi
X

p
D̂− 0 iμeρ�

1CCCCCA

0BBBBB@
F̄1

F̄2

Ḡ1

Ḡ2

1CCCCCA ¼ 0:

ð52Þ

Finally, to separate variables in the system of Eq. (52) we
extract an exponential factor which depends on t and φ and
use a specific ansatz for the part which depends on r and θ;
namely we write0BBBB@

F̄1

F̄2

Ḡ1

Ḡ2

1CCCCA ¼ eiðωtþkφÞ

0BBB@
R2ðrÞS1ðθÞ
R1ðrÞS2ðθÞ
R1ðrÞS1ðθÞ
R2ðrÞS2ðθÞ

1CCCA: ð53Þ

Having used the upper ansatz we decouple the system (52)
on two systems and achieve separation of variables.
Therefore, after some algebraic transformations we arrive
at the following decoupled systems of equations for radial
and angular parts: ffiffiffiffi

X
p ˆ̃D− −iμeχðrÞ − λ

iμeχðrÞ − λ
ffiffiffiffi
X

p ˆ̃Dþ

!�
R1ðrÞ
R2ðrÞ

�
¼ 0; ð54Þ

 ˆ̃Lþ −λ ∓ μea cos θ

λ ∓ μea cos θ ˆ̃L−

!�
S1ðθÞ
S2ðθÞ

�
¼ 0; ð55Þ

where λ is the separation constant and

ˆ̃D� ¼ ∂r ∓ i
XðrÞ ðωFðrÞ þ kaÞ; ð56Þ

ˆ̃L� ¼ ∂θ �
�
aω sin θ þ k

sin θ

�
: ð57Þ

We analyze the systems (54) and (55) in more details in
Secs. V and VI, paying considerable attention to the
massless case.

IV. THE DIRAC EQUATION IN THE STRING
FRAME

Apart from the Einstein frame considered in the previous
sections there is another frame of almost equal importance,
namely the string frame. We do not discuss properties or
peculiarites of both of them, but we just point out that they
are conformally related, namely we write

ds̃2 ¼ eϕds2 ⇔ g̃μν ¼ eϕgμν; ð58Þ
where notations with and without a tilde correspond to the
string and the Einstein frames respectively. The conformal
factor eϕ takes the following form [16]:

eϕ ¼ ðrþ 2ms21Þ2 þ a2 cos2 θ
ðrþ 2ms21Þðrþ 2ms22Þ þ a2 cos2 θ

: ð59Þ

Taking into account the relations (58), (59), and (16), we
obtain the Boyer-Lindquist tetrad in the string frame:

ẽ0¼R1

ffiffiffiffi
X

p

Δ1=2
0

�
dt−asin2θdφ

�
; ẽ1¼ R1ffiffiffiffi

X
p dr; ẽ2¼R1dθ;

ẽ3¼R1 sin θ

Δ1=2
0

�
adt−

�ðrþ2ms21Þðrþ2ms22Þþa2
�
dφ
�
;

ð60Þ
where R2

1 ¼ ðrþ 2ms21Þ2 þ a2 cos2 θ. Spin-connection one-
forms ω̃A

B for the string frame can be derived directly as above,
or the rescaling relation between the frames can be utilized.
Explicit expressions for the spin-connection one-forms and
relations for spin-connection components in conformally
related frames are given in Appendix A. Now we write the
explicit relation for the contracted product ˆ̃γμΓ̃μ:

ˆ̃γμΓ̃μ¼
1

2

�
Δ1=2

0

R4
1

�
R3
1

ffiffiffiffi
X

p

Δ1=2
0

�0
γ̂1þ Δ1=2

0

R4
1 sin θ

�
R3
1 sin θ

Δ1=2
0

�
;θ

γ̂2

þ aF0

2R1Δ
1=2
0

sin θγ̂3γ̂0γ̂1−
a
ffiffiffiffi
X

p

R1Δ
1=2
0

cos θγ̂3γ̂0γ̂2
�
: ð61Þ

The generalized conformal Killing-Yano tensor for the
Kerr-Sen background in the string frame was derived in a
different way [38], if the torsion was associated directly
with the Kalb-Ramond field or in the dual description with
the Hodge dual to the axion field. On the other hand, it was
proven that the generalized conformal Killing-Yano and
the torsion forms (or tensors) undergo a simple rescaling
if a conformal rescaling of the background metric is
performed [38,39]. Two ways to derive torsion and gen-
eralized conformal Killing-Yano forms for the Kerr-Sen
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background show that the resulting values are not con-
formally related to their counterparts obtained in a different
manner; therefore, we can conjecture that these two ways
give rise to different physical systems on the same back-
ground. Moreover in Appendix A we show that the
massless torsion-modified Dirac action is conformally
invariant if a proper rescaling of spinors is performed; this
fact generalizes the well-known statement about the con-
formal invariance of the stanadard massless Dirac action.
The straightforward consequence of this statement is the
conclusion about the conformal invariance of the general-
ized Dirac equation. This fact can be considered as an
additional confirmation of our conjecture that we actually
deal with two different Dirac fields, even though they look
very similar.
Now we can consider the generalized Killing-Yano

tensors in the string frame and show that they satisfy the
equation completely identical to (26), but with correspond-
ingly redefined covariant derivative e∇ ω̃ and coderivative
δω̃ consistent with the rescaled metric. The generalized
conformal Killing-Yano tensor ω̃ (GCKYT) and the gen-
eralized Killing-Yano tensor f̃ (GKYT) in the string frame
take the form as follows:

ω̃� ¼ ðrþ 2ms21Þẽ0 ∧ ẽ1 � a cos θẽ2 ∧ ẽ3; ð62Þ

f̃� ¼ −ðrþ 2ms21Þẽ2 ∧ ẽ3 � a cos θẽ0 ∧ ẽ1: ð63Þ

Similarly as in the Einstein frame the forms ω̃� and f̃� are
supposed to be T-closed and T-coclosed respectively with a
new torsion form T̃�. The latter restraints allow us to obtain

an explicit expression for the torsion form in the string
frame; namely we write

T̃� ¼ a sin θ

R1

�
F0

Δ1=2
0

� 2ðrþ 2ms21Þ
R2
1

�
ẽ0 ∧ ẽ1 ∧ ẽ3

−
2a

ffiffiffiffi
X

p
cos θ

R1

�
1

Δ1=2
0

� 1

R2
1

�
ẽ0 ∧ ẽ2 ∧ ẽ3: ð64Þ

The torsion T̃− coincides up to a signwith the Kalb-Ramond
field calculated in the string frame and the explicit form of
the latter one is given in Appendix B. The difference up to
the total sign can be explained by the fact that both of the
Killing-Yano tensors ω̃� and f̃� are defined up to a total
sign, and if they change the sign the torsion does it as well.
The� subscripts in the torsion T̃ have the same meaning as
for the torsion (35) in the Einstein frame; namely the torsion
T̃− equals zero for the equal charges dyonic black hole and
for the Kerr solution, whereas the torsion T̃þ remains
nontrivial, but again both of them give rise to the separable
Dirac equations. For the Kerr limit both frames are actually
reduced to the standard Boyer-Lindquist frame and con-
sequently for the Killing-Yano tensors we have ω� ¼ ω̃�
and f� ¼ f̃� as is expected. A similar conclusion can be
made for the equal charges dyonic black hole.
The modified Dirac equation in the string frame is

constructed in the same way in the Einstein one; namely,
we use the modified Dirac operator defined by (36), but the
standard Dirac operator should be written now in the frame
(60) and the torsion field components are taken from (64).
Thus we write

	
γ̂0

1

R1

ffiffiffiffi
X

p ðF∂t þ a∂φÞ þ γ̂1
� ffiffiffiffi

X
p

R1

∂r þ
Δ1=2

0

2R4
1

�
R3
1

ffiffiffiffi
X

p

Δ1=2
0

�0�

þ γ̂2
�

1

R1

∂θ þ
Δ1=2

0

2R4
1 sin θ

�
R3
1 sin θ

Δ1=2
0

�
;θ

�
− γ̂3

1

R1

�
a sin θ∂t þ

1

sin θ
∂φ

�

∓ ar1 sin θ

2R3
1

γ̂3γ̂0γ̂1 � a
ffiffiffiffi
X

p
cos θ

2R3
1

γ̂3γ̂0γ̂2 þ μeÎ4



Ψ̃1 ¼ 0: ð65Þ

Since for the Dirac equation in the string frame (65) we use the same procedure as in the previous section, here we focus on
the key differences. Namely, the Dirac spinor Ψ̃1 in Eq. (65) is taken in the form

Ψ̃1 ¼ eiðωtþkφÞ Δ1=4
0

R1

ffiffiffiffi
X4

p ffiffiffiffiffiffiffiffiffi
sin θ

p

0BBBBBBB@

ρ−1=2ð1Þ� F̃1

ρ−1=2ð1Þ� F̃2�
ρ�ð1Þ�

�
−1=2

G̃1�
ρ�ð1Þ�

�
−1=2

G̃2

1CCCCCCCA; ð66Þ
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where ρð1Þ� ¼ r1 � i cos θ and ρ�ð1Þ� is its complex con-
jugate. We point out that ρð1Þþ and ρð1Þ− are mutually
complex conjugate functions, but the indices � for these
functions show that they correspond to two different torsion
forms T̃�, similarly to the functions ρ� in the previous
section. Since the time-t and angular-φ dependences are
already explicitly given in the spinor (66), its components
F̃i and G̃i (i ¼ 1, 2) depend on the radial r and angular θ
variables only.
Substituting the spinor (66) into Eq. (65) and after some

transformations we arrive at the coupled system of equa-
tions analogous to the system (52), but with a correspond-
ing replacement of the functions ρ� and ρ�� by the functions
ρð1Þ� and ρ�ð1Þ� respectively in the diagonal elements of the

matrix, and the operators D̂� and L̂� should be replaced by

the operators ˆ̃D� and ˆ̃L� since we have already decoupled
dependences over t and φ. A further procedure to com-
pletely decouple the dependence over r and θ is again
analogous to what is done in the previous section; namely
for the spinor with the components F̃i and G̃i (i ¼ 1, 2)
we use the same ansatz as in (53) and after some trans-
formations we obtain two decoupled systems of equations
for the radial and angular parts which are similar to the
systems (54) and (55) correspondingly. To be more precise,
the angular system is completely the same as (55) and in the
radial system (54) the function χ should be replaced by r1.
For massless fermions the corresponding systems will be
the same in both frames.
Conformal invariance of the generalized Dirac action

(A27), shown in Appendix A, brings the conclusion about

conformal invariance of the Dirac equation if the Dirac
spinor is rescaled properly. But in the massive case the mass
term is also rescaled and it turns out to be a function of
coordinates that might spoil separability of the system.
In order not to lose separability under the conformal

rescaling, now we consider the massless case only and
show that under the conformal rescaling of the massless
analog of Eq. (65) we will not arrive at massless form
Eq. (38) but obtain a conformal cousin of Eq. (65). Here
below we describe just the key points, because there are
many similarities with the transformations made above. A
similar analysis will be made for Eq. (38) as well.
First of all we transform the contracted torsion term

T̃ABCγ̂
Aγ̂Bγ̂C=24 for the torsion T̃� (64) when the string

frame values are transformed into the Einstein frame ones.
We write

1

24
Tμνλγ̂

μγ̂νγ̂λ ¼ 1

24
eϕ=2T̃μνλ

ˆ̃γμ ˆ̃γν ˆ̃γλ

¼ a sin θ

4Δ1=4
0

�
F0

Δ1=2
0

� 2ðrþ 2ms21Þ
R2
1

�
γ̂3γ̂0γ̂1

−
a
ffiffiffiffi
X

p
cos θ

2Δ1=4
0

�
1

Δ1=2
0

� 1

R2
1

�
γ̂3γ̂0γ̂2: ð67Þ

Taking into account the written above contracted torsion
term we write conformally rescaled massless Dirac equa-
tion (65) as follows:

	
γ̂0

1

Δ1=4
0

ffiffiffiffi
X

p ðFðrÞ∂t þ a∂φÞ þ γ̂1
ffiffiffiffi
X

p

Δ1=4
0

�
∂r þ

1

2Δ1=4
0

ffiffiffiffi
X

p
�
Δ1=4

0

ffiffiffiffi
X

p �0�
þ γ̂2

1

Δ1=4
0

�
∂θ þ

1

2Δ1=4
0 sin θ

�
Δ1=4

0 sin θ
�
;θ

�
− γ̂3

1

Δ1=4
0

�
a sin θ∂t þ

1

sin θ
∂φ

�

∓ ar1 sin θ

2Δ1=4
0 R2

1

γ̂3γ̂0γ̂1 � a
ffiffiffiffi
X

p
cos θ

2Δ1=4
0 R2

1

γ̂3γ̂0γ̂2


Ψ1 ¼ 0: ð68Þ

To perform separation variables in Eq. (68) we take the
following ansatz for the spinor wave function Ψ1:

Ψ1 ¼ eiðωtþkφÞ R1=2
1

Δ1=8
0

ffiffiffiffi
X4

p ffiffiffiffiffiffiffiffiffi
sin θ

p

0BBBBBBB@

ρ−1=2ð1Þ�F1

ρ−1=2ð1Þ�F2�
ρ�ð1Þ�

�
−1=2

G1�
ρ�ð1Þ�

�
−1=2

G2

1CCCCCCCA
: ð69Þ

Now it is easy to check that the rescaling relation for the
spinors (69) and (66); namely we obtain

Ψ1 ¼
R3=2
1

Δ3=8
0

Ψ̃1; ð70Þ

as it should be according to the rescaling relation (A25).
Similarly, rescaling the torsion T� (35) and after neces-

sary transformations we rewrite the Dirac equation (38)
(massless case) now in the string frame:
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γ̂0

1

R1

ffiffiffiffi
X

p ðF∂t þ a∂φÞ þ γ̂1
� ffiffiffiffi

X
p

R1

∂r þ
Δ1=2

0

2R4
1

�
R3
1

ffiffiffiffi
X

p

Δ1=2
0

�0�

þ γ̂2
�

1

R1

∂θ þ
Δ1=2

0

2R4
1 sin θ

�
R3
1 sin θ

Δ1=2
0

�
;θ

�
− γ̂3

1

R1

�
a sin θ∂t þ

1

sin θ
∂φ

�

∓ aχ sin θ

2R1Δ
1=2
0

γ̂3γ̂0γ̂1 � aF0 ffiffiffiffiXp
cos θ

2R1Δ
1=2
0 χ

γ̂3γ̂0γ̂2


Ψ̃ ¼ 0: ð71Þ

To perform separation of variables we use ansatz:

Ψ̃ ¼ eiðωtþkφÞ Δ3=8
0

R3=2
1

ffiffiffiffi
X4

p ffiffiffiffiffiffiffiffiffi
sin θ

p

0BBBBBBB@

ρ−1=2� F̄1

ρ−1=2� F̄2�
ρ��
�
−1=2

Ḡ1�
ρ��
�
−1=2

Ḡ2

1CCCCCCCA
: ð72Þ

Now we can easily check that the spinor wave functions
(72) and (47) are related by

Ψ̃ ¼ Δ3=8
0

R3=2
1

Ψ; ð73Þ

as it should be.

V. RADIAL AND ANGULAR WAVE FUNCTIONS
FOR THE MASSLESS CASE

We have noted above that in the massless case μe ¼ 0 the
decoupled systems of equations (54) and (55) for radial and
angular components are completely the same for both types
of torsions and frames we consider. The massless case is
simpler for analysis and at the same time it reveals the main
features, caused by the space-time geometry. We also point
out that for the massless case the system of equations (40)–
(43) decouples on two systems of equations (40)–(41) and
(42)–(43) for the lower and upper components of the Dirac
spinor respectively, and it corresponds to the parts of
different chiralities.
Considering the system (54) we decouple the equations

for the functions R1ðrÞ and R2ðrÞ:

R00
1 þ

X0

2X
R0

1 þ
1

X

�
iωF0 þ ðωF þ kaÞ

X

�
ωF þ ka −

i
2
X0
�
− λ2

�
R1 ¼ 0; ð74Þ

R00
2 þ

X0

2X
R0

2 þ
1

X

�
−iωF0 þ ðωF þ kaÞ

X

�
ωF þ kaþ i

2
X0
�
− λ2

�
R2 ¼ 0: ð75Þ

It should be noted that the general structure of the radial
equations for the massless case is very similar to their
massless counterparts in the standard Kerr case. It can be
explained by the fact that the singularities of Eqs. (74) and
(75) are completely defined by the function XðrÞ which is
the same as in the Kerr case.
To analyze the radial Dirac equations (74) and (75) in

more details we rewrite them in a more tractable form.
First of all we note that the function XðrÞ can be rewritten
in the form XðrÞ ¼ ðr − rþÞðr − r−Þ, where r� ¼
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − a2

p
are the horizons of the black hole and in

particular rþ is its outer or event horizon. After some
algebraic transformations the radial equations (74) and (75)
can be written in the form

R00
j þ

1

2

�
1

r − rþ
þ 1

r − r−

�
R0

j

þ
�

Aj

r − rþ
þ Bj

r − r−
þ Cj

ðr − rþÞ2
þ Dj

ðr − r−Þ2
þ ω2

�
Rj

¼ 0; ð76Þ

where j ¼ 1, 2 and the coefficients Aj, Bj,Cj, andDj are as
follows:

Aj ¼ �iω

�
Bþ −

1

2

�
þ 2ωAþ

þ 2AþA− ∓ iðAþ þ A−Þ=2 − λ2

rþ − r−
; ð77Þ
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Bj ¼ �iω

�
B− −

1

2

�
þ 2ωA−

−
2AþA− ∓ iðAþ þ A−Þ=2 − λ2

rþ − r−
; ð78Þ

Cj ¼ Aþ

�
Aþ ∓ i

2

�
; Dj ¼ A−

�
A− ∓ i

2

�
; ð79Þ

and it should be pointed out that upper and lower signs in
the above relations correspond to j ¼ 1 and j ¼ 2 respec-
tively. For simplicity of the above relations we have used
the following notations:

A� ¼ � 2mð1þ s21 þ s22Þωr� þ 4ωm2s21s
2
2 þ ka

rþ − r−
;

B� ¼ � 2ðr� þmðs21 þ s22ÞÞ
rþ − r−

:

Equation (76) has singular points at the horizons r ¼ r�
and at the infinity r → ∞. To reduce Eq. (76) to the
canonical form we perform the transformation of coordi-
nates:

x ¼ r − r−
rþ − r−

; ð80Þ

and as a consequence the singular points r ¼ r− and r ¼ rþ
are transformed into x ¼ 0 and x ¼ 1 respectively.
Equation (76) can be simplified; namely the terms propor-
tional to ∼1=ðr − rþÞ2, ∼1=ðr − r−Þ2 and ∼ω2 can be
removed if one specifies a structure of the radial wave
function. Taking into account the transformation (80) we
write the radial wave function Ri as follows:

RjðxÞ ¼ eκxxαjðx − 1ÞβjR̃jðxÞ; ð81Þ

where the coefficients κ, αj, and βj satisfy the following
relations:

κ ¼ �iðrþ − r−Þω; αj

�
αj −

1

2

�
þDj ¼ 0;

βj

�
βj −

1

2

�
þ Cj ¼ 0: ð82Þ

We note that upper and lower signs for the parameter κ
correspond to ingoing and outgoing particles respectively.
For a particular problem one or two signs can be chosen.
The equations (82) allow one to obtain explicit relations for
the exponents αj and βj. Since Eq. (82) for αj and βj are
quadratic it means that for any fixed value of j we obtain
two solutions. Namely, for the parameter αj we derive

αjð1Þ ¼
1

2
∓ iA−; αjð2Þ ¼ �iA−: ð83Þ

For the parameter βj we write

βjð1Þ ¼
1

2
∓ iAþ; βjð2Þ ¼ �iAþ: ð84Þ

Here we also point out that similarly to the relations
(77)–(79) upper and lower signs in the relations (83)
and (84) correspond to j ¼ 1 and j ¼ 2 respectively.
Finally, after all these transformations, Eq. (76) can be

rewritten in the form

R̃00
j ðxÞ þ

�
2κ þ 2αj þ 1=2

x
þ 2βj þ 1=2

x − 1

�
R̃0

jðxÞ

þ
�
μj
x
þ νj
x − 1

�
R̃jðxÞ ¼ 0; ð85Þ

where the parameters μj and νj are defined as follows:

μj ¼ 2αjðκ − βjÞ þ
1

2
ðκ − αj − βjÞ þ ðrþ − r−ÞBj; ð86Þ

νj ¼ 2βjðκ þ αjÞ þ
1

2
ðκ þ αj þ βjÞ þ ðrþ − r−ÞAj: ð87Þ

We note that in Eq. (85) we again use prime, 0, to denote the
derivative over coordinate x. This notation is used for
simplicity, but it should not be confusing.
Now we consider the angular part of the wave function

given by the system (55), where we set μe ¼ 0. It can be
shown that the equations for the angular part can be
represented in the form

∂
2Sj

∂θ2
−
��

aω sin θ þ k
sin θ

�
2

∓
�
aω −

k
sin2θ

�
cos θ − λ2

�
Sj ¼ 0; ð88Þ

where similarly as above upper and lower signs correspond
to j ¼ 1 and j ¼ 2 respectively. To rewrite the latter
equation in a more convenient form, we make use of the
following transformation of coordinates:

y ¼ 1

2
ð1þ cos θÞ: ð89Þ

The transformation (89) allows one to rewrite Eq. (88) as
follows:
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∂
2Sj

∂y2
þ1

2

�
1

y
þ 1

y−1

�
∂Sj

∂y

þ
�
Āj

y
þ B̄j

y−1
þ C̄j

y2
þ D̄j

ðy−1Þ2−4a2ω2

�
Sj¼0; ð90Þ

where we have

Āj ¼ −
k2

2
− aωð2k ∓ 1Þ − λ2;

B̄j ¼
k2

2
þ aωð2k� 1Þ þ λ2;

C̄j ¼ −
kðk� 1Þ

4
; D̄j ¼ −

kðk ∓ 1Þ
4

;

and here similarly as earlier upper and lower signs
correspond to j ¼ 1 and j ¼ 2 respectively. The general
structure of Eq. (90) is completely identical to Eq. (76)
and it means that we can use an ansatz similar to (81) to
simplify it; namely we write

SjðyÞ ¼ eκ̄yyᾱjðy − 1Þβ̄j S̄jðyÞ; ð91Þ

where the parameters κ̄, ᾱj, and β̄j fulfill the conditions:

κ̄ ¼ �2aω; ᾱj

�
ᾱj −

1

2

�
þ C̄j ¼ 0;

β̄j

�
β̄j −

1

2

�
þ D̄j ¼ 0: ð92Þ

As a consequence, Eq. (90) can be represented in the form

∂
2S̄j

∂y2
þ
�
2κ̄ þ 2ᾱj þ 1=2

y
þ 2β̄j þ 1=2

y − 1

�
∂S̄j

∂y

þ
�
μ̄j
y
þ ν̄j
y − 1

�
S̄j ¼ 0; ð93Þ

where the coefficients μ̄i and ν̄i are defined as follows:

μ̄j ¼ 2ᾱjðκ̄ − β̄jÞ þ
1

2
ðκ̄ − ᾱj − β̄jÞ þ Āj; ð94Þ

ν̄j ¼ 2β̄jðκ̄ þ ᾱjÞ þ
1

2
ðκ̄ þ ᾱj þ β̄jÞ þ B̄j: ð95Þ

The final equations for the radial (85) and angular (93)
components have similar structure, namely, they are written
in almost standard form for the confluent Heun equation.
The confluent Heun equation is characterized by three
singular points, namely, both our equations (85) and (93)
are rewritten in the form, where the singularities are at the
points 0, 1, and ∞. We also remark that for the radial
equation (85), the first two singularities correspond to the

horizons and they are the so-called regular singularities.
The last singularity obviously corresponds to the spatial
infinity and it is the irregular one of the rank 1.
A solution of a differential equation near a regular

singularity can be derived via the well-established
Frobenius procedure. The Frobenius method gives rise to
a series solution which is convergent in some domain near
the singularity, but the convergence properties are out of the
scope of this work. For an irregular singularity instead of
the Frobenius method an asymptotic expansion can be
applied.
To obtain the series solutions near the regular singular-

ities an indicial equation should be written. The solution of
the indicial equation, namely, the indicial exponents deter-
mine the behavior of solutions of the differential equation
near corresponding singularity points. For Eq. (85) it
follows that near the point x ¼ 0 the indicial exponents
are ϰ1 ¼ 0 and ϰ2 ¼ 1=2 − 2αj; for the point x ¼ 1 there
are ϰ3 ¼ 0 and ϰ4 ¼ 1=2 − 2βj. It is known that if the
difference of indicial exponents for any regular singularity
is noninteger then both solutions near the corresponding
singularity is of power-law character. In the opposite case
one of the solutions also contains a logarithmic contribu-
tion, but we do not focus on those subtle peculiarities.
Let us consider the domain around the point x ¼ 0 and

take the first indicial exponent ϰ1 ¼ 0, then we write the
corresponding solution of the radial equation (85) as
follows:

R̃jðxÞ ¼
Xþ∞

n¼0

aðjÞn xn: ð96Þ

Substituting the series (96) into the equation and after some
transformations we obtain relations for the coefficients an
of the series. Namely, for the first two coefficients aðjÞ0 and

aðjÞ1 we get

aðjÞ1 ¼ −
μj

2αj þ 1=2
aðjÞ0 : ð97Þ

It is known that the coefficient aðjÞ0 can be chosen arbitrary,

and we set aðjÞ0 ¼ 1 to equating our function to 1 if x ¼ 0.

For the following coefficients aðjÞn we obtain a recurrent
relation of the form

aðjÞnþ1 ¼
1

ðnþ 1Þð2αj þ nþ 1=2Þ
×
h
ðnð2ðαj þ βj − κÞ þ nÞ − μjÞaðjÞn

þ ð2κðn − 1Þ þ μj þ νjÞaðjÞn−1



: ð98Þ
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The latter formula is in agreement with the relation for the

aðjÞ1 coefficient, namely if we set n ¼ 0 and aðjÞ−1 ¼ 0 it
reduces to the relation (97). The relation (98) allows one to

derive explicit expressions for the coefficients aðjÞn of the
Frobenius series (96), but we can also write a general
solution of Eq. (85) formally in terms of confluent Heun
functions [47]:

R̃jðxÞ¼C1HeunC

�
2κ;2αj−

1

2
;2βj−

1

2
;δj;ηj;x

�
þC2x1=2−2αjHeunC

�
2κ;

1

2
−2αj;2βj−

1

2
;δj;ηj;x

�
;

ð99Þ
where δj ¼ ðrþ − r−ÞðAj þ BjÞ, ηj ¼ 3

8
− ðrþ − r−ÞBj,

and here it is supposed that 1=2 − 2αj is noninteger.
Similarly series solutions of Eq. (85) which can be also
expressed in terms of the Heun functions can be written
around the other regular singularity x ¼ 1.
Near the irregular singularity x ¼ ∞ we use an asymp-

totic expansion for the radial wave-function R̃jðxÞ of the
form

R̃jðxÞ ¼ e−λjxxρj
Xþ∞

n¼0

bðjÞn

xn
; ð100Þ

where λj, ρj, and bðjÞn are unknown coefficients. To apply
the asymptotic expansion (100) and obtain the unknown
coefficients, it is necessary that factors near the wave
function R̃jðxÞ and its derivative R̃0

jðxÞ should be decom-
posed into asymptotic series as well, but the explicit form
of Eq. (85) shows that it can be done easily, namely we
write

2κ þ 2αj þ 1=2

x
þ 2βj þ 1=2

x − 1

¼ 2κ þ 2ðαj þ βjÞ þ 1

x
þ
Xþ∞

n¼1

ð2βj þ 1=2Þ
xnþ1

; ð101Þ

μj
x
þ νj
x − 1

¼ μj þ νj
x

þ
Xþ∞

n¼1

νj
xnþ1

: ð102Þ

Substituting the expansions (100), (101), and (102) into
Eq. (85) we will be able to obtain the coefficient λj, ρj, and

bðjÞn . It is worth pointing out that the coefficient bðjÞ0 remains

undefined and here there is a similarity with the aðjÞ0

coefficient in the Frobenius decomposition (96). For the
parameters λj and ρj we find

λ2j − 2κλj ¼ 0; ð103Þ

2ðκ − λjÞρj − ð2ðαj þ βjÞ þ 1Þλj þ μj þ νj ¼ 0: ð104Þ

From Eq. (103) we conclude that the parameter λj takes two

values λð1Þj ¼ 0 and λð2Þj ¼ 2κ, but remembering the relation
(81), together with the asymptotic expansion (100) we can

conclude that the value λð2Þj ¼ 2κ gives rise to the conse-
quence that the radial part of the wave function changes its
character, namely, from ingoing to outgoing and vice versa
and it can take place for instance for quasinormal modes,

but it will not be studied here. Since we take only λð1Þj ¼ 0

we conclude that the asymptotic expansion (100) can be
chosen in a simpler form without the exponential factor.
Considering Eq. (104) and setting λj ¼ 0 we obtain an

explicit relation for the exponent ρj; namely, we write

ρj ¼
1

2κ
ðμj þ νjÞ ¼ αj þ βj þ

1

2
þ 1

2κ̃
ðAj þ BjÞ; ð105Þ

where κ̃ ¼ �iω. It should be stressed that the exponent ρj
also depends on the type of the solution, namely, there are
different values for ingoing and outgoing particles. If we

consider the ingoing solution (κ̃ ¼ iω) and take αð1Þj and

βð1Þj , we obtain

ρð1Þj ¼ 1

2

�
3þ ð−1Þjþ1

�þ i
�ð−1Þjþ1 − 1

�
2mωð1þ s21 þ s22Þ:

ð106Þ

Now if j ¼ 1 the exponent ρð1Þ1 ¼ 2 and for j ¼ 2 the

parameter ρð1Þ2 becomes imaginary and it depends on ω as

well as the black hole parameters. If now we take αð2Þj and

βð2Þj we obtain

ρð2Þj ¼ 1

2

�
1þ ð−1Þjþ1

�þ i
�ð−1Þj − 1

�
2mωð1þ s21 þ s22Þ;

ð107Þ

and here the exponent ρð2Þ1 is the same as ρð1Þ2 and ρð2Þ2 ¼ 1.
We also examine the outgoing solution (κ̃ ¼ −iω) and in
this case the exponent ρj takes the following values:

ρð1Þj ¼ 1

2
ð3þ ð−1ÞjÞ þ iðð−1Þjþ1 þ 1Þ2mωð1þ s21 þ s22Þ;

ð108Þ

ρð2Þj ¼ 1

2
ð1þ ð−1ÞjÞ þ iðð−1Þj þ 1Þ2mωð1þ s21 þ s22Þ:

ð109Þ
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The analysis of the obtained relations gives rise to similar
conclusions as for the ingoing solution.
Now using the asymptotic expansion (100) we find the

explicit relation for the coefficients bðjÞn . In particular, for

the coefficient bðjÞ1 we obtain

bðjÞ1 ¼ 1

κ
ðρjðρj þ 2ðαj þ βjÞÞ þ νjÞbðjÞ0 : ð110Þ

Finally, for the coefficient bðjÞn−1 we write

bðjÞn−1 ¼
1

2ðn− 1Þκ
��ðρj − nþ 2Þ�ρj − nþ 2ðαj þ βj þ 1Þ�þ νjÞbðjÞn−2þ

Xn
l¼3

�
ðρj − nþ lÞ

�
2βj þ

1

2

�
þ νj

�
bðjÞn−l

�
: ð111Þ

Here we point out that n ≥ 2 and if n ¼ 2 the sum in the
upper relation is not taken into account; namely in this case

the relation (111) reduces to the relation (110) for bðjÞ1 .
It is known that for the standard Kerr metric, separation

of variables can be performed for wave equations for
particles of arbitrary spin (s ¼ 0;� 1

2
;�1;� 3

2
;�2).

After the separation of variables the equations are usually
written in the form of coupled Teukolsky master equations.
As we have noted above the scalar field equation was
considered in [24], but the wave equations for higher spin
particles have not been examined yet. But taking into
account the results for the scalar field [24] and together
with ours we can conjecture a generalization of the
Teukolsky equations [48,49]; namely we write

1

sin θ
∂

∂θ

�
sin θ

∂Ss

∂θ

�
þ
�
a2ω2 cos2θ þ 2saω cos θ

−
k2 þ s2 þ 2ks cos θ

sin2 θ
þ Ek;s

�
Ss ¼ 0; ð112Þ

X−s ∂

∂r

�
Xsþ1

∂Rs

∂r

�
þ
�
K2ðrÞ − 2isðr −mÞKðrÞ

X

þ 2isωF0ðrÞ − λk;s

�
Rs ¼ 0; ð113Þ

where KðrÞ ¼ FðrÞ þ ka, λk;s ¼ Ek;s þ a2ω2 þ 2aωk−
sðsþ 1Þ, and supposedly the spin s takes all the allowed

values similarly as in the standard Teukolsky equation,
namely s ¼ 0;� 1

2
;�1;� 3

2
;�2. We point out that the

angular master equation completely coincides with its
counterpart for the Kerr background and this fact is clear,
because even our angular system (55) is identical to its Kerr
counterpart. The radial master equation (113) is a slight
generalization of the corresponding equation for the Kerr
case and in the limit when the charges go to zero
(s1 ¼ s2 ¼ 0) it reduces to the radial Teukolsky equation.
It should be also stressed that wave functions SsðθÞ and
RsðrÞ in Eqs. (112) and (113) may not coincide exactly
with the functions SjðθÞ and RjðrÞ directly; they are equal
up to simple angular and radial dependent factors
respectively.

VI. REMARKS ABOUT WAVE FUNCTION FOR
THE MASSIVE PARTICLE

Due to attentive interest in the massive case here we
consider radial equations for the massive particle. The
angular part can also be examined, but it is completely
identical to the standard Kerr case. We point out that in this
section we rather describe main peculiarities of the massive
radial equation, namely we compare it with the correspond-
ing equation for the Kerr background; more detailed
analysis will be examined elsewhere. The decoupling of
the radial system in the massive case gives rise to the
following equations for the radial components RjðrÞ:

R00
j þ

�
X0

2X
∓ iμeðr1 þ r2ÞÞ

2χðλ� iμeχÞ
�
R0

j þ
1

X

�
�iωF0 þ ðωF þ kaÞ

×

�
1

X

�
ωF þ ka ∓ i

2
X0
�
þ μeðr1 þ r2Þ
χðλ� iμeχÞ

�
− μ2eχ

2 − λ2
�
Rj ¼ 0; ð114Þ

where j ¼ 1, 2 and similarly as above the upper and lower
signs correspond to the function R1 and R2 respectively.
In the Kerr limit (s1 ¼ s2 ¼ 0) the later equation reduces
to the standard radial equation on the corresponding
background. For the dyonic black hole with equal charges
s1 ¼ s2 Eq. (114) also becomes simpler and its form is very
close to the Kerr case.

We point out that for the above-mentioned particular
cases Eq. (114) gains an additional regular singular point,
which lies in the complex plane. For the nonequal charges
we consider here (s1 ≠ s2) the situation is more subtle
because the function χ is irrational. Since χðrÞ is an
irrational function, a specific coordinate transformation
should be performed to rewrite Eq. (114) in a canonical
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form. Namely, the following coordinate transformation can
be used: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrþ 2ms21Þðrþ 2ms22Þ
q

¼ mz − r: ð115Þ

From the latter relation we obtain

r ¼ mðz2 − 4s21s
2
2Þ

2ðzþ s21 þ s22Þ
: ð116Þ

The derivatives of the functionRj should be also rewritten;
namely for the first derivative we write

∂Rj

∂r
¼ 2ðzþ s21 þ s22Þ2

mðzþ 2s21Þðzþ 2s22Þ
∂Rj

∂z
; ð117Þ

and for the second derivative we obtain

∂
2Rj

∂r2
¼ 4ðzþ s21 þ s22Þ4

m2ðzþ 2s21Þ2ðzþ 2s22Þ2
∂
2Rj

∂z2

þ 8ðzþ s21 þ s22Þ3
m2ðzþ 2s21Þ2ðzþ 2s22Þ2

×

�
1 −

ðzþ s21 þ s22Þ2
ðzþ 2s21Þðzþ 2s22Þ

�
∂Rj

∂z
: ð118Þ

Therefore we conclude that the transformation (115) allows
us to rewrite Eq. (114) in the form with rational coefficients
only and then it can be reduced to a canonical form
similarly as we did for Eq. (85), but with additional
singularities. We also note that apart from the technical
side, which makes the corresponding transformations less
tractable in comparison with the massless case, there is a
conceptual point, because the transformation (115) might
bring additional the so-called apparent singular points for
the radial equations (114); those apparent singularities
should be carefully removed from further analysis, but it
will be considered elsewhere. For the particular case s1 ¼
s2 or for the Kerr one the transformation (115) becomes
linear, which is a simple shift transformation. In the end, for
the massive equation in the string frame (65) the equation
for the radial wave function will be a bit simpler than (114),
since as we have noted above in the radial system (54)
instead of the irrational function χðrÞ we have r1 ¼ rþ
2ms21 and there is no need in a transformation like (115);
the equation will be similar to what we have for the case
if s1 ¼ s2.

VII. CONCLUSIONS

We have examined the four-dimensional Dirac equation
on a rotating STU black hole background [12,16] obtained
in the framework of maximally supersymmetric super-
gravity. Due to technical difficulties we consider only the
pairwise equal charges case. To recover the separability a

specific contribution called the torsion term is added to the
standard Dirac equation; the source of the torsion is the
Kalb-Ramond field, but further aspects of its properties
remain to be examined. We should also note the separabil-
ity even of the massless Dirac equation in the background
of the general four charges solution [12,16] as well as for
the eight charges black hole [7–9] remains an open
problem. In comparison with the scalar field equations,
we note that while the massless minimally coupled equa-
tion is separable for the general STU black hole back-
ground [23,24], the massive one is not.
Even in the case of the pairwise equal charges back-

ground geometry (15), the Dirac equation reveals some
specific features which do not appear for the Kerr back-
ground and they were not paid necessary attention to the
Kerr-Sen solution [38]. First, in comparison with the Kerr-
Sen background this more general space-time requires that
we have to consider corresponding generalization of the
torsion form and the respectively modified Dirac equation
becomes separable. The new peculiarity, which has not
been noted earlier, is the fact that the torsion form and
corresponding modification of the Dirac equation are in
general nonunique giving rise to different physical systems.
Namely, we have derived the torsion forms in two ways;
the first one can be treated as “geometrical,” it is used in
the Einstein frame and it is based on a deformation or
modification of Killing-Yano forms. The second way is
more “physical” since it introduces the torsion as a field
strength of the Kalb-Ramond two-form field potential
which is an essential ingredient of string theory. Taking
into account quite general statements about conformal
transformations of the generalized conformal Killing-
Yano forms and the torsion forms [38,42], we conclude
that the torsion forms derived from different initial assump-
tions are not related to each other by a corresponding
rescaling as it was initially expected. Therefore, two
approaches we have utilized to derive the torsion forms
in general give rise to different modified Dirac equations.
We want to point out that these two examples may be

associated with different Dirac fields in the effective
supergravity of toroidally compactified string theory
[50,51]. To have a fully fledged explanation of this
difference or to find out whether there is a relation between
them it is necessary to examine the fermionic sector of the
effective supergravity. But a very important conclusion can
be derived even from the above studies, namely within the
“physical” approach where the torsion is associated with
the Kalb-Ramond field or via a corresponding dualization
procedure it is related to the axion field, so even a neutral
Dirac fermion considered as a probe allows one to gain
deeper insight of the supergravity model in comparison
with a minimally coupled scalar probe, since the scalar one
is coupled just to the background geometry, whereas the
fermion in addition has a coupling with the Kalb-Ramond
or the axion fields depending on the preferable description.
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The important result we would like to emphasize is the
separability of the massive Dirac equation in both frames,
but it seems to be violated if the frame transformation is
performed. The modified massless Dirac action shows its
conformal invariance, similarly to the standard Dirac action
if a corresponding rescaling of the Dirac spinors is
performed. The conformal properties of the modified
massless Dirac equation are considered explicitly for the
types of torsion that we obtained, and proper rescaling of
the Dirac spinors is shown. These results are also of crucial
importance and as far as we know they have not been
examined in earlier works.
We have also studied components of the Dirac wave

function. We extensively study the massless case because
of its relative simplicity and similarity to the Kerr case
equation. It is shown that both radial and angular equations
are reduced to the form of the confluent Heun equations;
moreover for the angular part it is completely identical to
the corresponding equation for the Kerr background. We
have conjectured an analog of the Teukolsky equations that
is true for an s ¼ 0 minimally coupled scalar and s ¼ 1

2
Dirac fields; further analysis of the various forms of the
conjectured generalization of the Teukolsky equation and
some of its properties are studied in our forthcoming paper
[52]. Finally, we have made a brief sketch analyzing the
massive radial equation, pointing out main peculiarities and
leaving this technically more sophisticated problem for
further study elsewhere.

ACKNOWLEDGMENTS

We thank Chris Pope, Bernard Whiting, and Haoyu
Zhang for useful discussions. M.M. S. is partially sup-
ported by the Fulbright Program grant for visiting scholars.
M. C. is partially supported by the Slovenian Research
Agency (ARRS No. P1-0306) and Fay R. and Eugene L.
Langberg Endowed Chair funds, by DOE Award (HEP)
DE-SC0013528, by a University Research Foundation
Grant at the University of Pennsylvania, and by the
Simons Foundation Collaboration Grant No. 724069.

APPENDIX A: SPIN-CONNECTION ONE-FORMS
FOR CONFORMALLY RELATED FRAMES AND

CONFORMAL INVARIANCE OF A
GENERALIZED DIRAC ACTION

For convenience we give explicit relations for spin-
connection one-forms for both frames we consider in this
work. The Cartan equations (23) can be utilized to derive
the spin-connection one-forms. Namely, taking into
account the explicit expression for the tetrad (16) we write
the explicit relations for the spin-connection in the Einstein
frame:

ω0
1 ¼

� ffiffiffiffi
X

p

Δ1=4
0

�0
e0 þ a

2Δ3=4
0

F0 sin θe3; ðA1Þ

ω0
2 ¼ −

a

Δ3=4
0

cos θ
�
a sin θe0 −

ffiffiffiffi
X

p
e3
�
; ðA2Þ

ω0
3 ¼

a

Δ3=4
0

�
F0

2
sin θe1 −

ffiffiffiffi
X

p
cos θe2

�
; ðA3Þ

ω1
2 ¼

1

Δ1=2
0

��
Δ1=4

0

�
;θ e

1 −
ffiffiffiffi
X

p �
Δ1=4

0

�0e2�; ðA4Þ

ω1
3 ¼

F0

2Δ3=4
0

�
a sin θe0 −

ffiffiffiffi
X

p
e3
�
; ðA5Þ

ω2
3 ¼

a
ffiffiffiffi
X

p

Δ3=4
0

cos θe0 −
1

sin θ

�
sin θ

Δ1=4
0

�
;θ

e3: ðA6Þ

Here prime 0 denotes derivatives with respect to the radial
coordinate r, and ðÞ;θ means derivative with respect to
angular variable θ. Now using the tetrad (16) we are able to
write explicit forms for the space-time components of the
given above spin-connection one-form.
If there is a metric conformally related to a known one,

what actually takes place for the Einstein and string frames,
one can use the Cartan structure equations as well to derive
spin-connection in the new frame. Both frames have affine
connections which are in agreement with corresponding
metrics, but since the frames are conformally related it is
easy to obtain explicit relations for affine connections or/and
spin connections for these two frames. For convenience of
the reader we give a brief sketchwhich establishes these ties.
It is known that the Levi-Civita connection on a pseudo-

Riemannian manifold is introduced so as it preserves the
metric (it is called a metric connection or compatible with
the metric) and it is torsionless. According to a general
theorem of Riemannian geometry the Levi-Civita connec-
tion is unique. In terms of the components of the metric
tensor the metric compatibility looks as follows:

∇μgλκ ¼ ∂μgλκ − Γσ
μλgσκ − Γσ

μκgλσ ¼ 0; ðA7Þ

where symbol ∇ denotes the Levi-Civita connection or in
other terms the covariant derivative, and Γσ

ρτ is used to
denote affine connection coefficients (symbols). Now
imposing the torsionless condition (Γσ

ρτ ¼ Γσ
τρ) and using

the relations (A7) we derive the explicit expressions for the
coefficients Γσ

ρτ called the Christoffel symbols.
Similarly, the torsionless metric connection e∇ is intro-

duced for the conformally related metric g̃μν; namely we
write

∇̃μg̃λκ ¼ ∂μg̃λκ − Γ̃σ
μλg̃σκ − Γ̃σ

μκg̃λσ ¼ 0: ðA8Þ

To make our analysis quite general here we do not focus on
a particular form of the conformal transformation (58)
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together with the factor (59) related to the problem we
consider, but we assume that the relations between the
metric is of the form

g̃μν ¼ e2Φgμν; ðA9Þ
where the scaling factor Φ ¼ ΦðxκÞ is a function of space-
time coordinates. Taking into account the relations (A7)–
(A9) we obtain relations between the Christoffel symbols
for two conformally related frames; namely we write

Γ̃κ
μν ¼ Γκ

μν þΦ;μδ
κ
ν þΦ;νδ

κ
μ −Φ;σgσκgμν; ðA10Þ

where Φ;μ is the partial derivative over xμ. To establish a
relation for the spin connections for conformally related
frames we use the frame compatibility condition, which in
terms of components looks as follows:

∇μeAν ¼ ∂μeAμ − Γσ
μνeAσ þ ωA

μBe
B
ν ¼ 0; ðA11Þ

and here eAμ are frame fields (tetrad) components
(eA ¼ eAμdxμ) and ωA

μB are the components of the spin-
connection one-form (ωA

B ¼ ωA
μBdx

μ). For the conformally
related frame the compatibility condition can be written in a
similar way:

e∇μẽAν ¼ ∂μẽAμ − Γ̃σ
μνẽAσ þ ω̃A

μBẽ
B
ν ¼ 0: ðA12Þ

The relation (A9) implies a simple relation between the
frame fields (tetrads), namely:

ẽA ¼ eΦeA ⇔ ẽAμ ¼ eΦeAμ : ðA13Þ

Taking into account the relations (A10)–(A13) and after
simple transformations we obtain the relation for the spin-
connection components for two conformally related
frames; namely we write

ω̃A
μB ¼ ωA

μB þΦ;σ

�
eσBe

A
μ − eσAeμB

�
: ðA14Þ

We point out here that the upper Lorentzian index in the
latter relation can be dropped down and the resulting
relation manifests the antisymmetry of the spin-connection
coefficients with respect to the Lorentzian indices.
Finally we write the relations for the spin-connection

one-forms in the string frame which, as we pointed out
above, can be derived directly from the Cartan structure
equations or using the relations (A14):

ω̃0
1 ¼

Δ1=2
0

R2
1

�
R1

ffiffiffiffi
X

p

Δ1=2
0

�0
ẽ0 þ aF0 sin θ

2R1Δ
1=2
0

ẽ3; ðA15Þ

ω̃0
2 ¼

a cos θ
R1

�
−
a sin θ
R2
1

ẽ0 þ
ffiffiffiffi
X

p

Δ1=2
0

ẽ3
�
; ðA16Þ

ω̃0
3 ¼

a

R1Δ
1=2
0

�
1

2
F0 sin θẽ1 −

ffiffiffiffi
X

p
cos θẽ2

�
; ðA17Þ

ω̃1
2 ¼

1

R2
1

�
ðR1Þ;θẽ1 −

ffiffiffiffi
X

p
R0
1ẽ

2
�
; ðA18Þ

ω̃1
3 ¼

1

R1

�
aF0 sin θ

2Δ1=2
0

ẽ0 −
ffiffiffiffi
X

p
R0
1

R1

ẽ3
�
; ðA19Þ

ω̃2
3¼

1

R1

�
a
ffiffiffiffi
X

p

Δ1=2
0

cos θẽ0−
Δ1=2

0

R1 sinθ

�
R1 sinθ

Δ1=2
0

�
;θ

ẽ3
�
: ðA20Þ

It is known that the standard massless Dirac action is
invariant under a conformal rescaling of the metric if the
Dirac spinors are properly rescaled. Here, using the trans-
formation relation for the torsion forms [38] we show that
the torsion modified Dirac action is also invariant under the
conformal rescaling.
To have our discussion self-contained we firstly show

conformal invariance of the standard Dirac action, even
though this fact is well known. Let us write the standard
Dirac action (for any dimension n), and consider the
massless case:

SD ¼
Z

dnx
ffiffiffiffiffiffi
−g

p
Ψ̄γ̂μ

�
∂μ þ Γμ

�
Ψ: ðA21Þ

Here Ψ and Ψ̄ are the Dirac spinor and its adjoint; the
space-time gamma matrices γ̂μ and the spinor connection
Γμ are defined by the relations (21) and (24) respectively.
We rewrite the action in the conformally related frame,
defined by the relations (A9) for the metrics or by (A13) for
the frame fields. Using the relation (A14) we can write

ωμAB ¼ ω̃μAB −Φ;σðẽσBẽμA − ẽσAẽμBÞ: ðA22Þ

Contracting the connection components ωμAB with the
Lorentzian and the space-time gamma matrices we obtain

γ̂μΓμ ¼ eΦ ˆ̃γμ
�
Γ̃μ −

n − 1

2
Φ;μ

�
; ðA23Þ

where ˆ̃γμ ¼ ẽμAγ
A ¼ e−Φγ̂μ and Γ̃μ ¼ 1

4
ω̃μABγ̂

Aγ̂B are the
curved gamma matrices and spinor connection coefficients
for the conformally related metric g̃μν. Substituting the
upper relation into the Dirac action (A21) and rewriting the
determinant of the metric tensor, we obtain

SD ¼
Z

dnx
ffiffiffiffiffiffi
−g̃

p
eð1−nÞΦΨ̄ ˆ̃γμ

�
∂μ þ Γ̃μ −

n − 1

2
Φ;μ

�
Ψ:

ðA24Þ

If the spinors are rescaled as follows:
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Ψ ¼ eðn−1ÞΦ=2Ψ̃; Ψ̄ ¼ eðn−1ÞΦ=2 ¯̃Ψ ⇔ Ψ̃ ¼ e−ðn−1ÞΦ=2Ψ;
¯̃Ψ ¼ e−ðn−1ÞΦ=2Ψ̄; ðA25Þ

then, the latter action can be rewritten in the form

SD ¼
Z

dnx
ffiffiffiffiffiffi
−g̃

p ¯̃Ψ ˆ̃γμð∂μ þ Γ̃μÞΨ̃: ðA26Þ

Therefore, we demonstrated the conformal invariance of
the standard Dirac action.
To derive the generalized Dirac equation modified by the

torsion (37), we assume that the corresponding generalized
Dirac action takes the form

SGD ¼
Z

dnx
ffiffiffiffiffiffi
−g

p
Ψ̄γ̂μð∂μ þ Γμ − αTμνλγ̂

νγ̂λÞΨ; ðA27Þ

where Tμνλ are the space-time components of the torsion
form and the coefficient α is introduced instead of the
combinatorial factor 1=24. Since we have already shown
the conformal invariance of the standard Dirac action, it is
necessary to show the conformal invariance of the torsion-
related contribution. It was proven in [38] that the torsion
form Tμνλ transforms under conformal rescaling of the
metric (A9) as follows, T̃μνλ ¼ e2ΦTμνλ, taking into account
transformations of the spinors (A25), the gamma matrices,
and the determinant of the metric we obtain

Z
dnx

ffiffiffiffiffiffi
−g

p
Ψ̄ð−αTμνλγ̂

μγ̂νγ̂λÞΨ

¼
Z

dnx
ffiffiffiffiffiffi
−g̃

p
Ψ̄
�
−αT̃μνλ

ˆ̃γμ ˆ̃γν ˆ̃γλ
�
Ψ̃: ðA28Þ

We see that the torsion-related contribution into the action
(A27) is conformally invariant; therefore, this action is
conformally invariant as well.
We point out that to ensure conformal invariance of the

Dirac action for a massive fermion, the fermion mass
should be rescaled as μ ¼ eΦμ̃; therefore if for one of the
frames the mass is a constant in the conformally related
metric it turns out to be a function of coordinates. This fact
emphasizes one of the important features of conformal
rescaling, namely, if instead of the constant fermion mass
μe in a particular frame there is a function of coordinates it
is possible to find a convenient frame conformally related
to the previous one which allows if not transforms this
function into a constant, but obtains at least a simpler
function.

APPENDIX B: DUALIZATION OF THE AXION
FIELD AND THE LEGENDRE

TRANSFORMATION OF THE TRUNCATED
BOSONIC LAGRANGIAN

Higher form fields, in particular Kalb-Ramond fields,
play an important role in string theory and supergravity.
They are essential parts for supersymmetry transformations
of fermionic fileds [53,54] and consequently there is
nontrivial coupling between the Kalb-Ramond and the
fermion fields reflected in the corresponding equations of
motion. They are also important in order to define the
Killing spinor equations for string theory or supergravity
backgrounds [27,55]. A decade ago it was shown that they
are necessary in order to obtain the separable Dirac
equations on the Kerr-Sen space-time [38].
Due to its importance for our problem, we show that

Kalb-Ramond fields can be introduced via a Legendre
transformation of the Lagrangian (17). In general this
procedure is well established, in particular, in a four-
dimensional case it is given in terms of components in
the seminal paper [56]. But to make our study self-
contained we describe it in terms of the differential forms;
it makes the connection between the axion field and Kalb-
Ramond fields more transparent.
The Kalb-Ramond field can be defined as a combination

of an exterior derivative of a twp-form B-field (potential)
and “Chern-Simons”-like terms. Due to the fact that in our
setup there are two independent gauge fields defining
electric and magnetic components respectively, we define
the Kalb-Ramond field as follows:

H ¼ dB −
1

2
ðA1 ∧ F1 þ A2 ∧ F2Þ: ðB1Þ

Taking its exterior derivative and using the fact that
d2B ¼ 0 and dFi ¼ 0; i ¼ 1, 2 we write

dH ¼ −
1

2
ðF1 ∧ F1 þ F2 ∧ F2Þ: ðB2Þ

We see that this is the very same expression (up to a
multiplication factor χ) that shows axion-gauge fields
coupling in the Lagrangian (17). Thus, the Lagrangian
(17) can be rewritten in the following form:

L ¼ R � 1 − 1

2
� dϕ ∧ dϕ −

1

2
e2ϕ � dχ ∧ dχ

−
1

2
e−ϕð�F1 ∧ F1 þ �F2 ∧ F2Þ þ χdH: ðB3Þ

The exterior derivative in the last term of the upper
Lagrangian can be moved to χ as follows:

χdH ¼ dðχHÞ − dχ ∧ H; ðB4Þ
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and since the total exterior derivative can be omitted, the
Lagrangian (B3) can be represented in the form

L ¼ R � 1 − 1

2
� dϕ ∧ dϕ −

1

2
ðe2ϕ � dχ − 2HÞ ∧ dχ

−
1

2
e−ϕð�F1 ∧ F1 þ �F2 ∧ F2Þ: ðB5Þ

Since the B-field in the definition (B1) was not explicitly
given, there is still “freedom” in the definition of the Kalb-
Ramond field. Now we assume that

H ¼ e2ϕ � dχ ⇔ dχ ¼ e−2ϕ �H: ðB6Þ

Using the upper relation we finally rewrite the Lagrangian
(B5) in the form with the explicit Kalb-Ramond term:

L ¼ R � 1 − 1

2
� dϕ ∧ dϕ −

1

2
e−2ϕ �H ∧ H

−
1

2
e−ϕð�F1 ∧ F1 þ �F2 ∧ F2Þ: ðB7Þ

The obtained form of the Lagrangian (B7) is in perfect
agreement with its component representation given in
earlier papers [12–14,56]. We also note that in contrast
with the axion field χ the Kalb-Ramond field H in (B7) is
not supposed to be a fundamental one (in the sense that we
assume it is basic to derive the equations of motion); the
fundamental field here is the field B which is not given
explicitly, but it can be obtained using the relations (B1)
and (B6). The crucial thing we would like to stress is the
fact that the transformation of the Lagrangian we have
made is nothing else but a Legendre transformation,
namely, the same transformation is given by (B4) and both
“initial” (17) and “final” (B7) Lagrangians give rise to
completely equivalent descriptions of the system as it has
to be.
Finally, rather technical but a very important detail,

if a Legendre transformation for a particular value has

been done then the equations of motion for the transformed
value are satisfied as identities; it is nothing else but the
consistency check. Namely, in our case, the equation of
motion for the axion field χ derived from the Lagrangian
(17) is as follows:

dðe2ϕ � dχÞ þ 1

2
ðF1 ∧ F1 þ F2 ∧ F2Þ ¼ 0: ðB8Þ

Now, if one uses the relations (B6) and (B2) one can see
that the upper equation becomes an identity.
Using the relation (B6) we calculate the Kalb-Ramond

field firstly in the Einstein frame:

H ¼ aðr2 − r1Þ
Δ5=4

0

�
ðr21 − a2 cos2 θÞ sin θe0 ∧ e1 ∧ e3

− 2r1
ffiffiffiffi
X

p
cos θe0 ∧ e2 ∧ e3

�
: ðB9Þ

In the string frame it can be written in the form

H ¼ aðr2 − r1Þ
R3
1Δ

1=2
0

�
ðr21 − a2 cos2 θÞ sin θẽ0 ∧ ẽ1 ∧ ẽ3

− 2r1
ffiffiffiffi
X

p
cos θẽ0 ∧ ẽ2 ∧ ẽ3

�
: ðB10Þ

The latter relation can be recast as follows:

H ¼ −
a sin θ
R1

�
r1 þ r2
Δ1=2

0

−
2r1
R2
1

�
ẽ0 ∧ ẽ1 ∧ ee3

þ 2a
ffiffiffiffi
X

p
cos θ

R1

�
1

Δ1=2
0

−
1

R2
1

�
ẽ0 ∧ ẽ2 ∧ ẽ3: ðB11Þ

It is easy to see that the above relation up to a sign coincides
with the torsion T̃− (64); the difference in sign, as we have
noted above, is caused by the fact that the Killing-Yano
tensors are defined up to the overall sign.
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