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We discuss the vacuum energy of a quantized scalar field in the presence of classical surfaces, defining
bounded domains Ω ⊂ Rd, where the field satisfies ideal or nonideal boundary conditions. We call it ideal
high-pass Dirichlet boundary conditions. For the electromagnetic case, this situation describes the
conductivity correction to the zero-point energy. Using an analytic regularization procedure, we obtain
the vacuum energy for a massless scalar field at zero temperature in the presence of a slab geometry
Ω ¼ Rd−1 × ½0; L� with Dirichlet boundary conditions. To discuss the case of nonideal boundary
conditions, we employ an asymptotic expansion, based on an approximate functional equation for the
Riemann zeta-function, where finite sums outside their original domain of convergence are defined.
Finally, to obtain the Casimir energy for a massless scalar field in the presence of a rectangular box,
with lengths L1 and L2, i.e., Ω ¼ ½0; L1� × ½0; L2� with nonideal boundary conditions, we employ an
approximate functional equation of the Epstein zeta-function.
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I. INTRODUCTION

Quantum fields are fundamental mathematical objects in
the description of natural phenomena. These objects are
operator-valued generalized functions with test functions,
i.e., distributions in the Schwartz space [1,2]. As a
consequence, in Minkowski spacetime, it has been shown
that the renormalized vacuum expectation value of a
quantum free scalar field stress-energy tensor can exhibit
a local negative energy density [3]. In other words,
although the energy operator associated with a quantum
scalar field is self-adjoint and positive, the (0–0) compo-
nent of the stress-energy tensor can be negative. The
Casimir effect is a measurable macroscopic manifestation
of this result [4–11]. It has been measured in different
geometric configurations [12–15]. The physical origin of
the effect is the changes in the vacuum modes associated
with the quantized electromagnetic field by the presence of
macroscopic surfaces. The vacuum expectation values of
the electric field at distinct points separated by spacelike
distances are correlated, like the interaction between atomic
dipoles induced by the electromagnetic vacuum field
(van der Waals forces). Additionally, any constrained field,

such as a massless fermionic field, can be a source of the
effect as a consequence of the interaction of quantum
field vacuum modes with idealized classical surfaces [16].
Another example is the phononic Casimir effect, where the
speed of light is replaced by the speed of sound in the
medium in the quasiparticle Landau scenario [17].
In the canonical formalism for bosonic and fermionic

fields, vacuum energies are divergent. To obtain finite
results, different approaches have been developed. One
approach analyzes the local energy densities of quantized
fields [18–24]. Another one, known as the global approach,
investigates the total energy of the quantized field with
idealized boundary conditions [25–27]. This approach uses
two natural ways to regularize and renormalize the diver-
gent vacuum energy. The first one is the cutoff method,
where an ultraviolet regulator function is introduced in the
divergent sum of the eigenfrequencies. On general grounds,
the regularized vacuum energy exhibits Weyl’s terms with
a geometric origin, cutoff independent contributions, and
terms that vanish as the cutoff is removed. With these
geometric terms in hand, we can implement a renormal-
ization procedure with the introduction of auxiliary boun-
daries and subtraction of the regularized energies of
different configurations. The second one are analytic
regularization procedures. One is the spectral zeta-function
regularization that was constructed to make sense of
functional determinants.Fundamental references in the
subject are the Refs. [28–30]. Using this procedure, the
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free energy of Euclidean quantum fields can be calculated
[31–33]. Another analytic regularization procedure has also
been discussed in [34,35]. Although the cutoff method with
the auxiliary configurations and the analytic regularization
discussed above are quite different in their grounds, it is
possible to compare them and shown to be analytically
equivalent in some specific situations [36–39].
On the other hand, on physical grounds, the ideal

boundary conditions of the perfect conductivity for all
electromagnetic field modes is an idealization. Usually,
metallic plates behave as dielectric for high-frequency
modes, and as conductors for infrared modes. Following
the original formulation, the question of the conductivity
correction to the electromagnetic Casimir force arises. To
derive this correction, Lifshitz proposed a model treating
the electromagnetic field as a classical field, where attrac-
tive or repulsive forces arise from the fluctuating charges
and currents of the boundaries [40]. Further references
include [41–47]. The vacuum energy of scalar quantum
fields in the presence of surfaces with general boundary
conditions has been discussed in Refs. [48–53].
Additionally the literature has been discussing different
situations where the boundary conditions are modeled by
some smooth increasing potential functions [54,55].
R. Jaffe and collaborators studied the situation of coupling
the quantum field to a background potential. The idealized
boundary condition is obtained in some limit [56,57].
Another way of treating idealized semitransparent con-
ductors is to use δ potentials interacting with the quantum
field, for, e.g., see Refs. [58–61].
The purpose of this work is to discuss the Casimir energy

of a massless scalar field at zero temperature satisfying
nonideal boundary conditions. Due to the similarity
between the quantized electromagnetic field and massless
scalar fields satisfying Dirichlet and Neumann boundary
conditions, our problem has formal similarities with the
conductivity correction to the Casimir force of the quan-
tized electromagnetic field. A first idea is to describe finite
conductivity using microscopic models. A microscopic
approach have been extensive studied by G. Barton, for,
e.g., see, Refs. [62–64]. Also the case of QED in the
dielectric matter background has been analyzed, where
various quantization scheme have been proposed. For the
nonlinear case see the Refs. [65–67] and, for the dispersive
case see Ref. [68].
Instead of discussing the nonlinear problem of the

microscopic modeling of finite conductivity, i.e., nonideal
boundary conditions, we confine ourselves to make use
of spectral theory of elliptic differential operators. The
situation of corrections to the Casimir force can be
discussed using an analytic regularization procedure
and approximate functional equations of spectral zeta-
functions. These functional equations can express the
Riemann and Epstein zeta-functions as finite sums outside
their original domain of convergence. Connection

between number theory and quantum field theory is
presented in the literature, as can been seem in the known
arithmetic quantum theory [69–74].
In our methodology, we use the fact that the total

renormalized energy of scalar fields in the presence of
bounded domains can always be derived using an analytic
regularization procedure, where the Dirichlet and Neumann
Laplacian are used. It is known that the vacuum energy in
the slab geometry Rd−1 × ½0; L� with Dirichlet boundary
conditions can be written in terms of the Riemann zeta-
function. To calculate its correction due to nonideal
boundary conditions, we represent the energy density using
an asymptotic expansion derived by Hardy and Littlewood.
They obtained an approximate functional equation for the
Riemann zeta-function written as finite sums beyond their
original domain of convergence [75]. Next, we generalize
the previous result in the case of a field in the presence of a
rectangular box with lengths L1 and L2 with nonideal
boundary conditions. For instance, other generalizations of
the Riemann functional equation have been presented in the
literature. Recently it was discussed the introduction in the
integral representation of the zeta-function, different cutoffs
that are invariant under the transformation x ↦ 1=x. It has
been shown that the Riemann functional equation can be
generalized with the same symmetry s → ð1 − sÞ in the
critical strip [76].
This paper is organized as follows. In Sec. II we discuss

the asymptotic behavior of the eigenvalues of the
Helmholtz wave equation, the Minakshisundaram-Pleijel
zeta-function, the spectral decomposition of the heat kernel
and classical spectral invariants. In Sec. III we discuss how
to obtain the renormalized vacuum energy for a massless
scalar field at zero temperature in the presence of perfect
mirrors. In Sec. IV we use an approximate functional
equation to obtain renormalized vacuum energy, due the
ideal high-pass Dirichlet boundary conditions for a slab
geometry Rd−1 × ½0; L�. In Sec. V we employ the same
method to obtain the renormalized vacuum energy for the
case of a massless scalar field confined in a rectangular box,
with lengths L1 and L2 with ideal and nonideal boundary
conditions. Conclusions are given in Sec. VI. Here we are
using that ℏ ¼ c ¼ kB ¼ 1.

II. SPECTRAL PROPERTIES OF THE
DIRICHLET LAPLACIAN

In this section, we want to describe briefly spectral
methods which are fundamental tools to discuss problems
in the definition of the global renormalized zero-point
energy of scalar fields with ideal and nonideal boundary
conditions. Usually, to discuss vacuum energy issues and
one-loop physics, it is necessary to introduce a normali-
zation scale μ. Since we are interested in discussing flat
space-time that has boundaries and massless fields, the
coefficient c2 vanishes identically, and therefore the
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renormalized vacuum energy is independent of the nor-
malization scale μ. Consequently, we do not include the
parameter μ in our equations.
Consider the eigenfunctions and eigenvalues of the

Laplacian operator D ¼ ð−ΔÞ on a bounded (open con-
nected) domain Ω in Euclidean space Rd. In this work,
we discuss only the Dirichlet Laplacian which has a
positive definite real spectrum. Also, the eigenvalues form
a countable sequence. Using λk for k ¼ 1; 2… they are
ordered as

0 < λ1 < λ2 ≤ � � � ≤ λk ≤ � � � ð1Þ

when k → ∞, with possible multiplicities. The eigenfunc-
tions fϕkg∞k¼1 form a basis in L2ðΩÞ with Dirichlet
boundary conditions. Each ϕk has eigenvalues λkðΩÞ≡ λk.
In spectral theory, the asymptotic behavior of the

Dirichlet Laplacian eigenvalues in the analytic regulariza-
tion procedure has a fundamental role. This behavior was
investigated at first by Weyl [77]. Applying the Fredholm-
Hilbert formalism of linear integral equations, it was
proved that for Ω ⊂ Rd, (d ¼ 2, 3)

lim
k→∞

k
λk

¼ VoldðΩÞ
4π

; ð2Þ

where VoldðΩÞ is the volume of the region Ω.
We start the discussion defining the density of eigen-

values as a sum of delta functions

gðλÞ ¼
X
k

δðλ − λkÞ; ð3Þ

and the counting function NðλÞ ≔ #fλm∶ λm < λg,
defined as

NðλÞ ¼
Z

λ

0

dλ0gðλ0Þ; ð4Þ

which gives the number of elements in the sequence of
eigenvalues, smaller than λ. The asymptotic behavior of the
counting function is given by

NðλÞ ¼ fðdÞμdðΩÞλd
2; ðλ → ∞Þ; ð5Þ

where fðdÞ is an entire function of d. Furthermore, the
other asymptotic terms also give information about the
boundary of the domain. As an example, for Ω ⊂ R3, we
get a contribution proportional to the surface area of Ω.
Our first observation is about the zero-point energy

renormalization. Let us define the Minakshisundaram-
Pleijel bilocal zeta-function Zðx; y; sÞ, for s∈C as

Zðx; y; sÞ ¼
X∞
k¼1

ϕkðxÞϕkðyÞ
λsk

; ð6Þ

which converges uniformly in x and y for ReðsÞ > s0 and
was originally defined in a connected compact Riemannian
manifold [78]. From this bilocal zeta-function, is possible
to define a spectral zeta-function associated with the
eigenvalues of the Laplacian in Ω ⊂ Rd. We define ZðsÞ ¼
Trð−ΔÞ−s, where

ZðsÞ ¼
X∞
k¼1

λ−sk ¼ lim
m→∞

Xm
k¼1

λ−sk : ð7Þ

Using the counting function NðλÞ and the definition of the
Riemann-Stieljes integral we get

Xm
n¼1

λ−sn ¼
Xk−1
n¼1

λ−sn þ
Z

b

a
dNðtÞt−s;

λk−1 ≤ a < λk; λm ≤ b < λmþ1: ð8Þ

Therefore the spectral zeta-function can be written as

ZðsÞ ¼
Xk−1
n¼1

λ−sn þ
Z

∞

λk

dNðtÞt−s: ð9Þ

In principle, this formula is given in the region of the
complex plane where the original sum converges. As the
sum on the right-hand side is analytic over the entire
complex s-plane, the qualitative behavior of its analytic
continuation is determined by the Riemann-Stieltjes inte-
gral expressed in terms of Weyl’s counting function.
To obtain the polar structure of the spectral zeta-function

let us consider an evolution equation in L2ðΩÞ that can be
formulated as the following initial-boundary problem in
ð0;∞Þ ×Ω. For Ω ⊂ Rd, we get

8>><
>>:

∂u
∂t ¼ Δu;
uð0; xÞ ¼ fðxÞ;
uðt; xÞjx∈ ∂Ω ¼ 0:

The weak solution uðt; xÞ, that satisfies the diffusion
equation in the sense of distributions is given by

uðt; xÞ ¼
Z

dμðyÞpΩðt; x; yÞfðyÞ; ð10Þ

where dμðyÞ is the volume element of the domain and
pΩðt; x; yÞ is the diffusion kernel, i.e., the positive funda-
mental solution to the heat equation. For a generic
boundary condition, the spectral decomposition of the
diffusion kernel can be represented as

pΩðt; x; yÞ ¼
X∞
k¼1

e−tλkðΩÞϕkðxÞϕkðyÞ: ð11Þ
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Using a Mellin transform and the definition of the
Minakshisundaram-Pleijel zeta-function Zðx; y; sÞ, we get

ΓðsÞZðx; y; sÞ ¼
Z

∞

0

dt ts−1pΩðt; x; yÞ: ð12Þ

For x ≠ y, ΓðsÞZðx; y; sÞ is an regular function of s in the
entire complex plane. For x ¼ y there is a pole at s ¼ 1.
From the diffusion kernel, since we are interested in global
issues, let us define the trace of the diffusion kernel, written
as ΘðtÞ ¼ TrðetΔÞ, where, using the Riemann-Stieljes
integral we can write

ΘðtÞ ¼
Z

∞

0

e−λtdNðλÞ ¼
X∞
k¼1

e−λkt t > 0: ð13Þ

The spectral zeta-function can be represented as

ZðsÞ ¼ 1

ΓðsÞ
Z

∞

0

dt ts−1ΘðtÞ: ð14Þ

Its polar structure in the extended complex plane is
determined by the classical spectral invariants, which are
the expansion coefficients at t → 0þ of the diffusion kernel
trace. When ∂Ω ≠ ∅ the coefficients of the asymptotic
expansion of the heat trace have been calculated for a
variety of boundary conditions

lim
t→0þ

ΘðtÞ ¼ ð4πtÞ−d
2

"XK
p¼0

cpðΩÞt
p
2 þ oðtKþ1

2 Þ
#
; ð15Þ

where the coefficients cpðΩÞ are related to the geometric
characteristics of the bounded domain. Useful information
on the heat kernel coefficients in mathematical and physical
literature can be found at Refs. [28–30]. By a Tauberian
theorem, we are able to connect the first term of the above
asymptotic expansion with Weyl’s asymptotic behavior of
the Laplace operator spectrum.
For the case of vacuum energy, Fulling has stressed

the need to study the cylinder kernel [79,80]. See, for
example, [81]. To implement this idea, let us define the
zeta-function ζ ffiffiffi

D
p ðsÞ constructed with the energies ωk of

each normal modes

ζ ffiffiffi
D

p ðsÞ ¼
X∞
k¼1

1

ωs
k
; ReðsÞ > s1: ð16Þ

The renormalized vacuum energy is by definition hEir ¼
ζ ffiffiffi

D
p ðsÞjs¼−1. Using again a Mellin transform we have

X∞
k¼1

1

ωs
k
¼ 1

Γðs
2
Þ
Z

∞

0

dt t
s
2
−1

X∞
k¼1

e−ω
2
kt: ð17Þ

The zeta-function ζ ffiffiffi
D

p ðsÞ is a meromorphic function of s
with simple poles. In the case where s ¼ −1 is a pole, we
can obtain a representation in a neighborhood of the pole,

including some regular part known as the renormalized
vacuum energy. It is important to stress that the measur-
able Casimir energy is obtained from a mathematical
formalism based on analytic continuations, where unde-
sirable polar contributions must be removed through a
renormalization procedure.

III. THE VACUUM ENERGY IN THE
PRESENCE OF SURFACES WITH IDEAL

BOUNDARY CONDITIONS

The aim of this section is to use an analytic regularization
procedure to obtain the vacuum energy of a massless scalar
field at zero temperature in the presence a slab geometry
Ω ¼ Rd−1 × ½0; L� with Dirichlet boundary conditions. Let
us assume a free neutral scalar field defined in a (dþ 1)-
dimensional flat space-time. Its field equation, the Klein-
Gordon equation, reads�

∂
2

∂t2
− Δþm2

0

�
φðt;xÞ ¼ 0: ð18Þ

To implement the canonical quantization, the field operator
and the generalized momentum are expanded in Fourier
series enclosed in a finite periodic box. With a defined
operator Hamiltonian, H, the energy of the confined field
has a pure point spectrum, allowing us to characterize
its states in terms of occupation numbers and the Fock
representation. For Dirichlet boundary conditions, the
situation is similar. The states of the system are described
in terms of occupation numbers of elementary excitations,
which characterizes the states concerning the ground state,
the vacuum state j0i.
To proceed, we restrict the field to a d-dimensional

box with lengths ðL1 × L2 ×… × Ld−1 × LdÞ. Assuming
Dirichlet boundary conditions, the vacuum energy, i.e., the
total energy of the quantized field in the box, is h0jHj0i ¼
UdðL1;…; Ld−1; LdÞ. Using the condition Ld ≪ Li for
ði ¼ 1; 2;…; d − 1Þ, and defining Ld ¼ L, the unrenor-
malized vacuum energy can be written as

UdðL1;…; Ld−1; LÞ

¼ 1

ð2πÞd−1
�Yd−1

i¼1

Li

�

×
Z Yd−1

i¼1

dqi
X∞
n¼1

�
q21 þ � � � þ q2d−1 þ

�
nπ
L

�
2

þm2
0

�1
2

:

ð19Þ
To discuss the case similar to the electromagnetic field let
us assumem2

0 ¼ 0. The unrenormalized vacuum energy per
unit area is defined as

ϵdðLÞ ¼
UdðL1;…; Ld−1; LÞ

ðQd−1
i¼1 LiÞ

; ð20Þ
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and this is a divergent expression. It can be written as

ϵdðLÞ ¼
ð4πÞ1−d2
Γðd−1

2
Þ
X∞
n¼1

Z
∞

0

dr rd−2
�
r2 þ

�
nπ
L

�
2
�1

2

: ð21Þ

A straightforward calculation led us to

ϵdðLÞ ¼
ð4πÞ1−d2
2Γðd−1

2
Þ
�
π

L

�
d
Z

∞

0

dx x
d−3
2 ð1þ xÞ12

X∞
n¼1

nd: ð22Þ

In the limit L → ∞we should obtain the fundamental result
that the vacuum is a Lorentz invariant state of zero energy.
Using the definition of the Beta function as

Bðz; wÞ ¼ ΓðzÞΓðwÞ
Γðzþ wÞ ; ð23Þ

and an analytic continuation principle, the vacuum energy
per unit area is given by

ϵdðLÞ ¼ −
π

d
2Γð− d

2
Þ

2ð2LÞd ζð−dÞ; ð24Þ

where ζðsÞ is the Riemann zeta-function, which is a function
of the complex variable s ¼ σ þ it, where σ; t∈R. It is
originally defined in the half-plane ReðsÞ > 1 through an
absolutely convergent Dirichlet series [82,83]. The series is
defined by summing over the set of natural numbers n∈N
and can be expressed as

ζðsÞ ¼
X∞
n¼1

1

ns
: ð25Þ

It can be extended to the complex plane as a meromorphic
function using the Poisson summation formula with a simple
pole at s ¼ 1.
It is possible to show that Riemann zeta-function ζðsÞ

satisfies a functional equation valid for s∈Cnf0; 1g. This
equation connects two functions outside the original
domain of convergence. Using the properties of the
Gamma function to define ϑðsÞ as

ϑðsÞ ¼ ð2πÞsΓð1 − sÞ
Γð1 − s

2
ÞΓðs

2
Þ ; ð26Þ

we get a reflection formula for the Riemann zeta-function

ζðsÞ ¼ ϑðsÞζð1 − sÞ: ð27Þ

The above calculations are an intermediate step crucial
to discuss the modifications in the renormalized vacuum
energy of a scalar field in the presence of surfaces where the
scalar field satisfies nonideal boundary conditions.

IV. RENORMALIZED VACUUM ENERGY WITH
NONIDEAL BOUNDARY CONDITIONS

In the Lifshitz approach, the dispersion forces between
dissipative media are caused by the fluctuating electro-
magnetic field defined both within and outside the media.
Using the fluctuation-dissipation theorem, the Lifshitz
expression for the force between plates depends on the
dielectric functions on the surfaces and also on the
medium in which they are immersed. The finite conduc-
tivity correction to the ideal Casimir calculation is
obtained using the frequency dependence of the dielectric
function. The imperfect conductivity at high frequencies
can be modeled by introducing only the plasma frequency
ωp of the plates. It is important to note that the Casimir
result is recovered at distances larger than the plasma
wavelength.
In our case, we are discussing the vacuum energy of a

quantized scalar field in the presence of classical surfa-
ces, where the field satisfies nonideal boundary condi-
tions. Those can be understood as finite conductivity
conditions. We can call it ideal high-pass Dirichlet
boundary condition. In order to be clear, our boundary
condition is over the frequencies, one can think them as
the following: for frequencies smaller than some ωkc we
do have the usual Dirichilet boundary conditions, other-
wise, the plates are transparent for the field. However, the
crucial point is that is not convenient to simply calculate
the correction to the renormalized vacuum energy sepa-
rating the effects of the low-energy vacuum modes from
the high-energy modes using a sharp cutoff, once that
is a sum of positive terms one always obtain a positive
energy density, i.e.,

ϵf:c:d ðLÞ ¼
Xkc
k¼1

ωk > 0; ð28Þ

where ωkcþ1 is plasma frequence of the material.
We start using an analytic regularization procedure and

the fact that for Dirichlet boundary conditions the eigen-
values vary continuously under a smooth deformation of
the domain (spectral stability of elliptic operator under
domain deformation) and the minimax principle says that
the eigenvalues monotonously decrease when the domain is
enlarger,

σmðΩ1Þ ≥ σmðΩ2Þ; Ω1 ⊂ Ω2: ð29Þ

By the above arguments, we can use approximate
functional equation that expresses the Riemann zeta-
function as finite sums, outside their original domain of
convergence.
Initially, we use a classical result by Hardy and

Littlewood following the derivation discussed in Ref. [84].
Let us write the Riemann zeta-function as
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ζðsÞ ¼
X
n≤nc

n−s þ
X
n>nc

n−s

¼
X
n≤nc

n−s þ 1

ΓðsÞ
Z

∞

0

dx xs−1
�X

n>nc

e−nx
�

¼
X
n≤nc

n−s þ 1

ΓðsÞ
Z

∞

0

dx
xs−1e−ncx

ex − 1
; ð30Þ

where the absolute convergence justifies the inversion of
the order of summation and integration. To proceed, we
analyze the following integral IðsÞ. We have

IðsÞ ¼
Z
C
dz

zs−1e−ncz

ez − 1
; ð31Þ

where the contour C starts at infinity on the positive real
axis, encircles the origin once in the positive direction
excluding the points �2πi;�4πi;… and returns to infinity.
We obtain

IðsÞ ¼ ðe2πis − 1Þ
Z

∞

0

dx
xs−1e−ncx

ex − 1
: ð32Þ

Using the analytic continuation principle we can write

ζðsÞ ¼
X
n≤nc

n−s þ e−πisΓð1 − sÞ
2πi

Z
C
dz

zs−1e−ncz

ez − 1
: ð33Þ

From the above equation, we find an approximate repre-
sentation of the zeta-function in terms of finite sums. It was
proved that

ζðsÞ ¼
X
n≤x

1

ns
þ ϑðsÞ

X
n≤y

1

n1−s
þOðx−σÞ þOðt12−σyσ−1Þ;

ð34Þ

for 0 ≤ σ < 1 holds for given x; y; t > C > 0 satisfying
2πxy ¼ t where t ≫ 1. This is known as an approximate
functional equation.
For simplicity, using the approximate functional equa-

tion, we discuss the case of a slab geometry Rd−1 × ½0; L�.
Making a parallel with the electromagnetic case, in the
scalar field scenario, we define the plasma frequency ωp

and the plasma wavelength λp ¼ 2π=wp. Next, we define a
“critical” mode index nc, which will be related to the
plasma wavelength. In order to find an adequate maximum
number of states nc for a single compactified direction, we
need to introduce first the notion of density of states ρðkÞ in
the phase space and the number of states dN ¼ ρðkÞddk
that lies between k and kþ dk. In our d-dimensional space,
where all the directions are finite and have lengths
L1; L2;…; Ld−1; L, then the density of states is simply

ρðkÞ ¼
�
L
πd

�Yd−1
i¼1

Li; ð35Þ

we can find the number of states inside a volume that
possess the maximum value of moment kmax as

NðkmaxÞ ¼
Z
jkj<kmax

ddkρðkÞ ¼ ρ
πd=2

Γðd
2
þ 1Þ k

d
max; ð36Þ

where we have used the definitions of the volume of a
sphere in d-dimensions. For other side, we are interested
in obtaining the maximum number of states in a single
compactified direction nc. We have that

NðkmaxÞ ¼
πd=2

Γðd
2
þ 1Þ n

d
c: ð37Þ

Therefore we identified ndc ¼ ρkdmax. Now, we relate the
maximum wave number with the plasma frequency of the
material in such a manner that kmax ¼ 2π=λp. With all this,
after some algebra, we conclude that

nc ¼ 2

�
L1=d

λp

�Yd−1
i¼1

L1=d
i ; ð38Þ

since all the directions Li from i ¼ f1; 2;…; d − 1g are
much larger that L. The only dependence of the maximum
number of states is of the form

ncðLÞ≡
�
L
λp

�
1=d

: ð39Þ

In the Hardy and Littlewood approximate functional
equation, we choose

x¼y¼
�
L
λp

�
1=d

¼nc⇒ t¼2π

�
L
λp

�
2=d

¼2πn2c: ð40Þ

Using the asymptotic expansion, Eq. (34), we get the
Casimir energy as

ϵdðLÞ¼−
π

d
2Γð−d

2
Þ

2ð2LÞd ½Hncð−dÞþϑð−dÞHncðdþ1Þ�: ð41Þ

The quantities HnðsÞ are the generalized harmonic num-
bers. Once the Eq. (41) only makes sense as an analytic
continuation, those finite sums must be understood as such.
Moreover, we stress the fact that the equality holds by
analytic continuation outside the strip 0 < σ < 1. This can
be shown using an analytic continuation of the asymptotic
expansion.
Each generalized harmonic number has an expression for

its domain of interest in the complex plane. Lets us start
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from the second term in the sum, Hncðdþ 1Þ. Formally,
this quantity is given by

Hncðdþ 1Þ≡Xnc
n¼1

1

ndþ1
: ð42Þ

However, since we start from Eq. (24), which is an analytic
continuation, the finite sum should be taken in the range of
interest. In such a situation, we can use a known expression

Hncðdþ 1Þ ¼ ζðdþ 1Þ þ ð−1Þd
d!

ψdðnc þ 1Þ; ð43Þ

which holds for nc ∈Rnf−1;−2;−3;…g and d∈N; see,
e.g., [85], and ψmðxÞ is the polygamma function. Using a
recurrence relation and a expression for large arguments,
we can write the polygamma function as

ψdðnc þ 1Þ ¼ ð−1Þdd!
ndþ1
c

þ ð−1Þdþ1
X∞
k¼0

ðkþ d − 1Þ!
k!

Bk

ndþk
c

;

ð44Þ

where Bk are the Bernoulli numbers (we take the con-
vention B1 ¼ 1=2). Using the definition of nc and in the
limit of L=λp ≫ 1 we can write

ψdðncþ1Þ≈ð−1Þdþ1

�
λp
L

��
ðd−1Þ!−1

2
d!

�
λp
L

�1
d
�
; ð45Þ

which allow us to write the Hncðdþ 1Þ in powers of λp=L.
For the first term of Eq. (41), we formally have

Hncð−dÞ≡
Xnc
n¼1

1

n−d
; ð46Þ

and an analytic continuation can be obtained using some
elementary operations and the uniqueness of the analytic
continuation, is straightforward to see that

Hncð−dÞ ¼ ζð−dÞ − ζHð−d; nc þ 1Þ; ð47Þ

where ζHð−d; nc þ 1Þ is the Hurwitz zeta-function,
defined by

ζHðs; aÞ≡
X∞
n¼0

1

ðnþ aÞs : ð48Þ

Let us define the Casimir energy per unit area with
nonideal boundary conditions, i.e., finite conductivity
(f.c.) by

ϵf:c:d ðLÞ≡ −
1

Ld

πd=2

2dþ1
Γ
�
−
d
2

�
ζHð−d; nc þ 1Þ: ð49Þ

Once this is performed, we can identify the contribution
from the ideal boundary conditions, and the remaining
part can be regarded as a correction term. We get

ϵf:c:d ðLÞ¼ ϵdðLÞþ
Γð1þdÞλp
2Γð1þd

2
Þ
�

1

4
ffiffiffi
π

p
�

d
�

1

Ldþ1d
−

λ
1
d
p

2Ldþ1þ1
d

�
:

ð50Þ

As we have observed, in the slab geometry, the Casimir
force is a negative quantity (ϵdðLÞ < 0), while the second
contribution in the above equation is positive. We have
succeeded in deriving the Casimir energy per unit area
with nonideal boundary conditions. Note that our first finite
conductivity correction to the electromagnetic Casimir
energy is the same as the correction obtained using the
Lifshitz calculations. In contrast, the second correction is
smaller, with the Lifshitz formula giving a second correc-
tion as L−5, whereas ours give L−13

3 . The basic assumption
that needs to be carefully investigated is the discussion of
vacuum energy in a bounded domain. To proceed, in the
next section, we generalize the above result to the d ¼ 2
dimensional case for a finite volume box.

V. CASIMIR ENERGY IN A RECTANGULAR BOX
WITH NONIDEAL BOUNDARY CONDITIONS

Let us discuss now the eigenvalues of a second-order
elliptic self-adjoint partial differential operator on scalar
functions on a bounded domain. We consider the eigen-
values of −Δ on a connected open set Ω in Euclidean
space R2. We assume that the massless scalar field is
confined in a rectangular box, with lengths L1 and L2

obeying Dirichlet boundary conditions. The eigenfrequen-
cies that we use to expand the field operator are given by

ωn1n2 ¼
��

n1π
L1

�
2

þ
�
n2π
L2

�
2
�1

2

; n1;n2¼1;2;…: ð51Þ

The unrenormalized vacuum energy in this case is

UðL1; L2Þ ¼
1

2

X∞
n1;n2¼1

ωn1n2 : ð52Þ

Making use of an analytic regularization procedure, the
divergent expression can be written as

EðL1; L2; sÞ ¼
1

2

X∞
n1;n2¼1

ω−2s
n1n2 ; ð53Þ

for s∈C. Observe that, the vacuum energy is obtained
when s ¼ − 1

2
. The above double series converges abso-

lutely and uniformly for ReðsÞ > 1. An analytic function,
which plays an important role in algebraic number theory is
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the Epstein zeta-functions associated with quadratic
forms [86]. Suppose that

ϕða; b; c; x; yÞ ¼ ax2 þ cxyþ by2; ð54Þ

where a, b and c∈R and a > 0 and η ¼ 4ab − c2 > 0.
Lets us define the function AðsÞ by the series

Aða; b; c; sÞ ¼
X0∞

n1;n2¼−∞
ϕ−sða; b; c; n1; n2Þ; ð55Þ

The above series defines an analytic function for
s ¼ σ þ it, (σ ∈R and t∈R) and σ > 1, where we adopt
the notation that the prime sign in the summation means
that the contribution n1 ¼ n2 ¼ 0 (the origin of the mode
space) must be excluded. This particular case of the Epstein
zeta-function can be continued analytically to the whole
complex plane, except for a simple pole at s ¼ 1 [87]. This
double series exhibits a functional equation that can be
obtained using properties of the theta-function or the
Poisson summation formula. The functional equation reads

Aða; b; c; sÞ ¼
�
2πffiffiffi
η

p
�

2s−1 Γð1 − sÞ
ΓðsÞ A

�
1

a
;
1

b
;
1

c
; 1 − s

�

ð56Þ

We are interested in the case where c ¼ 0. Let us define the
function Zð 1

L1
; 1
L2
; sÞ by

Z

�
1

L1

;
1

L2

; s

�
¼

X0∞

n1;n2¼−∞

�
n21
L1

þ n22
L2

�−s
; ð57Þ

We can find that the vacuum energy is written as

EðL1; L2; sÞ ¼
1

8
Z

�
π2

L2
1

;
π2

L2
2

; s

�

−
1

4

��
π

L1

�
−2s

þ
�
π

L2

�
−2s

�
ζð2sÞ: ð58Þ

As it was discussed, EðL1; L2; sÞ is analytic in s∈
Cnf1

2
; 1g. Using the analytic continuation of the Epstein

and the Riemann zeta-function gives the vacuum energy
UðL1; L2Þ ¼ EðL1; L2; s ¼ −1=2Þ for the system with
Dirichlet boundary conditions. We get

UðL1; L2Þ ¼
π

48

�
1

L1

þ 1

L2

�

−
L1L2

32π

X0∞

n1;n2¼−∞
ðn21L2

1 þ n22L
2
2Þ−

3
2: ð59Þ

The next step involves discussing the scalar case
similar to the electromagnetic case of imperfect

conductors, where there is a plasma frequency ωp.
Using the same approach discussed in the previous
section, we aim to determine the approximate functional
equation for the Epstein zeta-function.
Potter [88] has derived the following approximate func-

tional equation:

Aða; b; c; sÞ ¼
X0

ϕ≤x
ϕ−sða; b; c; n1; n2Þ

þ XðsÞ
X0

ϕ≤y
ϕs−1ða; b; c;n1; n2Þ; ð60Þ

for t ≫ 1, and the condition 4π2xy ¼ ηt2 must be satisfied,
the quantity XðsÞ is defined by

XðsÞ ¼
�
2πffiffiffi
η

p
�

2s−1 Γð1 − sÞ
ΓðsÞ : ð61Þ

Henceforth we take Aða; b; 0; sÞ≡Aða; b; sÞ and
similar for ϕ.
Of course, to obtain the correction to the Casimir energy

via asymptotic series we will need to use the Potter
approximate functional equation for the Epstein zeta
function, but also the Hatree-Littlewood approximate func-
tional equation for the Riemann zeta-function. Let’s start
analyzing the Epstein zeta-function. It is convenient to
introduce a λp term in our expression in order to only have
adimensional quantities and establish a parallel with the
Casimir energy in a finite conductivity scenario. In this
case, we have

A
�
π2λ2p
L2
1

;
π2λ2p
L2
2

; s

�
¼

X0

Φ≤x
Φ−s

12 þ XðsÞ
X0

Φ≤y
Φs−1

12 ; ð62Þ

where to the notation be lightened, we defined

Φ12 ≡ ϕ

�
π2λ2p
L2
1

;
π2λ2p
L2
2

; n1; n2

�

¼ π2λ2p
L2
1

n21 þ
π2λ2p
L2
2

n22; ð63Þ

once that 4π2xy ¼ ηt2 with

η ¼ 4

�
π2λ2p
L1L2

�
2

⇒ xy ¼
�

πλ2p
L1L2

�
2

t2: ð64Þ

Since

XðsÞ ¼
�
L1L2

πλ2p

�
2s−1 Γð1 − sÞ

ΓðsÞ ; ð65Þ

using a similar argument that we used before, but now all
dimensions remain compact, we can define the quantities
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nð1Þc ≡
�
L1

λp

�
1=2

and nð2Þc ≡
�
L2

λp

�
1=2

⇒ xy ¼
"

π

ðnð1Þc nð2Þc Þ2
#
2

t2; ð66Þ

which, considering the fact that we do not have a
preferred direction, indicate to us that the natural choice
for t should be

t ¼ 1

π

�
nð1Þc nð2Þc

�
2
⇒ x ¼ y ¼ nð1Þc nð2Þc : ð67Þ

So looking back to the Eq. (62), we see that the sums are
over all modes inside the ellipse defined by

n21
L1n

ð1Þ
c nð2Þc

þ n22
L2n

ð1Þ
c nð2Þc

¼
�

1

πλp

�
2

¼ constant; ð68Þ

in the ðn1; n2Þ-plane with the origin removed.

For the Riemann zeta-function contributions, that are
present in Eq. (58), we have

ζð2sÞ ¼
X
n≤u

1

n2s
þ ϑð2sÞ

X
n≤v

1

n1−2s
; ð69Þ

for α ≫ 1 where 2πuv ¼ α. Proceeding exactly as in the
slab bag geometry case, we find that

u ¼ v≡ nðiÞc ¼
�
Li

λp

�
1=2

⇒ α ¼ 2π
Li

λp
; i ¼ 1; 2; ð70Þ

continuing from the previous section, we employ an
analogous method. Using the same harmonic number
definitions, once the range in the complex plane will be
the same. Considering the case where s ¼ −1=2 and
manipulating the equations, is possible to find that.

EðL1; L2; sÞ ¼
λ2sp
8

X0

Φ≤nð1Þc nð2Þc

Φ−s
12 þ

�
L1L2

πλ2p

�
2s−1 Γð1 − sÞ

ΓðsÞ
λ2sp
8

X0

Φ≤nð1Þc nð2Þc

Φs−1
12

−
λ2sp
4

X2
i¼1

	�
λp
Li

�
−2sh

2ζð2sÞ − ζHð2s; nðiÞc þ 1Þ
i
þ ð−1Þ−4sþ1ϑð2sÞ

�
1

2s

�
λp
Li

�
−3s

−
1

2

�
λp
Li

�−6sþ1
2

�

: ð71Þ

We define the vacuum energy for finite conductivity (f.c.) as

Ef:c:

�
L1; L2; s ¼ −

1

2

�
¼ Uf:c:ðL1; L2Þ≡ 1

8λp

X
Φ≤nð1Þc nð2Þc

Φ
1
2

12 −
1

4

X2
i¼1

1

Li

�
ζHð−1; nðiÞc þ 1Þ − 1

6

�
: ð72Þ

Therefore

Uf:c:ðL1; L2Þ ¼ UðL1; L2Þ −
π2λ3p

32ðL1L2Þ2
X

Φ≤nð1Þc nð2Þc

Φ−3
2

12 þ
1

2λpð2πÞ2
X2
i¼1

��
λp
Li

�
3=2

−
1

2

�
λp
Li

�
2
�
; ð73Þ

is the Casimir energy for a rectangular box with nonideal boundary conditions.

VI. CONCLUSIONS

In this paper, we investigate the total energy of a
massless scalar quantized field, which satisfies idealized
perfectly boundary conditions, using an analytic regulari-
zation procedure. We extend the above result to the case of
“imperfect conductor” boundary conditions. The crucial
point in this scenario is that it is not convenient to calculate
the correction to the renormalized vacuum energy separat-
ing the effects of the low-energy vacuum modes from the
high-energy modes using a cutoff method without realizing
previously a regularization of the zero-point energy.

Therefore, to obtain the correction to the Casimir force
for imperfect conductors assuming a slab geometry
Rd−1 × ½0; L�, we have to use an approximate functional
equation. First we represent the energy density using finite
sums outside the original domain of convergence of the
Dirichlet series. Next, we demonstrate how it is possible to
obtain the correction to the force in the three-dimensional
spacetime generated by a massless scalar field in the
presence of a rectangular box, with lengths L1 and L2.
In the literature, it has been discussed a scenario where

classical fluctuations assume the role of the quantum
vacuum modes as the original Casimir conceptual
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framework [89–96]. In a confined system with quenched
disorder, a sensitivity to the boundaries may arise, where
the distance to the critical situation is given by some
nonthermal control parameter. Recently, inspired by the
statistical Casimir effect, it was discussed the application
of the spectral and distributional zeta-function methods
to describe fluctuation-induced forces arising from a
quenched disorder field in a continuous Landau-Ginzburg
model [97]. A series of representations was employed.
From the series representation of the average free energy, it
is possible to obtain the force between the boundaries,
due to the interaction of the critical fluctuations generated
by the moment of the partition function, with the largest
correlation length of the fluctuations. In other words,
varying continuously the intensity of a nonthermal control
parameter, the induced force can be repulsive or attractive
between the boundaries [98]. This is the problem of the sign
of the Casimir force in the statistical Casimir effect [99].
It is clear that is possible to go beyond the Gaussian
approximation, where a perturbative expansion must be
implemented with Euclidean Green’s functions. In this
case, in addition to the traditional bulk counterterms,

surface counterterms must be introduced to renormalize
the interacting Euclidean field theory in the presence of
boundaries [100–103]. Therefore, a natural continuation
of this work would involve investigating the statistical
Casimir effect in the presence of dirty surfaces [104].
Another possibility is to investigate the analytic expression
for the heat kernel coefficients taking into account the
plasma frequency, following the lines of Ref. [105]. These
subjects are under investigation by the authors.
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