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We investigate the transition rates of uniformly accelerated two-level single and entangled atomic
systems in empty space as well as inside a cavity. We take into account the interaction between the systems
and a massless scalar field from the viewpoint of an instantaneously inertial observer and a coaccelerated
observer, respectively. The upward transition occurs only due to the acceleration of the atom. For the two-
atom system, we consider that the system is initially prepared in a generic pure entangled state. In the
presence of a cavity, we observe that for both the single and the two-atom cases, the upward and downward
transitions are occurred due to the acceleration of the atomic systems. The transition rate manifests subtle
features depending upon the cavity and system parameters, as well as the initial entanglement. It is shown
that no transition occurs for a maximally entangled superradiant initial state, signifying that such
entanglement in the accelerated two-atom system can be preserved for quantum information processing
applications. Our analysis comprehensively validates the equivalence between the effect of uniform
acceleration for an inertial observer and the effect of a thermal bath for a coaccelerated observer, in free
space as well as inside a cavity, if the temperature of the thermal bath is equal to the Unruh temperature.
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I. INTRODUCTION

Relativistic quantum information is a growing area of
study that combines ideas from gravitational physics with
those from quantum information theory [1–6]. From the
perspective of quantum communications, the fundamental
role herein is played by quantum entanglement [7]. In
recent times one of the key prototypes in research on
entangled states in the relativistic domain are systems of
two-level atoms interacting with quantum fields [8,9].
Radiative processes of entangled states have been exten-
sively discussed in the literature [10]. In this regard, several
important works were developed [11–17], which establish
important results concerning entanglement generation
between two localized causally disconnected atoms. On
the other hand, many investigations of atomic systems were
also implemented on a curved background [18–21].
Quantum field theory in curved background is another

important area of theoretical physics that predicts observa-
tion is a frame dependent entity. As an example, one can
consider that a uniformly accelerated particle detector sees
theMinkowski vacuumas a thermal bathwith temperatureT
related to its proper acceleration α, given by T ¼ α=2π. This
phenomenon arises as a result of the interaction between the

detector and the fluctuating vacuum scalar fields, and is
known as the Fulling-Davies-Unruh (FDU) effect [22–25].
After the seminal works of Fulling-Davies-Unruh [22–24],
research into this phenomenon have been extended to
include how a particle detector interacts with different
quantum fields [26–41]. The application of both classical
and quantum field theory has greatly improved the under-
standing of the origin of such phenomena [27]. In addition to
being significant, the FDU effect is also connected to a
number of current research areas, including thermodynam-
ics and the information paradox of a black hole [24,42–44].
There are several theoretical provisions for possible

observable manifestations of the FDU effect. In particular,
it has been theoretically realized that when a uniformly
accelerated single particle detector interactswith thevacuum
massless scalar field, the spontaneous excitation rate of the
accelerated detector is exactly same as seen by a locally
inertial observer and by a coaccelerated observer. This
equivalence is found to be true theoretically both in free
space aswell as in the presence of a reflecting boundary only
if there exists a thermal bath at the FDU temperature in the
coaccelerated frame [39]. Investigations on the radiative
properties of a single uniformly accelerated atom [34–40]
have also been extended to the scenarios where more than
one atom is in interaction with the massless scalar field and
the electromagnetic field [18,45–53].
Through the use of trapped atoms in optical nanofibers

[54,55] and novel nanofabrication techniques [56,57], it is
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now possible to experimentally realize atomic excitations in
nanoscale waveguides [58]. The examination of fundamen-
tal quantum optical concepts like atom-photon lattices is
made possible by these pathways [59]. Studies on relativ-
istic quantum phenomena in superconducting circuits
[60,61] and secure quantum communication over long
distances [62–65] highlight the significance of reflecting
boundaries. Reflecting boundaries also play an impor-
tant physical role in the context of quantum entanglement

]66–69 ], holographic entanglement entropy [70], atom-
field interaction [71], and quantum thermodynamics [72].
The basic motivation of investigating the role of reflect-

ing boundaries lies in its applicability to cavity quantum
electrodynamics, a focus of fundamental research with
numerous applications [73]. It has been observed that the
resonance interatomic energy of two uniformly accelerated
atoms can be effected due to the presence of boundaries
[49,52,74] and noninertial atomic motion [47]. To study
the Unruh-Davies effect inside cavities, techniques of
cavity quantum electrodynamics can be used [75,76].
Additionally, cavity quantum electrodynamical configura-
tions such as superconducting circuits [61] and laser-driven
technologies [77–79] can achieve significant acceleration
which is desirable for experimental verification of the
theoretical results. Several theoretical analyses of the
radiative processes of entangled atoms have been done
by taking boundaries into account [66–69,75,76,80,81].
In a recent work [82], it has been found that there is an

equivalence between the transition probabilities of an
entangled two-atom system as observed by a Minkowski
observer, and that by a coaccelerated observer in free space
when the two-atom system is placed in a thermal bath. This
equivalence only holds if the temperature of the thermal
bath in the coaccelerated frame is taken to be equal to the
Unruh temperature. However, this equivalence breaks
down in general. On the other hand, it has also been found
that the resonance interaction energy of a two-atom system
as observed by an inertial observer and by a coaccelerated
observer is the same in free space without considering any
thermal bath at the Unruh temperature in the coaccelerated
frame [48].
The above results, with certain seemingly conflicting

implications, motivate us to perform a comprehensive
investigation within the same framework involving the
status of the FDU effect for both single and two-atomic
entangled and accelerated systems in free space as well as
in the presence of reflecting boundaries. Further motivation
for our study in the context of cavities is two-fold. First of
all, it is not clear a priori, whether such an equivalence will
still hold inside a cavity. The reason for this is the
following. The physics inside a cavity is significantly
different from that in free space since a number of field
modes are curtailed due to boundary conditions. The
second reason for carrying our investigation inside a
cavity is that the cavity set-up is more realistic from an

experimental point of view. Several recent experiments
have been done using cavity setup [56,57,83–85].
In the present work we consider the interaction between

the atomic systems and a massless scalar field in the frame
of an instantaneously inertial observer and a coaccelerated
observer, respectively. The two-atom system is initially
prepared in a generic pure entangled state. In the presence
of a cavity, we show that for both the single and the two-
atom cases, the magnitude of the upward and downward
transitions increase due to the acceleration of the atomic
systems. The transition rate displays interesting features
with variation of the cavity and system parameters, as well
as the initial entanglement. We find that no transition
occurs for a maximally entangled superradiant initial state,
indicating that such entanglement in the accelerated two-
atom system can be preserved for quantum information
processing applications. We further compute values of the
transition rate for two examples using realistic cavity and
system parameters. From our analysis it follows that the
equivalence between the effect of uniform acceleration for
an inertial observer and the effect of a thermal bath for a
coaccelerated observer, holds in free space as well as inside
a cavity, if the temperature of the thermal bath is set equal to
the Unruh temperature.
The paper is organized as follows: In Sec. II, we

recapitulate the basic framework for obtaining the transition
rate when a single accelerated atom interacts with a
massless scalar field. In Sec. III, we calculate the transition
rates of the single atom from the viewpoint of the
instantaneously inertial observer for empty space and in
the presence of a cavity, respectively. A similar calculation
of the transition rates of the single atom from the viewpoint
of the coaccelerated observer for empty space and in the
presence of a cavity, respectively, is presented in Sec. IV.
We next consider the case of an entangled and accelerated
two-atom system from Sec. Vonward. In Sec. VI, we study
this system from the point of view of an inertial observer.
Subsequently, in Sec. VII we calculate the transition rate in
context of the above system in context of a co-accelerated
observer. We present a summary of our obtained results in
Sec. VIII. Throughout the paper, we take ℏ ¼ c ¼ kB ¼ 1,
where kB is the Boltzmann constant.

II. COUPLING OF A SINGLE ATOM
WITH A MASSLESS SCALAR FIELD

Let us consider a single atom with two energy levels,
−ω0=2 and þω0=2, traveling in vacuum with massless
scalar field fluctuations. In the laboratory frame, trajecto-
ries of the atom can be represented through xðτÞ ¼
ðtðτÞ;xðτÞÞ. In the instantaneous inertial frame, the
Hamiltonian describing the atom-field interaction in the
interaction picture is given by [86]

H ¼ λmðτÞϕðxðτÞÞ; ð1Þ
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where λ is the coupling constant which is assumed to be
very small. The mode expansion of the massless scalar field
reads [87]

ϕðxðτÞÞ¼ 1

ð2πÞ3=2
Z þ∞

−∞

d3kffiffiffiffiffiffiffiffiffi
2ωk

p ½ake−iωktþik·xþa†ke
iωkt−ik·x�

ð2Þ

where k ¼ ðωk;kÞ is the four momentum and k is the three
momentum. The monopole operator at any proper time τ of
a single atom mðτÞ is given by

mðτÞ ¼ eiH0τmð0Þe−iH0τ ð3Þ

with mð0Þ ¼ jgihej þ jeihgj being the initial monopole
operator and H0 ¼ ϵjeihej being the free Hamiltonian of
a single atom respectively [72].
According to the time-dependent perturbation theory in

the first-order approximation, the transition amplitude for
the atom-field system from the initial atom-field state
jii ⊗ j0Mi≡ ji; 0Mi to the final atom-field state jf;ϕfi is

Aji;0Mi→jf;ϕfi ¼ iλhf;ϕfj
Z þ∞

−∞
mðτÞϕðxðτÞÞji; 0Mi ð4Þ

where jii and jfi are the initial and final atomic states
whereas j0Mi and jϕfi are the initial (Minkowski vacuum
state) and final field states. Now, squaring the above
transition amplitude and summing over all possible field
states, transition probability from the initial state jii to the
final state jfi can be written as

Pjii→jfi ¼ λ2jmfij2FðΔEÞ; ð5Þ

where ΔE ¼ Ef − Ei, mfi ¼ hfjmð0Þjii and the response
function FðΔEÞ is defined as

FðΔEÞ¼
Z þ∞

−∞
dτ

Z þ∞

−∞
dτ0e−iΔEðτ−τ0ÞGþðxðτÞ;xðτ0ÞÞ ð6Þ

with

GþðxðτÞ; xðτ0ÞÞ ¼ h0MjϕðxðτÞÞϕðxðτ0ÞÞj0Mi ð7Þ

being the positive frequency Wightman function of the
massless scalar field [25]. Exploiting the time translational
invariance property of the positive frequency Wightman
function, the response function per unit proper time can be
written as

F ðΔEÞ ¼
Z þ∞

−∞
dðΔτÞe−iΔEΔτGþðxðτÞ; xðτ0ÞÞ ð8Þ

where Δτ ¼ τ − τ0. Therefore, transition probability per
unit proper time from the initial state jii to the final state jfi
turns out to be

Rjii→jfi ¼ λ2jmfij2F ðΔEÞ: ð9Þ

In the following sections, the above formalism is used to
examine the rate of transitions of a single atom under
various conditions such as non-inertial motion of the atom,
nature of the observer, type of the background field and the
presence of a cavity.

III. TRANSITION RATES OF A SINGLE ATOM
FROM THE VIEWPOINT OF A LOCAL

INERTIAL OBSERVER

In this section, we study the transitions of a uniformly
accelerated single atom interacting with a massless scalar
field from the perspective of a locally inertial observer. To
see the boundary effects on the transitions of the uniformly
accelerated single atom in this scenario, several cases have
been studied in the following subsections.

A. Transition rates in empty space with respect
to a local inertial observer

We first evaluate the transition rates of a single atom that
has been uniformly accelerated while interacting with a
vacuummassless scalar field in the absence of any perfectly
reflecting boundary. In the laboratory frame, the atomic
trajectory is given by

tðτÞ¼ 1

α
sinhðατÞ; xðτÞ¼ 1

α
coshðατÞ; y¼ z¼ 0; ð10Þ

where α and τ denote the proper acceleration and the proper
time of the atom. Using the scalar field operator Eq. (2) in
Eq. (7), the Wightman function becomes [25]

GþðxðτÞ; xðτ0ÞÞ ¼ −
1

4π2
1

ðtðτÞ − tðτ0Þ − iεÞ2 − ðxðτÞ − xðτ0ÞÞ2 − ðyðτÞ − yðτ0ÞÞ2 − ðzðτÞ − zðτ0ÞÞ2 ; ð11Þ

where ε is a small positive number. Substituting Eq. (10) in Eq. (11), the Wightman function turns out to be

GþðxðτÞ; xðτ0ÞÞ ¼ −
α2

16π2
1

sinh2½1
2
ðαΔτ − iεÞ� : ð12Þ
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Substituting the Wightman function into Eqs. (8) and (9),
the transition rate from the initial state jii to the final state
jfi becomes

Rjii→jfi ¼ −
λ2jmfij2α2

16π2

Z þ∞

−∞
dðΔτÞe−iΔEΔτ

×
1

sinh2½1
2
ðαΔτ − iεÞ� : ð13Þ

Simplifying the transition rates, Eq. (13), by performing the
contour integration [88] as shown in Appendix A, we
obtain

Rjii→jfi ¼
λ2jmfij2jΔEj

2π

�
θð−ΔEÞ

�
1þ 1

expð2πjΔEj=αÞ−1

�

þθðΔEÞ
�

1

expð2πΔE=αÞ−1

��
ð14Þ

where θðΔEÞ is the Heaviside step function defined as

θðΔEÞ ¼
�
1; ΔE > 0;

0; ΔE < 0:
ð15Þ

The above equation Eq. (14) reveals that two transition
processes, namely upward and downward transition can
take place when the atom is under uniform acceleration.
Considering the initial state jii ¼ jgi, final state jfi ¼ jei
and vice-versa, and using the definition meg ¼ hejmð0Þjgi,
we obtain jmgej2 ¼ jmegj2 ¼ 1, and ΔE ¼ ω0 for the
transition g → e and ΔE ¼ −ω0 for the transition e → g,
respectively. Using the above results the upward and
downward transition rates take the form

Rjgi→jei ¼
λ2ω0

2π

�
1

expð2πω0=αÞ − 1

�
ð16Þ

Rjei→jgi ¼
λ2ω0

2π

�
1þ 1

expð2πω0=αÞ − 1

�
: ð17Þ

The upward transition in free space occurs solely due to the
acceleration of the atom and vanishes in the limit α → 0.
Taking the ratio of the above two results, we get

Rjgi→jei
Rjei→jgi

≡ Rup

Rdown
¼ exp ð−2πω0=αÞ: ð18Þ

From the above expression, it is seen that the ratio of the
upward and the downward transition rates depend only on
the atomic acceleration and in the limit α → ∞, the ratio
exp ð−2πω0=αÞ → 1, and hence, the two transition rates are
equal in this limit.

B. Transition rates in a cavity with respect
to a local inertial observer

We now consider that a uniformly accelerated atom
interacts with a vacuum massless scalar field confined to a
cavity having lengthL (see Fig. 1). Assuming the scalar field
obeys the Dirichlet boundary condition ϕjz¼0 ¼ ϕjz¼L ¼ 0,
and using the method of images, the positive frequency
Wightman function of the vacuum massless scalar field
confined to the cavity of length L takes the form [25]

GþðxðτÞ; xðτ0ÞÞ ¼ −
1

4π2
X∞
n¼−∞

�
1

ðtðτÞ − tðτ0Þ − iεÞ2 − ðxðτÞ − xðτ0ÞÞ2 − ðyðτÞ − yðτ0ÞÞ2 − ðzðτÞ − zðτ0Þ − nLÞ2

−
1

ðtðτÞ − tðτ0Þ − iεÞ2 − ðxðτÞ − xðτ0ÞÞ2 − ðyðτÞ − yðτ0ÞÞ2 − ðzðτÞ þ zðτ0Þ − nLÞ2
�

ð19Þ

with ε is a small positive number. To represent the atomic trajectories in terms of the atomic proper time τ, we choose the
Cartesian coordinates in the laboratory frame so that the boundaries are fixed at z ¼ 0 and z ¼ L.
Inside the cavity the atomic trajectory is given by

tðτÞ ¼ 1

α
sinhðατÞ; xðτÞ ¼ 1

α
coshðατÞ; y ¼ 0; z ¼ z0: ð20Þ

Using the above trajectories in Eq. (19), the Wightman function becomes

FIG. 1. Uniformly accelerated atom confined in a cavity.
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GþðxðτÞ; xðτ0ÞÞ ¼ −
α2

16π2
X∞
n¼−∞

�
1

sinh2½1
2
ðαΔτ − iεÞ� − 1

4
d21α

2
−

1

sinh2½1
2
ðαΔτ − iεÞ� − 1

4
d22α

2

�
ð21Þ

with d1 ¼ nL; d2 ¼ 2z0 − nL.
Now following the procedure in Appendix B, we finally obtain the upward and downward transition rates to be1

Rjgi→jei ¼ λ2
��

ω0

2π
þ f

�
ω0; α;

L
2

�
− h

�
ω0; α; z0;

L
2

���
1

exp ð2πω0=αÞ − 1

��
ð22Þ

Rjei→jgi ¼ λ2
��

ω0

2π
þ f

�
ω0; α;

L
2

�
− h

�
ω0; α; z0;

L
2

���
1þ 1

exp ð2πω0=αÞ − 1

��
: ð23Þ

Note that the ratio of the upward and the downward
transition rates in the cavity scenario is identical with
the free space result [Eq. (18)].
Next, in order to describe the single boundary and free

space cases, we take the limiting cases of the above
expressions. Taking the limit L → ∞, we find that in
Eqs. (22) and (23) only the n ¼ 0 term survives from
the infinite summation terms, and one can effectively
reduce the cavity scenario to a situation where only one
reflecting boundary exists. Hence, using this limit, the
upward and downward transition rates in the presence of a
single reflecting boundary turn out to be2

Rjgi→jei ¼ λ2
��

ω0

2π
− gðω0; α; z0Þ

��
1

exp ð2πω0=αÞ − 1

��

ð24Þ

Rjei→jgi ¼λ2
��

ω0

2π
−gðω0;α;z0Þ

��
1þ 1

expð2πω0=αÞ−1

��
:

ð25Þ

The above results resemble those of the single boundary
results obtained in [34,35] using the formalism developed
by Dalibard, Dupont-Roc, and Cohen-Tannoudji [89,90].
On the other hand, taking the limits L → ∞ and z0 → ∞

together, Eqs. (22) and (23) lead to the expression for the
upward and downward transition rates in the free space
given by Eqs. (16) and (17).
We now investigate the variation of the transition rate of

a single two level atom (from its ground state energy level
jgi to the excited state energy level jei) confined to a cavity
with the length of the cavity (L), distance of the atom from
the boundary (z0), and the atomic acceleration (α). The
findings are plotted below, where all physical quantities are
expressed in dimensionless units.

Figure 2 shows the variation of the transition rate from

jgi → jei (per unit λ2ω0

2π ) with respect to the length of the
cavity (separation between the two boundaries) for different
values of distance of the atom from one boundary. From the
plots, it can be seen that for a fixed value of the initial
atomic distance z0 from one boundary, the transition rate
get enhanced when the cavity length increases and attains a
maximum value for large values of L (ω0L ≫ ω0z0). This
is expected since more number of field modes take part in
the interaction between the scalar field and the atom after
increasing the cavity length, which in turn increases the
transition rate. When ω0L ≫ ω0z0, the cavity scenario
reduces to the case of a single boundary, and hence, the
upward transition rate reaches a constant value. It is also
observed that the upper value of the rate is more for a larger
value of ω0z0.
Figure 3 shows the variation of the transition rate from

jgi → jei (per unit λ2ω0

2π ) with respect to the distance of the
atom from one boundary for different values of the length
of the cavity, for a fixed value of acceleration. From the
plots, it is observed that for a fixed value of the length of the
cavity L, when we increase the atomic distance from one
boundary, transition rate shows an oscillatory behavior and
vanishes if either the atom touches any one of the
boundaries or if the atom is equidistant from both boun-
daries. It can also be observed (as we have seen earlier in

FIG. 2. Transition rate from jgi → jei (per unit λ2ω0

2π ) versus
separation between the two boundaries, α=ω0 ¼ 4.

1The expressions for fðω0; α; L2Þ and hðω0; α; z0; L2Þ are given in
Appendix (B).

2The expression for gðω0; α; z0Þ is given in Appendix (B).
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Fig. 2) that with increase in the length of the cavity (L), the
rate of upward transition increases.
Figure 4 shows the variation of the transition rate from

jgi → jei (per unit λ2ω0

2π ) with respect to the acceleration of
the atom for different values of the length of the cavity and
distance of the atom from one boundary. From the plots, it
is observed that for a fixed value of the length of the cavity
L and the atomic distance z0 from one boundary, the

transition rate increases when the acceleration of the atom
is increased. Once again we find that the transition rate is
more for a larger value of the cavity length which is
consistent with our earlier observations.
In Figure 5, we compare the upward and the downward

transition rates with respect to the atomic acceleration for
two cases, namely, atom in free space (Figure 5a), atom
confined to a cavity [Fig. 5(b)]. From the above plots, it is
seen that both the transition rates get affected due to the
presence of the cavity. As noted earlier, in presence of the
cavity the upward and the downward transition rates
decrease with decrease in the cavity length. Here it is seen
that when ω0L ∼ ω0z0, the cavity effect is strong enough to
reduce sharply the downward transition rate.
At this point, it might be interesting to make a quanti-

tative estimation of the transition rate for the case when a
single atom is placed inside a cavity. Following [74], we
choose the length of the cavity in the order of 100 nm,
distance between the atom and the nearest boundary in the
order of 20 nm, and the acceleration in the order of
1017 m=s2. The energy gap between the ground and excited
state of a single Rubidium atom Rb87 is of the order of
0.25 eV [91]. Now using Eq. (22) with λ ¼ 0.1, and the
above values, the upward transition rate of the single
atom inside a cavity turns out to be 3.38 × 10−12 eV ¼
5.12 × 103 s−1. This tells us that in order to observe a
transition to the excited state from the ground state in 1 ns,
one would need to perform an experiment with a collection
of 106 atoms.

IV. TRANSITION RATES OF A SINGLE
ATOM FROM THE VIEWPOINT OF A

COACCELERATED OBSERVER

In this section, the transitions of a uniformly accelerated
atom is analyzed from the perspective of a coaccelerated
observer. By definition, a coaccelerated observer moves
with an acceleration exactly equal to the acceleration of the

FIG. 4. Transition rate from jgi → jei (per unit λ2ω0

2π ) versus
acceleration, ω0z0 ¼ 0.3.

FIG. 3. Transition rate from jgi → jei (per unit λ2ω0

2π ) versus
distance of the atom from one boundary, α=ω0 ¼ 4.

FIG. 5. Transition rate (per unit λ2ω0

2π ) versus acceleration.
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atom. Therefore, the coaccelerated observer will perceive
the atom as being static. Hence, the observer will see no
Unruh acceleration radiation as there is no relative accel-
eration between the observer and the atom. However, for
the observer to detect acceleration radiation, the field is
assumed to be at an arbitrary temperature T. To calculate
the transition rates and see the boundary effects on the
transitions of the uniformly accelerated atom, we consider
that the coordinates of the coaccelerated frame are the
Rindler coordinates ðτ; η; y; zÞ with the following relation
with those of the laboratory coordinates (t, x, y, z)

tðτ;ηÞ¼ 1

α
eαη sinhðατÞ; xðτ;ηÞ¼ 1

α
eαη coshðατÞ: ð26Þ

For η ¼ 0, the above relations reduce to that of the
atomic trajectory given in Eq. (10) in the laboratory frame.
In the coaccelerated frame, the field operator ϕðxðτÞÞ is

replaced by its Rindler counterpart ϕ̄ðxðτÞÞ [82] and it takes
the form [39]

ϕ̄ðτ;xÞÞ ¼
Z

∞

0

dω
Z

∞

−∞
dky

Z
∞

−∞
dkz

× ½bω;ky;kzVω;ky;kzðτ;xÞ þ b†ω;ky;kzV
⋆
ω;ky;kz

ðτ;xÞ�
ð27Þ

with

Vω;ky;kzðτ;xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπω=αÞ

4π4α

r
Kiωα

�
k⊥
α
eαη

�
e−iωτþikyyþikzz

ð28Þ

being the positive frequency orthonormal mode solution,
KνðxÞ is the Bessel function of imaginary argument and

k⊥ ≡ jk⊥j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
. The interaction between the atom

and the scalar field in this case can be written as [82]

H ¼ λmðτÞϕ̄ðxðτÞÞ: ð29Þ

As mentioned earlier, in order to determine the transition
rate in the coaccelerated frame, we consider that the field is
at an arbitrary temperature T. As the thermal state is a
mixed state, therefore to calculate the response of a single
atom coupled to the massless scalar field, it is further
assumed that the field state can be represented by a pure
state jσω;ky;kzi with a probability factor pσðωÞ ¼
e−βωσ=NðωÞ with β ¼ 1=T and NðωÞ ¼ P∞

σ¼0 e
−βωσ. In

this case, jψ�; σω;ky;kzi and jEn; γω0;k0y;k0zi can be used to
represent respectively, the initial and the final state of the
atom-field system.
Now, following the procedure described in the previous

section, the transition probability of the atom-field system
from the initial state jii to final state jfi is given by

Pβ
jii→jfi ¼ λ2jmfij2FβðΔEÞ; ð30Þ

where the response function FβðΔEÞ is defined as

FβðΔEÞ ¼
Z þ∞

−∞
dτ

Z þ∞

−∞
dτ0e−iΔEðτ−τ0ÞGþ

β ðxðτÞ; xðτ0ÞÞ

ð31Þ

and

Gþ
β ðxðτÞ; xðτ0ÞÞ

¼ tr½ρ0ϕðxðτÞÞϕðxðτ0Þ�
tr½ρ0�

¼ N−1ðωÞ
X∞
σ¼0

Z
∞

0

dω
Z

∞

−∞
dky

Z
∞

−∞
dkze−βωσ

× hσω;ky;kz jϕ̄ðxðτÞÞϕ̄ðxðτ0ÞÞjσω;ky;kzi ð32Þ

is the positive frequency Wightman function of the scalar
field in a thermal state at an arbitrary temperature T in the
coaccelerated frame. Exploiting the time translational
invariance property of the positive frequency Wightman
function, the response function per unit proper time can be
written as

F βðΔEÞ ¼
Z þ∞

−∞
dðΔτÞe−iΔEΔτGþ

β ðxðτÞ; xðτ0ÞÞ: ð33Þ

Therefore, the transition probability per unit proper time of
the atom from the initial state jii to the final state jfi turns
out to be

Rβ
jii→jfi ¼ λ2jmfij2F βðΔEÞ: ð34Þ

A. Transition rates in empty space with respect
to a coaccelerated observer

In the coaccelerated frame, the trajectory of the atom can
be described by

t ¼ τ; η ¼ y ¼ z ¼ 0: ð35Þ

Now following the procedure in Appendix C, for an
arbitrary temperature T, the thermal Wightman function
takes the form

Gþ
β ðxðτÞ; xðτ0ÞÞ ¼ −

1

4π2
X∞
s¼−∞

1

ðΔτ − isβ − iεÞ2 : ð36Þ

Using the above Wightman function in Eqs. (33) and
(34), the upward and downward transition rates of a single
atom submerged in the thermal bath turn out to be
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Rβ
jgi→jei ¼

λ2ω0

2π

�
1

expðω0=TÞ − 1

�
ð37Þ

Rβ
jei→jgi ¼

λ2ω0

2π

�
1þ 1

expðω0=TÞ − 1

�
: ð38Þ

The above equations suggest that in the coaccelerated
frame both the upward and the downward transition can
occur for an atom immersed in the thermal bath which is
very similar to the transitions observed by an instantaneous
inertial observer. Taking the limit T → 0, we can see that
the upward transition rate vanishes and this is consistent
with the fact that there should be no transition if the
observer is static with respect to the atom. Eqs. (16), (17),
(37) and (38) clearly indicate that the transition rates of an
uniformly accelerated atom seen by an instantaneously
inertial observer and by a coaccelerated observer are
identical only when if we take the thermal bath temperature
in the coaccelerated frame to be T ¼ α=2π.

B. Transition rates in a cavity from the viewpoint
of a coaccelerated observer

In this subsection, we consider a uniformly accelerated
atom interacting with a vacuum massless scalar field
confined to a cavity of length L from the perspective of
a coaccelerated observer. We assume that perfectly reflect-
ing boundaries are placed at z ¼ 0 and z ¼ L. In a
coaccelerated frame, this scenario will be depicted as a
static atom interacting with a massless scalar field in
a thermal state at an arbitrary temperature T inside a cavity
of length L.
In the coaccelerated frame, the trajectory of the atom

inside the cavity becomes

t ¼ τ; η ¼ y ¼ 0; z ¼ z0: ð39Þ

Now following the procedure in Appendix D, for an
arbitrary temperature T, the thermal Wightman function
inside the cavity takes the form3

Gþ
β ðxðτÞ; xðτ0ÞÞ

¼ −
1

4π2
X∞
n¼−∞

X∞
s¼−∞

�
B1

C1

1

ðΔτ − isβ − iεÞ2 − B2
1

−
B2

C2

1

ðΔτ − isβ − iεÞ2 − B2
2

�
: ð40Þ

Using above Wightman function in Eqs. (33) and (34),
the downward and upward transition rates of the single
atom system inside the cavity read

Rβ
jgi→jei ¼ λ2

��
ω0

2π
þ f

�
ω0; α;

L
2

�
− h

�
ω0; α; z0;

L
2

��

×

�
1

expðω0=TÞ − 1

��
ð41Þ

Rβ
jei→jgi ¼ λ2

��
ω0

2π
þ f

�
ω0; α;

L
2

�
− h

�
ω0; α; z0;

L
2

��

×

�
1þ 1

expðω0=TÞ − 1

��
: ð42Þ

Next, taking the limit L → ∞, the upward and the down-
ward transition rate in the presence of a single reflecting
boundary turn out respectively to be

Rβ
jgi→jei ¼ λ2

��
ω0

2π
− gðω0;α; z0Þ

��
1

exp ðω0=TÞ − 1

��

ð43Þ

Rβ
jei→jgi ¼ λ2

��
ω0

2π
−gðω0;α;z0Þ

��
1þ 1

expðω0=TÞ−1

��

ð44Þ

with fðω0; α; L2Þ, hðω0; α; z0; L2Þ, and gðω0; α; z0Þ being the
same as in Eqs. (B3)–(B5).
The above analysis clearly displays the similarity

between the transitions observed by an instantaneously
inertial observer and a coaccelerated observer in a thermal
bath for both the upward and the downward transition rates
when the atom is confined in a cavity. Here too we notice
that taking the thermal bath temperature in the coaccel-
erated frame T ¼ α=2π, Eqs. (41), (42), (22) and (23)
indicate that the transition rates of a uniformly accelerated
atom seen by a coaccelerated observer in a thermal bath and
by an instantaneously inertial observer are identical inside
the cavity.

V. COUPLING OF THE TWO-ATOM SYSTEM
WITH A MASSLESS SCALAR FIELD

We consider two identical atoms A and B and assume
that they are traveling along synchronous trajectories in a
vacuum with massless scalar field fluctuations, the inter-
atomic distance is assumed to be constant and the proper
times of the two atoms can be described by the same time τ
[81]. In the laboratory frame, trajectories of the two atoms
can be represented through xAðτÞ and xBðτÞ. Here we
consider each atom as a two level system having energy
levels −ω0=2 and þω0=2. Therefore, the entire two-atom
system can be described by the three energy levels with
energies −ω0, 0 and ω0 [92]. We designate them by En with
n ¼ 1, 2, 3. The low and high energy levels associated
with eigenstates are jE1i ¼ jgA; gBi and jE3i ¼ jeA; eBi
where jgi and jei represent the ground state and the excited

3The expressions for B1, C1, B2, and C2 are given in
Appendix D.
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state of a single atom respectively. The energy level E2 is
degenerate corresponding to the eigenstates jgA; eBi and
jeA; gBi.
In the instantaneously inertial frame, the Hamiltonian

describing the atom-field interaction is given by

H ¼ λ½mAðτÞϕðxAðτÞÞ þmBðτÞϕðxBðτÞÞ�; ð45Þ

where λ is the atom-field coupling constant assumed to be
very small. The forms of ϕðxðτÞÞ and mðτÞ are the same as
given in Eqs. (2) and (3). As a result of the atom-field
interaction, transitions also occur for the two-atom system.
According to the time-dependent perturbation theory in the
first-order approximation, the transition amplitude for the
atom-field system to transit from the initial state jχ; 0Mi to
the final state jχ0;ϕfi is given by

Ajχ;0Mi→jχ0;ϕfi ¼ iλhχ0;ϕfj
Z þ∞

−∞
mAðτÞϕðxAðτÞÞjχ; 0Mi þ A

⇌ B term: ð46Þ

Squaring the above transition amplitude and summing over
all possible field states, the transition probability from the
initial state jχi to the final state jχ0i can be written as

Pjχi→jχ0i ¼ λ2½jmðAÞ
χ0χ j2FAAðΔEÞ þmðBÞ

χ0χm
ðAÞ�
χ0χ FABðΔEÞ� þ A

⇌ B terms; ð47Þ

wheremðAÞ
χ0χ ¼hχ0jmð0Þ⊗1Bjχi, andmðBÞ

χ0χ ¼hχ0j1A⊗mð0Þjχi.
The response function Fξξ0 ðΔEÞ is defined as

Fξξ0 ðΔEÞ ¼
Z þ∞

−∞
dτ

Z þ∞

−∞
dτ0e−iΔEðτ−τ0ÞGþðxξðτÞ; xξ0 ðτ0ÞÞ

ð48Þ

with ξ; ξ0 can be labeled by A or B, and

GþðxξðτÞ; xξ0 ðτ0ÞÞ ¼ h0MjϕðxξðτÞÞϕðxξ0 ðτ0ÞÞj0Mi ð49Þ

is the Wightman function of the massless scalar field. From
Eq. (47) it is seen that for the two-atom system, the transition
probability carries two terms one of them of which is
associated with only one of the atoms and other one
associated with both the atoms.
Exploiting the time translational invariance property of

the Wightman function, the response function per unit
proper time can be written as

F ξξ0 ðΔEÞ ¼
Z þ∞

−∞
dðΔτÞe−iΔEΔτGþðxξðτÞ; xξ0 ðτ0ÞÞ ð50Þ

where Δτ ¼ τ − τ0. Therefore, the transition probability per
unit proper time of the two-atom system from the initial
state jχi to the final state jχ0i turns out to be

Rjχi→jχ0i ¼ λ2½jmðAÞ
χ0χ j2FAAðΔEÞ þmðBÞ

χ0χm
ðAÞ�
χ0χ FABðΔEÞ� þA

⇌ B terms: ð51Þ

The existence of the cross terms in the above equation
indicates that the rate of transition between the two
neighboring energy levels is not only related to the sum
of the rates of transition of the two atoms, but also to their
cross-correlation.
In the following section, this formalism is used to

examine the rate of transitions of a two-atom system under
various conditions of uniform acceleration and contact with
the vacuum massless scalar field. The correlation between
two atoms can be considered as a factor which can affect
the transition rate of a two-atom system. In practice,
entanglement is not always maintained during experimental
conditions, and non-maximally entangled states are fre-
quently used as resources or probes. This motivates us to
consider nonmaximally entangled states, as well, in our
analysis. The general pure quantum state of the two-atom
system is given by [71]

jψi ¼ sin θjgA; eBi þ cos θjeA; gBi ð52Þ

where the entanglement parameter θ lies in the range
0 ≤ θ ≤ π. The above quantum state becomes a separable
state for the values of θ ¼ 0; π=2; π and represents the
maximally entangled state for the value θ ¼ π=4 (super-
radiant state), and θ ¼ 3π=4 (subradiant state). Considering
the above generic entangled quantum state as the initial
state in the following section, we explore how the non-
inertial motion of the atoms, nature of the observer, type of
the background field and the presence of the boundaries
affect the rate of transition of the two-atom system.

VI. TRANSITION RATES OF THE TWO-ATOM
SYSTEM FROM THE VIEWPOINT OF A LOCAL

INERTIAL OBSERVER

In this part, we analyse the transitions of a uniformly
accelerated two-atom system prepared in any generic
entangled state jψi that interacts with the vacuum massless
scalar field from the perspective of a locally inertial
observer. To see the boundary effects on the transitions
of the uniformly accelerated two-atom system in this
scenario, several cases have been studied in the following
subsections.

A. Transition rates for entangled atoms in empty
space with respect to a local inertial observer

Here we evaluate the transition rates of a two-atom
system that is uniformly accelerating while interacting with
a vacuum massless scalar field in the absence of any
perfectly reflecting boundary. In the laboratory frame,
trajectories of both the atoms read
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tAðτÞ¼ tBðτÞ¼
1

α
sinhðατÞ; xAðτÞ¼ xBðτÞ¼

1

α
coshðατÞ; yB ¼ yAþd; zA ¼ zB ¼ 0; ð53Þ

where d, α, and τ denote the constant interatomic distance, proper acceleration, and the proper time of the two-atom system.
Using the scalar field operator Eq. (2) in Eq. (49), the Wightman function becomes [81]

GþðxξðτÞ; xξ0 ðτ0ÞÞ ¼ −
1

4π2
1

ðtξðτÞ − tξ0 ðτ0Þ − iεÞ2 − ðxξðτÞ − xξ0 ðτ0ÞÞ2 − ðyξðτÞ − yξ0 ðτ0ÞÞ2 − ðzξðτÞ − zξ0 ðτ0ÞÞ2
: ð54Þ

Substituting Eq. (53) in Eq. (54), the Wightman function turns out to be

GþðxξðτÞ; xξ0 ðτ0ÞÞ ¼ −
α2

16π2
1

sinh2½1
2
ðαΔτ − iεÞ� ð55Þ

with Δτ ¼ τ − τ0 for ξ ¼ ξ0, and

GþðxξðτÞ; xξ0 ðτ0ÞÞ ¼ −
α2

16π2
1

sinh2½1
2
ðαΔτ − iεÞ� − 1

4
d2α2

ð56Þ

for ξ ≠ ξ0.
Now following the procedure in Appendix E, we finally obtain the upward and downward transition rates to be

Rjψi→jeAeBi ¼ λ2
��

ω0

2π
þ sin 2θ sinð2ω0

α sinh−1ð1
2
αdÞÞ

2πd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
d2α2

q
��

1

exp ð2πω0=αÞ − 1

��
; ð57Þ

and the downward transition rate given by

Rjψi→jgAgBi ¼ λ2
��

ω0

2π
þ sin 2θ sinð2ω0

α sinh−1ð1
2
αdÞÞ

2πd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
d2α2

q
��

1þ 1

exp ð2πω0=αÞ − 1

��
: ð58Þ

Interestingly, the ratio of the upward and the downward
transition rates for the two-atom case is identical with that
of the single atom case [Eq. (18)].

B. Transition rates for entangled atoms in a cavity
with respect to a local inertial observer

Here we consider that a uniformly accelerated two-atom
system interacts with a vacuum massless scalar field
confined in a cavity having length L (see Fig. 6).

Assuming that the two atoms are moving parallel to the
boundary (see Fig. 7) with their proper acceleration similar
to the previous case, we investigate the effect of the cavity
on the transition rates.
Assuming the scalar field obeys the Dirichlet boundary

condition ϕjz¼0 ¼ ϕjz¼L ¼ 0, and using the method of
images, the Wightman function of the massless scalar field
confined to the cavity of length L takes the form

FIG. 6. Static atom confined in a cavity. FIG. 7. Uniformly accelerated two-atom confined in a cavity.
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GþðxξðτÞ; xξ0 ðτ0ÞÞ ¼ −
1

4π2
X∞
n¼−∞

�
1

ðtξðτÞ − tξ0 ðτ0Þ − iεÞ2 − ðxξðτÞ − xξ0 ðτ0ÞÞ2 − ðyξðτÞ − yξ0 ðτ0ÞÞ2 − ðzξðτÞ − zξ0 ðτ0Þ − nLÞ2

−
1

ðtξðτÞ − tξ0 ðτ0Þ − iεÞ2 − ðxξðτÞ − xξ0 ðτ0ÞÞ2 − ðyξðτÞ − yξ0 ðτ0ÞÞ2 − ðzξðτÞ þ zξ0 ðτ0Þ − nLÞ2
�

ð59Þ

To represent the atomic trajectories in terms of the atomic proper time τ, we choose the Cartesian coordinates in the
laboratory frame so that boundaries are fixed at z ¼ 0 and z ¼ L.
Considering that the interatomic distance d remains perpendicular while two atoms are moving parallel to the boundary

with their proper acceleration, the atomic trajectories are given by

tA=BðτÞ ¼
1

α
sinhðατÞ; xA=BðτÞ ¼

1

α
coshðατÞ; yA=B ¼ y0; zA ¼ z0; zB ¼ z0 þ d: ð60Þ

Using the above trajectories in Eq. (59), the Wightman function becomes

GþðxξðτÞ; xξ0 ðτ0ÞÞ ¼ −
α2

16π2
X∞
n¼−∞

�
1

sinh2½1
2
ðαΔτ − iεÞ� − 1

4
d21α

2
−

1

sinh2½1
2
ðαΔτ − iεÞ� − 1

4
d22α

2

�
ð61Þ

for ξ ¼ ξ0, with d1 ¼ nL; d2 ¼ 2zξ − nL and

GþðxξðτÞ; xξ0 ðτ0ÞÞ ¼ −
α2

16π2
X∞
n¼−∞

�
1

sinh2½1
2
ðαΔτ − iεÞ� − 1

4
d23α

2
−

1

sinh2½1
2
ðαΔτ − iεÞ� − 1

4
d24α

2

�
ð62Þ

for ξ ≠ ξ0, with d3 ¼ −d − nL (for ξ ¼ A; ξ0 ¼ B); d3 ¼ d − nL (for ξ ¼ B; ξ0 ¼ A) and d4 ¼ 2z0 þ d − nL. Now
following the procedure in Appendix F, we finally obtain the upward and downward transition rates to be4

Rjψi→jeAeBi ¼ λ2
��

ω0

2π
þ f

�
ω0; α;

L
2

�
− cos2 θh

�
ω0; α; z0;

L
2

�
− sin2 θm

�
ω0; α; z0; d;

L
2

�
þ sin 2θn

�
ω0; α;

d
2
;
L
2

�

− sin 2θm

�
ω0; α; z0;

d
2
;
L
2

���
1

expð2πω0=αÞ − 1

��
ð63Þ

Rjψi→jgAgBi ¼ λ2
��

ω0

2π
þ f

�
ω0; α;

L
2

�
− cos2 θh

�
ω0; α; z0;

L
2

�
− sin2 θm

�
ω0; α; z0; d;

L
2

�
þ sin 2θn

�
ω0; α;

d
2
;
L
2

�

− sin 2θm

�
ω0; α; z0;

d
2
;
L
2

���
1þ 1

expð2πω0=αÞ − 1

��
: ð64Þ

In order to obtain the single mirror and free space scenarios, we now take the limiting cases of these expressions. Taking the
limit L → ∞, we find that Eqs. (63) and (64) reduce to the expression for the upward and the downward transition rate in the
presence of a single reflecting boundary

Rjψi→jeAeBi ¼ λ2
��

ω0

2π
− cos2 θgðω0; α; z0Þ − sin2 θgðω0; α; ðz0 þ dÞÞ

þ sin 2θ

�
g

�
ω0; α;

d
2

�
− g

�
ω0; α; z0 þ

d
2

����
1

exp ð2πω0=αÞ − 1

��
ð65Þ

Rjψi→jgAgBi ¼ λ2
��

ω0

2π
− cos2 θgðω0; α; z0Þ − sin2 θgðω0; α; ðz0 þ dÞÞ

þ sin 2θ

�
g

�
ω0; α;

d
2

�
− g

�
ω0; α; z0 þ

d
2

����
1þ 1

exp ð2πω0=αÞ − 1

��
: ð66Þ

4The expressions for mðω0; α; z0; d;
L
2
Þ, nðω0; α; z0;

d
2
; L
2
Þ are given in Appendix F.

FULLING-DAVIES-UNRUH EFFECT FOR ACCELERATED TWO- … PHYS. REV. D 108, 085018 (2023)

085018-11



It may be noted that the above relations resemble those of
the single boundary results given in [81] but they are not
identical as in our case the interatomic distance is
perpendicular to the reflecting boundary whereas in [81]
the interatomic distance is parallel to the reflecting boun-
dary. Similarly, taking the limits L → ∞ and z0 → ∞,
Eqs. (63) and (64) lead to the expressions for the upward
and the downward transition rate in free space given by
Eqs. (57) and (58).
We now study the variation of the transition rate of an

entangled two atom system from an initial entangled state
jψi to a product state with higher energy value jeAeBi
confined to a cavity with the atomic acceleration (α), length
of the cavity (L), distance of any one atom from one
boundary (z0), entanglement parameter (θ), and the inter-
atomic distance (d). The findings are plotted below, where
all physical quantities are expressed in dimensionless units.
Since cavity effects are significant when the length scales
are comparable [93], hence we choose a similar order of
magnitude for ω0L;ω0z0 and ω0d. In Figure 8a, we show
the behavior of the transition rate with respect to the
entanglement parameter for the cases where the atoms
are in free space, in the vicinity of a single boundary and
inside a cavity.
From the above figure, it can be seen that the transition

rate jψi → jeAeBi (per unit λ2ω0

2π ) varies sinusoidally with
the entanglement parameter θ. In free space, the transition
rate increases (from the case corresponding to the zero
entanglement product state) with increase in the entangle-
ment parameter and it becomes maximum when the initial
state is maximally entangled (θ ¼ π=4 superradiant state).
Further increment of the entanglement parameter decreases
the transition rate and it becomes minimum at θ ¼ 3π=4
(sub-radiant state). In the vicinity of a single boundary,
behavior of the transition rate is quite similar to the free
space scenario, with a slight shifting of the extremum
points). Surprisingly, inside the cavity, the behavior of the
transition rate is opposite to the free space scenario. The
transition rate decreases with the increase in entanglement

parameter and it vanishes at θ ¼ π=4. Thus, the θ ¼ π=4
state exhibits a subradiant behavior for the cavity setup.
Further increment of entanglement parameter increases the
transition rate and it becomes maximum at θ ¼ 3π=4. Note
also, that around θ ¼ 3π=4, the values of the transition rate
corresponding to cases of empty space, single boundary,
and two boundaries, are nearly the same.
It may be noted however, that the transition rate of

the superradiant state (θ ¼ π=4) of the two atoms inside the
cavity vanishes only for certain specific values of the
various parameters we have considered in our study.
Increasing the width of the cavity keeping the other
parameters fixed, it can be found that the rate of transition
does not vanish at θ ¼ π=4. Hence, the superradiance
property of the state with θ ¼ π=4 is lost in such cases.
One obtains a superradiant state for a smaller value of the
cavity width since in such a scenario, the number of
quantum field modes available to the atoms reduces, which
makes the atoms unable to perform the transition to any
higher/lower energetic separable state.
Figure 8(b) for the downward transition rates shows a

similar behavior with respect to the entanglement param-
eter. The only difference is that the magnitude of the
downward transition rate is greater than the upward
transition rate. From both the figures, it is observed that
when the initial entangled state is the superradiant max-
imally entangled state (θ ¼ π=4), then upward or down-
ward transition rate depends on the width of the cavity.
Therefore, this observation indicates that using a small
width cavity, for this value of the entanglement parameter,
the entanglement of the initial state is preserved.
Figure 9 shows the variation of the transition rate from

jψi → jeAeBi (per unit λ
2ω0

2π ) with respect to the length of the
cavity for different values of distance of any one atom from
one boundary. From the plots, it can be seen that for a fixed
value of the initial atomic distance z0 of any one atom from
the nearest boundary, the transition rate get enhanced when
the cavity length increases and attains a maximum value for
large values of L (ω0L ≫ ω0z0). This behavior is similar to

FIG. 8. Transition rate (per unit λ
2ω0

2π ) versus entanglement parameter for a fixed value of α=ω0 ¼ 4;ω0d ¼ 0.5;ω0L ¼ 1;ω0z0 ¼ 0.2.
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that of the single atom case, as mentioned earlier. As more
number of field modes take part in the interaction between
the scalar field and the atoms due to the increased cavity
length, the transition rate increases. Whenω0L ≫ ω0z0, the
cavity scenario reduces to a single boundary set up and
hence the upward transition rate takes a constant value. It is
also observed that the saturation value of the transition rate
is more for a larger value of ω0z0.
Figure 10 shows the variation of the transition rate from

jψi → jeAeBi (per unit λ
2ω0

2π ) with respect to the distance of
any one atom from one boundary ω0z0 for different
interatomic distances ω0d. From the plots, it is observed
that for a fixed value of the interatomic distance and cavity
length, the transition rate is much smaller when the atoms
are close to the any one of the boundaries. Thereafter, with
increase of the atomic distance from one boundary, the
transition rate rises sharply and reaches maximumwhen the
distance of both atoms to their nearest boundaries are equal.
The importance of boundary effects are thereby clearly
exhibited. From the plot, it is also seen that increasing the
interatomic distance increases the upward transition rate for
a fixed cavity length.
Figure 11 shows the variation of the transition rate from

jψi → jeAeBi (per unit λ
2ω0

2π ) with respect to the interatomic

distance for different values of distance of any one atom
from one boundary. From the plots, we see that for a fixed
atomic distance from one boundary and cavity length,
transition rate initially increases when the interatomic
distance increases. After a certain value of interatomic
distance, increasing the distance between the two atoms
further make them move closer to the boundary and hence
due to boundary effects, the transition rate falls down.
Figure 12 shows the variation of the transition rate from

jψi → jeAeBi (per unit λ2ω0

2π ) with respect to the atomic
acceleration for different values of cavity length. Similar to
the single atom case, it is seen that when the atomic
acceleration is increased, the transition rate also increases
and the rate of transition depends on the cavity length. This
is expected since acceleration radiation should increase
with increase in acceleration.
In Fig. 13, we have plotted the upward and the

downward transition rates with respect to the atomic
acceleration for two cases, namely, two atoms are in free
space [Fig. 13(a)], two atoms are confined to a cavity
[Figure 13(b)]. A comparison of the two plots reveals that
the downward transition rate can get diminished for a
suitable choice of parameters when the atoms are inside
the cavity. The upward transitions in both cases are driven
by the acceleration, as is clear from the corresponding
expressions, as well.

FIG. 11. Transition rate from jψi → jeAeBi (per unit λ2ω0

2π )
versus interatomic distance, α=ω0 ¼ 4;ω0L ¼ 1.5.

FIG. 12. Transition rate from jψi → jeAeBi (per unit λ2ω0

2π )
versus acceleration, ω0d ¼ 0.5;ω0z0 ¼ 0.3.

FIG. 9. Transition rate from jψi → jeAeBi (per unit λ
2ω0

2π ) versus
separation between two boundaries, α=ω0 ¼ 4.

FIG. 10. Transition rate from jψi → jeAeBi (per unit λ2ω0

2π )
versus distance of any one atom from one boundary,
α=ω0 ¼ 4;ω0L ¼ 3.
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We now present a quantitative estimation of the upward
transition rate for the two-atom system, composed of two
Rubidium atoms Rb87 placed inside a cavity. Following [74],
we choose the length of the cavity in the order of 100 nm,
distance between any one atom and the nearest boundary in
the order of 20nm, interatomic distance in theorder of 30nm,
energy gap between the most generic entangled state and
excited state of the two-atom system is of the order of 0.5 eV,
and the acceleration in theorder of1017 m=s2. UsingEq. (63)
with the coupling constant λ ¼ 0.1, taking the entanglement
parameter θ ¼ 3π=4 for the maximally entangled state, and
the above values, the upward transition rate of the uniformly
accelerated two-atom system inside a cavity becomes
3.75 × 10−12 eV ¼ 5.68 × 103 s−1.
Before concluding this section, it may be noted that in

Ref. [71], the same system was considered. However,
the focus there was different from the present study. There,
the resonance energy shift and the relaxation rate of energy
of the entangled two-atom system were obtained. The present
analysis investigates, on the other hand, the transition rate
with the aim of studying the equivalence of two different
frames.

VII. TRANSITION RATES OF THE TWO-ATOM
SYSTEM FROM THE VIEWPOINT OF A

COACCELERATED OBSERVER

In this section, the transitions of a uniformly accelerated
two-atom system prepared in any generic entangled state
jψi that interacts with a massless scalar field is analyzed
from the perspective of a coaccelerated observer. To see the
boundary effects on the transitions of the uniformly
accelerated two-atom system in this scenario, we consider
that the coordinate of the coaccelerated frame will be the
Rindler coordinate ðτ; η; y; zÞwith the relation with those of
the laboratory coordinates (t, x, y, z) being given by

tðτ;ηÞ¼ 1

α
eαη sinhðατÞ; xðτ;ηÞ¼ 1

α
eαη coshðατÞ: ð67Þ

In the coaccelerated frame, the field operator ϕðxðτÞÞ is
replaced by its Rindler counterpart ϕ̄ðxðτÞÞ and takes the
form

ϕ̄ðτ;xÞÞ ¼
Z

∞

0

dω
Z

∞

−∞
dky

Z
∞

−∞
dkz

× ½bω;ky;kzVω;ky;kzðτ;xÞ þ b†ω;ky;kzV
⋆
ω;ky;kz

ðτ;xÞ�
ð68Þ

with

Vω;ky;kzðτ;xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπω=αÞ

4π4α

r
Kiωα

�
k⊥
α
eαη

�
e−iωτþikyyþikzz

ð69Þ

being the positive frequency orthonormal mode solution,
KνðxÞ is the Bessel function of imaginary argument and

k⊥ ≡ jk⊥j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
. The interaction between the atoms

and the scalar field is given by [82]

H ¼ λ½mAðτÞϕ̄ðxAðτÞÞ þmBðτÞϕ̄ðxBðτÞÞ�: ð70Þ

To determine the transition rate of the two-atom system in
the coaccelerated frame, we consider a thermal field at an
arbitrary temperatureT. As the thermal state is amixed state,
in order to calculate the response of the two atoms coupled to
the massless scalar field, additionally it is assumed that the
field state can be represented by a pure state jσω;ky;kziwith a
probability factor pσðωÞ ¼ e−βωσ=NðωÞ with β ¼ 1=T and
NðωÞ ¼ P∞

σ¼0 e
−βωσ. In this case, jψ ; σω;ky;kzi and

jEn; γω0;k0y;k0zi can be used to represent the initial and the
final state of the atom-field system.
Following the procedure described in the previous

sections, the probability that the atom-field system
will transit from initial state jψi to final state jEni is then
given by

FIG. 13. Transition rate (per unit λ2ω0

2π ) versus acceleration for a fixed value of θ ¼ 3π=4;ω0d ¼ 0.5.
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Pjψ�i→jEni ¼ λ2½jmðAÞ
Enψ�j2F

β
AAðΔEÞ þmðBÞ

Enψ�m
ðAÞ�
Enψ�F

β
ABðΔEÞ� þ A⇌B terms: ð71Þ

The response function Fβ
ξξ0 ðΔEÞ is defined as

Fβ
ξξ0 ðΔEÞ ¼

Z þ∞

−∞
dτ

Z þ∞

−∞
dτ0e−iΔEðτ−τ0ÞGþ

β ðxξðτÞ; xξ0 ðτ0ÞÞ ð72Þ

with ξ; ξ0 labeled by A or B, and

Gþ
β ðxξðτÞ; xξ0 ðτ0ÞÞ ¼

tr½ρ0ϕðxξðτÞÞϕðxξ0 ðτ0Þ�
tr½ρ0�

¼ N−1ðωÞ
X∞
σ¼0

Z
∞

0

dω
Z

∞

−∞
dky

Z
∞

−∞
dkze−βωσhσω;ky;kz jϕ̄ðxξðτÞÞϕ̄ðxξ0 ðτ0ÞÞjσω;ky;kzi ð73Þ

is the positive frequency Wightman function of the scalar
field in a thermal state at an arbitrary temperature T in the
coaccelerated frame. Exploiting the time translational
invariance property of the Wightman function, the response
function per unit proper time can be written as

F β
ξξ0 ðΔEÞ ¼

Z þ∞

−∞
dðΔτÞe−iΔEΔτGþ

β ðxξðτÞ; xξ0 ðτ0ÞÞ: ð74Þ

Therefore, the transition probability per unit proper time of
the two-atom system from the initial state jχi to the final
state jχ0i turns out to be

Rβ
jχi→jχ0i ¼ λ2½jmðAÞ

χ0χ j2F β
AAðΔEÞ þmðBÞ

χ0χm
ðAÞ�
χ0χ F β

ABðΔEÞ� þ A

⇌B terms: ð75Þ

A. Transition rates for entangled atoms in empty space
with respect to a coaccelerated observer

In the frame of coaccelerated observer, the trajectories of
both the atoms are given by

tA=B¼ τ; ηA=B¼0; yA=B¼0; zA¼0 zB¼d: ð76Þ

Now following the procedure in Appendix G, for an
arbitrary temperature T, the thermal Wightman function
takes the form5 [82]

Gþ
β ðxξðτÞ; xξ0 ðτ0ÞÞ ¼ −

1

4π2
X∞
s¼−∞

1

ðΔτ − isβ − iεÞ2 ð77Þ

for ξ ¼ ξ0, and

Gþ
β ðxξðτÞ;xξ0 ðτ0ÞÞ¼−

B
4π2C

X∞
s¼−∞

1

ðΔτ−isβ−iεÞ2−B2
ð78Þ

for ξ ≠ ξ0.
Using aboveWightman functions into Eqs. (74) and (75),

and performing the integrations using contour integration,
the upward and downward transition rates of the two-atom
system submerged in the thermal bath turn out to be

Rβ
jψi→jeAeBi ¼ λ2

��
ω0

2π
þ sin 2θ sinð2ω0

α sinh−1ð1
2
αdÞÞ

2πd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
d2α2

q
�

×

�
1

expðω0=TÞ − 1

��
ð79Þ

Rβ
jψi→jgAgBi ¼ λ2

��
ω0

2π
þ sin 2θ sinð2ω0

α sinh−1ð1
2
αdÞÞ

2πd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
d2α2

q
�

×

�
1þ 1

expðω0=TÞ − 1

��
: ð80Þ

From the above equations it follows that in the coaccelerated
frame both the upward and the downward transitions can
occur for the two-atom system immersed in the thermal bath
which is very similar to the transitions observed by an
instantaneously inertial observer. Taking the limiting value
of the temperature of the coaccelerated frame T → 0, here
also we can see that the upward transition rate vanishes,
which is consistent with that in the Minkowski vacuum
[Eq. (57)]. Eqs. (57), (58), (79) and (80) indicate that the
transition rates of the uniformly accelerated two-atom
system in the generic entangled state seen by an instanta-
neously inertial observer and by a coaccelerated observer
are identical only if the thermal bath temperature in the
coaccelerated frame is equal to the FDU temperature
T ¼ α=2π.5The expressions for B, C are given in Appendix G.
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B. Transition rates for entangled atoms in a cavity
with respect to a coaccelerated observer

Here we consider that a uniformly accelerated
two-atom system interacts with a massless scalar
field confined to a cavity of length L from the perspective
of a coaccelerated observer. We assume that two p
erfectly reflecting boundaries are placed at z ¼ 0 and
z ¼ L (see Fig. 14). As in the case of the single atom,
the scenario here too depicts a static two-atom
system interacting with a massless scalar field in a
thermal state at an arbitrary temperature T inside a cavity
of length L.
Considering the inter-atomic distance d to remain

perpendicular while the two atoms are moving parallel
to the boundaries with their proper acceleration, the atomic
trajectories are given by

tA=B ¼ τ; ηA=B ¼ 0;

yA=B ¼ 0; zA ¼ z0 zB ¼ z0 þ d: ð81Þ
Now following the procedure in Appendix H, for an

arbitrary temperature T, the thermal Wightman function
takes the form6

Gþ
β ðxξðτÞ; xξ0 ðτ0ÞÞ ¼ −

1

4π2
X∞
n¼−∞

X∞
s¼−∞

�
B1

C1

1

ðΔτ − isβ − iεÞ2 − B2
1

−
B3

C3

1

ðΔτ − isβ − iεÞ2 − B2
3

�
ð82Þ

for ξ ¼ ξ0 and

Gþ
β ðxξðτÞ; xξ0 ðτ0ÞÞ ¼ −

1

4π2
X∞
n¼−∞

X∞
s¼−∞

�
B4

C4

1

ðΔτ − isβ − iεÞ2 − B2
4

−
B5

C5

1

ðΔτ − isβ − iεÞ2 − B2
5

�
ð83Þ

for ξ ≠ ξ0.
Inserting the above Wightman functions into Eqs. (74) and (75), and performing the integrations using the contour

integration technique, the upward and downward transition rates of the two-atom system submerged in the thermal bath read

Rβ
jψi→jeAeBi ¼ λ2

��
ω0

2π
þ f

�
ω0; α;

L
2

�
− cos2 θh

�
ω0; α; z0;

L
2

�
− sin2 θm

�
ω0; α; z0; d;

L
2

�
þ sin 2θn

�
ω0; α;

d
2
;
L
2

�

− sin 2θm

�
ω0; α; z0;

d
2
;
L
2

���
1

expðω0=TÞ − 1

��
ð84Þ

Rβ
jψi→jgAgBi ¼ λ2

��
ω0

2π
þ f

�
ω0; α;

L
2

�
− cos2 θh

�
ω0; α; z0;

L
2

�
− sin2 θm

�
ω0; α; z0; d;

L
2

�
þ sin 2θn

�
ω0; α;

d
2
;
L
2

�

− sin 2θm

�
ω0; α; z0;

d
2
;
L
2

���
1þ 1

expðω0=TÞ − 1

��
ð85Þ

where the functions fðω0; α; L2Þ; hðω0; α; z0; L2Þ, and gðω0; α; z0Þ are defined in Appendix B. The functionsmðω0; α; z0; d; L2Þ
and nðω0;α;

d
2
; L
2
Þ are defined in Appendix F.

By taking the limiting cases of the expressions Eqs. (84) and (85), one can obtain the results of single mirror and free
space scenarios. Taking the limit L → ∞, Eqs. (84) and (85) reduce to the expression for the upward and the downward
transition rates in the presence of a single reflecting boundary, respectively given by

Rβ
jψi→jeAeBi ¼ λ2

��
ω0

2π
− cos2 θgðω0; α; z0Þ − sin2 θgðω0; α; ðz0 þ dÞÞ

þ sin 2θ
�
g
�
ω0; α;

d
2

�
− g

�
ω0; α; z0 þ

d
2

����
1

expðω0=TÞ − 1

��
ð86Þ

6The expressions for B1, C1 are given in Appendix D and the expressions for B3, C3, B4, C4, B5, and C5 are given in Appendix H.

FIG. 14. Static two-atom confined in a cavity.
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Rβ
jψi→jgAgBi ¼ λ2

��
ω0

2π
− cos2θgðω0; α; z0Þ − sin2θgðω0; α; ðz0 þ dÞÞ

þ sin 2θ

�
g

�
ω0; α;

d
2

�
− g

�
ω0;α; z0 þ

d
2

����
1þ 1

exp ðω0=TÞ − 1

��
: ð87Þ

On the other hand, taking the limits L → ∞ and z0 → ∞
simultaneously, Eqs. (84) and (85) lead to the expression
for the upward and the downward transition rates in free
space given by Eqs. (79) and (80).
From the above analysis of the two-atom system con-

fined to a cavity, we find a similarity between an instanta-
neously inertial observer and a coaccelerated observer in a
thermal bath for both the upward and the downward
transition rates. Here too it may be noted that upon taking
the thermal bath temperature in the coaccelerated frame
T ¼ α=2π, from Eqs. (84), (85), (63) and (64) it follows
that the transition rates of the uniformly accelerated two-
atom system in the generic entangled state seen by a
coaccelerated observer and by an instantaneously inertial
observer are identical inside the cavity.

VIII. CONCLUSIONS

In this study, we have investigated the transition rates of
uniformly accelerated single and entangled two-atom
systems. The two-atom system is assumed to be prepared
in the most generic pure entangled state. Both systems
interact with the massless scalar field from the perspective
of an instantaneously inertial observer and a coaccelerated
observer, respectively. We have studied the interaction
between the accelerated atomic systems and the massless
scalar field in two scenarios, namely, free space and inside a
cavity. We have presented two examples of the computation
of the actual values of the transition rates using realistic
system and cavity parameters.
Considering that the scalar field with which the atoms

interact in the inertial frame and the coaccelerated frame,
are in the vacuum state and a thermal state, respectively, it is
seen that in all the above cases, both the upward and the
downward transitions take place for the single as well as the
entangled two-atom system. The upward transition is
nontrivial, and from the view point of an inertial observer,
takes place only due to the acceleration of the atomic
systems. Our study shows we that the transition rate
depends on the cavity parameters, such as the length of
the cavity (L), distance of an atom from one boundary (z0),
as well as other system parameters, such as the atomic
acceleration (α), the interatomic distance (d), and the
magnitude of initial atomic entanglement (θ).
From the analysis, it is observed that for a single atom,

the upward transition rate increases with the increment of
atomic acceleration and cavity length. The transition rate
exhibits an oscillatory behavior with respect to the distance

between the atom and the reflecting boundary. In case of
the two-atom system, the transition rates shows some
interesting features. In this scenario, the entanglement
parameter and the interatomic distance play important
roles. The transition rate shows oscillatory behavior in
the full range of the entanglement parameter. However,
considering a small magnitude of initial entanglement, we
find that in the free space, increasing the entanglement
parameter enhances the upward transition and downward
transition rates, whereas, in the presence of cavity it shows
a completely opposite behavior, and both transition rates
get suppressed due to the increase of the entanglement
parameter. In the case when the entanglement parameter
has the value θ ¼ π=4, we observe that both the transition
rates vanish, indicating that no transition there occurs from
the maximally entangled initial state to any higher or lower
energetic product state. Hence, the entanglement of the
initial state can be preserved. From a quantum information
theoretic viewpoint, this result is of significance, since
preservation of entanglement enables its use as resource for
performing various tasks.
Our study further reveals that the upward transition rate

diminishes beyond a certain level of increase of the
interatomic distance. From a physical perspective, one
may view this result to originate from the fact that the
cooperative effects of the two atoms mediated by the field
become more and more subdued as the interatomic
distance increases beyond a point. On the other hand,
the effect due to the distance of an atom from the boundary
has a more subtle manifestation. We find that the upward
transition rate increases when we increase the distance
between any one of the atoms and one boundary, and takes
the maximum value when the distance between both atoms
to their closest boundaries are equal. Apart from this, the
behavior of the transition rate with respect to atomic
acceleration and the cavity length is quite similar to the
single atom case.
From our extensive study of the transition rates of the

single and two-atom systems in an inertial and a coaccel-
erated frame, we observe that if the temperature of the
thermal bath in the coaccelerated frame is taken to be the
same as the Unruh temperature, then the transition rates for
the upward and the downward transitions in the two frames
coincide exactly with each other even inside the cavity,
making it completely consistent with the Fulling-Davies-
Unruh effect. Therefore, from the present study, the
equivalence between the effect of uniform acceleration
and the effect of thermal bath is clearly manifested for the
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single as well as the entangled two-atom cases in free space
and in the presence of reflecting boundaries, as well. The
finding is intriguing for the cavity case since the physics
changes quite a bit inside a cavity, and moreover such a set-
up is experimentally implementable [56,57,83,84].
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APPENDIX A: CALCULATIONAL DETAILS
OF SOME USEFUL INTEGRALS USED

IN THE TEXT

In this Appendix, for the sake of completeness, we
provide a detailed calculation of the following integrals

I1 ¼−
α2

16π2

Z þ∞

−∞
dðΔτÞe−iΔEΔτ 1

sinh2½1
2
ðαΔτ− iεÞ� ðA1Þ

I2 ¼−
α2

16π2

Z þ∞

−∞
dðΔτÞe−iΔEΔτ 1

sinh2½1
2
ðαΔτ− iεÞ�−d2α2

:

ðA2Þ

To solve the integral given in Eq. (A1), we first consider
some dimensionless parameters such as αΔτ ¼ σ;
ΔE=α ¼ ξ, and use the series representation [94]

csch2
�
1

2
ðσ − iεÞ

�
¼

X∞
k¼−∞

4

ðσ − iε − 2iπkÞ2 : ðA3Þ

Equation (A1) now becomes

I1 ¼ −
α

4π2
X∞
k¼−∞

Z þ∞

−∞
dσ

e−iξσ

ðσ − iε − 2iπkÞ2

¼ −
α

4π2

�
I0 þ

X∞
k¼1

Ik

�
ðA4Þ

where I0 and Ik are given by the integrals

I0 ¼
Z þ∞

−∞
dσ

e−iξσ

ðσ − iεÞ2 ðA5Þ

Ik ¼
Z þ∞

−∞
dσe−iξσ

�
1

ðσ − 2iπkÞ2 þ
1

ðσ þ 2iπkÞ2
�
: ðA6Þ

Considering the analytic continuation of the above
integrands in the complex plane of σ, for Eq. (A5) we
get a second order pole at σ ¼ iε and for Eq. (A6) we
find a set of second order poles at σ ¼ −2iπk with

k ¼ �1;�2;…, lying on the imaginary axis of σ. For
ξ < 0 or ΔE < 0, we close the contour in the upper half
complex plane in Fig. 15. Using Jordon’s lemma, we
observe that the integration along the half circle is zero.
Therefore, applying the Cauchy residue theorem in the
integrals (A5) and (A6) and using it in Eq. (A4), we get

I1ðΔE < 0Þ ¼ −
α

4π2

�
2πξþ 2πξ

X∞
k¼1

e2πkξ
�

¼ αjξj
2π

�
1þ 1

e2πjξj − 1

�

¼ jΔEj
2π

�
1þ 1

e2πjΔEj=α − 1

�
: ðA7Þ

Similarly, for ΔE > 0, closing the contour in the lower half
complex plane and following the previous steps, we get

I1ðΔE > 0Þ ¼ ΔE
2π

1

e2πΔE=α − 1
: ðA8Þ

Therefore, combining the above results (A7) and (A8),
we get

I1 ¼ θð−ΔEÞ jΔEj
2π

�
1þ 1

expð2πjΔEj=αÞ − 1

�

þ θðΔEÞΔE
2π

�
1

expð2πΔE=αÞ − 1

�
ðA9Þ

where θðΔEÞ is defined in Eq. (15).
To evaluate the integral in Eq. (A2), first we consider the

analytic continuation of the integrand in the complex plane
σ. Equation (A2) then becomes

I2 ¼ −
α

16π2

I
C
dσe−iξσ

1

sinh2½1
2
ðσ − iεÞ� − d2α2

ðA10Þ

whereC is the contour in Fig. 16. From the integrand we find
that there exists two types of first order poles σþ ¼ iεþ
2inπ þ 2 sinh−1ðdαÞ and σ− ¼ iεþ 2inπ − 2 sinh−1ðdαÞ
where n ¼ 0;�1;�2;…, lying in the upper and lower half

FIG. 15. The contour of the integral Eq. (A1) for (a) ΔE < 0
and (b) ΔE > 0.
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of the complex plane. Therefore, closing the contour in the
upper half complex plane for ΔE < 0, we find that both the
poles will contribute for all positive integer values of n
including n ¼ 0.
Now applying the residue theorem and taking the limit

ε → 0, the residues become

R1ðnÞ ¼
exp−i ΔEα ð2inπ þ 2 sinh−1ðdαÞÞ

αd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2α2

p ðA11Þ

and

R2ðnÞ ¼ −
exp−i ΔEα ð2inπ − 2 sinh−1ðdαÞÞ

αd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2α2

p : ðA12Þ

Applying Jordon’s lemma, we already observe that
the integration along the half circle is zero, therefore
we get

I2ðΔE < 0Þ ¼ −
α

16π2
X∞
n¼0

2πi½R1ðnÞ þR2ðnÞ�

¼
sin

	
2jΔEj
α sinh−1ðdαÞ



4πd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2α2

p
�
1þ 1

e2πjΔEj=α − 1

�
:

ðA13Þ

Similarly, for ΔE > 0, closing the contour in the lower half
complex plane we find that both the poles will contribute
for all negative integer values of n.
Now following the steps of the case ΔE < 0, we get

I2ðΔE>0Þ¼
sin

	
2ΔE
α sinh−1ðdαÞ



4πd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þd2α2

p
�

1

e2πΔE=α−1

�
: ðA14Þ

Therefore, combining the above results (A13) and (A14),
we get

I2 ¼ θð−ΔEÞ
sin

	
2jΔEj
α sinh−1ðdαÞ



4πd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þd2α2

p
�
1þ 1

e2πjΔEj=α−1

�

þθðΔEÞ
sin

	
2ΔE
α sinh−1ðdαÞ



4πd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þd2α2

p
�

1

e2πΔE=α−1

�
: ðA15Þ

APPENDIX B: TRANSITION RATES OF A
SINGLE ATOM IN A CAVITY WITH RESPECT

TO A LOCAL INERTIAL OBSERVER

In this Appendix, we present some of the intermediate
steps leading to Eqs. (22) and (23). The form of the
Wightman function for the trajectory of an atom inside a
cavity is given in Eq. (21). Substituting this form in Eq. (8),
the transition rate from the initial state jii to the final state
jfi is given by

Rjii→jfi ¼ −
λ2jmfij2α2

16π2
X∞
n¼−∞

�Z þ∞

−∞
dðΔτÞe−iΔEΔτ 1

sinh2½1
2
ðαΔτ − iεÞ� − 1

4
d21α

2

−
Z þ∞

−∞
dðΔτÞe−iΔEΔτ 1

sinh2½1
2
ðαΔτ − iεÞ� − 1

4
d22α

2

�
: ðB1Þ

Simplifying the above equation through a contour integral as shown in Appendix A, the rate of transition from the initial
state jii to the final state jfi can be written as

Rjii→jfi ¼ λ2jmfij2
�
θð−ΔEÞ

�jΔEj
2π

þ f

�
jΔEj; α; L

2

�
− h

�
jΔEj; α; z0;

L
2

���
1þ 1

exp ð2πjΔEj=αÞ − 1

�

þ θðΔEÞ
�
ΔE
2π

þ f
�
ΔE; α;

L
2

�
− h

�
ΔE; α; z0;

L
2

���
1

exp ð2πΔE=αÞ − 1

��
ðB2Þ

where we have defined

FIG. 16. The contour of the integral (A2) for (a) ΔE < 0 and
(b) ΔE > 0.
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f

�
ΔE; α;

L
2

�
¼ 2

X∞
n¼1

g

�
ΔE; α;

nL
2

�
ðB3Þ

h

�
ΔE; α; z0;

L
2

�
¼

X∞
n¼−∞

g

�
ΔE; α; z0 −

nL
2

�
ðB4Þ

where gðΔE; α; z0Þ is defined as

gðΔE; α; z0Þ ¼
sinð2ΔEα sinh−1ðαz0ÞÞ
4πz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2z20

p : ðB5Þ

APPENDIX C: THERMAL WIGHTMAN
FUNCTION OF A SINGLE ATOM

IN EMPTY SPACE WITH RESPECT
TO A COACCELERATED OBSERVER

In this Appendix, we present some of the intermediate
steps leading to thermalWightman function Eq. (36). Using
Eq. (27) in Eq. (32), the thermal Wightman function takes
the following form for an arbitrary temperature T,

Gþ
β ðxðτÞ; xðτ0ÞÞ ¼

Z
∞

0

dω
Z

∞

−∞
dky

Z
∞

−∞
dkz

�X∞
σ¼0

ðσ þ 1Þe−βωσVω;ky;kzðτ;xÞV⋆
ω;ky;kz

ðτ0;x0Þ

þ
X∞
σ¼1

σe−βωσV⋆
ω;ky;kz

ðτ;xÞVω;ky;kzðτ0;x0Þ
��X∞

σ¼0

e−βωσ

¼
Z

∞

0

dω
Z

∞

−∞
dky

Z
∞

−∞
dkz

�
eω=T

eω=T − 1
Vω;ky;kzðτ;xÞV⋆

ω;ky;kz
ðτ0;x0Þ

þ 1

eω=T − 1
V⋆
ω;ky;kz

ðτ;xÞVω;ky;kzðτ0;x0Þ
�
: ðC1Þ

Using Eqs. (28) and (35) in Eq. (C1), the above result simplifies to the form

Gþ
β ðxðτÞ; xðτ0ÞÞ ¼

1

4π4α

Z
∞

0

dω
Z

∞

−∞
dky

Z
∞

−∞
dkz sinh

�
πω

α

�
K2

iω=α

�
k⊥
α

��
eω=T

eω=T − 1
e−iωðτ−τ0Þ þ 1

eω=T − 1
eiωðτ−τ0Þ

�
ðC2Þ

¼ 1

4π2

Z
∞

0

dωω

�
eω=T

eω=T − 1
e−iωðτ−τ0Þ þ 1

eω=T − 1
eiωðτ−τ0Þ

�

¼ −
1

4π2
X∞
s¼−∞

1

ðΔτ − isβ − iεÞ2 ðC3Þ

where in the second line, we have used the integral

Z
∞

−∞
dky

Z
∞

−∞
dkzK2

iω=α

�
k⊥
α

�
¼ απ2ω

sinhðπω=αÞ : ðC4Þ

APPENDIX D: THERMAL WIGHTMAN
FUNCTION OF A SINGLE ATOM
IN CAVITY WITH RESPECT TO A
COACCELERATED OBSERVER

In this Appendix, we present some of the intermediate
steps leading to thermal Wightman function Eq. (40).
In the presence of a single reflecting boundary, the

Rindler counterpart of the scalar field operator [Eq. (27)]

obeys the Dirichlet boundary condition ϕjz¼0 ¼ 0. The
positive frequency Rindler mode function for the massless
scalar field takes the form [39]

Vω;ky;kzðτ;xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπω=αÞ

2π4α

r
Kiωα

�
k⊥
α
eαη

�

× sinðkzzÞe−iωτþikyy: ðD1Þ

Inserting Eq. (D1) in Eq. (C1), the thermal Wightman
function takes the form
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Gþ
β ðxðτÞ; xðτ0ÞÞ ¼

1

4π4α

Z
∞

0

dω
Z

∞

−∞
dky

Z
∞

−∞
dkz sinh

�
πω

α

�
Kiω=α

�
k⊥
α
eαη

�
Kiω=α

�
k⊥
α
eαη

0
�
fcos½kzðz − z0Þ�

− cos½kzðzþ z0Þ�g ×
�

eω=T

eω=T − 1
e−iωðτ−τ0Þþikyðy−y0Þ þ 1

eω=T − 1
eiωðτ−τ0Þ−ikyðy−y0Þ

�
: ðD2Þ

Now for the cavity scenario, the Dirichlet boundary condition obeyed by the scalar field is ϕjz¼0 ¼ ϕjz¼L ¼ 0. Using the
above boundary condition [Eq. (D2)] and by using the method of images, the thermal Wightman function of the massless
scalar field confined to the cavity turns out to be

Gþ
β ðxðτÞ; xðτ0ÞÞ ¼

1

4π4α

X∞
n¼−∞

Z
∞

0

dω
Z

∞

−∞
dky

Z
∞

−∞
dkz sinh

�
πω

α

�
Kiω=α

�
k⊥
α
eαη

�
Kiω=α

�
k⊥
α
eαη

0
�

× fcos½kzðz − z0 − nLÞ� − cos½kzðzþ z0 − nLÞ�g
�

eω=T

eω=T − 1
e−iωðτ−τ0Þþikyðy−y0Þ

þ 1

eω=T − 1
eiωðτ−τ0Þ−ikyðy−y0Þ

�
: ðD3Þ

Inserting the atomic trajectory Eq. (39) in Eq. (D3), along with the result [39]

Z
∞

−∞
dky

Z
∞

−∞
dkzK2

iω=α

�
k⊥
α

�
cos

�
2kz

d
2

�
¼ απ2

sinhðπω=αÞ
sin ð2ωα sinh−1ðdα

2
ÞÞ

d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
α2d2

q ; ðD4Þ

and following the procedure in Appendix C, the thermal Wightman function inside the cavity becomes

Gþ
β ðxðτÞ; xðτ0ÞÞ ¼ −

1

4π2
X∞
n¼−∞

X∞
s¼−∞

�
B1

C1

1

ðΔτ − isβ − iεÞ2 − B2
1

−
B2

C2

1

ðΔτ − isβ − iεÞ2 − B2
2

�
ðD5Þ

with

B1 ¼
2

α
sinh−1

�
nLα
2

�
; C1 ¼ nL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
α2n2L2

r

B2 ¼
2

α
sinh−1

�
α

�
z0 −

nL
2

��
; C2 ¼ ð2z0 − nLÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
α2ð2z0 − nLÞ2

r
: ðD6Þ

APPENDIX E: TRANSITION RATES OF TWO ATOMS IN EMPTY SPACE WITH RESPECT
TO A LOCAL INERTIAL OBSERVER

In this Appendix, we present some of the intermediate steps leading to Eqs. (57) and (58). The form of the Wightman
functions for the trajectories of the two atoms are given in Eqs. (55) and (56). Substituting this forms into Eq. (48) and
Eq. (51), the transition rate of the two-atom system from the initial state jψi to the final state jEni can be expressed as

Rjψi→jEni ¼ λ2½jmðAÞ
Enψ

j2FAAðΔEÞ þ jmðBÞ
Enψ

j2FBBðΔEÞ þmðBÞ
Enψ

mðAÞ�
Enψ

FABðΔEÞ þmðAÞ
Enψ

mðBÞ�
Enψ

FBAðΔEÞ� ðE1Þ

with

F ξξ0 ðΔEÞ ¼ −
α2

16π2

Z þ∞

−∞
dðΔτÞe−iΔEΔτ 1

sinh2 ½1
2
ðαΔτ − iεÞ� ðE2Þ

for ξ ¼ ξ0 and
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F ξξ0 ðΔEÞ ¼ −
α2

16π2

Z þ∞

−∞
dðΔτÞe−iΔEΔτ 1

sinh2½1
2
ðαΔτ − iεÞ� − 1

4
d2α2

ðE3Þ

for ξ ≠ ξ0. We simplify the transition rate Eq. (E1) by performing contour integration, leading to

Rjψi→jEni ¼ λ2
�
θð−ΔEÞ

�jΔEj
2π

þ sin 2θ sinð2jΔEjα sinh−1ð1
2
αdÞÞ

2πd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
d2α2

q
��

1þ 1

e2πjΔEj=α − 1

�

þ θðΔEÞ
�
ΔE
2π

þ sin 2θ sinð2ΔEα sinh−1ð1
2
αdÞÞ

2πd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
d2α2

q
��

1

e2πΔE=α − 1

��
ðE4Þ

where θðΔEÞ is defined in Eq. (15).

APPENDIX F: TRANSITION RATES OF TWO ATOMS IN A CAVITY WITH RESPECT TO A LOCAL
INERTIAL OBSERVER

In this Appendix, we present some of the intermediate steps leading to Eqs. (63) and (64). The form of the Wightman
functions for the trajectories of the two atoms are given in Eqs. (61) and (62). Substituting this forms into Eqs. (48) and (51),
the transition rate of the two-atom system from the initial state jψi to the final state jEni can be expressed as

Rjψi→jEni ¼ λ2
X∞
n¼−∞

½jmðAÞ
Enψ

j2FAAðΔEÞ þ jmðBÞ
Enψ

j2FBBðΔEÞ þmðBÞ
Enψ

mðAÞ�
Enψ

FABðΔEÞ þmðAÞ
Enψ

mðBÞ�
Enψ

FBAðΔEÞ� ðF1Þ

with

F ξξ0 ðΔEÞ ¼ −
α2

16π2

Z þ∞

−∞
dðΔτÞe−iΔEΔτ

�
1

sinh2½1
2
ðαΔτ − iεÞ� − 1

4
d21α

2
−

1

sinh2½1
2
ðαΔτ − iεÞ� − 1

4
d22α

2

�
ðF2Þ

for ξ ¼ ξ0 and

F ξξ0 ðΔEÞ ¼ −
α2

16π2

Z þ∞

−∞
dðΔτÞe−iΔEΔτ

�
1

sinh2½1
2
ðαΔτ − iεÞ� − 1

4
d23α

2
−

1

sinh2½1
2
ðαΔτ − iεÞ� − 1

4
d24α

2

�
ðF3Þ

for ξ ≠ ξ0. Equation (F1) can be further simplified by performing contour integration to obtain

Rjψi→jEni ¼ λ2
�
θð−ΔEÞ

�jΔEj
2π

þ f

�
jΔEj; α; L

2

�
− cos2θh

�
jΔEj; α; z0;

L
2

�
− sin2θm

�
jΔEj; α; z0; d;

L
2

�

þ sin 2θn

�
jΔEj; α; d

2
;
L
2

�
− sin 2θm

�
jΔEj; α; z0;

d
2
;
L
2

���
1þ 1

expð2πjΔEj=αÞ − 1

�

þ θðΔEÞ
�
ΔE
2π

þ f

�
ΔE; α;

L
2

�
− cos2θh

�
ΔE; α; z0;

L
2

�
− sin2θm

�
ΔE; α; z0; d;

L
2

�

þ sin 2θn

�
ΔE; α;

d
2
;
L
2

�
− sin 2θm

�
ΔE; α; z0;

d
2
;
L
2

���
1

expð2πΔE=αÞ − 1

��
ðF4Þ

where we have defined

m

�
ΔE; α; z0; d;

L
2

�
¼

X∞
n¼−∞

g

�
ΔE; α; z0 þ d −

nL
2

�
ðF5Þ
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n

�
ΔE; α;

d
2
;
L
2

�
¼

X∞
n¼−∞

g

�
ΔE; α;

d − nL
2

�
ðF6Þ

and gðΔE; α; z0Þ is defined in Appendix B.

APPENDIX G: THERMAL WIGHTMAN FUNCTION OF TWO ATOMS IN EMPTY SPACE
WITH RESPECT TO A COACCELERATED OBSERVER

In this Appendix, we present some of the intermediate steps leading to thermal Wightman functions Eqs. (77) and (78).
Using Eq. (68) in Eq. (73), the thermal Wightman function takes the following form for an arbitrary temperature T

Gþ
β ðxξðτÞ; xξ0 ðτ0ÞÞ ¼

Z
∞

0

dω
Z

∞

−∞
dky

Z
∞

−∞
dkz

�X∞
σ¼0

ðσ þ 1Þe−βωσVω;ky;kzðτξ;xξÞV⋆
ω;ky;kz

ðτ0ξ0 ;x0
ξ0 Þ

þ
X∞
σ¼1

σe−βωσV⋆
ω;ky;kz

ðτξ;xξÞVω;ky;kzðτ0ξ;x0
ξ0 Þ
��X∞

σ¼0

e−βωσ

¼
Z

∞

0

dω
Z

∞

−∞
dky

Z
∞

−∞
dkz

�
eω=T

eω=T − 1
Vω;ky;kzðτξ;xξÞV⋆

ω;ky;kz
ðτ0ξ0 ;x0

ξ0 Þ

þ 1

eω=T − 1
V⋆
ω;ky;kz

ðτξ;xξÞVω;ky;kzðτ0ξ;x0
ξ0 Þ
�

ðG1Þ

Inserting Eqs. (69) and (76) in Eq. (G1), the above result simplifies to the form

Gþ
β ðxξðτÞ;xξ0 ðτ0ÞÞ ¼

1

4π4α

Z
∞

0

dω
Z

∞

−∞
dky

Z
∞

−∞
dkz sinh

�
πω

α

�
K2

iω=α

�
k⊥
α

��
eω=T

eω=T −1
e−iωðτ−τ0Þ þ 1

eω=T −1
eiωðτ−τ0Þ

�
: ðG2Þ

Now, using Eq. (C4) and the integral

Z
∞

−∞
dky

Z
∞

−∞
dkzK2

iω=α

�
k⊥
α

�
e−ikzd ¼ απ2

sinhðπω=αÞ
sin ð2ωα sinh−1ðdα

2
ÞÞ

d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
α2d2

q ðG3Þ

the thermal Wightman function takes the form

Gþ
β ðxξðτÞ; xξ0 ðτ0ÞÞ ¼ −

1

4π2
X∞
s¼−∞

1

ðΔτ − isβ − iεÞ2 ðG4Þ

for ξ ¼ ξ0, and

Gþ
β ðxξðτÞ; xξ0 ðτ0ÞÞ ¼ −

B
4π2C

X∞
s¼−∞

1

ðΔτ − isβ − iεÞ2 − B2
ðG5Þ

for ξ ≠ ξ0, with B ¼ 2
α sinh

−1ðdα
2
Þ and C ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
α2d2

q
.

APPENDIX H: THERMAL WIGHTMAN FUNCTION OF TWO ATOMS IN CAVITY
WITH RESPECT TO A COACCELERATED OBSERVER

In this Appendix, we present some of the intermediate steps leading to thermal Wightman functions Eqs. (82) and (83).
Considering that the Rindler counterpart of the scalar field Eq. (68) obeys the Dirichlet boundary condition

ϕjz¼0 ¼ ϕjz¼L ¼ 0, and by following a similar method we have used for the single atom case, the positive frequency
thermal Wightmann function of the massless scalar field confined in the cavity turns out to be
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Gþ
β ðxξðτÞ; xξ0 ðτ0ÞÞ ¼

1

4π4α

X∞
n¼−∞

Z
∞

0

dω
Z

∞

−∞
dky

Z
∞

−∞
dkz sinh

�
πω

α

�
Kiω=α

�
k⊥
α
eαηξ

�
Kiω=α

�
k⊥
α
eαη

0
ξ0
�

× fcos½kzðzξ − z0ξ0 − nLÞ� − cos½kzðzξ þ z0ξ0 − nLÞ�g
�

eω=T

eω=T − 1
e−iωðτξ−τ

0
ξ0 Þþikyðyξ−y0ξ0 Þ

þ 1

eω=T − 1
eiωðτξ−τ

0
ξ0 Þ−ikyðyξ−y

0
ξ0 Þ
�
: ðH1Þ

Inserting the atomic trajectories Eq. (81) in Eq. (H1) and following the procedure in Appendix D, above result simplifies
to the form

Gþ
β ðxξðτÞ; xξ0 ðτ0ÞÞ ¼ −

1

4π2
X∞
n¼−∞

X∞
s¼−∞

�
B1

C1

1

ðΔτ − isβ − iεÞ2 − B2
1

−
B3

C3

1

ðΔτ − isβ − iεÞ2 − B2
3

�
ðH2Þ

for ξ ¼ ξ0 with B1, C1 are given in Eq. (D6), B3 ¼ 2
α sinh

−1 ðαðzξ − nL
2
ÞÞ; C3 ¼ ð2zξ − nLÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
α2ð2zξ − nLÞ2

q
and

Gþ
β ðxξðτÞ; xξ0 ðτ0ÞÞ ¼ −

1

4π2
X∞
n¼−∞

X∞
s¼−∞

�
B4

C4

1

ðΔτ − isβ − iεÞ2 − B2
4

−
B5

C5

1

ðΔτ − isβ − iεÞ2 − B2
5

�
ðH3Þ

for ξ ≠ ξ0 with fB4¼− 2
αsinh

−1ððdþnLÞα
2

Þ;C4 ¼−ðdþnLÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
α2ðdþnLÞ2

q
gð for ξ¼A;ξ0 ¼BÞ;fB4 ¼ 2

αsinh
−1ððd−nLÞα

2
Þ;

C4¼ðd−nLÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
α2ðd−nLÞ2

q
g ð for ξ ¼ B; ξ0 ¼ AÞ;B5 ¼ 2

α × sinh−1ðαðz0 þ d−nL
2

ÞÞ, and C5 ¼ ð2z0 þ d − nLÞ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
α2ð2z0 þ d − nLÞ2

q
.

[1] I. Fuentes-Schuller and R. B. Mann, Alice falls into a black
hole: Entanglement in noninertial frames, Phys. Rev. Lett.
95, 120404 (2005).

[2] B. Richter and Y. Omar, Degradation of entanglement
between two accelerated parties: Bell states under the Unruh
effect, Phys. Rev. A 92, 022334 (2015).

[3] P. M. Alsing, I. Fuentes-Schuller, R. B. Mann, and T. E.
Tessier, Entanglement of Dirac fields in noninertial frames,
Phys. Rev. A 74, 032326 (2006).

[4] A. Bermudez and M. A. Martin-Delgado, Hyper-
entanglement in a relativistic two-body system, J. Phys.
A 41, 485302 (2008).

[5] M.-R. Hwang, E. Jung, and D. Park, Three-tangle in non-
inertial frame, Classical Quantum Gravity 29, 224004
(2012).

[6] M.-R. Hwang, D. Park, and E. Jung, Tripartite entangle-
ment in a noninertial frame, Phys. Rev. A 83, 012111
(2011).

[7] E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune,
J. M. Raimond, and S. Haroche, Generation of Einstein-
Podolsky-Rosen pairs of atoms, Phys. Rev. Lett. 79, 1
(1997).

[8] M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight,
Cavity-loss-induced generation of entangled atoms, Phys.
Rev. A 59, 2468 (1999).

[9] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entangle-
ment in many-body systems, Rev. Mod. Phys. 80, 517
(2008).

[10] G. S. Agarwal, Quantum-entanglement-initiated super
Raman scattering, Phys. Rev. A 83, 023802 (2011).

[11] B. Reznik, Entanglement from the vacuum, Found. Phys.
33, 167 (2003).

[12] B. Reznik, A. Retzker, and J. Silman, Violating Bell’s
inequalities in vacuum, Phys. Rev. A 71, 042104 (2005).

[13] D. Braun, Entanglement from thermal blackbody radiation,
Phys. Rev. A 72, 062324 (2005).

[14] S. Massar and P. Spindel, Einstein-Podolsky-Rosen corre-
lations between two uniformly accelerated oscillators, Phys.
Rev. D 74, 085031 (2006).

[15] J. Franson, Generation of entanglement outside of the light
cone, J. Mod. Opt. 55, 2117 (2008).

[16] S.-Y. Lin and B. L. Hu, Temporal and spatial dependence of
quantum entanglement from a field theory perspective,
Phys. Rev. D 79, 085020 (2009).

[17] S.-Y. Lin and B. L. Hu, Entanglement creation between two
causally disconnected objects, Phys. Rev. D 81, 045019
(2010).

[18] G. Menezes, Radiative processes of two entangled atoms
outside a Schwarzschild black hole, Phys. Rev. D 94,
105008 (2016).

MUKHERJEE, GANGOPADHYAY, and MAJUMDAR PHYS. REV. D 108, 085018 (2023)

085018-24

https://doi.org/10.1103/PhysRevLett.95.120404
https://doi.org/10.1103/PhysRevLett.95.120404
https://doi.org/10.1103/PhysRevA.92.022334
https://doi.org/10.1103/PhysRevA.74.032326
https://doi.org/10.1088/1751-8113/41/48/485302
https://doi.org/10.1088/1751-8113/41/48/485302
https://doi.org/10.1088/0264-9381/29/22/224004
https://doi.org/10.1088/0264-9381/29/22/224004
https://doi.org/10.1103/PhysRevA.83.012111
https://doi.org/10.1103/PhysRevA.83.012111
https://doi.org/10.1103/PhysRevLett.79.1
https://doi.org/10.1103/PhysRevLett.79.1
https://doi.org/10.1103/PhysRevA.59.2468
https://doi.org/10.1103/PhysRevA.59.2468
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/PhysRevA.83.023802
https://doi.org/10.1023/A:1022875910744
https://doi.org/10.1023/A:1022875910744
https://doi.org/10.1103/PhysRevA.71.042104
https://doi.org/10.1103/PhysRevA.72.062324
https://doi.org/10.1103/PhysRevD.74.085031
https://doi.org/10.1103/PhysRevD.74.085031
https://doi.org/10.1080/09500340801983129
https://doi.org/10.1103/PhysRevD.79.085020
https://doi.org/10.1103/PhysRevD.81.045019
https://doi.org/10.1103/PhysRevD.81.045019
https://doi.org/10.1103/PhysRevD.94.105008
https://doi.org/10.1103/PhysRevD.94.105008


[19] S. Sen, R. Mandal, and S. Gangopadhyay, Equivalence
principle andHBARentropy of an atom falling into a quantum
corrected black hole, Phys. Rev. D 105, 085007 (2022).

[20] S. Sen, R. Mandal, and S. Gangopadhyay, Near horizon
aspects of acceleration radiation of an atom falling into a
class of static spherically symmetric black hole geometries,
Phys. Rev. D 106, 025004 (2022).

[21] S. Sen, R. Mandal, and S. Gangopadhyay, Near horizon
approximation and beyond for a two-level atom falling into a
Kerr-Newman black hole, Eur. Phys. J. Plus 138, 855 (2023).

[22] S. A. Fulling, Nonuniqueness of canonical field quantization
in Riemannian space-time, Phys. Rev. D 7, 2850 (1973).

[23] P. C. W. Davies, Scalar production in Schwarzschild and
Rindler metrics, J. Phys. A 8, 609 (1975).

[24] W. G. Unruh, Experimental black-hole evaporation?, Phys.
Rev. Lett. 46, 1351 (1981).

[25] N. D. Birrell and P. Davies, Quantum Fields in Curved
Space (Cambridge University Press, Cambridge, England,
1984), 10.1017/CBO9780511622632.

[26] V. Frolov and V. Ginzburg, Excitation and radiation of an
accelerated detector and anomalous doppler effect, Phys.
Lett. 116A, 423 (1986).

[27] A. Higuchi and G. E. A. Matsas, Fulling-Davies-Unruh
effect in classical field theory, Phys. Rev. D 48, 689 (1993).

[28] O. Levin, Y. Peleg, and A. Peres, Quantum detector in an
accelerated cavity, J. Phys. A 25, 6471 (1992).

[29] J. Audretsch and R. Müller, Spontaneous excitation of an
accelerated atom: The contributions of vacuum fluctuations
and radiation reaction, Phys. Rev. A 50, 1755 (1994).

[30] J. Audretsch and R. Müller, Radiative energy shifts of an
accelerated two-level system, Phys. Rev. A 52, 629 (1995).

[31] R. Passante, Radiative level shifts of an accelerated hydro-
gen atom and the Unruh effect in quantum electrodynamics,
Phys. Rev. A 57, 1590 (1998).

[32] D. A. T. Vanzella and G. E. A. Matsas, Decay of accelerated
protons and the existence of the Fulling-Davies-Unruh
effect, Phys. Rev. Lett. 87, 151301 (2001).

[33] D. T. Alves and L. C. B. Crispino, Response rate of a
uniformly accelerated source in the presence of boundaries,
Phys. Rev. D 70, 107703 (2004).

[34] H. Yu and S. Lu, Spontaneous excitation of an accelerated
atom in a spacetime with a reflecting plane boundary, Phys.
Rev. D 72, 064022 (2005).

[35] H. Yu and S. Lu, Erratum: Spontaneous excitation of an
accelerated atom in a spacetime with a reflecting plane
boundary [Phys. Rev. D 72, 064022 (2005)], Phys. Rev. D
73, 109901(E) (2006).

[36] Z. Zhu, H. Yu, and S. Lu, Spontaneous excitation of an
accelerated hydrogen atom coupled with electromagnetic
vacuum fluctuations, Phys. Rev. D 73, 107501 (2006).

[37] H. Yu and Z. Zhu, Spontaneous absorption of an accelerated
hydrogen atom near a conducting plane in vacuum, Phys.
Rev. D 74, 044032 (2006).

[38] S.-Y. Lin and B. L. Hu, Accelerated detector-quantum field
correlations: From vacuum fluctuations to radiation flux,
Phys. Rev. D 73, 124018 (2006).

[39] Z. Zhu and H. Yu, Fulling–Davies–Unruh effect and
spontaneous excitation of an accelerated atom interacting
with a quantum scalar field, Phys. Lett. B 645, 459 (2007).

[40] W. Zhou and H. Yu, Spontaneous excitation of a uniformly
accelerated atom coupled to vacuum Dirac field fluctua-
tions, Phys. Rev. A 86, 033841 (2012).

[41] Z. Zhi-Ying and Y. Hong-Wei, Accelerated multi-level
atoms in an electromagnetic vacuum and Fulling–Davies–
Unruh effect, Chin. Phys. Lett. 25, 1575 (2008).

[42] L. C. B. Crispino, A. Higuchi, and G. E. A. Matsas, Inter-
action of Hawking radiation and a static electric charge,
Phys. Rev. D 58, 084027 (1998).

[43] D. Marolf, D. Minic, and S. F. Ross, Notes on spacetime
thermodynamics and the observer dependence of entropy,
Phys. Rev. D 69, 064006 (2004).

[44] G. E. A. Matsas and A. R. R. da Silva, New thought experi-
ment to test the generalized second law of thermodynamics,
Phys. Rev. D 71, 107501 (2005).

[45] A. Noto and R. Passante, van der Waals interaction energy
between two atoms moving with uniform acceleration,
Phys. Rev. D 88, 025041 (2013).

[46] J. Marino, A. Noto, and R. Passante, Thermal and non-
thermal signatures of the Unruh effect in Casimir-Polder
forces, Phys. Rev. Lett. 113, 020403 (2014).

[47] L. Rizzuto, M. Lattuca, J. Marino, A. Noto, S. Spagnolo, W.
Zhou, and R. Passante, Nonthermal effects of acceleration in
the resonance interaction between two uniformly acceler-
ated atoms, Phys. Rev. A 94, 012121 (2016).

[48] W. Zhou, R. Passante, and L. Rizzuto, Resonance inter-
action energy between two accelerated identical atoms in a
coaccelerated frame and the Unruh effect, Phys. Rev. D 94,
105025 (2016).

[49] G. Fiscelli, L. Rizzuto, and R. Passante, Resonance energy
transfer between two atoms in a conducting cylindrical
waveguide, Phys. Rev. A 98, 013849 (2018).

[50] G. Menezes and N. F. Svaiter, Radiative processes of
uniformly accelerated entangled atoms, Phys. Rev. A 93,
052117 (2016).

[51] M. S. Soares, N. F. Svaiter, C. A. D. Zarro, and G. Menezes,
Uniformly accelerated quantum counting detector in Min-
kowski and Fulling vacuum states, Phys. Rev. A 103,
042225 (2021).

[52] W. Zhou, L. Rizzuto, and R. Passante, Vacuum fluctuations
and radiation reaction contributions to the resonance dipole-
dipole interaction between two atoms near a reflecting
boundary, Phys. Rev. A 97, 042503 (2018).

[53] C. A. U. Lima, F. Brito, J. A. Hoyos, and D. A. T. Vanzella,
Probing the Unruh effect with an accelerated extended
system, Nat. Commun. 10, 3030 (2019).

[54] J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V.
Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D.
Lukin, Coupling a single trapped atom to a nanoscale optical
cavity, Science 340, 1202 (2013).

[55] P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K.
Fatemi, L. A. Orozco, and S. L. Rolston, Chapter Seven—
Optical Nanofibers: A New Platform for Quantum Optics
(Academic Press, New York, 2017), pp. 439–505.

[56] E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins,
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