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We investigate the transition rates of uniformly accelerated two-level single and entangled atomic
systems in empty space as well as inside a cavity. We take into account the interaction between the systems
and a massless scalar field from the viewpoint of an instantaneously inertial observer and a coaccelerated
observer, respectively. The upward transition occurs only due to the acceleration of the atom. For the two-
atom system, we consider that the system is initially prepared in a generic pure entangled state. In the
presence of a cavity, we observe that for both the single and the two-atom cases, the upward and downward
transitions are occurred due to the acceleration of the atomic systems. The transition rate manifests subtle
features depending upon the cavity and system parameters, as well as the initial entanglement. It is shown
that no transition occurs for a maximally entangled superradiant initial state, signifying that such
entanglement in the accelerated two-atom system can be preserved for quantum information processing
applications. Our analysis comprehensively validates the equivalence between the effect of uniform
acceleration for an inertial observer and the effect of a thermal bath for a coaccelerated observer, in free
space as well as inside a cavity, if the temperature of the thermal bath is equal to the Unruh temperature.
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I. INTRODUCTION

Relativistic quantum information is a growing area of
study that combines ideas from gravitational physics with
those from quantum information theory [1-6]. From the
perspective of quantum communications, the fundamental
role herein is played by quantum entanglement [7]. In
recent times one of the key prototypes in research on
entangled states in the relativistic domain are systems of
two-level atoms interacting with quantum fields [8,9].
Radiative processes of entangled states have been exten-
sively discussed in the literature [10]. In this regard, several
important works were developed [11-17], which establish
important results concerning entanglement generation
between two localized causally disconnected atoms. On
the other hand, many investigations of atomic systems were
also implemented on a curved background [18-21].

Quantum field theory in curved background is another
important area of theoretical physics that predicts observa-
tion is a frame dependent entity. As an example, one can
consider that a uniformly accelerated particle detector sees
the Minkowski vacuum as a thermal bath with temperature 7
related to its proper acceleration a, given by 7' = a/2x. This
phenomenon arises as a result of the interaction between the
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detector and the fluctuating vacuum scalar fields, and is
known as the Fulling-Davies-Unruh (FDU) effect [22-25].
After the seminal works of Fulling-Davies-Unruh [22-24],
research into this phenomenon have been extended to
include how a particle detector interacts with different
quantum fields [26—41]. The application of both classical
and quantum field theory has greatly improved the under-
standing of the origin of such phenomena [27]. In addition to
being significant, the FDU effect is also connected to a
number of current research areas, including thermodynam-
ics and the information paradox of a black hole [24,42-44].

There are several theoretical provisions for possible
observable manifestations of the FDU effect. In particular,
it has been theoretically realized that when a uniformly
accelerated single particle detector interacts with the vacuum
massless scalar field, the spontaneous excitation rate of the
accelerated detector is exactly same as seen by a locally
inertial observer and by a coaccelerated observer. This
equivalence is found to be true theoretically both in free
space as well as in the presence of a reflecting boundary only
if there exists a thermal bath at the FDU temperature in the
coaccelerated frame [39]. Investigations on the radiative
properties of a single uniformly accelerated atom [34-40]
have also been extended to the scenarios where more than
one atom is in interaction with the massless scalar field and
the electromagnetic field [18,45-53].

Through the use of trapped atoms in optical nanofibers
[54,55] and novel nanofabrication techniques [56,57], it is
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now possible to experimentally realize atomic excitations in
nanoscale waveguides [58]. The examination of fundamen-
tal quantum optical concepts like atom-photon lattices is
made possible by these pathways [59]. Studies on relativ-
istic quantum phenomena in superconducting circuits
[60,61] and secure quantum communication over long
distances [62—65] highlight the significance of reflecting
boundaries. Reflecting boundaries also play an impor-
tant physical role in the context of quantum entanglement
69-66]], holographic entanglement entropy [70], atom-
field interaction [71], and quantum thermodynamics [72].

The basic motivation of investigating the role of reflect-
ing boundaries lies in its applicability to cavity quantum
electrodynamics, a focus of fundamental research with
numerous applications [73]. It has been observed that the
resonance interatomic energy of two uniformly accelerated
atoms can be effected due to the presence of boundaries
[49,52,74] and noninertial atomic motion [47]. To study
the Unruh-Davies effect inside cavities, techniques of
cavity quantum electrodynamics can be used [75,76].
Additionally, cavity quantum electrodynamical configura-
tions such as superconducting circuits [61] and laser-driven
technologies [77-79] can achieve significant acceleration
which is desirable for experimental verification of the
theoretical results. Several theoretical analyses of the
radiative processes of entangled atoms have been done
by taking boundaries into account [66-69,75,76,80,81].

In a recent work [82], it has been found that there is an
equivalence between the transition probabilities of an
entangled two-atom system as observed by a Minkowski
observer, and that by a coaccelerated observer in free space
when the two-atom system is placed in a thermal bath. This
equivalence only holds if the temperature of the thermal
bath in the coaccelerated frame is taken to be equal to the
Unruh temperature. However, this equivalence breaks
down in general. On the other hand, it has also been found
that the resonance interaction energy of a two-atom system
as observed by an inertial observer and by a coaccelerated
observer is the same in free space without considering any
thermal bath at the Unruh temperature in the coaccelerated
frame [48].

The above results, with certain seemingly conflicting
implications, motivate us to perform a comprehensive
investigation within the same framework involving the
status of the FDU effect for both single and two-atomic
entangled and accelerated systems in free space as well as
in the presence of reflecting boundaries. Further motivation
for our study in the context of cavities is two-fold. First of
all, it is not clear a priori, whether such an equivalence will
still hold inside a cavity. The reason for this is the
following. The physics inside a cavity is significantly
different from that in free space since a number of field
modes are curtailed due to boundary conditions. The
second reason for carrying our investigation inside a
cavity is that the cavity set-up is more realistic from an

experimental point of view. Several recent experiments
have been done using cavity setup [56,57,83-85].

In the present work we consider the interaction between
the atomic systems and a massless scalar field in the frame
of an instantaneously inertial observer and a coaccelerated
observer, respectively. The two-atom system is initially
prepared in a generic pure entangled state. In the presence
of a cavity, we show that for both the single and the two-
atom cases, the magnitude of the upward and downward
transitions increase due to the acceleration of the atomic
systems. The transition rate displays interesting features
with variation of the cavity and system parameters, as well
as the initial entanglement. We find that no transition
occurs for a maximally entangled superradiant initial state,
indicating that such entanglement in the accelerated two-
atom system can be preserved for quantum information
processing applications. We further compute values of the
transition rate for two examples using realistic cavity and
system parameters. From our analysis it follows that the
equivalence between the effect of uniform acceleration for
an inertial observer and the effect of a thermal bath for a
coaccelerated observer, holds in free space as well as inside
a cavity, if the temperature of the thermal bath is set equal to
the Unruh temperature.

The paper is organized as follows: In Sec. II, we
recapitulate the basic framework for obtaining the transition
rate when a single accelerated atom interacts with a
massless scalar field. In Sec. III, we calculate the transition
rates of the single atom from the viewpoint of the
instantaneously inertial observer for empty space and in
the presence of a cavity, respectively. A similar calculation
of the transition rates of the single atom from the viewpoint
of the coaccelerated observer for empty space and in the
presence of a cavity, respectively, is presented in Sec. IV.
We next consider the case of an entangled and accelerated
two-atom system from Sec. Vonward. In Sec. VI, we study
this system from the point of view of an inertial observer.
Subsequently, in Sec. VII we calculate the transition rate in
context of the above system in context of a co-accelerated
observer. We present a summary of our obtained results in
Sec. VIII. Throughout the paper, we take A = ¢ = kg =1,
where kg is the Boltzmann constant.

II. COUPLING OF A SINGLE ATOM
WITH A MASSLESS SCALAR FIELD

Let us consider a single atom with two energy levels,
—wg/2 and +wgy/2, traveling in vacuum with massless
scalar field fluctuations. In the laboratory frame, trajecto-
ries of the atom can be represented through x(z) =
(t(7),x(7)). In the instantaneous inertial frame, the
Hamiltonian describing the atom-field interaction in the
interaction picture is given by [86]

H = im(7)¢(x(z)), (1)
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where A is the coupling constant which is assumed to be
very small. The mode expansion of the massless scalar field
reads [87]

1 +oo Pk
(27)%? )—eo 2w

[ake—iu}kt+ik-x + aleimkt—ik-x]

)

P(x(7)) =

where k = (wy, k) is the four momentum and Kk is the three
momentum. The monopole operator at any proper time 7 of
a single atom m(z) is given by

m(z) = efotm(0)e~iHot (3)

with m(0) = |g)(e| + |e)(g| being the initial monopole
operator and Hy = ¢|e){e| being the free Hamiltonian of
a single atom respectively [72].

According to the time-dependent perturbation theory in
the first-order approximation, the transition amplitude for
the atom-field system from the initial atom-field state
i) ® |0y) = |i,0y) to the final atom-field state |f, ) is

ety = W1y [ @)l 0n) @

where |i) and |f) are the initial and final atomic states
whereas |0y,) and |¢/) are the initial (Minkowski vacuum
state) and final field states. Now, squaring the above
transition amplitude and summing over all possible field
states, transition probability from the initial state |7) to the
final state |f) can be written as

Pliyoipy = AmyPF(AE), (5)

where AE = E; — E;, my; = (f|m(0)|i) and the response
function F(AE) is defined as

+o0 +o0 . ,
F(AE) = / dr / dt' e BECT) G (x(7),x()  (6)
with

G (x(2), x()) = (Oulp(x(2))p(x(7))|0p)  (7)

1

being the positive frequency Wightman function of the
massless scalar field [25]. Exploiting the time translational
invariance property of the positive frequency Wightman
function, the response function per unit proper time can be
written as

F(AE) = /_ﬂo d(At)e BEAGH (x(7), x(7))  (8)

(o]

where At = 7 —7/. Therefore, transition probability per
unit proper time from the initial state |i) to the final state | f)
turns out to be

Riyoip) = Almpi*F(AE). 9)

In the following sections, the above formalism is used to
examine the rate of transitions of a single atom under
various conditions such as non-inertial motion of the atom,
nature of the observer, type of the background field and the
presence of a cavity.

ITI. TRANSITION RATES OF A SINGLE ATOM
FROM THE VIEWPOINT OF A LOCAL
INERTIAL OBSERVER

In this section, we study the transitions of a uniformly
accelerated single atom interacting with a massless scalar
field from the perspective of a locally inertial observer. To
see the boundary effects on the transitions of the uniformly
accelerated single atom in this scenario, several cases have
been studied in the following subsections.

A. Transition rates in empty space with respect
to a local inertial observer

We first evaluate the transition rates of a single atom that
has been uniformly accelerated while interacting with a
vacuum massless scalar field in the absence of any perfectly
reflecting boundary. In the laboratory frame, the atomic
trajectory is given by

1 1
t(r) =—sinh(az), x(r)=-cosh(az), y=2z=0, (10)
a a
where « and 7 denote the proper acceleration and the proper
time of the atom. Using the scalar field operator Eq. (2) in

Eq. (7), the Wightman function becomes [25]

G (x(7), x(7) =

1
- , 11
4 (1)~ () — ke = (x(0) ~x(@)) — 000 (@) = @ -y D
where € is a small positive number. Substituting Eq. (10) in Eq. (11), the Wightman function turns out to be
1
G (x(z).x(e)) = (12)

1677 sinh?[} (aA7 — ie)]
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Substituting the Wightman function into Egs. (8) and (9),
the transition rate from the initial state |i) to the final state
|f) becomes

/12|Wlfi|2a2 oo —i T
Rij-p) = —W/_w d(Az)e 2

1
x .
sinh?[} (aAt — i)

(13)

Simplifying the transition rates, Eq. (13), by performing the
contour integration [88] as shown in Appendix A, we
obtain

Ry = AmiPIAEL ey (14 !
=02z exp(27|AE|/a)—1

+0(AE) (exp(zﬂAlE/a) - 1”

where O(AE) is the Heaviside step function defined as

(14)

1, AE>DO0,

G(AE):{O AE <0

(15)

The above equation Eq. (14) reveals that two transition
processes, namely upward and downward transition can
take place when the atom is under uniform acceleration.
Considering the initial state |i) = |g), final state |f) = |e)
and vice-versa, and using the definition m,, = (e|m(0)|g),
we obtain |mg,|* = |m,|* =1, and AE =, for the
transition g — ¢ and AE = —w, for the transition ¢ — g,
respectively. Using the above results the upward and
downward transition rates take the form

/12600 1
_ 16
Rigy=e) o (exp(Zﬂwo/a) - 1> 1ol

] Kﬁ .......... z=1L

)

FIG. 1. Uniformly accelerated atom confined in a cavity.
/120)0 1
Rioyslpy = 1 . 17
[e)=l9) = "o < i exp(2rwy/a) — 1) (17)

The upward transition in free space occurs solely due to the
acceleration of the atom and vanishes in the limit a — 0.
Taking the ratio of the above two results, we get

Rig=le) _ Rup
Riey-g)

= exp (—2zwy/ ). (18)

Rdown

From the above expression, it is seen that the ratio of the
upward and the downward transition rates depend only on
the atomic acceleration and in the limit @ — co, the ratio
exp (—2zwy/a) — 1, and hence, the two transition rates are
equal in this limit.

B. Transition rates in a cavity with respect
to a local inertial observer

We now consider that a uniformly accelerated atom
interacts with a vacuum massless scalar field confined to a
cavity having length L (see Fig. ). Assuming the scalar field
obeys the Dirichlet boundary condition ¢|,_y = ¢|._; =0,
and using the method of images, the positive frequency
Wightman function of the vacuum massless scalar field
confined to the cavity of length L takes the form [25]

1

G0 x(0) = =32 3 |

n=-—0o

(t(z) = 1(e') = ie)? = (x(z) = x(¢))* = (y(r) = ¥(¢'))* = (2(7) = 2(7') = nL)?

1

(t(z) = 1(7') — ie)* = (x(z) = x(7'))* = ((z) = ¥(¢))* = (2(7) + 2(¢') = nL)?

(19)

with ¢ is a small positive number. To represent the atomic trajectories in terms of the atomic proper time z, we choose the
Cartesian coordinates in the laboratory frame so that the boundaries are fixed at z =0 and z = L.

Inside the cavity the atomic trajectory is given by

t(r) = ésinh(ar),

x(r) = écosh(ar),

y=0,

Using the above trajectories in Eq. (19), the Wightman function becomes
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1 1

-
G (@), x(7)) = 1672 :Z_: Linhz[ (aAt

1
2

with d] = }’lL, dz = 2Z() —nlL.

—ie)] —LdPa?  sinh? [} (aA7 — ie)]

21
i _th‘{%az] @

Now following the procedure in Appendix B, we finally obtain the upward and downward transition rates to be'

— Yo L L :
Rig—e) = 4 Hﬂ T f(‘OO’ . 5) - b (wo’ % ZO’E) } <eXp (2mwy/a) — 1”

L L 1
Rie)=lg) = 22 [{;),(; T f<a)0, @ 2) B f)(wm % 20, 2) } <1 + exp (2rwg/a) — 1)] '

Note that the ratio of the upward and the downward
transition rates in the cavity scenario is identical with
the free space result [Eq. (18)].

Next, in order to describe the single boundary and free
space cases, we take the limiting cases of the above
expressions. Taking the limit L — oo, we find that in
Egs. (22) and (23) only the n =0 term survives from
the infinite summation terms, and one can effectively
reduce the cavity scenario to a situation where only one
reflecting boundary exists. Hence, using this limit, the
upward and downward transition rates in the presence of a
single reflecting boundary turn out to be’

Rig—je) = £ H% UG Z")} (exp (Zﬂﬁjo/a) - 1)]

(24)
R =2 {Sp-stomnan (14 i)
(25)

The above results resemble those of the single boundary
results obtained in [34,35] using the formalism developed
by Dalibard, Dupont-Roc, and Cohen-Tannoudji [89,90].

On the other hand, taking the limits L — oo and z; — o
together, Egs. (22) and (23) lead to the expression for the
upward and downward transition rates in the free space
given by Egs. (16) and (17).

We now investigate the variation of the transition rate of
a single two level atom (from its ground state energy level
|g) to the excited state energy level |e)) confined to a cavity
with the length of the cavity (L), distance of the atom from
the boundary (zy), and the atomic acceleration («). The
findings are plotted below, where all physical quantities are
expressed in dimensionless units.

"The expressions for f(wy, a,%
Appendix (B).

*The expression for g(wy, @, z,) is given in Appendix (B).

) and §(wy, @, 29, 5) are given in

(22)

(23)

Figure 2 shows the variation of the transition rate from
lg) — |e) (per unit ’122%) with respect to the length of the
cavity (separation between the two boundaries) for different
values of distance of the atom from one boundary. From the
plots, it can be seen that for a fixed value of the initial
atomic distance z; from one boundary, the transition rate
get enhanced when the cavity length increases and attains a
maximum value for large values of L (wgL > @wyzy). This
is expected since more number of field modes take part in
the interaction between the scalar field and the atom after
increasing the cavity length, which in turn increases the
transition rate. When woL > wyzy, the cavity scenario
reduces to the case of a single boundary, and hence, the
upward transition rate reaches a constant value. It is also
observed that the upper value of the rate is more for a larger
value of w(z.

Figure 3 shows the variation of the transition rate from
lg) — |e) (per unit ’122%) with respect to the distance of the
atom from one boundary for different values of the length
of the cavity, for a fixed value of acceleration. From the
plots, it is observed that for a fixed value of the length of the
cavity L, when we increase the atomic distance from one
boundary, transition rate shows an oscillatory behavior and
vanishes if either the atom touches any one of the
boundaries or if the atom is equidistant from both boun-
daries. It can also be observed (as we have seen earlier in

e
-
-

Pay
5.0) versus

FIG. 2. Transition rate from |g) — |e) (per unit
separation between the two boundaries, a/w, = 4.
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FIG. 3. Transition rate from |g) — |e) (per unit %{’“

distance of the atom from one boundary, a/w, = 4.

) versus

Fig. 2) that with increase in the length of the cavity (L), the
rate of upward transition increases.

Figure 4 shows the variation of the transition rate from
lg) = |e) (per unit ’122”7;(’) with respect to the acceleration of
the atom for different values of the length of the cavity and
distance of the atom from one boundary. From the plots, it
is observed that for a fixed value of the length of the cavity

L and the atomic distance z, from one boundary, the

Rigy—e)
----- wol=1.5 ’
4
0.8 [ /’
""" wel=1 ,,’
7’ ,’
0.6 o7
/// /”
O r /,/ ,,/
4 /,/ ,,/
/// ’/’
0.2 Jagttal
—mzze=mT L L L a/wo
2 4 6 8 10

FIG. 4. Transition rate from |g) — |e) (per unit £ou) versus

2z
acceleration, @wyzy = 0.3.

R
————— downward -
2.0f PPt
----- upward Pt
1.5 JPtand
1of-—"""" -
0.5 Pt
== P N L L O{/(UO
2 4 6 8 10

(a) In free space

FIG. 5.

Transition rate (per unit

transition rate increases when the acceleration of the atom
is increased. Once again we find that the transition rate is
more for a larger value of the cavity length which is
consistent with our earlier observations.

In Figure 5, we compare the upward and the downward
transition rates with respect to the atomic acceleration for
two cases, namely, atom in free space (Figure 5a), atom
confined to a cavity [Fig. 5(b)]. From the above plots, it is
seen that both the transition rates get affected due to the
presence of the cavity. As noted earlier, in presence of the
cavity the upward and the downward transition rates
decrease with decrease in the cavity length. Here it is seen
that when (L ~ @z, the cavity effect is strong enough to
reduce sharply the downward transition rate.

At this point, it might be interesting to make a quanti-
tative estimation of the transition rate for the case when a
single atom is placed inside a cavity. Following [74], we
choose the length of the cavity in the order of 100 nm,
distance between the atom and the nearest boundary in the
order of 20 nm, and the acceleration in the order of
10'7 m/s?. The energy gap between the ground and excited
state of a single Rubidium atom Rb®’ is of the order of
0.25 eV [91]. Now using Eq. (22) with 4 = 0.1, and the
above values, the upward transition rate of the single
atom inside a cavity turns out to be 3.38 x 10712 eV =
5.12 x 10° s~!. This tells us that in order to observe a
transition to the excited state from the ground state in 1 ns,
one would need to perform an experiment with a collection
of 10° atoms.

IV. TRANSITION RATES OF A SINGLE
ATOM FROM THE VIEWPOINT OF A
COACCELERATED OBSERVER

In this section, the transitions of a uniformly accelerated
atom is analyzed from the perspective of a coaccelerated
observer. By definition, a coaccelerated observer moves
with an acceleration exactly equal to the acceleration of the

R
20f ——--- downward .
----- upward el
1.5 -
1.0 ko P
o5f .-~ b et
JRe ”_a’
b -
mmm ‘ ‘ ‘ - ofwy
2 4 6 8 10

(b) Inside the cavity for a fixed value of woL = 3, wozo =

2wy

5. versus acceleration.
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atom. Therefore, the coaccelerated observer will perceive
the atom as being static. Hence, the observer will see no
Unruh acceleration radiation as there is no relative accel-
eration between the observer and the atom. However, for
the observer to detect acceleration radiation, the field is
assumed to be at an arbitrary temperature 7. To calculate
the transition rates and see the boundary effects on the
transitions of the uniformly accelerated atom, we consider
that the coordinates of the coaccelerated frame are the
Rindler coordinates (z,7,y, z) with the following relation
with those of the laboratory coordinates (t, x, y, 2)

1 1
t(r,n) =—e™sinh(ar), x(z,n) =—e*cosh(az).  (26)
a a
For n =0, the above relations reduce to that of the
atomic trajectory given in Eq. (10) in the laboratory frame.
In the coaccelerated frame, the field operator ¢(x(7)) is
replaced by its Rindler counterpart ¢(x(7)) [82] and it takes

the form [39]

P(r,x) /da)/ dk/ dk,
[bwkkvwkk(TX)+b(Ukawkk(TX)]
(27)

with

inh k S
Vwk . (T X) _ Sin 48;[0;/(1)]@%( aJ- ean) e—iottik,y+ik.z

(28)

being the positive frequency orthonormal mode solution,
KC,(x) is the Bessel function of imaginary argument and
ki =lk.|=

and the scalar field in this case can be written as [82]

\/ k3 + kZ. The interaction between the atom

H = am(7)(x(1)). (29)

As mentioned earlier, in order to determine the transition
rate in the coaccelerated frame, we consider that the field is
at an arbitrary temperature 7. As the thermal state is a
mixed state, therefore to calculate the response of a single
atom coupled to the massless scalar field, it is further
assumed that the field state can be represented by a pure
state [0, «) Wwith a probability factor p,(@) =
e P IN(w) with f=1/T and N(w) =Y 2, e In
this case, |y, 044 1) and |E,. 7, x ) can be used to
represent respectively, the initial and the final state of the
atom-field system.

Now, following the procedure described in the previous
section, the transition probability of the atom-field system
from the initial state |/) to final state |f) is given by

b

by = PlmpPEPAE), (30)

where the response function F#(AE) is defined as

$(AE) /*“’ /

/ —lAET -7 G+(x( ) X(T/))

(31)
and
G} (x(2). x(¢")
_ up'p(x(z))p(x(7)]
tr[p/
/ dw dk / dk e~Poe
x <‘7w,kv,k1|¢(x(7>)¢<x(71))|‘7w,kv,k1> (32)

is the positive frequency Wightman function of the scalar
field in a thermal state at an arbitrary temperature 7 in the
coaccelerated frame. Exploiting the time translational
invariance property of the positive frequency Wightman
function, the response function per unit proper time can be
written as

FHAE) = /_ :’" d(AT)e B G (x(2), x(7)).  (33)

Therefore, the transition probability per unit proper time of
the atom from the initial state |i) to the final state |f) turns
out to be

Ry = 2lmpPFP(AE). (34)

A. Transition rates in empty space with respect
to a coaccelerated observer

In the coaccelerated frame, the trajectory of the atom can
be described by

t=r, n=y=z=0. (35)

Now following the procedure in Appendix C, for an

arbitrary temperature 7', the thermal Wightman function
takes the form

I & 1

G, x(T) =—— — . (36
b (x(2), (7)) 4n* —~ (At —isp — ie)? (36)
Using the above Wightman function in Egs. (33) and
(34), the upward and downward transition rates of a single

atom submerged in the thermal bath turn out to be
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/1260 1

p 0

_ 7
R\y =le) — o (exp(wo/T) - 1) 7

yRI 1
p _ N
R =20 (1 g 1) O

The above equations suggest that in the coaccelerated
frame both the upward and the downward transition can
occur for an atom immersed in the thermal bath which is
very similar to the transitions observed by an instantaneous
inertial observer. Taking the limit 7 — 0, we can see that
the upward transition rate vanishes and this is consistent
with the fact that there should be no transition if the
observer is static with respect to the atom. Egs. (16), (17),
(37) and (38) clearly indicate that the transition rates of an
uniformly accelerated atom seen by an instantaneously
inertial observer and by a coaccelerated observer are
identical only when if we take the thermal bath temperature
in the coaccelerated frame to be T = a/2x.

B. Transition rates in a cavity from the viewpoint
of a coaccelerated observer

In this subsection, we consider a uniformly accelerated
atom interacting with a vacuum massless scalar field
confined to a cavity of length L from the perspective of
a coaccelerated observer. We assume that perfectly reflect-
ing boundaries are placed at z=0 and z=L. In a
coaccelerated frame, this scenario will be depicted as a
static atom interacting with a massless scalar field in
a thermal state at an arbitrary temperature 7 inside a cavity
of length L.

In the coaccelerated frame, the trajectory of the atom
inside the cavity becomes

t=r, n=y=0, Z=2p. (39)
Now following the procedure in Appendix D, for an
arbitrary temperature 7, the thermal Wightman function
inside the cavity takes the form’

Gj (x(7). x(7))
1 S & 1
- _2; Zx[cl (At —isp—ie)? - B3
B, |
G (At—isp—ie)? — B%] ) (40)

Using above Wightman function in Egs. (33) and (34),
the downward and upward transition rates of the single
atom system inside the cavity read

The expressions for By, C;, B,, and C, are given in
Appendix D.

g nt) s

: (eXp (wo/T) — 1)] (41)
et o)
(' o)) (42)

Next, taking the limit L — oo, the upward and the down-
ward transition rate in the presence of a single reflecting
boundary turn out respectively to be

Riypie) =% H;)_; ~ (oo, ZO)} (Wﬂ

(43)
Ry =2 {2 aomaco)} (14 o )|
(44)

with f(wg, a.%), Hwg, a, 29, %), and g(wy, a, zy) being the
same as in Egs. (B3)-(BY).

The above analysis clearly displays the similarity
between the transitions observed by an instantaneously
inertial observer and a coaccelerated observer in a thermal
bath for both the upward and the downward transition rates
when the atom is confined in a cavity. Here too we notice
that taking the thermal bath temperature in the coaccel-
erated frame T = a/2x, Egs. (41), (42), (22) and (23)
indicate that the transition rates of a uniformly accelerated
atom seen by a coaccelerated observer in a thermal bath and
by an instantaneously inertial observer are identical inside
the cavity.

V. COUPLING OF THE TWO-ATOM SYSTEM
WITH A MASSLESS SCALAR FIELD

We consider two identical atoms A and B and assume
that they are traveling along synchronous trajectories in a
vacuum with massless scalar field fluctuations, the inter-
atomic distance is assumed to be constant and the proper
times of the two atoms can be described by the same time 7
[81]. In the laboratory frame, trajectories of the two atoms
can be represented through x,(z) and xz(z). Here we
consider each atom as a two level system having energy
levels —w(/2 and +wg/2. Therefore, the entire two-atom
system can be described by the three energy levels with
energies —wy, 0 and @, [92]. We designate them by E, with
n=1, 2, 3. The low and high energy levels associated
with eigenstates are |E|) = |ga,gp) and |E3) = |e4, ep)
where |g) and |e) represent the ground state and the excited
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state of a single atom respectively. The energy level E, is
degenerate corresponding to the eigenstates |g,, ez) and
|eA » 9B > .

In the instantaneously inertial frame, the Hamiltonian
describing the atom-field interaction is given by

H = Amp () (x4 (7)) + mp(2)p(xp(2))],  (45)

where 1 is the atom-field coupling constant assumed to be
very small. The forms of ¢(x(z)) and m(z) are the same as
given in Eqgs. (2) and (3). As a result of the atom-field
interaction, transitions also occur for the two-atom system.
According to the time-dependent perturbation theory in the
first-order approximation, the transition amplitude for the
atom-field system to transit from the initial state |y, 0y,) to
the final state [y’, ¢;) is given by

Ay,om—»\;/,(ﬁf) = i/1<)(/a¢f| /_Jm mA(T)‘:b(xA(T))I)(’ 0M> +A
= B term. (46)

Squaring the above transition amplitude and summing over
all possible field states, the transition probability from the
initial state |y) to the final state |y’) can be written as
A B A)x
Plote) = 2ms) PFas(AE) + m)m' ) Fyg(AE)] + A
<= B terms, (47)

wherem(A):()(’\m(O)@)ﬂBl;(),andmj{l,?:&’IﬂA®m(0)|){>-

¥
The response function F:z(AE) is defined as

+o00 +00 . ,
Fee(aB) = [ " [ age G () xe ()
(48)

with &, & can be labeled by A or B, and

G (xg(7), x¢ (7)) = (Ou|p(xe (7)) p(xg (7)) [0n)  (49)

is the Wightman function of the massless scalar field. From
Eq. (47) it is seen that for the two-atom system, the transition
probability carries two terms one of them of which is
associated with only one of the atoms and other one
associated with both the atoms.

Exploiting the time translational invariance property of
the Wightman function, the response function per unit
proper time can be written as

+o0

Feo(AE) = / (A7) BENGH (xy(z). x4 (7)) (50)

—00
where At = 7 — 7. Therefore, the transition probability per
unit proper time of the two-atom system from the initial
state |y) to the final state |y’) turns out to be

Rip—ip) = 2llmyy) PFas(AE) +my ) Fup(AE)] + A

= B terms. (51)

The existence of the cross terms in the above equation
indicates that the rate of transition between the two
neighboring energy levels is not only related to the sum
of the rates of transition of the two atoms, but also to their
cross-correlation.

In the following section, this formalism is used to
examine the rate of transitions of a two-atom system under
various conditions of uniform acceleration and contact with
the vacuum massless scalar field. The correlation between
two atoms can be considered as a factor which can affect
the transition rate of a two-atom system. In practice,
entanglement is not always maintained during experimental
conditions, and non-maximally entangled states are fre-
quently used as resources or probes. This motivates us to
consider nonmaximally entangled states, as well, in our
analysis. The general pure quantum state of the two-atom
system is given by [71]

ly) = sin@|g4. ep) +cosbley, gp) (52)

where the entanglement parameter 0 lies in the range
0 < 0 < z. The above quantum state becomes a separable
state for the values of § =0,7/2,7 and represents the
maximally entangled state for the value 8 = z/4 (super-
radiant state), and 6 = 3z/4 (subradiant state). Considering
the above generic entangled quantum state as the initial
state in the following section, we explore how the non-
inertial motion of the atoms, nature of the observer, type of
the background field and the presence of the boundaries
affect the rate of transition of the two-atom system.

VI. TRANSITION RATES OF THE TWO-ATOM
SYSTEM FROM THE VIEWPOINT OF A LOCAL
INERTIAL OBSERVER

In this part, we analyse the transitions of a uniformly
accelerated two-atom system prepared in any generic
entangled state |y) that interacts with the vacuum massless
scalar field from the perspective of a locally inertial
observer. To see the boundary effects on the transitions
of the uniformly accelerated two-atom system in this
scenario, several cases have been studied in the following
subsections.

A. Transition rates for entangled atoms in empty
space with respect to a local inertial observer

Here we evaluate the transition rates of a two-atom
system that is uniformly accelerating while interacting with
a vacuum massless scalar field in the absence of any
perfectly reflecting boundary. In the laboratory frame,
trajectories of both the atoms read

085018-9



MUKHERIJEE, GANGOPADHYAY, and MAJUMDAR

PHYS. REV. D 108, 085018 (2023)

ta(7) =tg(7) :ésinh(ar),

xa(t)=xp(7)= écosh(ar),

yp=yat+d, zx4=2z3=0, (53)

where d, @, and 7 denote the constant interatomic distance, proper acceleration, and the proper time of the two-atom system.
Using the scalar field operator Eq. (2) in Eq. (49), the Wightman function becomes [81]

1 1
Gt (xe(r). xg (7)) =-13 . . (54)
s An? (1e(7) = 12(7') — i) = (x¢(7) = x (¢)? = (ye(7) =y (¢)? = (2e(7) — 22(7'))?
Substituting Eq. (53) in Eq. (54), the Wightman function turns out to be
G (xe(0)x6(2) = =y 55
ST 1627 sinh? [L (alT — ie))]
with Az =7 —7 for £ =&, and
G (xe(e) 20 (¥)) = - ! (56)
x:(7), xe (7)) = — -
¢ ¢ 1672 sinh?[} (aAt — ie)] — { d*a?
for £ £ &
Now following the procedure in Appendix E, we finally obtain the upward and downward transition rates to be
wy  sin20sin(*2sinh~! (L ad)) 1
Riy)~leses) = /12{ (2_ + : exp (2w /a) —1) |’ 57)
d 2rd\[1 + d*? P {=7@o
and the downward transition rate given by
wy  sin20sin(*2sinh~! (L ad)) 1
Riyy— =2 = - 1 . 58
¥)~19a95) { (2,, + T oxp 2rag/a) = 1 58)

Interestingly, the ratio of the upward and the downward
transition rates for the two-atom case is identical with that
of the single atom case [Eq. (18)].

B. Transition rates for entangled atoms in a cavity
with respect to a local inertial observer

Here we consider that a uniformly accelerated two-atom
system interacts with a vacuum massless scalar field
confined in a cavity having length L (see Fig. 0).

;X\

FIG. 6. Static atom confined in a cavity.

2rd\/1 4} d*?

Assuming that the two atoms are moving parallel to the
boundary (see Fig. 7) with their proper acceleration similar
to the previous case, we investigate the effect of the cavity
on the transition rates.

Assuming the scalar field obeys the Dirichlet boundary
condition ¢|._y = ¢|._; =0, and using the method of
images, the Wightman function of the massless scalar field
confined to the cavity of length L takes the form

......... z=1L
2 o BQ Zp =20 +d

| A
! o
L i
1 Y

X | Ao ............. Za = 29
\J

7 KRRy z=0

FIG. 7. Uniformly accelerated two-atom confined in a cavity.
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Txe(r), xe (7 - Y :
G (x(e) x (7)) 4712"2_:00[(1‘5(1)—tg/(r’)—ie)z—(xg(r)—Xg/(fl))z_(%(T)_)’6’(7/))2_(25(7)_25’(7/)_”14)2
1
TG0~ 12 (@)~ e — () e @)= 0 e @ — ) T e @) —nLp| )

To represent the atomic trajectories in terms of the atomic proper time z, we choose the Cartesian coordinates in the
laboratory frame so that boundaries are fixed at z =0 and z = L.

Considering that the interatomic distance d remains perpendicular while two atoms are moving parallel to the boundary
with their proper acceleration, the atomic trajectories are given by

| 1
lA/B(T) = asmh(m)’ XA/B(T) = aCOSh(aT)» Ya/B = Yos 4 = 20» g =20 +d. (60)

Using the above trajectories in Eq. (59), the Wightman function becomes

@ & 1 1
G* cxe (7)) = - - 61
(xe(z). % (7)) 167* n:Z_OO [sinh2 L (aAr —ie)] —1d3a®  sinh*[ (aAtT —ie)] — }‘d%az} (61)

for 5 - 5/7 with d] =nL, d2 = 225 —nL and

S 1 1
G* ,xo(7)) = — - 62
(xe(0). e (7)) 167> n:Z_m [sinh2 [ (a7 —ie)] =+ d3a®  sinh*[} (aAtT — ie)] — idﬁaz} (62)

for £#¢&, with d3 =—d—nL (for E=A,& =B); dy=d—nL (for =B, =A) and dy =2z, + d—nL. Now
following the procedure in Appendix F, we finally obtain the upward and downward transition rates to be*

L L . L . d L
RlW)-"@;,q;) = /12{ (Z)—](; + f((l)o, a, E) - COS2 0[] <CUO, a, Zo,§> - Sll'l2 Om (wo, a, 2, d, 5) + sin20n (a)o, a,z s 5)

d L 1
—si 29 s Uy S~ A 63
wn2om (s 5) ) (o) | ®
L L . L . d L
RIV/>_"9AQB> = AZ{ <%+f<a)0,a, 5) —COS2 9[) <a)0,a, Z0,5> - Sln2 Om (600,&, Zo,d,z) + sin 20n <a)o,a,§,§)
d L 1
—si 29 s Uy Y~ A 1 . 64
n2om (03 5)) (1 o)) ©

In order to obtain the single mirror and free space scenarios, we now take the limiting cases of these expressions. Taking the
limit L — oo, we find that Eqs. (63) and (64) reduce to the expression for the upward and the downward transition rate in the
presence of a single reflecting boundary

20

Rip)oleses) = ,12{ <2ﬂ — cos? Og(wy, a, 7o) — sin® Og(wy. a, (29 + d))

(o) oo )]

® .
Riy)~lgags) = ’12{ (2_72 — cos” 0g(wy, a, 29) — sin” Og(wy, a, (29 + d))

(o) s ) )}

4, . . . .
The expressions for m(wy. a,z¢,d.5), n(wy. @, z9.4.%) are given in Appendix F.

085018-11



MUKHERIJEE, GANGOPADHYAY, and MAJUMDAR

PHYS. REV. D 108, 085018 (2023)

Ripy—leacs)
—— Without Boundary
04
— — Single Boundary
0.3t/ \---- Double Boundary
0.2
0.1, e _
- ~ —<_
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Y 2 T 4

(a) Upward transition rate

Pawy
2

FIG. 8. Transition rate (per unit

It may be noted that the above relations resemble those of
the single boundary results given in [81] but they are not
identical as in our case the interatomic distance is
perpendicular to the reflecting boundary whereas in [81]
the interatomic distance is parallel to the reflecting boun-
dary. Similarly, taking the limits L — oo and z5 — oo,
Eqgs. (63) and (64) lead to the expressions for the upward
and the downward transition rate in free space given by
Egs. (57) and (58).

We now study the variation of the transition rate of an
entangled two atom system from an initial entangled state
ly) to a product state with higher energy value |e ep)
confined to a cavity with the atomic acceleration (@), length
of the cavity (L), distance of any one atom from one
boundary (z;), entanglement parameter (¢), and the inter-
atomic distance (d). The findings are plotted below, where
all physical quantities are expressed in dimensionless units.
Since cavity effects are significant when the length scales
are comparable [93], hence we choose a similar order of
magnitude for wyL, gz, and wyd. In Figure 8a, we show
the behavior of the transition rate with respect to the
entanglement parameter for the cases where the atoms
are in free space, in the vicinity of a single boundary and
inside a cavity.

From the above figure, it can be seen that the transition
rate |y) — |eqep) (per unit 22 varies sinusoidally with
the entanglement parameter 6. In free space, the transition
rate increases (from the case corresponding to the zero
entanglement product state) with increase in the entangle-
ment parameter and it becomes maximum when the initial
state is maximally entangled (0 = 7/4 superradiant state).
Further increment of the entanglement parameter decreases
the transition rate and it becomes minimum at § = 37z/4
(sub-radiant state). In the vicinity of a single boundary,
behavior of the transition rate is quite similar to the free
space scenario, with a slight shifting of the extremum
points). Surprisingly, inside the cavity, the behavior of the
transition rate is opposite to the free space scenario. The
transition rate decreases with the increase in entanglement

Riy)—lgagn)

2.0} —— Without Boundary

— — Single Boundary

5t/ N\ -ee-- Double Boundary
1.0f

0.50

~
~
S~

(b) Downward transition rate

) versus entanglement parameter for a fixed value of a/wy = 4, wod = 0.5, wyL = 1, wgzg = 0.2.

parameter and it vanishes at @ = n/4. Thus, the 0 = z/4
state exhibits a subradiant behavior for the cavity setup.
Further increment of entanglement parameter increases the
transition rate and it becomes maximum at § = 37/4. Note
also, that around € = 37 /4, the values of the transition rate
corresponding to cases of empty space, single boundary,
and two boundaries, are nearly the same.

It may be noted however, that the transition rate of
the superradiant state (6 = z/4) of the two atoms inside the
cavity vanishes only for certain specific values of the
various parameters we have considered in our study.
Increasing the width of the cavity keeping the other
parameters fixed, it can be found that the rate of transition
does not vanish at 6 = z/4. Hence, the superradiance
property of the state with @ = z/4 is lost in such cases.
One obtains a superradiant state for a smaller value of the
cavity width since in such a scenario, the number of
quantum field modes available to the atoms reduces, which
makes the atoms unable to perform the transition to any
higher/lower energetic separable state.

Figure 8(b) for the downward transition rates shows a
similar behavior with respect to the entanglement param-
eter. The only difference is that the magnitude of the
downward transition rate is greater than the upward
transition rate. From both the figures, it is observed that
when the initial entangled state is the superradiant max-
imally entangled state (6 = z/4), then upward or down-
ward transition rate depends on the width of the cavity.
Therefore, this observation indicates that using a small
width cavity, for this value of the entanglement parameter,
the entanglement of the initial state is preserved.

Figure 9 shows the variation of the transition rate from

lw) — |eser) (per unit 122%) with respect to the length of the
cavity for different values of distance of any one atom from
one boundary. From the plots, it can be seen that for a fixed
value of the initial atomic distance z, of any one atom from
the nearest boundary, the transition rate get enhanced when
the cavity length increases and attains a maximum value for
large values of L (wyL > wqz;). This behavior is similar to
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FIG.9. Transition rate from |y) — |e4eg) (per unit %
separation between two boundaries, a/wg, = 4.

) versus

that of the single atom case, as mentioned earlier. As more
number of field modes take part in the interaction between
the scalar field and the atoms due to the increased cavity
length, the transition rate increases. When wyL > @z, the
cavity scenario reduces to a single boundary set up and
hence the upward transition rate takes a constant value. It is
also observed that the saturation value of the transition rate
is more for a larger value of wgz,.

Figure 10 shows the variation of the transition rate from

lw) = |eser) (per unit ’122%) with respect to the distance of
any one atom from one boundary wgz, for different
interatomic distances @wyd. From the plots, it is observed
that for a fixed value of the interatomic distance and cavity
length, the transition rate is much smaller when the atoms
are close to the any one of the boundaries. Thereafter, with
increase of the atomic distance from one boundary, the
transition rate rises sharply and reaches maximum when the
distance of both atoms to their nearest boundaries are equal.
The importance of boundary effects are thereby clearly
exhibited. From the plot, it is also seen that increasing the
interatomic distance increases the upward transition rate for
a fixed cavity length.

Figure 11 shows the variation of the transition rate from

.2 . . .
lw) — |esep) (per unit ’12';"’) with respect to the interatomic

Ripy=leaes)
0.30f----- wod=0.8 I,'“\
\
! \
—_ - _ ] \
0.25F wed=0.6 K N
PR
0.20f ol \\
1
,’ / \
0.15¢ ] \
/ / \
1
010§ __-=~_/ / N\
ke T L Yo7 L WoZo
0.5 1.0 1.5 2.0
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FIG. 10. Transition rate from |y) — |e ep) (per unit %

. y/2
versus distance of any one atom from one boundary,
ajwyg =4, wyL = 3.
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/ / \\\
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FIG. 1.1. Trans.mop rate from [y) — |eqep) (per unit 52
versus interatomic distance, a/wy = 4, wyL = 1.5.

distance for different values of distance of any one atom
from one boundary. From the plots, we see that for a fixed
atomic distance from one boundary and cavity length,
transition rate initially increases when the interatomic
distance increases. After a certain value of interatomic
distance, increasing the distance between the two atoms
further make them move closer to the boundary and hence
due to boundary effects, the transition rate falls down.

Figure 12 shows the variation of the transition rate from
lw) — |eser) (per unit ’122%) with respect to the atomic
acceleration for different values of cavity length. Similar to
the single atom case, it is seen that when the atomic
acceleration is increased, the transition rate also increases
and the rate of transition depends on the cavity length. This
is expected since acceleration radiation should increase
with increase in acceleration.

In Fig. 13, we have plotted the upward and the
downward transition rates with respect to the atomic
acceleration for two cases, namely, two atoms are in free
space [Fig. 13(a)], two atoms are confined to a cavity
[Figure 13(b)]. A comparison of the two plots reveals that
the downward transition rate can get diminished for a
suitable choice of parameters when the atoms are inside
the cavity. The upward transitions in both cases are driven
by the acceleration, as is clear from the corresponding
expressions, as well.

Rig)—+leaen)
1'4 fmm——- woLi=1.2 ,/;
1.2 ¢ i
woL=0.9 e

1.0 ,//

0.8 r ,//,

06 F /,//

04 L ,//’

0.2f e
——— ‘ ‘ - awy
2 4 6 8 10

.. .2
FIG. 12. Tran.smon rate from |y) — |esep) (per unit 52
versus acceleration, wyd = 0.5, wgzy = 0.3.
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Transition rate (per unit

We now present a quantitative estimation of the upward
transition rate for the two-atom system, composed of two
Rubidium atoms Rb¥” placed inside a cavity. Following [74],
we choose the length of the cavity in the order of 100 nm,
distance between any one atom and the nearest boundary in
the order of 20 nm, interatomic distance in the order of 30 nm,
energy gap between the most generic entangled state and
excited state of the two-atom system is of the order of 0.5 eV,
and the acceleration in the order of 10'7 m/s?. Using Eq. (63)
with the coupling constant 4 = 0.1, taking the entanglement
parameter @ = 3z/4 for the maximally entangled state, and
the above values, the upward transition rate of the uniformly
accelerated two-atom system inside a cavity becomes
3.75x 10712 eV = 5.68 x 10° s7!

Before concluding this section, it may be noted that in
Ref. [71], the same system was considered. However,
the focus there was different from the present study. There,
the resonance energy shift and the relaxation rate of energy
of the entangled two-atom system were obtained. The present
analysis investigates, on the other hand, the transition rate
with the aim of studying the equivalence of two different
frames.

VII. TRANSITION RATES OF THE TWO-ATOM
SYSTEM FROM THE VIEWPOINT OF A
COACCELERATED OBSERVER

In this section, the transitions of a uniformly accelerated
two-atom system prepared in any generic entangled state
lw) that interacts with a massless scalar field is analyzed
from the perspective of a coaccelerated observer. To see the
boundary effects on the transitions of the uniformly
accelerated two-atom system in this scenario, we consider
that the coordinate of the coaccelerated frame will be the
Rindler coordinate (z, 7, y, z) with the relation with those of
the laboratory coordinates (¢, x, y, z) being given by

1 1
(z,n) = ae"” sinh(ar), x(r,n) = ;e"‘” cosh(az).  (67)

R
R downward o
'
4
0.8 ----- upward 7
///
//
0.6 [ e .
/// ’/”
7 s
0.4 = ,// ”’,’
/// ’/’
0.21 //// ’,f”
0.0 £ T T \ a/wo

1 2 3 4 5 6 7 8

(b) Inside the cavity for a fixed value of woL =4, wpzg =1

—0) versus acceleration for a fixed value of 0 = 37/4, wyd = 0.5.

In the coaccelerated frame, the field operator ¢(x(z)) is
replaced by its Rindler counterpart ¢(x(7)) and takes the

form
/ dw / dk, / dk,
[bwk k. Vwk k. (r.x) + bw.k_v.kzvc:,k_‘.,k: (z,x)]
(68)
with
Sinh(”w/a) kl Qi —iwt+ik,y+i
V{u,k) #kz (T, X) — W}Cl% <; e n e + ky)Jr k;z
(69)

being the positive frequency orthonormal mode solution,
KC,(x) is the Bessel function of imaginary argument and

ky =k, |=
and the scalar field is given by [82]

\/ k? + k2. The interaction between the atoms

H = 2[my (1) (x4 (7)) + mp(v)p(xp(2))].  (70)
To determine the transition rate of the two-atom system in
the coaccelerated frame, we consider a thermal field at an
arbitrary temperature 7. As the thermal state is a mixed state,
in order to calculate the response of the two atoms coupled to
the massless scalar field, additionally it is assumed that the
field state can be represented by a pure state |okawk:> with a
probability factor p,(w) = e’ /N(w) with f = 1/T and
N(w) =Y 2 e  In this case, |w.0,y ) and
|E,..7ar 1 k.) can be used to represent the initial and the
final state of the atom-field system.

Following the procedure described in the previous
sections, the probability that the atom-field system
will transit from initial state |y) to final state |E,) is then
given by
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’P‘Wt )= |Eq)

The response function F AE) is defined as

& (

with &, & labeled by A or B, and

trlp'¢(xe (7)) (xz (7))
trM

Gj (xe(r). x2 (7)) =

is the positive frequency Wightman function of the scalar
field in a thermal state at an arbitrary temperature 7" in the

B) (A)*

2[|m Wi|2FﬁA(AE) + (”w my Fiy(AE)] + A=B terms. (71)
FL(AE) /+°° /“” P eBEEE) G (x, (1), xp (1) (72)
/ do / dk / deee (0, 4 D) lows i) (T3)
G} (v (€)=~ 3 : (78)

pAEITE 4n*C = (Ar—isp—ie)>—B?

coaccelerated frame. Exploiting the time translational
invariance property of the Wightman function, the response
function per unit proper time can be written as

Fl.(AE) = /_ ::od(AT)e_iAEATG;(xé(T),xé/(r’)). (74)

Therefore, the transition probability per unit proper time of
the two-atom system from the initial state |y) to the final
state |y’) turns out to be

Rﬁ

)~ E)l+4

(75)

A
X,>:/12[|m}((,;|2fﬁA(AE)+m m, .7-" p(A

=B terms.

A. Transition rates for entangled atoms in empty space
with respect to a coaccelerated observer

In the frame of coaccelerated observer, the trajectories of
both the atoms are given by

tayp=7. Nap=0, Yyap=0, z4=0 zp=d. (76)
Now following the procedure in Appendix G, for an
arbitrary temperature 7, the thermal Wightman function

takes the form® [82]

Gy (xg(7), x¢ (7)) = L2 i m (77)

for £ =&, and

>The expressions for B, C are given in Appendix G.

for £ # &
Using above Wightman functions into Eqgs. (74) and (75),

and performing the integrations using contour integration,
the upward and downward transition rates of the two-atom
system submerged in the thermal bath turn out to be

p _ ) (%
Riyyoleses) =4 { (zﬂ +

sin 26 sin(*2 sinh~' (4 ad))>

2rd\/1 4} d*?

1
exp(wo/T) — 1 79
“(ewmom=1)) (19)
R’ _ lz{ (0)0 i sin 26 Sin(% sinh~!( ad))>
[w)=9498) 27[ zﬂd\/m
1
M ele/ T =1) [ 80
: < +eXP(a’0/T) - 1)} (80)

From the above equations it follows that in the coaccelerated
frame both the upward and the downward transitions can
occur for the two-atom system immersed in the thermal bath
which is very similar to the transitions observed by an
instantaneously inertial observer. Taking the limiting value
of the temperature of the coaccelerated frame 7" — 0, here
also we can see that the upward transition rate vanishes,
which is consistent with that in the Minkowski vacuum
[Eq. (57)]. Egs. (57), (58), (79) and (80) indicate that the
transition rates of the uniformly accelerated two-atom
system in the generic entangled state seen by an instanta-
neously inertial observer and by a coaccelerated observer
are identical only if the thermal bath temperature in the
coaccelerated frame is equal to the FDU temperature
T =a/2x.
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B. Transition rates for entangled atoms in a cavity
with respect to a coaccelerated observer

Here we consider that a uniformly accelerated
two-atom system interacts with a massless scalar
field confined to a cavity of length L from the perspective
of a coaccelerated observer. We assume that two p
erfectly reflecting boundaries are placed at z =0 and
z =L (see Fig. 14). As in the case of the single atom,
the scenario here too depicts a static two-atom
system interacting with a massless scalar field in a
thermal state at an arbitrary temperature 7 inside a cavity
of length L.

Considering the inter-atomic distance d to remain
perpendicular while the two atoms are moving parallel
to the boundaries with their proper acceleration, the atomic
trajectories are given by

...... z=1L
z n BQ o 25 =2 +d
‘ A
L .
I Y
x I AO ...... Za =20
v
L 72=0

FIG. 14. Static two-atom confined in a cavity.

Na/B = O’

Zpa = 20

tA/B =17,

Ya/B = 0, g =20 +d.

(81)

Now following the procedure in Appendix H, for an
arbitrary temperature 7', the thermal Wightman function
takes the form®

I << <= [B 1 B 1
+ () — — =1 -3 2
G (xe(). x (7)) 4n? ;oos:z_:oo Ci (Ar—isp—ie)? =B Cs (Ar—isp—ie)? — B2 (82)
for £ = & and
I < <= [B 1 B 1 1
Gjj (x:(2). 3¢ () = = - -2 83
p () xe (7)) = = 0 :Z :Z C, (Ar—isp—ie)’ — B, Cs(Ar—isp—ie) — B2 (83)
for & # &,

Inserting the above Wightman functions into Egs. (74) and (75), and performing the integrations using the contour
integration technique, the upward and downward transition rates of the two-atom system submerged in the thermal bath read

1) L L . L . d L
Rﬁ//)—"eAeB) = /12{ (2—](; + f((l)o, a, E) - COS2 9[] <CUO, a, 2, E) - Sll'l2 Om (a)o, a, 2, d, 5) + sin26n (a)o, a, 5 s 5)

sin 20m D | (R
©0 %2052 ) ) \exp(wy/T) — 1

)

L L L d L
Rﬁ )= 19498) :/12{<;)7(;+f(a)0,a,2> —C05295<0)0,a,20,2> —Sin29m<wO,a,Zo,d,2) +Sin29n <a)o,a,2,2)
d L 1
—sin 26 LA, 20, == 1+—F— 85
sn2om (a5 5) ) (14 =) | )

where the functions f(wg, a. %), 9w, @, 29, 5), and g(wy, @, 7o) are defined in Appendix B. The functions m(wy, @, 2o, d. %)

and n(wy, a are defined in Appendix F.

7%’%)

By taking the limiting cases of the expressions Egs. (84) and (85), one can obtain the results of single mirror and free
space scenarios. Taking the limit L — oo, Egs. (84) and (85) reduce to the expression for the upward and the downward
transition rates in the presence of a single reflecting boundary, respectively given by

Rﬂ

[0 .
[w)—=leaep) - /12{ <2_7(z. - COSZ 99((00, a, ZO) - S1H2 gg(w()’ a, (ZO + d))

) d d 1
+sin26( g @0, &5 -g wo,a,Zo‘FE

exp(wy/T) — 1

)}

(86)

%The expressions for B;, C; are given in Appendix D and the expressions for Bs, Cs, By, C4, Bs, and Cs are given in Appendix H.
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w .
R\ﬁw>—>lgAgB> - ’12{ (20 — cos?0g(wy, a, zy) — sin*0g(wy, a, (2o + d))

T

rnn(a(omad) -a(mazr ) ()l o)

On the other hand, taking the limits L — oo and z5 — o
simultaneously, Eqs. (84) and (85) lead to the expression
for the upward and the downward transition rates in free
space given by Eqgs. (79) and (80).

From the above analysis of the two-atom system con-
fined to a cavity, we find a similarity between an instanta-
neously inertial observer and a coaccelerated observer in a
thermal bath for both the upward and the downward
transition rates. Here too it may be noted that upon taking
the thermal bath temperature in the coaccelerated frame
T = a/2z, from Eqgs. (84), (85), (63) and (64) it follows
that the transition rates of the uniformly accelerated two-
atom system in the generic entangled state seen by a
coaccelerated observer and by an instantaneously inertial
observer are identical inside the cavity.

VIII. CONCLUSIONS

In this study, we have investigated the transition rates of
uniformly accelerated single and entangled two-atom
systems. The two-atom system is assumed to be prepared
in the most generic pure entangled state. Both systems
interact with the massless scalar field from the perspective
of an instantaneously inertial observer and a coaccelerated
observer, respectively. We have studied the interaction
between the accelerated atomic systems and the massless
scalar field in two scenarios, namely, free space and inside a
cavity. We have presented two examples of the computation
of the actual values of the transition rates using realistic
system and cavity parameters.

Considering that the scalar field with which the atoms
interact in the inertial frame and the coaccelerated frame,
are in the vacuum state and a thermal state, respectively, it is
seen that in all the above cases, both the upward and the
downward transitions take place for the single as well as the
entangled two-atom system. The upward transition is
nontrivial, and from the view point of an inertial observer,
takes place only due to the acceleration of the atomic
systems. Our study shows we that the transition rate
depends on the cavity parameters, such as the length of
the cavity (L), distance of an atom from one boundary (z),
as well as other system parameters, such as the atomic
acceleration (a), the interatomic distance (d), and the
magnitude of initial atomic entanglement (6).

From the analysis, it is observed that for a single atom,
the upward transition rate increases with the increment of
atomic acceleration and cavity length. The transition rate
exhibits an oscillatory behavior with respect to the distance

between the atom and the reflecting boundary. In case of
the two-atom system, the transition rates shows some
interesting features. In this scenario, the entanglement
parameter and the interatomic distance play important
roles. The transition rate shows oscillatory behavior in
the full range of the entanglement parameter. However,
considering a small magnitude of initial entanglement, we
find that in the free space, increasing the entanglement
parameter enhances the upward transition and downward
transition rates, whereas, in the presence of cavity it shows
a completely opposite behavior, and both transition rates
get suppressed due to the increase of the entanglement
parameter. In the case when the entanglement parameter
has the value @ = 7 /4, we observe that both the transition
rates vanish, indicating that no transition there occurs from
the maximally entangled initial state to any higher or lower
energetic product state. Hence, the entanglement of the
initial state can be preserved. From a quantum information
theoretic viewpoint, this result is of significance, since
preservation of entanglement enables its use as resource for
performing various tasks.

Our study further reveals that the upward transition rate
diminishes beyond a certain level of increase of the
interatomic distance. From a physical perspective, one
may view this result to originate from the fact that the
cooperative effects of the two atoms mediated by the field
become more and more subdued as the interatomic
distance increases beyond a point. On the other hand,
the effect due to the distance of an atom from the boundary
has a more subtle manifestation. We find that the upward
transition rate increases when we increase the distance
between any one of the atoms and one boundary, and takes
the maximum value when the distance between both atoms
to their closest boundaries are equal. Apart from this, the
behavior of the transition rate with respect to atomic
acceleration and the cavity length is quite similar to the
single atom case.

From our extensive study of the transition rates of the
single and two-atom systems in an inertial and a coaccel-
erated frame, we observe that if the temperature of the
thermal bath in the coaccelerated frame is taken to be the
same as the Unruh temperature, then the transition rates for
the upward and the downward transitions in the two frames
coincide exactly with each other even inside the cavity,
making it completely consistent with the Fulling-Davies-
Unruh effect. Therefore, from the present study, the
equivalence between the effect of uniform acceleration
and the effect of thermal bath is clearly manifested for the
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single as well as the entangled two-atom cases in free space
and in the presence of reflecting boundaries, as well. The
finding is intriguing for the cavity case since the physics
changes quite a bit inside a cavity, and moreover such a set-
up is experimentally implementable [56,57,83,84].
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APPENDIX A: CALCULATIONAL DETAILS
OF SOME USEFUL INTEGRALS USED
IN THE TEXT

In this Appendix, for the sake of completeness, we
provide a detailed calculation of the following integrals

T o’ /+oo d(A ) —iAEAT 1 (Al)
=—— T)e
! 167% J_o sinh?[} (aAt —ie)]
(xz +00 . 1
T, =— d(A —iAEAT .
7162 /_oo (Ac)e sinh?[} (aAz —ie)| — d*a?
(A2)

To solve the integral given in Eq. (Al), we first consider
some dimensionless parameters such as aA7r =g,
AE/a = £, and use the series representation [94]

1 = 4
h? |~ (o —ie)| = e A3
e [2 (o 18)} k;oo (6 — ie = 2ink)? (A3)
Equation (A1) now becomes
+oo —l.fﬁ
T = 42 kzoo/ (o — ie = 2ink)*
-4 10+sz (A4)
472 =
where 7, and Z; are given by the integrals
Ty [ Cdo— A5
o= | )
+oo ‘ 1 1
Iy = doe™i¢ . (A6
¢ /_oo ¢ {(0 2k (o7 2mk)2} (A6)

Considering the analytic continuation of the above
integrands in the complex plane of o, for Eq. (AS5) we
get a second order pole at ¢ = ie and for Eq. (A6) we
find a set of second order poles at ¢ = —2izk with

k==+1,%+2,..., lying on the imaginary axis of o. For
£ <0 or AE <0, we close the contour in the upper half
complex plane in Fig. 15. Using Jordon’s lemma, we
observe that the integration along the half circle is zero.
Therefore, applying the Cauchy residue theorem in the
integrals (AS5) and (A6) and using it in Eq. (A4), we get

__Ga ok

_ af] 1
=2 [l * J

_|AE| ! 1
T o +62n’|AE\/(x_1 :

Similarly, for AE > 0, closing the contour in the lower half
complex plane and following the previous steps, we get

Z,(AE <0)

(A7)

AE 1

(A8)

Therefore, combining the above results (A7) and (AS),
we get

AE| I
I, =0(-AE 1
1= 0AE) S M oo aE ) =

AE 1
FOME) ST <exp(27zAE/a) - 1)

where O(AE) is defined in Eq. (15).

To evaluate the integral in Eq. (A2), first we consider the
analytic continuation of the integrand in the complex plane
o. Equation (A2) then becomes

(A9)

— _ L —io 1

1672 Jc sinh?[} (o — ie)]

—aa (Al0)

where C is the contour in Fig. 16. From the integrand we find
that there exists two types of first order poles 6+ = ie +
2inz + 2sinh™!(da) and ¢~ = ie + 2inz — 2 sinh~! (da)
where n = 0, =1, %2, ..., lying in the upper and lower half

Im(o)
Im(a)

(2) (®)

FIG. 15. The contour of the integral Eq. (A1) for (a) AE <0
and (b) AE > 0.
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Im(o)
R Im(o) é

0000000 0000
0000000 000 O

(a) (b)

FIG. 16. The contour of the integral (A2) for (a) AE < 0 and
(b) AE > 0.

of the complex plane. Therefore, closing the contour in the
upper half complex plane for AE < 0, we find that both the
poles will contribute for all positive integer values of n
including n = 0.

Now applying the residue theorem and taking the limit
e — 0, the residues become

_exp —iAE (2m7z + 2sinh~!(da))

and
Ry(n) — _exp—z—(2mﬂ 2 sinh~ (da)). (A12)

adV'1 + d*o?

Applying Jordon’s lemma, we already observe that
the integration along the half circle is zero, therefore
we get

I,(AE<0) = (n) + Ry(n)]

622271’1
sin (222l sinh~ Y(da)
_nlStamtaa) )

42d V1§ P .

(A13)

Similarly, for AE > 0, closing the contour in the lower half
complex plane we find that both the poles will contribute
for all negative integer values of n.

Now following the steps of the case AE < 0, we get

sin(ZAEsmh (da)) 1
e (e

Therefore, combining the above results (A13) and (A14),
we get

12—9(—AE)Sm( 22 Ginh- (da)) <1+ 1 >

1). (A14)

47Td /1 +d2a2 e27[|AE‘/(1_1
sin (ZAE sinh™ (da)) 1
+0(AE . (Al5
( ) drd /1+d2(12 <e2nAE/a_1> ( )

APPENDIX B: TRANSITION RATES OF A
SINGLE ATOM IN A CAVITY WITH RESPECT
TO A LOCAL INERTIAL OBSERVER

In this Appendix, we present some of the intermediate
steps leading to Egs. (22) and (23). The form of the
Wightman function for the trajectory of an atom inside a
cavity is given in Eq. (21). Substituting this form in Eq. (8),
the transition rate from the initial state i) to the final state
|f) is given by

PlmpPa? & +oo , 1
R oy == ! d(A —iAEAT
[)=15) 1672 n;o [/_oo (Ac)e sinh? [% (aAt — ie)] — ; dia?
+o0 . 1
— [T a(ag)emiaEa . B1
/_oo (Ar)e sinh?[} (aAz — ie)] — A—lld%az] (B1)

Simplifying the above equation through a contour integral as shown in Appendix A, the rate of transition from the initial

state |i) to the final state |f) can be written as

AE
Ry = Almpil? [9(—AE){—| 2ﬂ| + f(IAE
+ H(AE){ﬁ—i— f(AE

2r

where we have defined

4
a, %) -5 (AE, a, @é) } <exp (27rA1E/a) - lﬂ

L 1 1
, o ZO’§> } ( * exp (2z|AE|/a) — 1)

(B2)
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(B3)

(at.0t) ~25%o(a202)

L — nL
I)<AE, a, ZO,2> = z g(AE,Oﬂ,Zo—2> (B4)

n=—0oo

where g(AE, a, zj) is defined as
sin(22E sinh™" (azp))

drzg\/1 + 223

g(AE, a,z9) =

(BS)

APPENDIX C: THERMAL WIGHTMAN
FUNCTION OF A SINGLE ATOM
IN EMPTY SPACE WITH RESPECT
TO A COACCELERATED OBSERVER

In this Appendix, we present some of the intermediate
steps leading to thermal Wightman function Eq. (36). Using
Eq. (27) in Eq. (32), the thermal Wightman function takes
the following form for an arbitrary temperature 7,

§60a@) = [Tdo ["a, [ ar. [Zw eV, (w2 X0V (0 X)
0 —0 —0 =0 c R

o) [Se]
+ Z Ue_ﬂumvz,ky,k: (T’ X)V(u,ky,kZ (7/7 X/):| / Z e7hor
o— =0

[l a5

w/T _

a)/T

])(1),16},,/(Z (T’ X)Vz'kysk: (T/, X/)

bt Vi (0o 1 (7). )
Using Eqgs. (28) and (35) in Eq. (C1), the above result simplifies to the form
k e?!T . 1 .
2 L —iw(r—7 io(t—7
G;(x(r) x(7) =1 a/ da)/ dk, / dk, smh( >K1w/a<—> [me (e=7) T 1¢ (==7) (C2)
1 ® ew/T —iw(t—7 1 iw(r—7
S don |l |
1

= VO AV C3
e S_X_: (A7 —isp — ie)? (©3)

where in the second line, we have used the integral

2
> 1) an-w
/ dky / dk ’C’“’/a< )  sinh(rw/a)’

APPENDIX D: THERMAL WIGHTMAN
FUNCTION OF A SINGLE ATOM
IN CAVITY WITH RESPECT TO A
COACCELERATED OBSERVER

(C4)

In this Appendix, we present some of the intermediate
steps leading to thermal Wightman function Eq. (40).

In the presence of a single reflecting boundary, the
Rindler counterpart of the scalar field operator [Eq. (27)]

|
obeys the Dirichlet boundary condition ¢|,_, = 0. The
positive frequency Rindler mode function for the massless
scalar field takes the form [39]

Vm,ky,kz (T’ X) = 27Z4a

sinh(zm)/oz)]Cm (ﬁ e"”)
l; a

x sin(k,z)e i @rHky, (D1)

Inserting Eq. (D1) in Eq. (C1), the thermal Wightman
function takes the form
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k k )
G;(x(r), x(7)) = dw/ dk/ dk smh( >K,w/a< l(3"”7>IC,~(U/0[<;l(30"7>{cos[kz(z—zl)]
’ w/T . Nt-ik ’ 1 . N—ik (y—y'
~ coslk(z +2)]} [/7_1 eI 4 oy eI ﬂ - (D2)

Now for the cavity scenario, the Dirichlet boundary condition obeyed by the scalar field is ¢|,_, = ¢|._; = 0. Using the
above boundary condition [Eq. (D2)] and by using the method of images, the thermal Wightman function of the massless
scalar field confined to the cavity turns out to be

k k !
G (x(r). x(¢) = Z / dw / dk, / dk smh< )IC/( Le"”)lCiw/a<;Le“’7>

w/T
x {coslk,(z — 7/ = nL)] — coslk,(z + 7 — nL)]} {;Til p—io(T=7)Fiky(y=y')
e@/T _
1 io(t—1")—ik, (y—y'
+em/T_ 16 ( ) }(y )):| (D3)

Inserting the atomic trajectory Eq. (39) in Eq. (D3), along with the result [39]

2 3 Zﬁ‘h—lﬂ
/dk/ deClzw/a< )cos[Zk d] _am sin (%2 sinh™' (%)) (D4)

sinh(zw/a) d\/m '

and following the procedure in Appendix C, the thermal Wightman function inside the cavity becomes

& 1 B, 1
G;(x(r),x(r’)) R :Z: :Z: {Cl At —isp —ie)> = BB} - C_z(AT —isp —ie)* — B%] (D3)

n=—00 §=—00

with

2 L 1
B, = =sinh~! n=ay, Ci =nl\/1+—a*n’L?
a 2 4

B, = %sinh_1 (a <Zo - %>>, Cr = (229 - ”L)\/l + %az(ZZO - ”L)2~ (Do)

APPENDIX E: TRANSITION RATES OF TWO ATOMS IN EMPTY SPACE WITH RESPECT
TO A LOCAL INERTIAL OBSERVER

In this Appendix, we present some of the intermediate steps leading to Eqgs. (57) and (58). The form of the Wightman
functions for the trajectories of the two atoms are given in Egs. (55) and (56). Substituting this forms into Eq. (48) and
Eq. (51), the transition rate of the two-atom system from the initial state |y) to the final state |E,) can be expressed as

Ripyoiiy = 2llme) PFas(AE) + |m), PF g (AE) + me) m ) Fup(AE) + mif) mi» Fpa(AE)]  (E1)

with
2

a +oo , 1
Fee(AE) = ——— d(A7)e IAEAT E2
2 (AE) 16722 /_oo (Ar)e sinh? [} (aA7 — ig)] (E2)

for £ = & and
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2

a —+00 . 1
F.o(AE) = — d(A —iAEAT E3
2 (AE) 167* /_oo (ar)e sinh®[} (aAz — ie)] — {1 d*a? (E3)

for & # &. We simplify the transition rate Eq. (E1) by performing contour integration, leading to

20sin(2% sinh~! (L ad
|AE|+sm sin(=2=sinh™! G ))><1+ 1 >

2z 2rdy /1 + ldzoc2 erIbEl/e —

AE  sin20sin(22E sinh~ (ad))) ( 1 )}
1

_|_
2rAE
2z 20d,[1 + L dPa? etmAb

9(AE)<
where O(AE) is defined in Eq. (15).

APPENDIX F: TRANSITION RATES OF TWO ATOMS IN A CAVITY WITH RESPECT TO A LOCAL
INERTIAL OBSERVER

In this Appendix, we present some of the intermediate steps leading to Egs. (63) and (64). The form of the Wightman
functions for the trajectories of the two atoms are given in Egs. (61) and (62). Substituting this forms into Egs. (48) and (51),
the transition rate of the two-atom system from the initial state |y) to the final state |E,) can be expressed as

Ripyois,) = 22 Z U PFAA(BE) + |mY) PFpp(AE) + mg ), F ag(AE) + mi ) mr Fa(AE)]  (F1)

n=—0oo

with
Foo(AE) — - / " d(Ar)eminEas 1 1 (F2)
/ = - T)e -
% 167? | o sinh?[} (aA7 — ie)] — 1 dia*  sinh?[} (aA7 —ie)] — f d3a?
for £ = & and
Fo(AE) = - / " d(Ag)eminas ! ! (F3)
! e T —
% 167? sinh?[} (aAtr — ie)] — 1 d3a®  sinh?[} (aAt — ie)] - dja?
for & # &. Equation (F1) can be further simplified by performing contour integration to obtain
|AE| L L\ . L
R‘V/>—’|E,,> = /12{9(—AE) (W—Ff (X,E —COSZHE) ,a, ZO’E — Sln29m ,a, Zo,d,z
d L d L 1
in20n|( |AE|,a,=,= | —sin26 AE , 1
e "<' 3 2) snzom(1881.0..5.3) ) (1+ ey =)
2 L 02 L
+0 — | —cos“0h| AE, a, ZO’E —sin“dm | AE, a, Zo’d’i
d L d L 1
20n| AE,a,—,— | —sin20m| AE, y=.— F4
- sin "( %7 2) sin m( %203 2>> <exp(2ﬂAE/a) - 1>} (F4)
where we have defined
L 2 nL
m(AE, a, zo,d,5> = HZOOQ<AE a, zo—i—d—?) (F5)
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<AE a, Z ;) i g<AE, a,d_Z”L> (F6)

n=-—oo

and g(AE, a, zg) is defined in Appendix B.

APPENDIX G: THERMAL WIGHTMAN FUNCTION OF TWO ATOMS IN EMPTY SPACE
WITH RESPECT TO A COACCELERATED OBSERVER

In this Appendix, we present some of the intermediate steps leading to thermal Wightman functions Eqs. (77) and (78).
Using Eq. (68) in Eq. (73), the thermal Wightman function takes the following form for an arbitrary temperature T

Gl;r(x-f X (7 / d(‘)/ dk, / dk, [ (64 1e ﬂwavwk k. (T§,X5>Vwk k( Ty Xg)
=0
Zo—e_ﬂw‘jv:}k k. T’f’xf) a)k k. Tf :|/Ze_ﬂCU0
0
a)/T
/ dw / dk / dk. [ Vi (2 XV 1 (7 X0
bt Vi (e 5 Vo (7 G1)
Inserting Egs. (69) and (76) in Eq. (G1), the above result simplifies to the form
k e/ T ‘ 1 .
2 L —iw(t—7') io(t—7')
dk s1nh< >/Clw/a< >[e“’/T—le +e“’/T—le ] (G2)

da) dk

Gy (xg(),x2 (7)) 4ﬂ -

Now, using Eq. (C4) and the integral

i (20 da
| [k, <_l> i = o nle i ) (G3)
sinh(zw/a) d\/m
the thermal Wightman function takes the form
1
G (x:(7), x0(7)) = . — G4
5 (xe(7), xg (7)) 4”252200 (Ar—isp— i) (G4)
for £ =&, and
Gy (x:(e) xe () = = s > : (G5)
prreltie 4n*C —~ (At —isp — ie)* — 1B

for & # &, with B = 2sinh™! (%) and C = d\/1 + 1 a*d’.

APPENDIX H: THERMAL WIGHTMAN FUNCTION OF TWO ATOMS IN CAVITY
WITH RESPECT TO A COACCELERATED OBSERVER

In this Appendix, we present some of the intermediate steps leading to thermal Wightman functions Egs. (82) and (83).

Considering that the Rindler counterpart of the scalar field Eq. (68) obeys the Dirichlet boundary condition
¢|,—o = ¢|.—;, =0, and by following a similar method we have used for the single atom case, the positive frequency
thermal Wightmann function of the massless scalar field confined in the cavity turns out to be
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Gy (x£(7), xe (7

x {coslk,(z¢ — 2y — nL)] — cos[k (z¢ + z, — nL)]} La,/r_e

+7e“’/T—le

! fw(rg—r;»—iky(yf—y;,)}

kL kL 0”7/
d dk, dk_ sinh K, — % | [C. =l
T4 anz_:oo/ a)/ / sin < ) 'm/a<ae ) m’/“(ae )

e“’/T —m)(rg—'r )+ik, (v5—y'€_,)

1

(H1)

Inserting the atomic trajectories Eq. (81) in Eq. (HI) and following the procedure in Appendix D, above result simplifies

to the form

B 1

G (xe(z). xg (7)) =

for £ = & with By, C, are given in Eq. (D6), B; = 2sinh~

] &K & 1
_2; Z{Cl (At — isp — ie)? ZS’%_

! (0‘(15

(H2)

Cy (AT —isp—ie)? — B%]

— ), Cs = (22 - ”L)\/l + 10%(2z; — nL)* and

Bs ! (H3)

o _L =] c0 B4 1 _Bs
G;(Xé(T),X5’(T)) - 471_2 nzzoo =Z |:C4 (AT— lSﬂ ) - [3421 C5 (AT— iSﬂ—

for & # & with {B,= —fsmh ((‘”"L 9,Cy=—(d+nL \/1+
A),Bs =2 x sinh ' (a(zg + 45£)), and Cs

C4 = (d—nL)
\/1 +1a2(2z0 +d—nL).

143a*(d—nL)*} (for & =B, & =

ie)? — Bg]

(d+nL)*}(forE=A,& = B),{B, =2sinh! (152),

= (2z0+d—nL) x
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