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In this article we address the question of asymptotic symmetry of massless scalar field at null infinity.
We slightly generalize notion of asymptotic symmetry in order to make sense for the theory without gauge
symmetry. Derivations of the results are done in two different ways, using Hamiltonian analysis and using
covariant phase space. The results are in agreement with the ones previously obtained by various authors
for dual 2-form field and with the results obtained starting from scalar soft theorem.
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I. INTRODUCTION

Asymptotic symmetries at null infinity [1] have attracted
substantial amount of attention in last decade (see Ref. [2]
for overview) because of their connection with soft theo-
rems and memory effect.
A massless scalar field has a soft theorem associated to it

[3] and we expect that there is the corresponding asymp-
totic symmetry. A problem arises when we try to under-
stand what this asymptotic symmetry is, because there is no
gauge symmetry in the theory.
There are many approaches to understand asymptotic

symmetry of a massless scalar and its connection to the soft
scalar theorem. Starting from the soft scalar theorem the
authors in [4] derived what the asymptotic symmetry
should be and generalized the result to all even dimensions
[5]; a scalar field is dual to 2-form field which is the theory
with gauge symmetry. By passing on the dual 2-form
formulation of scalar field the standard approach is used to
derive the asymptotic symmetry [6,7]. This lack of sym-
metry in one and presence in other formulation of the
theory led some to the conclusion that the symmetry theory
is a union of symmetries in all formulations of the theory
[8]. This is an unsatisfactory solution because dual theories
should have same number of symmetries. To better under-
stand this problem an approach that relies on compact extra
dimensions [9] is proposed. There is also related work in
spacelike infinity based on the invariance of the symplectic
form under Poincaré transformations [10] which, also, did
not yield symmetry for the scalar field but recovered results
obtained at null infinity for 2-form field. This work

suggests that a scalar field search for missing symmetry
is not a problem of finding boundary degrees of freedom as
it was in electromagnetism [11]. This approach is gener-
alized to any massless boson in [12,13] with the same
conclusion that there is no apparent symmetry for a
massless scalar.
Differences between our approach and previous

approaches is that we work with scalar field theory and
not with dual 2-form or some extended formulation and
propose a generalization of the notion of asymptotic
symmetry at null infinity. The standard understanding of
asymptotic symmetry starts with gauge symmetry, with
some asymptotic conditions imposed; the part of gauge
symmetry that respects the asymptotic conditions is
allowed. The next step is the derivation of the associated
conserved charges, that are given as an integral over the
corner at infinity—generically some allowed gauge trans-
formations will have identically zero charges and are called
trivial gauge transformations. Allowed gauge transforma-
tions with nonzero charges are an asymptotic symmetry of
the theory, or in other words, allowed modulo the trivial
gauge transformations. To extend the standard notion of
asymptotic symmetry we start from the observation that all
the calculations are done asymptotically and that every-
thing is ultimately about charges and their conservation.
Then, it is natural to propose what the asymptotic symmetry
for any theory, with or without gauge symmetry, should be.
The proposed generalization is as follows. If an asymptotic
transformation, not a priori defined in whole spacetime,
can be represented with a nonzero and conserved charge
then it is an asymptotic symmetry of the theory.
Conservation of charges in this setup can have a more
subtle meaning; for example, conservation for symmetries
at null infinity means that charges at past and future null
infinity are equal, and this is established by more detailed
inspection of the properties of the solutions. Starting from
this definition of asymptotic symmetry we can, at least in
principle, obtain a globally defined transformation if it is
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consistent with equations of motions. The globally defined
transformation is the one which maps solutions onto
solutions and in the asymptotic region coincides with the
asymptotic symmetry; this would explicitly be done by the
boundary-bulk propagator. Notice, that when dealing with
gauge theory we can think of asymptotic symmetry in this
way, with the additional need to fix trivial gauge trans-
formations in order to obtain a unique boundary-bulk
propagator. This generalization of asymptotic symmetry
seems justified for null infinity, as will be demonstrated in
the main part of the paper, but to see if it is possible to apply
it to more general case requires more investigation.
We demonstrate in the rest of the article how this

extended asymptotic symmetry can be obtained using
the example of massless scalar field. We do it both in
the Hamiltonian and covariant phase-space formalism as
these are two dominant approaches both with their own
pros and cons.

II. HAMILTONIAN CHARGES

A. Coordinates

Wewill work in four spacetime dimensions although it is
trivial to see that results hold in other dimensions. We use
mostly minus convention for the Minkowski metric. In the
Hamiltonian approach we use light cone coordinates;
u ¼ t − r, v ¼ tþ r, and xa are the coordinates on the
sphere. The metric is given by

ds2 ¼ dudv − gabdxadxb; ð2:1Þ

with

gab ¼
�
u − v
2

�
2

γab; ð2:2Þ

where γab is the metric on the unit sphere. An explicit form
of the metric on the sphere γab is not important for the
details of our analysis and can be taken as the standard form
or in complex coordinates as in [1,2]. Future null infinity
Jþ is reached in the limit v → ∞ with the other coordinates
fixed. Additionally, with past null infinity J− we obtain in
the limit, u → −∞, with other coordinates fixed.
In the covariant phase-space formalism we can use light

cone coordinates or outgoing coordinates for future null
infinity with the metric

ds2 ¼ du2 þ 2dudr − r2γabdxadxb; ð2:3Þ
where in limit, r → ∞, we reach future null infinity Jþ. The
metric in ingoing coordinates, that are suitable for past null
infinity, is given by

ds2 ¼ dv2 − 2dvdr − r2γabdxadxb; ð2:4Þ

and past null infinity J− we get in r → ∞ limit.

B. Canonical analysis

Action of self-interacting massless scalar in light cone
coordinates is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
∂uϕ∂vϕ −

1

2
gab∂aϕ∂bϕ − VðϕÞ

�
; ð2:5Þ

where VðϕÞ is any polynomial with degree higher than 3;
the reason why ϕ3 interaction must be excluded will be
described later in text. We will focus on future null infinity
Jþ as it is trivial to see that the same calculation is valid for
past null infinity J−, just by changing u and v. Massless
particles evolve along the v direction and for v → ∞ they
go to Jþ. For this reason it is valid to take v as an evolution
parameter in Hamiltonian dynamics. For more details on
Hamiltonian dynamics see Refs. [14,15].
The impulse is obtained by the standard definition

π ¼ ∂L
∂∂vϕ

¼ ffiffiffiffiffiffi
−g

p
∂uϕ: ð2:6Þ

Because the right-hand side does not contain a derivative
over v we get the constraint (at every point)

ψ ¼ π −
ffiffiffiffiffiffi
−g

p
∂uϕ ≈ 0: ð2:7Þ

The Poisson bracket of constraints at different points is

Ωðv; x; x0Þ ¼ fψðv; xÞ;ψðv; x0Þg ¼ −2∂uδðx − x0Þ; ð2:8Þ

where we introduced abbreviation x ¼ ðu; xaÞ.
The total Hamiltonian determines the evolution of the

system [14] and is given by

HT ¼ H þ
Z

dud2xaΛψ ; ð2:9Þ

where H is Hamiltonian that we calculate in usual manner

H ¼
Z

dud2xaðπ∂vϕ − LÞ

¼
Z

dud2xa
ffiffiffiffiffiffi
−g

p �
1

2
gab∂aϕ∂bϕþ VðϕÞ

�
: ð2:10Þ

Since the Hamiltonian is obtained when integrating over a
Cauchy surface, and v ¼ const is a Cauchy surface only
when v goes to infinity, the rest of analysis is valid only in
immediate vicinity of Jþ. The consistency condition of the
constraint

fψ ; HTg ¼ 0; ð2:11Þ

gives the solution for a multiplier Λ up to arbitrary
u-independent function. The presence of an arbitrary
function means that there is a first-class constraint hidden
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in the second-class constraint ψ . An alternative way to see
that there is first-class constraint hidden among the second
class is by looking for the presence of a zero mode in
Ωðv; x; x0Þ, see Ref. [15]. The eigenvalue equation takes
form

Z
d3x0Ωðv; x; x0Þkðx0Þ ¼ 2∂ukðxÞ; ð2:12Þ

and kðxÞ is a zero mode if and only if it does not depend
on u.

C. Charges

In order to construct the charge we will adopt the
approach used in [16] where the same situation appeared.
We construct the generator using the whole constraint ψ
and not only the first-class part but we multiply it with
the u-independent function Λ and not completely arbi-
trary one

Ψ ¼
Z

dud2xaΛψ : ð2:13Þ

This is enough to select the first class from the full
constraint, see Ref. [16] for more details.
We demand that the variation of the generator is well-

defined, meaning that there is no surface term

δΨ ¼
Z

Aδϕþ Bδπ; ð2:14Þ

which leads to the need to add a surface term to the
generator [17]

Ψ̃ ¼ ΨþQ ¼
Z

Λπ; ð2:15Þ

where the surface term is given by

Q ¼
Z

dud2xa
ffiffiffi
g

p
Λ∂uϕ; ð2:16Þ

and represents the charge associated to the transformation.
The asymptotic behavior of scalar field near null infinity is

ϕ ∝
2φðu; xaÞ

v
þO

�
1

v2

�
; ð2:17Þ

where this is the usual φ
r asymptotic used in [4,10] (just in

light cone coordinates). We immediately derive the behav-
ior of Λ from

δΛϕ ¼ fϕ; Ψ̃g ¼ Λ; ð2:18Þ

and get

Λ ∝
2λðxaÞ

v
þO

�
1

v2

�
: ð2:19Þ

Substituting the asymptotic behaviors of the field and
parameter Λ into the expression for charge, we obtain
after simple algebra,

Q ¼
Z

dud2xa
ffiffiffi
γ

p
λðxaÞ∂uφðu; xaÞ

¼ −
Z

d2xa
ffiffiffi
γ

p
λðxaÞφð−∞; xaÞ: ð2:20Þ

The last equality follows from the fact that there are no
massive particles because then the field φ goes to zero at
u → ∞ (see Refs. [2,4]). The result is in agreement with the
expressions for charge obtained in [4–7].
We can repeat the same calculation at past null infinity

J− and obtain the charge

QJ− ¼
Z

dvd2xa
ffiffiffi
γ

p
λðxaÞ∂vφðv; xaÞ

¼
Z

d2xa
ffiffiffi
γ

p
λðxaÞφð∞; xaÞ: ð2:21Þ

At first glance these two charges are unrelated as the
parameter λ at past and future null infinity are not
connected, and it is not obvious how to establish con-
servation in any sense. Careful inspection of the equations
of motion [4] reveals that the asymptotic values of the field
at past and future null infinity are connected. Namely,
they are equal for antipodal points that approach spatial
infinity

φJþðu ¼ −∞; xaÞ ¼ φJ−ðv ¼ þ∞;−xaÞ: ð2:22Þ
The reason for this can be traced back to the discontinuity
of boosts at spatial infinity [2]. If we impose the antipodal
matching condition λJþðxaÞ ¼ −λJ−ð−xaÞ on parameter λ,
then we obtain equality of charges at past and future null
infinity and retrieve the conservation of charges.

III. COVARIANT PHASE SPACE

Now we analyze the symmetry at null infinity of
massless scalar field in the covariant phase-space approach
(for an introduction see Ref. [18]). How to systematically
construct charges is well elaborated on in [19].

A. Symplectic form

The starting point is the variation of the action

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
; ð3:1Þ
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which is easy to calculate

δS ¼
Z

d4x
�
−∂μð

ffiffiffiffiffiffi
−g

p
gμν∂νϕÞδϕ −

ffiffiffiffiffiffi
−g

p ∂V
∂ϕ

δϕ

þ ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕδϕÞ

�
; ð3:2Þ

from which we obtain the equation of motion (EOM)

∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ þ

ffiffiffiffiffiffi
−g

p ∂V
∂ϕ

¼ 0; ð3:3Þ

as well as the presymplectic potential

θμ ¼ ffiffiffiffiffiffi
−g

p
gμν∂νϕδϕ: ð3:4Þ

The symplectic form on spacelike surfaces is given by the
standard formula

Ω ¼ δ

Z
Σ
nμθμ; ð3:5Þ

where Σ is Cauchy surface with the orientation given by unit
normal nμ that points toward the future, see Ref. [19].
Generally, the symplectic form is a surface term obtained
by applying Stokes theorem on

R
d4x∂μδθμ and keeping only

the relevant surface term. For future null infinity only terms at
Jþ and at past null infinity only terms at J−with the additional
change of sign because normal points to the “past”.
At future null infinity, assuming the same asymptotic

behavior of the scalar field as before, the symplectic form is
given by

Ω ¼
Z
Jþ

dud2xa
ffiffiffi
γ

p
δ∂uφδφ: ð3:6Þ

The same result, only with u replaced by v, holds at past
null infinity.

B. Symmetry at null infinity

The symplectic form is always invariant under the
transformation

δλφ ¼ λ; ð3:7Þ

where λ is field independent δλ ¼ 0. This is the trivial
invariant of the symplectic form that is always present and
does not automatically imply symmetry. An additional
condition that the transformation must fulfill to be a
symmetry is that it maps solution onto a solution.
The equation of motion in ðu; r; xaÞ coordinates is

ffiffiffi
γ

p
r2∂u∂rϕþ ffiffiffi

γ
p

∂rðr2∂uϕÞþ∂að ffiffiffi
γ

p
γab∂bϕÞþ ffiffiffi

γ
p

r2
∂V
∂ϕ

¼0:

ð3:8Þ

Assuming the same asymptotic behavior of the scalar
field φ

r as before, we see that if there was g
3
ϕ3 term

in the potential V, the leading term is of order Oð1Þ and
reads

gφ2 ¼ 0; ð3:9Þ

namely ϕ3 interaction makes asymptotic theory trivial.
Next orders of expansion of the EOM give the solution for
subleading terms as functions of free data φ. Completely
analogous equations hold in ingoing coordinates ðv; r; xaÞ
at past null infinity.
The invariance of symplectic form under transformation

is equivalent to the claim that we can obtain the charge
associated to that transformation via the following
equation [19]:

δQ ¼ −IXλ
Ω; ð3:10Þ

where IXλ
is contraction that acts as IXλ

δφ ¼ λ. ChargeQ is
easily calculated using previous equation

Q ¼
Z

dud2xa
ffiffiffi
γ

p ðλ∂uφ − ∂uλφÞ; ð3:11Þ

where there is an additional term proportional to ∂uλ in
comparison to the result for charge in the Hamiltonian
approach. We point out again that charge is not useful if
there is not some kind of conservation associated to it. We
see that if parameter λ is u independent we get the same
result for charge as in the Hamiltonian approach and it is
conserved with the addition of the antipodal matching
condition. We argue that for any λ that does depend on u
this is not possible. By doing partial integration, the charge
can be transformed into

QJþ ¼ −
Z

d2xa
ffiffiffi
γ

p
λJþφJþðu ¼ −∞Þ

− 2

Z
dud2xa

ffiffiffi
γ

p
∂uλJþφJþ ; ð3:12Þ

and analogous for past null infinity J−. The first term is the
same as Hamiltonian charge that is conserved due to the
antipodal matching condition. This implies that second
term must be conserved separately as

Z
dud2xa

ffiffiffi
γ

p
∂uλJþφJþ ¼

Z
dvd2xa

ffiffiffi
γ

p
∂vλJ−φJ− : ð3:13Þ

We expect that fields at past and future null infinity can be
related via a transformation that should be nonlinear due to
the interaction

φJþ ¼
Z

dvd2x0aSðu; x; v; x0;φJ−ÞφJ− ; ð3:14Þ

DEJAN SIMIĆ PHYS. REV. D 108, 085017 (2023)

085017-4



which after substitution into the above equation leads to

Z
dud2xaSðu; x; v; x0;φJ−Þ∂uλJþ ¼ ∂vλJ−ðφJ−Þ: ð3:15Þ

This means that starting from the field-independent
parameter λJþ we get field-dependent parameter λJ− at past
null infinity. This contradicts the starting and crucial
assumption; for construction of the charge the parameter
λ must be field independent. Consequently, we are forced
into taking u independent λJþ and v independent λJ− , in
agreement with the Hamiltonian approach.

IV. DISCUSSION

We derived asymptotic symmetry of massless scalar field
at null infinity directly and not by passing to the dual
2-form field formulation.
The first derivation is the Hamiltonian and relies cru-

cially on the presence of constraints in the theory. In the
scalar field case, constraints appear only is special coor-
dinates, we worked in light cone coordinates, and in most
of other coordinates the symmetry is completely hidden.
Covariant phase space offers a more direct and simple

way of deriving symmetry. We search for transformations
that leave the symplectic form at null infinity invariant and
we construct the charge via the variational equation if and
only if it is conserved, meaning that if it is the same at past
and null infinity the transformation is really asymptotic
symmetry. This gives a computational approach that can be
applied to any theory and unravel the hidden asymptotic
symmetries. This topic is left for future research.

Besides the direct derivation of asymptotic symmetry
another unanswered question is how do these charges act.
We offer our view on this in the context of the extended
notion of asymptotic symmetry.
Globally defined symmetry maps solutions onto solu-

tions. Starting from this obvious claim we can demand that
action of asymptotic symmetry is extended on to the whole
spacetime in a way that satisfies this requirement. This can
be done when asymptotic symmetry shifts initial and final
conditions at null infinity in a way that is consistent with the
EOM. For an explicit expression of the action of symmetry
transformation we would need boundary-bulk propagator
i.e., an explicit solution with given initial or final conditions
at null infinity. Because in the case of the scalar field
antipodal matching conditions for field φ and parameter λ
have opposite signs asymptotic symmetry cannot be
extended into the bulk and is defined only asymptotically.
An open problem that remains is the derivation of the

symmetry at spatial infinity. The approach of [10] shows
that there is no justification for adding boundary degrees of
freedom at spatial infinity for the scalar field; that is a
necessary ingredient in their approach and it seems like the
same holds for the approach of this article. We must
conclude that there is still a long way to go if we want
to fully understand symmetries in field theory.
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