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In the presence of boundaries, the quantum anomalies acquire additional boundary terms. In odd
dimensions, the integrated conformal anomaly, for which the bulk contribution is known to be absent, is
nontrivial due to the boundary terms. These terms became a subject of active study in the recent years. In
the present paper, we continue our previous study [1,2] and compute explicitly the anomaly for fermions in
dimensions d ¼ 3, 4 and 5. The calculation in dimension 5 is new. It contains both contributions of the
gravitational field and the gauge fields to the anomaly. In dimensions d ¼ 3 and 4, we reproduce and clarify
the derivation of the results available in the literature. Imposing the conformal invariant mixed boundary
conditions for fermions in odd dimension d, we particularly pay attention to the necessity of choosing the
doubling representation for gamma matrices. In this representation, there exists a possibility to define
chirality and thus address the question of the chiral anomaly. The anomaly is entirely due to terms defined
on the boundary. They are calculated in the present paper in dimensions d ¼ 3 and 5 due to both
gravitational and gauge fields. To complete the picture, we reevaluate the chiral anomaly in d ¼ 4

dimensions and find a new boundary term that is supplementary to the well-known Pontryagin term.

DOI: 10.1103/PhysRevD.108.085015

I. INTRODUCTION

The role of quantum anomalies in the modern theoretical
constructions becomes increasingly important. Conformal
anomalies, first discovered by Capper and Duff almost
50 years ago [3], by now serve as excellent example of very
rich and mutually useful interplay between the differential
geometry, quantum fundamental physics and applications.
In the recent years, a new aspect of conformal anomaly
came into play. The presence of boundaries changes rather
dramatically what we used to think about the anomaly.
Indeed, the local geometric invariants from which the
anomaly can be constructed have necessarily even dimen-
sionality. So, that the anomaly is conventionally absent in
space-time of odd dimension d since no invariant of
appropriate odd dimensionality exits. This is no more
true in the presence of boundaries. A geometric quantity,
extrinsic curvature, characterizes how the boundary is
embedded into space-time and it has dimension one.

This allows one to construct new invariants of both odd
and even dimensionality on the boundary of space-time. As
a consequence, the conformal anomaly or, better to say, the
integrated conformal anomaly can be now nontrivial even if
the dimension of space-time is odd. If dimension is even
there, additionally to the bulk terms, appear boundary terms
with increasingly reach structure as the dimension d grows.
An earlier paper in this direction is [4]. The complete
structure or the building blocks from which one can
construct the boundary anomaly terms is not yet fully
understood for large values of d. In dimensions d ¼ 3 and
d ¼ 4, the situation is by now quite clear after the works
[1,5,6]. In [5], the values of the boundary conformal
charges in dimension d ¼ 4 have been computed for free
conformal fields: scalar fields, Dirac fermions, and gauge
fields. In dimension d ¼ 5, a recent progress has been
reached after identifying a complete set of boundary
conformal invariants in this dimension in [2]. The respec-
tive conformal charges for a conformal scalar field in d ¼ 5
have been computed in [2]. The further developments in
this direction include [7–15].
The primary goal of the present paper is to build on our

previous work [2] and compute the boundary conformal
charges for the fermions in dimension d ¼ 5. Let us briefly
discuss a difficulty that looks technical but whose reso-
lution leads to interesting consequences. Considering
the Dirac fermions in space-time with boundaries, one
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encounters the following problem. One imposes the boun-
dary conditions on the fermion fields of the mixed type: A
half of components of the fermion satisfy the Dirichlet
condition while the other half a conformal Robin type
condition. Thus, one needs to define two projectors Πþ ¼
1
2
ð1þ χÞ and Π− ¼ 1

2
ð1 − χÞ such that Πþ þ Π− ¼ 1. The

condition on matrix χ is that it has to anticommute with
γn ¼ nkγk, where nk is normal vector to the boundary, and
commute with all other gamma matrices γa; a¼ 1;…; d− 1
projected along the boundary. In even dimension d, this
matrix can be easily constructed, χ ¼ iγ�γn. Here γ� is the
chirality matrix, it anticommutes with all gamma matrices.
In odd dimension d, provided one uses the usual 2

d−1
2 × 2

d−1
2

representation for gamma-matrices, such a matrix γ� does
not exist. This forces us to use other representation for
gamma matrices of dimension 2

dþ1
2 × 2

dþ1
2 that is obtained in

the so-called doubling procedure. For earlier discussions of
this representation, see [16,17]. In this representation, it is
known that two chiral matrices exist, what we call below Γ�

1

and Γ�
2. The notion of chirality is thus naturally defined.

That is why in the present paper, we also compute the chiral
anomaly in dimensions d ¼ 3, 4 and 5.
In dimension d ¼ 4, the above mentioned problem does

not arise, and one uses the standard representation for
gamma matrices. The respective chiral anomaly is due
to the Pontryagin term, as is well known. However, the
careful analysis presented below reveals a new boundary
term in the chiral anomaly that is supplementary to the
Pontryagin term.
In order to make our consideration general, we also

include the coupling of the fermion field to a background
gauge field and compute the contribution of the gauge field
to the boundary terms in the conformal and chiral anoma-
lies. Our findings are summarized in Table I.
It should be noted that the key tool in our computations is

the heat kernel method. Thus, we heavily rely on the
available results for the heat kernel coefficients for mani-
folds with boundaries given in [18] and [19].

II. THE BASICS

A. Dirac operator in curved space-time

The theory lives on manifold M covered by coordinates
xi and with the metric gij. This manifold has a boundary
∂M; the study of its contribution to the conformal anomaly
is the main topic of this note. We also introduce a basis of

orthonormal tangent vectors, the n-beins epi ðxÞ at each
point on M so that

gij ¼ ηpqe
p
i e

q
i : ð1Þ

We consider a Dirac theory describing a spinor ψðxÞ on this
manifold. The action reads

S ¼
Z

ddx
ffiffiffiffiffiffi
−g

p
ψ̄iγk∇̂kψ ; ð2Þ

where γk ¼ ekpγp and γp are the Dirac matrices satisfying
the Clifford algebra,

γpγq þ γqγp ¼ 2ηqp; q; p ¼ 0; 1;…d − 1;

η ¼ diagð−1;þ1;…;þ1Þ: ð3Þ

The covariant derivative is defined as a combination of the
purely gravitational covariant derivative and the gauge field
Ai ¼ iBi þ Aa

i λ
a, where λa form the algebra of non-

Abelian transformations and Bi is the Abelian gauge field,

∇̂i ¼ ∇i þ Ai: ð4Þ

The gravitational covariant derivative is defined as

∇kψ ¼
�
∂k þ

1

2
ωpq
k Σpq

�
ψ ; ð5Þ

where Σpq ¼ 1
4
½γp; γq� and ωpq

k is the spin connection1

defined via the relation

∇ie
p
j ¼ ∂ie

p
j − Γk

ije
p
k þ ωi

p
qe

q
i ¼ 0: ð6Þ

Defining Rij
pq ¼ epk e

q
lRij

kl, one has2

Rij
pq ¼ ∂iωj

pq − ∂jω
pq
i þ ½ωi;ωj�pq: ð7Þ

A direct calculation shows that

TABLE I. Contributions to boundary terms in conformal and chiral anomaly.

Dimensions d ¼ 3 d ¼ 4 d ¼ 5

Type of anomaly Conformal Chiral Conformal Chiral Conformal Chiral
Boundary terms due to gravitational field Yes No Yes Yes Yes Yes
Boundary terms due to gauge field No Yes No No Yes Yes

1Also known as coefficients of Fock-Ivanenko [20].
2Note that our convention for the Riemann tensor differs by

sign from the one used in [18]. On the other hand, our convention
for Ricci tensor and Ricci scalar agree with [18].
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½∇i;∇j� ¼
1

4
Rij

pqγpγq: ð8Þ

From this, we may define the field strength tensor as

Ωij ¼ ½∇̂i; ∇̂j� ¼ Fij þ
1

4
Rij

pqγpγq: ð9Þ

The Laplace type operator for Dirac theory is the square of
Dirac operator,

Δð1
2
Þψ ≡ ðiγk∇̂kÞ2 ¼ −ð∇̂2 þ EÞψ : ð10Þ

For E, one finds

E ¼ −
1

4
Rþ 1

4
½γi; γj�Fij: ð11Þ

B. Fermions in even and odd dimensions

First we discuss the Dirac gamma matrices in even and
odd dimensions.

C. Even dimension d

In even dimensions, there is a unique representation for
the Clifford algebra in terms of the 2

d
2 × 2

d
2 unitary matrices.

In even dimensions, the following unitary matrix anticom-
mutes with all gamma matrices, and thus, it can be used to
introduce a chiral representation,

γ� ¼ −id−22 γ0γ1 � � � γd−1; ðγ�Þ2 ¼ 1: ð12Þ

Explicitly, for d ¼ 2,

γ0 ¼ −iσ1; γ1 ¼ σ2; γ� ¼ −γ0γ1 ¼ −iσ1σ2 ¼ σ3; ð13Þ

where σi; i ¼ 1, 2, 3 are the 2 × 2 Pauli matrices.
For d ¼ 4, one has

γ0 ¼
�

0 −iI
−iI 0

�
; γ1;2;3 ¼

�
0 −iσ1;2;3

iσ1;2;3 0

�
;

γ� ¼ −iγ0γ1γ2γ3 ¼
�
I 0

0 −I

�
: ð14Þ

1. Odd dimension d, doubling trick

In odd dimensions, for the standard representation 2
d−1
2 ×

2
d−1
2 for the gamma matrices, the product

γd−1∓ ¼ ∓i
d−3
2 γ0γ1 � � � γd−2 ð15Þ

belongs to the Clifford algebra by itself. Here, two different
signs determine two unequal sets of Dirac matrices. Thus,
in odd dimensions, there does not exist a matrix, γ�,

sometimes called the chirality matrix, that would anticom-
mute with all gamma matrices. For the reasons that will be
clear shortly, when we will discuss the appropriate mixed
boundary conditions for the fermions, we would need such
a matrix to exist. This is the primary reason why we shall
consider a doubled representation of gamma matrices
obtained in a procedure sometimes referred to as a doubling
procedure. The physical meaning of this doubling can be
understood in this way that, for chirality to be meaningful,
we need two distinguished spin states in odd dimensions,
which is what the doubling procedure provides [16].
Following the trick, we define

Γk ¼ γk ⊗ σ2; k ¼ 0; 1;…; d − 1; ð16Þ

where in the last step, we choose γd−1 ≡ γd−1− . These new
gamma matrices satisfy the Clifford algebra relations,

ΓkΓl þ ΓlΓk ¼ 2ηkl: ð17Þ

The product of first d − 2 gamma matrices now is not the
same as Γd−1. The respective Dirac fermions have 2

dþ1
2

components, twice as the standard Dirac fermions. The
other interesting feature is that now there exist two
candidates for the chiral matrix,

Γ�
1 ¼ I⊗ σ1; Γ�

2 ¼ I⊗ σ3; ðΓ�
1Þ2 ¼ 1; ðΓ�

2Þ2 ¼ 1:

ð18Þ
Both these matrices are Hermitian and anticommute with
all gamma matrices (16). Thus, one may define two chiral
type transformations,

ψ → eiΓ
�
1
αψ and ψ → eiΓ

�
2
βψ : ð19Þ

More generally, four matrices, I, Γ�
1, Γ�

2, and ½Γ�
1;Γ�

2�,
generate a unitary group of transformations. More on
this representation and its applications in physics can be
found in [17].

d ¼ 3
In 3 dimensions, we start with

γ0 ¼ −iσ1; γ1 ¼ σ2; γ2 ¼ −γ0γ1 ¼ σ3: ð20Þ

Therefore,

Γ0 ¼
�

0 −iσ2

−iσ2 0

�
; Γ1 ¼

�
0 −iσ2

iσ2 0

�
;

Γ2 ¼
�
σ2 0

0 −σ2

�
: ð21Þ

These matrices are Hermitian, except Γ0 which is anti-
Hermitian. As explained above, we define two different
chirality matrices as
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Γ�
1 ¼ I2×2 ⊗ σ1 ¼

�
σ1 0

0 σ1

�
; ð22Þ

and

Γ�
2 ¼ I2×2 ⊗ σ3 ¼

�
σ3 0

0 σ3

�
: ð23Þ

These two Hermitian matrices anticommute with all of the
gamma matrices we introduced above. It can be easily
checked that

Γ�
1Γ�

2Γ0Γ1Γ2 ¼ −iI4×4; ð24Þ

and thus,

trðΓ�
1Γ�

2ΓiΓjΓkÞ ¼ −4iϵijk: ð25Þ

d ¼ 5
In 5 dimensions,

γ0 ¼
�

0 −iI
−iI 0

�
; γ1;2;3 ¼

�
0 −iσ1;2;3

iσ1;2;3 0

�
:

ð26Þ

On the other hand,

γ4 ¼ −iγ0γ1γ2γ3 ¼
�
I 0

0 −I

�
: ð27Þ

Then, using (16), one can construct Γa; a ¼ 0;…; 4. Two
chirality matrices in 5 dimensions are

Γ�
1 ¼ I4×4 ⊗ σ1; ð28Þ

and

Γ�
2 ¼ I4×4 ⊗ σ3: ð29Þ

Then one finds that

Γ�
1Γ�

2Γ0Γ1Γ2Γ3Γ4 ¼ I8×8; ð30Þ

and thus, the trace is

trðΓ�
1Γ�

2ΓiΓjΓkΓlΓmÞ ¼ 8ϵijklm: ð31Þ

D. Boundary conditions

In the present paper, we are interested in situation when
the space-time M has a boundary ∂M. We consider a
spacelike boundary so that n2 ¼ nknk ¼ 1 for the normal
vector n ¼ nk∂k. Respectively, near the boundary, one may
separate the normal direction given by vector n and the

directions along the boundary given by a basis of tangent
vectors tka∂k; a ¼ 1;…; d − 1. The appropriate mixed
boundary conditions were first formulated by Gilkey and
Branson [21]. In our discussion of the boundary conditions
to be imposed on the Dirac fermions, we follow the chapter
3 in the book of Fursaev and Vassilevich [22] and give some
necessary clarifications.
For a differential operator of order q, one has to impose q

initial conditions, i.e., conditions at the initial constant time
hyperurface. If there is a second, final constant time
hypersurface, the required boundary conditions are distrib-
uted between them so that at each component of the
boundary, one has to impose q=2 conditions. The Dirac
operator D̂ ¼ iγk∇̂k is a first order operator so that in this
case, one has to impose the boundary conditions on a half
of fermionic components. Suppose that Πþ is the projector
that selects a half of the spinor components. One can define
Π− ¼ 1 − Πþ the projector on the other half. As projectors,
they satisfy the properties: Π2

� ¼ Π� and ΠþΠ− ¼ Π−Πþ.
A natural physical condition is to require that the normal

component of the fermionic current vanishes on the
boundary (for simplicity, we use here the Euclidean
signature),

ψ†γnψ j
∂M ¼ 0; γn ¼ nkγk: ð32Þ

This can be achieved by imposing the Dirichlet boundary
condition

Π−ψ j∂M ¼ 0; ð33Þ

provided the projector Π− satisfies certain commutation
condition with γn. To identify this condition, decomposing
ψ ¼ Πþψ þ Π−ψ and using that the projectors are unitary
and assuming condition (33), we find

ψ†γnψ j
∂M ¼ ψ†ΠþγnΠþψ j∂M ¼ ηψ†γnΠþΠ−ψ j∂M ¼ 0;

ð34Þ

where we used the commutativity of the two projectors and
assumed a relation Πþγn ¼ ηγnΠ−. In order to determine
the value of η, we apply once again projector Πþ to both
sides of this relation and get equation η2 ¼ η that gives
us η ¼ 1.
The square of Dirac operator D̂2 is an operator of second

order in derivative, and logically one has to impose more
conditions on the spinor components than just (33). These
conditions should be valid at least for the eigenvectors of
the Dirac operator D̂ψ ¼ λψ. Applying projector Π− to
both sides of this equation and assuming the condition (33),
we arrive at

Π−D̂ψ j
∂M ¼ 0: ð35Þ
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In order to simplify our discussion, let us consider the flat
space-time and the boundary ∂M to be a plane xn ¼ const,
while fxag are the coordinates on the boundary. Then we
may separate the normal and tangential components in the
Dirac operator, D̂ ¼ iγn∂n þ iγa∂a. Then condition (35)
leads to

Π−ðγn∂n þ γa∂aÞj∂M ¼ γn∂nΠþψ j∂M þ Π−γ
a
∂aψ j∂M ¼ 0:

ð36Þ

Since the last term contains derivatives along the boundary,
we expect this term to vanish due to (33). This is so
provided a commutation relation is valid, Π−γ

a ¼ γaΠ−
(again the consistency condition requires that a possible
numerical prefactor η in this relation to be 1). Thus, we
arrive at the Robin type boundary condition on the second
half of the spinor components,

∂nΠþψ j∂M ¼ 0: ð37Þ

We have also found the commutation relations between the
projectors and the gamma matrices,

Πþγn ¼ γnΠ−; Π−γ
a ¼ γaΠ−: ð38Þ

Representing Π� ¼ 1
2
ð1� χÞ, we find that χ has to anti-

commute with γn and commute with γa. This matrix γ can
be constructed as follows:

χ ¼ iγ�γn; ð39Þ

where γ� anticommutes with all gamma matrices. This is so
called the chirality matrix.
In the case of a curved space-time with a boundary ∂M

characterized by nontrivial extrinsic curvature K, the
commutations that we performed in (36) are more involved,
and they are performed in Appendix C. The respective
Robin type boundary condition that generalizes (37) is

ð∇̂n − SÞΠþψ ¼ 0; S ¼ −
1

2
KΠþ; ð40Þ

where K is the trace of the extrinsic curvature, which we
briefly introduce in Sec. II E. We note that the mixed
boundary conditions (40) are conformal invariant.
Even dimensions. In even dimensions, the mixed boun-

dary conditions on the boundary ∂M will be realized as

Π−ψ j∂M ⊕ ð∇̂n − SÞΠþψ j∂M ¼ 0: ð41Þ

We remind again that for Dirac spinorsΠ� ¼ 1
2
ð1� iγ�γnÞ,

where γ� is the chirality matrix and γn ¼ nkγk.
Odd dimensions. In the standard representation for the

gamma matrices of dimension 2
d−1
2 × 2

d−1
2 , there exists no

matrix that would anticommute with all gamma matrices.

This poses a problem for the formulation of appropriate
boundary conditions for the Dirac spinors. This forces us to
use the other known representation for the gamma matrices
that we discussed in section II C 1. Boundary conditions in
odd dimensions are obtained in the same way as in even
dimensions and by replacing γk with Γk and γ� with one of
the two chirality matrices, for instance, Γ�

1. So, in odd
dimensions, we set

χ ¼ Πþ − Π− ¼ iΓ�
1Γn: ð42Þ

One should note that the duplication due to the existence of
two nonequivalent representations in odd dimensions is
very crucial for properly setting the boundary conditions on
fermions. Otherwise, the set of boundary conditions would
be ill-defined and over-restricted in such cases. As a result
of this duplication, all traces will be doubled when we take
the trace of the various terms contributing to the boundary
conformal anomalies in odd dimensions. Applying these
boundary conditions, we calculate the boundary anomaly
for two explicit examples of d ¼ 3 and d ¼ 5 in the
following. In odd dimension d, we thus have

trI ¼ 2ds; trΠ� ¼ ds; ð43Þ

where ds ¼ 2
d−1
2 .

Notice that in any (odd or even) dimension, one has that

trγ ¼ 0: ð44Þ

Chiral transformations. For a massless Dirac field, one
may introduce a chiral transformation ψ → eiαγ

�
ψ where γ�

is a chirality matrix. The Dirac action is invariant under
such transformation. In even dimension d, the boundary
conditions (41) are also invariant. In the case of odd
dimension d, there exist two chirality matrices Γ�

1 and
Γ�
2 and, respectively, two possible choices for the chiral

transformations (19). If we choose matrix Γ�
1 to define the

projectors Πþ and Π− in the mixed boundary condition,
then these conditions are invariant under the chiral trans-
formations generated by the other chirality matrix,3 Γ�

2. The
invariance under chiral transformations means that the
current jiA ¼ ψ̄γiγ�ψ is conserved, ∇ijiA ¼ 0. The conser-
vation is violated in quantum theory that leads to the
quantum chiral anomaly. Below we shall compute the
anomaly in dimensions d ¼ 3, 4 and 5.

3The other possibility is to choose Γ�
1 as the chirality matrix.

Then this is similar to what one has in the even dimensions; for
instance, d ¼ 4. In particular, one has same difficulty (and same
resolution) in defying the invariant boundary conditions that we
discuss at the end of Sec. III. As far as we can see, the respective
chiral anomaly vanishes both in d ¼ 3 and d ¼ 5 dimensions.
That is why we do not consider this case here.
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E. Extrinsic geometry

To complete the discussion in this section, let us briefly
review the external geometry. External geometry is about
how a boundary is embedded in a manifold. The character-
istic measure of this geometry is the extrinsic curvature
tensor, or as it is often called in mathematical texts, the
second fundamental form. This tensor will be defined as

Kij ¼ hki h
l
j∇ðknlÞ; ð45Þ

where ni is the unit normal vector on the boundary, and
hij ¼ δij − ninj defines the projection on the boundary. This
tensor is symmetric by construction, with no component in
the normal direction, niKij ¼ 0. If it is preferred to consider
the extrinsic curvature as a tensor living on the boundary,
∂M, the following pullback can be calculated

Kab ¼ tiat
j
bKij: ð46Þ

Accordingly, one can define the induced metric on, or the
first fundamental form of the boundary

hab ¼ tiat
j
bhij ¼ tiat

j
bgij: ð47Þ

We denote the trace of this tensor, which frequently appears
in our equations, by K ¼ Ki

i ¼ Ka
a.

The covariant derivative defined with respect to the
intrinsic metric hab is denoted by ∇a and the respective
curvature by R̄, R̄ab, and R̄abcd. The relations between the
intrinsic curvature of the boundary and the curvature in the
5 dimensional space-time are given by the Gauss-Codazzi
identities presented in Appendix B.
Under the infinitesimal conformal transformations

δgij ¼ 2σgij, δni ¼ σni, the Weyl tensor transforms as
δWijkl ¼ 2σWijkl. The extrinsic curvature transforms as
follows:

δKab ¼ σKab þ γab∇nσ; δK ¼ −σK þ 4∇nσ;

δK̂ab ¼ σK̂ab; ð48Þ

where ∇n ¼ ni∇i and K̂ab ¼ Kab − 1
d−1 habK is the trace-

free part of the extrinsic curvature tensor. The basic
conformal tensors are, thus, the bulk Weyl tensor Wijkl

and the trace free extrinsic curvature of the boundary K̂ab.
The intrinsic Weyl tensor of the boundary metric is
expressed in terms of the bulk Weyl tensor and the extrinsic
curvature by means of the Gauss-Codazzi relations.

III. CONFORMAL AND CHIRAL ANOMALIES

The quantization of the fermionic field in a fixed
gravitational and gauge field background leads to the
quantum effective action,

WQ ¼ −
1

2
ln det D̂2; ð49Þ

expressed in terms of determinant of the square Dirac
operator D̂2. It can be calculated by using the heat kernel
Kðx; x0Þ ¼ hxje−sD̂2 jx0i,

WQ ¼ 1

2

Z
∞

ϵ2

ds
s
TrKðD̂2; x; x; sÞ; ð50Þ

where the trace includes also integration over x. The trace
of the heat kernel is characterized by its small s expansion,

TrKðD̂2; sÞ ¼
X
p¼0

apðD̂2Þsðp−dÞ2 ; s → 0; ð51Þ

where apðD̂2Þ are the heat kernel coefficients that are
represented by the bulk and boundary integrals,

apðD̂2Þ ¼
Z
M
tr ApðxÞ þ

Z
∂M

trBpðxÞ; ð52Þ

where the trace is taken over spinor and group indexes,
ApðxÞ and BpðxÞ are local invarinats constructed from the
curvature, gauge fields, and the extrinsic curvature; the
latter invariants appear in the boundary term BpðxÞ.
The invariance of the classical theory under local

conformal transformations means that the respective
classical stress energy tensor is traceless. This property
however is violated in the quantum theory that manifests in
the conformal anomaly. For a quantum Dirac field, the
integrated conformal anomaly in dimension d is determined
by the coefficient ad, see [18,23],

Z
Md

hTijigij ¼ −adðD̂2Þ: ð53Þ

The minus sign here is due to anticommutativity of the
fermion fields in the path integral.
Provided there exists a chirality matrix γ�, the theory

classically possesses a conserved axial current jiA ¼
ψ̄γiγ�ψ , ∇ijiA ¼ 0. In quantum theory, the conservation
is modified by a quantum anomaly. The local form of the
anomaly in terms of the heat kernel coefficients was found
in earlier works; see, for instance, [18,23]). When there are
both bulk and boundary contributions to the anomaly, it can
be presented as follows:

∇ihjiAðxÞi ¼ −2iðtrðγ�AdðxÞÞ þ trðγ�BdðxÞÞδ∂MÞ: ð54Þ

In dimension d ¼ 4, one has a difficulty since the
boundary conditions (41) are not invariant under the chiral
transformations since the chiral matrix γ� anticommutes
rather than commutes with χ ¼ Πþ − Π−. Resolution of
this difficulty leads to a generalization of the boundary
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conditions and the matrix χ. This issue was earlier
discussed in [24–26]. One introduces a family of the
boundary conditions (known as the chiral bag boundary
conditions) with χðθÞ defined as

χðθÞ ¼ iγ�γneiγ�θ; ð55Þ

where θ is a parameter. Under the chiral transformations
ψ → eiγ

�ϕψ it transforms as

χðθÞ → e−iγ
�ϕχðθÞeiγ�ϕ ¼ χðθ þ 2ϕÞ: ð56Þ

The boundary conditions remain invariant if one trans-
forms θ → θ − 2ϕ. This transformation is even more
natural if the parameter of transformation is a local
function of coordinates. Then θ is a function of the
coordinates and to have the theory invariant one intro-
duces axial gauge field that compensates the gradients of
ϕðxÞ. This direction was followed in [26]. We do not
consider here this generalization and keep parameter θ to
be constant. Then one has to compute the heat kernel of
the Dirac operator subject to the boundary conditions
parametrized by θ. The heat kernel coefficients then
become the rather nontrivial functions of θ. A remarkable
fact, however, proved in [24–26] is that the heat kernel
coefficient a4ðD̂2; χðθÞÞ is independent of parameter θ.
For the chiral anomaly, this means that

∂θTrðγ�a4ðD̂2; χðθÞÞÞ ¼ 0: ð57Þ

This property justifies that in what follows; we do the
computation of the anomaly for θ ¼ 0.
The other technical but important remark is the

following. The computation of the chiral anomaly with
the help of (54) requires the asymptotic expansion
trFðxÞe−sD̂2

, with FðxÞ being a matrix, while the results
available in [18] and [19] are given for the case when
FðxÞ is unity matrix multiplied by a function. So that
these results cannot be directly applicable.4 The differ-
ence is essential; there may appear terms that do not
commute with FðxÞ. Some such terms due to different
ordering of the operators in the heat kernel expansion
have been computed in [27]. It should be noted that this
problem does not arise in odd dimensions. Indeed, in this
case, FðxÞ ¼ Γ�

2 commutes with all operators that may
enter the heat kernel expansion, E, Ωij, χ, and ∇aχ so
that the order of operators is not important in this case
and one may use the asymptotic expansion obtained in
[18] and [19]. In dimension d ¼ 4, the situation is rather
different. The chirality matrix γ� ¼ γ5 commutes with E
and Ωij but anticommutes with χ and ∇aχ. This means
that in the bulk, one may still use the expansion found

in [18] and [19]. However, on the boundary, the order of
operators becomes important. Luckily, the boundary
terms in the asymptotic expansion that contribute to
the chiral anomaly in d ¼ 4 were previously computed
in [27]. We return to this issue in Sec. V B when we
compute the chiral anomaly in d ¼ 4.

IV. BOUNDARY ANOMALY FOR DIRAC SPINORS
IN d = 3 DIMENSIONS

A. Conformal anomaly

In d ¼ 3 dimensions, there are two boundary con-
formal invariants. One invariant is the integrated Euler
density

E2 ¼
Z
∂M3

R̄ ¼
Z
∂M3

ðR − 2Rnn − TrK2 þ K2Þ; ð58Þ

where in the second equality, we used the Gauss-Coddazzi
relations, and the other is

I1 ¼
Z
∂M3

TrK̂2 ¼
Z
∂M3

�
TrK2 −

1

2
K2

�
; ð59Þ

where K̂ab is the traceless part of the extrinsic curvature
tensor. The general form of the conformal anomaly in
d ¼ 3 dimensions then is

Z
Md

hTijigij ¼ −
a

384π
E2 þ

c
256π

I1: ð60Þ

For a conformal scalar field, the conformal charges were
computed in [1]. In the present normalization, ða ¼ −1;
c ¼ þ1Þ for a scalar field satisfying the Robin boundary
conditions.
Computationally, we use Eq. (53) that expresses

anomaly in terms of the heat kernel coefficient,

Z
Md

hTijigij ¼ −a3; ð61Þ

of the Dirac operator. The general form of this coefficient is
given in (D 1). Notice that in d ¼ 3, one defines χ ¼ iΓ�

1Γn.
The various constituent terms of a3 and their contributions
are listed below.

Various terms Extended forms Contribution to anomaly

R R trð16χÞ ¼ 0
E − 1

4
Rþ 1

2
FijΓiΓj trð96χÞ ¼ 0; trðχΓiΓjÞ ¼ 0

Rnn Rnn trð−8χÞ ¼ 0

TrK2 TrK2 trð2Πþ þ 10Π−Þ ¼ 24

K2 K2 trð13Πþ − 7Π−Þ ¼ 12

SK − 1
2
K2 trð96ΠþÞ ¼ 192

S2 1
4
K2 trð192Π2þÞ ¼ 384

trð∇aχ∇aχÞ 4TrK2 −124We thank the anonymous referee for rasing this issue.
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Note that in the third column, we have dropped the
overall factor 1

384ð4πÞ.
Collecting all terms, one finds

a3 ¼
1

384ð4πÞ
Z
∂M3

ð−24TrK2 þ 12K2Þ; ð62Þ

and this should be rewritten as a combination of the
conformal invariants (58) and (59). Matching the coeffi-
cients between (60) and (61), we get the following
algebraic equations:

R∶a ¼ 0;

Rnn∶ a ¼ 0;

TrK2∶aþ 3

2
c1 ¼ 6;

K2∶ − a −
3

4
c1 ¼ −3:

Solving these equations, we find

a ¼ 0; c ¼ 4: ð63Þ

The value of the charge c ¼ 4 corresponds to number of
components of the spinor in the doubling representation.
Notice that in terms of the charges, the d ¼ 3 spinor in this
representation can be viewed as equal number of conformal
scalars satisfying the Dirichlet ða ¼ 1; c ¼ þ1Þ and con-
formal Robin ða ¼ −1; c ¼ þ1Þ boundary conditions.
Note that in [7] the conformal anomaly due to the Dirac
field in the standard 2 × 2 representation was earlier
computed. Taking however our notes on the difficulties
with imposing consistently the boundary conditions in the
standard representation, that calculation was not fully
eligible. Notice also that the gauge field Ai does not make
a contribution to the conformal anomaly in d ¼ 3
dimensions.

B. Chiral anomaly in d = 3 dimensions

The chiral transformations that preserve the boundary
conditions are defined with respect the chirality matrix Γ�

2.
Computing the chiral anomaly according to (54), we
have to compute the trace in the heat kernel coeffi-
cient with matrix Γ�

2. Most of the traces vanish, for
instance, trðΓ�

2χÞ ¼ 0. The only nonvanishing term is
trðΓ�

2χΓiΓjÞ ¼ −4ϵnij. The chiral anomaly then is due to
the gauge fields,

trðΓ�
2; B3ðxÞÞ ¼ −

1

8π
ϵnijFij: ð64Þ

One can identify ϵnij ¼ ϵij, the intrinsic epsilon tensor
defined on the boundary ∂M3. In this expression, we
are supposed to also take trace over the group indexes.

Taking that the non-Abelian generators are traceless, only
the Abelian component survives. The chiral anomaly then
in d ¼ 3 is entirely due to Abelian gauge field Bi. The local
chiral anomaly is thus due to a boundary term,

∇ihjiAi ¼ −
1

2π
ϵij∂iBjδ∂M3

: ð65Þ

Notice that the anomaly has only a boundary contribution
that is precisely of the form of a chiral anomaly in two
dimensions.

V. ANOMALY IN d = 4 DIMENSIONS

A. Conformal anomaly in d = 4 dimensions

In d ¼ 4 dimensions, the integrated conformal anomaly
has both bulk and boundary parts as was noticed in [5]. The
computation we are about to perform in this section is
the one already done by Fursaev [5]. We of course
reproduce his result and include it here only for the reasons
of completeness of our consideration. In total, there are
four possible conformal invariants so that the integrated
anomaly reads

Z
Md

hTijigij ¼−
a
180

χ½M4� þ
b

1920π2

Z
M4

W2
ijkl

þ c1
240π2

Z
∂M4

K̂abWanbnþ
c2

280π2

Z
∂M4

TrK̂3;

ð66Þ

where we excluded the contribution due to the gauge fields.
These contributions will be discussed later separately. The
values for the charges a and b for free fields are well
known. For a Dirac field, one has a ¼ 11 and b ¼ 6. We
here focus on the boundary terms.
The general expression for heat kernel coefficient a4, is

given by (D 2). The various constituent boundary terms of
a4 and their contributions are listed below.

Various terms Extended forms Contribution to anomaly

∇nR ∇nR trð12I − 42Πþ þ 18Π−Þ ¼ 0
∇nE − 1

4
∇nR trð60I − 240Πþ þ 120Π−Þ ¼ 0

KabRab KabRab trð−4IÞ ¼ −16
KabRanbn KabRanbn trð16IÞ ¼ 64

KRnn KRnn trð−4IÞ ¼ −16
KR KR trð20IÞ ¼ 80
KE − 1

4
KR trð120IÞ ¼ 480

SR − 1
2
KR trð120ΠþÞ ¼ 240

SE 1
8
KR trð720ΠþÞ ¼ 1440

TrK3 TrK3
tr
�
224Πþþ320Π−

21

�
¼ 1088

21

KTrK2 KTrK2
tr
�
168Πþ−264Π−

21

�
¼ − 64

7

STrK2 − 1
2
KTrK2 trð48ΠþÞ ¼ 96

(Table continued)
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(Continued)

Various terms Extended forms Contribution to anomaly

K3 K3
tr
�
280Πþþ40Π−

21

�
¼ 640

21

SK2 − 1
2
K3 trð144ΠþÞ ¼ 288

S2K 1
4
K3 trð480Π2þÞ ¼ 960

S3 − 1
8
K3 trð480Π3þÞ ¼ 960

trðχ∇aχΩanÞ 2KabRanbn −60
Ktrð∇aχ∇aχÞ 4KTrK2 −12
Kabtrð∇aχ∇bχÞ 4TrK3 −24
trð∇aχ∇aχSÞ −KTrK2 −120

Above in the contribution to anomaly, we drop the
overall factor 1

360ð4πÞ2. So, for the anomaly,

Z
M4

hTijigij ¼ −a4; ð67Þ

and focusing only on the boundary terms, we find

a4 ¼
1

360ð4πÞ2
Z
∂M4

�
−56KabRanbn− 16KabRab− 16KRnn

þ 20KR−
928

21
TrK3þ 104

7
KTrK2þ 136

21
K3

�
: ð68Þ

Matching the coefficients with the general expression (66),
one arrives at the following algebraic equations

KabRanbn∶ − 8a − 24c1 ¼ 56;

KabRab∶8a − 12c1 ¼ 16;

KRnn∶8a − 12c1 ¼ 16;

KR∶ − 4aþ 4c1 ¼ −20;

TrK3∶ −
16

3
aþ 144

7
c2 ¼

928

21
;

KTrK2∶8a −
144

7
c2 ¼ −

104

7
;

K3∶ −
8

3
aþ 32

7
c2 ¼ −

136

21
;

solving, which, we find

Conformal charges Mixed boundary condition

a 11
b 6
c1 6
c2 5

The value of b comes from matching the bulk terms
and is well known. These values agree with those found
in [5].
Let us now discuss the contribution to the bulk and

boundary conformal anomaly due to the gauge fields. In the

bulk, the possible nontrivial contribution comes from the
terms trΩijΩij ¼ 4FijFij and trE2 ¼ 1

4
FijFkltrγiγjγkγl ¼

−2FijFij. Notice that in these expressions, one also
supposes to take trace over the group indexes; we omit
it here to avoid additional confusion with traces. Among
the boundary terms, there are several terms that depend
either on E ¼ 1

2
Fijγ

iγj or Ωij ¼ Fij (we here focus only on
dependence on the gauge fields) that potentially may
produce a contribution to anomaly due to the gauge fields.
However, all these terms identically vanish. For instance,
trðΠþEÞ ¼ 0 and trðχ∇aχΩa

nÞ ¼ 0. So, we conclude that
the only contribution to the conformal anomaly due to the
gauge fields is in the bulk,

Z
M4

hTijigij ¼
1

24π2

Z
M4

FijFij; ð69Þ

where the trace over the group indexes of the gauge
fields is assumed to be taken. This anomaly is of course
well known.

B. Chiral anomaly in d = 4 dimensions

First, we discuss purely gravitational part in the chiral
anomaly. We choose present result in the integrated form,

Z
M4

∇ihjiAi ¼ −2i
�Z

M4

trðγ�A4ðxÞÞ þ
Z
∂M4

trðγ�B4ðpÞÞ
�
:

ð70Þ

Analysis shows that only two terms are nonvanishing. One
term is in the bulk, trðγ�ΩijΩijÞ and the other on the

boundary trðγ�∇aχΩa
nÞ. Taking that Ωij ¼ 1

4
Rijklγ

kγl and

that ∇aχ ¼ iγ�γbKab (see Appendix), we find using that
trðγ�γiγjγkγlÞ ¼ −4iϵijkl,

trðγ�ΩijΩijÞ ¼ −
i
4
ϵklmnRijklRijmn;

trðγ�χ∇aχΩa
nÞ ¼ iϵnbcdRnacdKab: ð71Þ

The first term contributes to the anomaly in the bulk and the
second term to the anomaly on the boundary. As we
discussed earlier in the paper, one cannot directly use
the boundary coefficient B4 since it was obtained in the
assumption that it is contracted with a unity operator FðxÞ
that commutes with all other operators that appear in the
asymptotic expansion. In (70), matrix FðxÞ ¼ γ� commutes
with E and Ωij but anticommutes with χ and ∇aχ that
appear on the boundary. Therefore, one cannot directly use
B4 given in the Appendix since there may appear several
terms with different ordering of operators that replace a
single term in the commutative case. It is interesting that
precisely the terms that we need for computing the chiral
anomaly were found in [27],
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tr½FðxÞð−18χ∇aχΩan − 12∇aχΩanχ − 18Ωanχ∇aχ

þ 12χΩan∇aχÞ�: ð72Þ

In commutative case [FðxÞ is proportional to unity matrix],
these terms combine to −60trðFðxÞχ∇aχΩanÞ that comes
from B4 in appendix. For FðxÞ ¼ γ�, these terms combine
to produce

−12trðγ�χ∇aχΩanÞ; ð73Þ

where we used that χ and ∇aχ anticommute.
Combining these elements of the calculation, we con-

clude that

Z
M4

∇ihjiAi ¼ −
1

384π2

�Z
M4

ϵklpqRijklRij
pq

þ 8

5

Z
∂M4

ϵnabcKd
aRndbc

�
: ð74Þ

Using (B2), we can rewrite the second integrand as follows:

ϵnabcKd
aRndbc ¼ −2ϵnabcKd

a∇cKbd; ð75Þ

therefore,

Z
M4

∇ihjiAi ¼ −
1

384π2

�Z
M4

ϵklpqRijklRij
pq

−
16

5

Z
∂M4

ϵabcKd
a∇cKbd

�
; ð76Þ

where, in the boundary term, we use intrinsic ϵabc ¼ ϵnabc.
The first term here is 1

12
P, where P is the Pontryagin

number defined as

P ¼ 1

32π2

Z
M4

ϵklpqRijklRij
pq: ð77Þ

The boundary term in the chiral anomaly (74), (76) is new.
At the moment, it is not clear whether it should always be
combined with the Pontryagin term or it is an indepen-
dent term.
The other remarks is that the chiral anomaly has a

structure similar to that of the parity anomaly, see [28],
although the relative coefficients are different. The quan-
tum origin of these two anomalies is however quite
different, see discussion in [26]. For other recent works
on parity anomaly, see [26,28–33].
It is interesting to note that the boundary term (74) is

conformal invariant. Indeed, it can be expressed in terms of
the trace-free extrinsic curvature K̂ab and the Weyl ten-
sor, ϵnabcKd

aRndbc ¼ ϵnabcK̂d
aWndbc.

Our last comment in this section concerns the possible
contribution of the gauge fields to the chiral anomaly.

Analysis shows that there is only one term in the heat kernel
that contributes to the anomaly. This is a bulk term

trðγ�E2Þ ¼ 1

4
FijFkltrðγ�γiγjγkγlÞ ¼ −iϵijklFijFkl: ð78Þ

We conclude that a contribution due to the gauge fields to
the chiral anomaly is given byZ

M4

∇ihjiAi ¼ −
1

16π2

Z
M4

ϵijklFijFkl: ð79Þ

This is a known result in the literature. No boundary term
due to the gauge fields in the anomaly has been found.

VI. ANOMALY IN d = 5 DIMENSIONS

A. Boundary conformal anomaly in d = 5 dimensions

The conformal anomaly in 5 dimensions is entirely due
to the boundary terms,

Z
M4

hTijigij ¼
1

5760ð4πÞ2
Z
∂M5

�
aE4 þ

X8
k¼1

ckIk

�
: ð80Þ

E4 is the Euler density integrated over boundary ∂M5, and
χ½∂M5� ¼ 1

32π2
E4 is the Euler number of the boundary.

fIk; k ¼ 1;…; 8g is a set of eight conformal invariants.
Altogether, they form a complete basis of boundary
conformal invariants in five dimensions. For convenience,
below we give exact expressions for all these invariants.

1. Boundary invariants in d = 5 dimensions

We start our discussion of conformal anomaly in d ¼ 5
dimensions by recalling the complete list of boundary
conformal invariants in 5 dimensions [2],

E4 ¼
Z
∂M5

ðR̄2
acbd − 4R̄2

ab þ R̄2Þ

¼
Z
∂M5

ðR2
acbd − 4R2

ab þ R2 − 4R2
anbn þ 8RabRanbn

þ 4R2
nn − 4RRnn þ 4KabKcdRacbd þ 8ðK2ÞabRab

− 8KKabRab − 2TrK2Rþ 2K2R − 8ðK2ÞabRanbn

þ 8KKabRanbn þ 4TrK2Rnn − 4K2Rnn − 6TrK4

þ 8KTrK3 þ 3ðTrK2Þ2 − 6K2TrK2 þ K4Þ; ð81Þ

I1 ¼
Z
∂M5

ðTrK̂2Þ2 ¼
Z
∂M5

�
ðTrK2Þ2− 1

2
K2TrK2þ 1

16
K4

�
;

ð82Þ

I2 ¼
Z
∂M5

TrK̂4

¼
Z
∂M5

�
TrK4 − KTrK3 þ 3

8
K2TrK2 −

3

64
K4

�
; ð83Þ
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I3 ¼
Z
∂M5

W2
acbd ¼

Z
∂M5

�
R2
acbd −

16

9
R2
ab þ

5

18
R2 þ 8

3
RabRanbn þ

4

9
R2
nn −

8

9
RRnn

�
; ð84Þ

I4 ¼
Z
∂M5

W2
anbn ¼

Z
∂M5

�
1

9
R2
ab −

1

36
R2 þ R2

anbn −
2

3
RabRanbn −

4

9
R2
nn þ

2

9
RRnn

�
; ð85Þ

I5 ¼
Z
∂M5

K̂abK̂cdWacbd

¼
Z
∂M5

�
KabKcdRacbd þ

2

3
ðK2ÞabRab −

5

6
KKabRab −

1

12
TrK2Rþ 1

8
K2R

þ 1

2
KKabRanbn −

1

6
K2Rnn

�
; ð86Þ

I6 ¼
Z
∂M5

K̂a
cK̂

cbWanbn

¼
Z
∂M5

�
−
1

3
Ka

cKcbRab þ
1

6
KKabRab þ

1

12
TrK2R −

1

24
K2R

þ Ka
cKcbRanbn −

1

2
KKabRanbn −

1

3
TrK2Rnn þ

1

6
K2Rnn

�
; ð87Þ

I7 ¼
Z
∂M5

W2
nabc

¼
Z
∂M5

�
2∇̄cKab∇̄cKab −

8

3
∇̄aKa

b∇̄cKcb þ 4

3
∇̄aK∇̄bKab −

2

3
ð∇̄KÞ2

− 2KabKcdRacbd − 2ðK2ÞabRanbn þ 2ðK2ÞabRab þ 2KTrK3 − 2ðTrK2Þ2
�
; ð88Þ

I8 ¼
Z
∂M5

�
K̂ab∇nWanbn −

1

2
KK̂abWanbn −

2

9
∇aK̂

a
b∇cK̂

cb þ 2ðK̂2ÞabS̄ab − TrK̂2S̄aa

�

¼
Z
∂M5

�
2

3
Kab∇nRanbn −

1

12
K∇nRþ 2

3
KabKcdRacbd − Ka

cKbcRab

þ 1

3
TrK2R −

5

48
K2Rþ 5

3
Ka

cKbcRanbn −
1

3
KKabRanbn − TrK2Rnn þ

11

24
K2Rnn

þ TrK4 −
11

6
KTrK3 þ 47

48
K2TrK2 −

7

48
K4

−
1

3
∇cKab∇cKab þ 8

9
∇aKa

b∇cKbc −
7

9
∇aKab∇bK þ 25

72
ð∇KÞ2

�
: ð89Þ

Here, we have substituted S̄ab ¼ 1
2
ðR̄ab − 1

6
R̄habÞ, which is the 4 dimensional Schouten tensor computed with respect to the

intrinsic boundary metric hab.

2. Heat kernel coefficients in five dimensions

The general form of the coefficient B5ðxÞ in the expansion of heat kernel is given in (D 3); see [19,34]. According to the
notation of [19],

a5 ¼
1

5760ð4πÞ2
Z
∂M5

trðA1
5 þA2

5 þA3
5Þ; ð90Þ
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where tr is taken on spinor indices. The constituent terms of trAf1;2;3g
5 and their extended forms in terms of the curvature

tensors are listed in the following three tables.

Various terms of A1
5 Extended forms Contribution to anomaly

∇2
nE − 1

4
∇2

nR trð360χÞ ¼ 0

trð∇nESÞ 1
2
K∇nR −1440

E2 1
16
R2 trð720χÞ ¼ 0

RE − 1
4
R2 trð240χÞ ¼ 0

□R ∇2
nRþ K∇nR trð48χÞ ¼ 0

R2 R2 trð20χÞ ¼ 0

R2
ij R2

ab þ R2
nn þ 2R2

an trð−8χÞ ¼ 0

R2
ikjl R2

acbd þ 4R2
anbn þ 4R2

nabc trð8χÞ ¼ 0

RnnE − 1
4
RRnn trð−120χÞ ¼ 0

RRnn RRnn trð−20χÞ ¼ 0

trðRS2Þ K2R 480
∇2

nR ∇2
nR trð12χÞ ¼ 0

∇2
nRnn ∇2

nRnn trð15χÞ ¼ 0

trð∇nRSÞ −2K∇nR −270
trðRnnS2Þ K2Rnn 120
trðS□SÞ −ð∇KÞ2 − 1

2
K2TrK2 960

RabRanbn RabRanbn trð−16χÞ ¼ 0

R2
nn R2

nn trð−17χÞ ¼ 0

R2
anbn R2

anbn trð−10χÞ ¼ 0

trðES2Þ − 1
4
K2R 2880

trðS4Þ 1
4
K4 1440

Various terms of A2
5 Extended forms Contribution to anomaly

K∇nE − 1
4
K∇nR trð−90Πþ − 450Π−Þ ¼ −2160

K∇nR K∇nR trð− 111
2
Πþ − 42Π−Þ ¼ −390

Kab∇nRanbn Kab∇nRanbn trð−30ΠþÞ ¼ −120
trðK□̄SÞ 2ð∇̄KÞ2 240

trðKab∇̄a∇̄bSÞ 2∇̄aKab∇̄bK 420

trð∇̄aK∇̄aSÞ −2ð∇̄KÞ2 390

trð∇̄aKab∇̄bSÞ −2∇̄aKab∇̄bK 480
trð□̄KSÞ 2ð∇̄KÞ2 420

trð∇̄a∇̄bKabSÞ 2∇̄aKab∇̄bK 60

ð∇̄KÞ2 ð∇̄KÞ2 tr
�
487
16

Πþ þ 413
16

Π−

�
¼ 225

∇̄aKab∇̄bK ∇̄aKab∇̄bK trð238Πþ − 58Π−Þ ¼ 720

∇̄aKa
b∇̄cKbc ∇̄aKa

b∇̄cKbc
tr
�
49
4
Πþ þ 11

4
Π−

�
¼ 60

∇̄cKab∇̄cKab ∇̄cKab∇̄cKab
tr
�
535
8
Πþ − 355

8
Π−

�
¼ 90

∇̄cKab∇̄bKac ∇̄cKab∇̄bKac
tr
�
151
4
Πþ þ 29

4
Π−

�
¼ 180

□̄KK −ð∇̄KÞ2 trð111Πþ − 6Π−Þ ¼ 420

∇̄a∇̄bKabK −∇̄aKab∇̄bK trð−15Πþ þ 30Π−Þ ¼ 60

Kbc∇̄c∇̄aKab −∇̄aKa
b∇̄cKbc

tr
�
− 15

2
Πþ − 75

2
Π−

�
¼ 120

Kab∇̄a∇̄bK −∇̄aKab∇̄bK tr
�
945
4
Πþ − 285

4
Π−

�
¼ 660

Kab
□̄Kab −∇̄cKab∇̄cKab trð114Πþ − 54Π−Þ ¼ 240

trðKSEÞ 1
2
K2R 1440

trðKSRnnÞ −2K2Rnn 30
trðKSRÞ −2K2R 240

(Table continued)
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(Continued)

Various terms of A2
5 Extended forms Contribution to anomaly

trðKabRabSÞ −2KKabRab −60
trðKabSRanbnÞ −2KKabRanbn 180
K2E − 1

4
K2R trð195Πþ − 105Π−Þ ¼ 360

TrK2E − 1
4
TrK2R trð30Πþ þ 150Π−Þ ¼ 720

K2R K2R tr
�
195
6
Πþ − 105

6
Π−

�
¼ 60

TrK2R TrK2R trð5Πþ þ 25Π−Þ ¼ 120

K2Rnn K2Rnn tr
�
− 275

16
Πþ þ 215

16
Π−

�
¼ −15

TrK2Rnn TrK2Rnn tr
�
− 275

8
Πþ þ 215

8
Π−

�
¼ −30

KKabRab KKabRab trð−Πþ − 14Π−Þ ¼ −60
KKabRanbn KKabRanbn trð109

4
Πþ − 49

4
Π−Þ ¼ 60

Ka
cKbcRab Ka

cKbcRab trð16Πþ − 16Π−Þ ¼ 0

Ka
cKbcRanbn Ka

cKbcRanbn tr
�
133
2
Πþ þ 47

2
Π−

�
¼ 360

KabKcdRacbd KabKcdRacbd trð32Πþ − 32Π−Þ ¼ 0

trðKS3Þ − 1
2
K4 2160

K2S2 K4 1080
TrK2S2 K2TrK2 360
K3S −2K4 885

4

KTrK2S −2K2TrK2 315
2

TrK3S −2KTrK3 150
K4 K4 trð2041

128
Πþ þ 65

128
Π−Þ ¼ 1053

16

K2TrK2 K2TrK2
tr
�
417
32

Πþ þ 141
32

Π−

�
¼ 279

4

ðTrK2Þ2 ðTrK2Þ2 tr
�
375
32

Πþ − 777
32

Π−

�
¼ − 201

4

KTrK3 KTrK3 trð25Πþ − 17
2
Π−Þ ¼ 66

TrK4 TrK4
tr
�
231
8
Πþ þ 327

8
Π−

�
¼ 279

Various terms of A3
5 Extended forms Contribution to anomaly

E2 1
16
R2 trð−180IÞ ¼ −1440

χEχE 1
16
R2 trð180χ2Þ ¼ 1440

trðð∇SÞ2Þ ð∇KÞ2 þ 1
2
K2TrK2 −120

trðχð∇SÞ2Þ ð∇KÞ2 720

trðΩabΩabÞ −R2
acbd − 2R2

nabc − 105
4

trðχΩabΩabÞ 0 120
trðχΩabχΩabÞ −R2

acbd þ 2R2
nabc

105
4

trðΩanΩa
nÞ −2R2

anbn − R2
nabc −45

trðχΩanΩa
nÞ 0 180

trðχΩanχΩa
nÞ 2R2

anbn − R2
nabc −45

trðΩanχ∇aS − Ωan∇aSχÞ −2KKabRanbn −360
trðχ∇aχΩa

nKÞ 4KKabRanbn −45
trð∇aχ∇bχΩabÞ −4KabKcdRacbd −180
trðχ∇aχ∇bχΩabÞ 0 30

trðχ∇aχ∇nΩa
nÞ 4Kab∇nRanbn 90

trðχ∇aχ∇bΩabÞ −4KabKcdRacbd − 4∇bKacRabcn 120

trðχ∇aχΩbnKabÞ 4Ka
cKbcRanbn −180

trð∇aχ∇aEÞ 0 300

trð∇aχ∇aχEÞ −2TrK2R −180

(Table continued)
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(Continued)

Various terms of A3
5 Extended forms Contribution to anomaly

trðχ∇aχ∇aχEÞ 0 −90
trð□χEÞ 0 240

trð∇aχ∇aχRÞ 8TrK2R −30
trð∇aχ∇bχRabÞ 8Ka

cKbcRab −60
trð∇aχ∇bχRn

ab
nÞ −8Ka

cKbcRanbn −30
trð∇aχ∇aχK2Þ 8K2TrK2 − 675

32

trð∇aχ∇bχKa
cKbcÞ 8TrK4 − 75

4

trð∇aχ∇aχTrK2Þ 8ðTrK2Þ2 − 195
16

trð∇aχ∇bχKabKÞ 8KTrK3 − 675
8

trð∇aχ∇aSKÞ −2K2TrK2 −330
trð∇aχ∇bSKabÞ −2KTrK3 −300
trð∇aχ∇aχ∇bχ∇bχÞ 8ðTrK2Þ2 15

4

trð∇aχ∇bχ∇aχ∇bχÞ 16TrK4 − 8ðTrK2Þ2 15
8

trð□χ□χÞ 8∇aKa
b∇cKbc þ 8ðTrK2Þ2 − 15

4

trð∇a∇bχ∇a∇bχÞ 8∇cKab∇cKab þ 8TrK4 − 105
2

trð∇aχ∇aχ□χÞ 0 −15
trð∇a□χ∇aχÞ −8∇aKa

b∇cKbc − 8ðTrK2Þ2 − 135
2

In derivation of the second columns of the tables, we have extensively used the identities in A and that trΠ� ¼ 4 in the
doubling representation in d ¼ 5. By adding the similar terms of the second columns, taking into account the coefficients of
the third columns and after using the identities of Sec. B, we get the following result:

a5 ¼
1

5760ð4πÞ2
Z
∂M5

�
240Kab∇nRanbn − 30K∇nR

− 450KabKcdRacbd þ 210Ka
cKbcRab þ 60KKabRab þ 60TrK2R − 15K2R

− 810Ka
cKbcRanbn þ 240KKabRanbn − 30TrK2Rnn þ 45K2Rnn

− 261TrK4 þ 381KTrK3 −
1251

4
ðTrK2Þ2 þ 66K2TrK2 −

267

16
K4

þ 300∇̄cKab∇̄cKab − 240∇̄aKa
b∇̄cKbc − 15ð∇̄KÞ2

�
: ð91Þ

It is a curious observation that in this expression, the
Riemann curvature appears only in combination with the
extrinsic curvature. The anomaly thus vanishes for a
geodesic boundary. A technical explanation for this fact
is that in the heat kernel (D 3), all terms that are
expressed only in terms of the Riemann curvature come
with matrix χ ¼ Πþ − Π− whose trace vanishes. In the
case of a scalar field considered in [2], one has that χ is
either þ1 or −1 depending on the type of the boundary
condition. As a result, the curvature terms are present in
a5 and in the anomaly. For exactly same reason, such
terms did not appear in d ¼ 3 dimensions for the Dirac
field and appeared for the conformal scalars.

3. Conformal charges in d = 5

This expression gives us the integrated conformal
anomaly

Z
∂M5

hTijigij ¼ −a5: ð92Þ

Now it has to be presented as a combination of the
conformal invariants, E4 and I1 to I8, and compared to
the general form of the anomaly (80) and determine the
conformal charges ða; c1;…; c8Þ. Doing this, we arrive at
27 algebraic equations for nine conformal charges that we
present in Appendix E. These equations have unique
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solutions that give the following values for the conformal
charges:

Conformal charges Mixed boundary condition

a 0
c1 − 429

4

c2 621
c3 0
c4 0
c5 270
c6 990
c7 −210
c8 −360

4. Comparison with conformal scalar field

It is instructive to compare the found charges for the
fermions with the charges computed earlier in [2] for a
conformal scalar field satisfying either the Dirichlet boun-
dary condition or conformal Robin boundary condition.

Conformal
charges

Dirichlet boundary
condition

Robin boundary
condition

a 17
8

− 17
8

c1 − 681
32

39
32

c2 609
8

309
8

c3 − 81
8

81
8

c4 − 27
2

27
2

c5 − 9
8

189
8

c6 819
8

441
8

c7 − 615
16

195
16

c8 − 45
2

− 45
2

Denoting the charges for Dirichlet, Robin, and mixed
boundary conditions with indices, D, R, and M, respec-
tively, the following relations are observed between some
charges. For invariants, which are written purely in terms of
the Riemann tensor and its contractions, we find a relation

aM ¼ aD þ aR ¼ 0; cM3;4 ¼ cD3;4 þ cR3;4 ¼ 0: ð93Þ
For the charge a, we saw a similar relation in d ¼ 3
dimensions. For invariants that include the derivatives, we
find a relation

cM7;8 ¼ 8ðcD7;8 þ cR7;8Þ: ð94Þ
No obvious relations were observed for the other charges.

5. Including the gauge fields

Let us now discuss the possible contribution of the gauge
fields to the conformal anomaly in 5 dimensions. There are
twopossible terms in the anomaly thatwepresent in the form,

1

1536π2

Z
∂M5

ðb1FabFab þ b2FanFa
nÞ; ð95Þ

that are due to the gauge fields. In the heat kernel coefficient
a5, the gauge field Ai with the field strength Fij may appear
either viaE¼− 1

4
Rþ 1

2
Fijγ

iγj or viaΩij¼ 1
4
Rijklγ

kγlþFij.
There are plenty of such terms in the heat kernel coefficient
(D 3). Most of them give zero after taking the trace over
spinor indexes. The nonvanishing terms are given in the
table below.

Various terms
including Fij Extended forms

Contribution
to anomaly

trðE2Þ −4FabFab − 8FanFan −180
trðχEχEÞ −4FabFab þ 8FanFan 180
trðΩabΩabÞ 8FabFab − 105

4

trðχΩabχΩabÞ 8FabFab 105
4

trðΩanΩa
nÞ 8FanFa

n −45
trðχΩanχΩa

nÞ 8FanFa
n −45

We have also checked that the possible cross terms that
contain both Fij and the Riemann curvature do not appear.
Collecting all terms together, we find that the anomaly

Z
∂M5

hTijigij ¼ −
3

128π2

Z
∂M5

FanFa
n: ð96Þ

Comparing with (95), we conclude that in the anomaly for a
Dirac fermion the charge b1 ¼ 0, while the only non-
vanishing charge is b2. At the moment, we do not have an
explanation for this result.
This result is worth comparing with the gauge field terms

in the conformal anomaly for a complex scalar field carrying
a representation for the gauge group G and coupled to the
gauge fields. In this case, χ ¼ −1 for the Dirichlet boundary
conditions, and χ ¼ þ1 for the conformal Robin boundary
conditions; see [2].We have computed these terms. Only two
terms in the heat kernel coefficient contribute to the anomaly
in this case:ΩabΩab andΩanΩan.Omitting the details that are
quite simple, the result is summarized below.

Conformal
charges

Dirichlet
boundary
condition

Robin
boundary
condition

Mixed
boundary
condition

b1 4 9 0
b2 −4 −3 36

We find a relation

bMk ¼ 6ðbDk þ bRk Þ; k ¼ 1; 2; ð97Þ

between the charges for fermions (M) and scalars with
Dirichlet (D) and Robin (R) boundary conditions.

B. Chiral anomaly in d = 5 dimensions

1. Parity odd conformal invariants

There are three parity odd conformal invariants in five
dimensions, see [13],
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J1 ¼
Z
∂M5

ϵabcdWabefWcd
ef; ð98Þ

J2 ¼
Z
∂M5

ϵabcdWabneWcdn
e ¼ 4

Z
∂M4

ϵabcd∇bK̂ae∇dK̂
e
c;

ð99Þ

and

J3 ¼
Z
∂M5

ϵabcdK̂e
aK̂

f
bWcdef; ð100Þ

where Wabcd is the bulk Weyl tensor with the boundary
indices, and K̂ab is the traceless part of the extrinsic
curvature tensor. If we include the gauge fields, then there
is one more invariant

J4 ¼
Z
∂M5

ϵnabcdFabFcd: ð101Þ

The chiral anomaly decomposes as follows:Z
M4

∇ihjiAi ¼ −
1

96ð4πÞ2 ðd1J1 þ d2J2 þ d3J3 þ d4J4Þ:

ð102Þ

2. Computation using heat kernel coefficients

For the Dirac field, the anomaly isZ
M4

∇ihjiAi ¼ −2
Z
∂M5

trðiΓ�
2B5ðxÞÞ: ð103Þ

There are four terms5 in the heat kernel that produce a
nontrivial trace in (103).

Various parity odd terms Extended forms Contribution to anomaly

trðiΓ�
2χΩabΩabÞ 1

2
ϵnabcdRabefRcd

ef 120
trðiΓ�

2χΩanΩa
nÞ 1

2
ϵnabcdRabneRcdn

e ¼ 2ϵnabcd∇bKae∇dKe
c 180

trðiΓ�
2χ∇aχ∇bχΩabÞ 2ϵnabcdKe

aK
f
bRcdef

30

trðiΓ�
2χE

2Þ 2ϵnabcdFabFcd 720

It is not difficult to see that in these invariants, the Riemann
tensor can be replaced by Weyl tensor and the extrinsic
curvature by its trace-free part so that these are precisely
invariants that we listed above.Matching the coefficientswith
the general form (102), we find the following corresponding
charges.

Conformal charges Mixed boundary condition

d1 2
d2 3
d3 2
d4 48

This completes our consideration of anomaly in d ¼ 5
dimensional space-time.

VII. CONCLUSIONS

That the quantum anomalies are modified in the presence
of boundaries by the boundary terms is an interesting
subject of research that came into light in the recent years.
In the present paper, we have developed a systematic
calculation for the boundary terms in the conformal anomaly

and in the chiral anomaly. The conformal anomaly in even
dimensional space-time in this context was studied in [5,6]
(see also earlier paper [4]) where the anomaly in d ¼ 4 was
systematically studied. It is intriguing that the both anoma-
lies, which are usually absent in odd dimensions, can be
nontrivial in the presence of boundaries. For the conformal
anomaly, this is known already for some time [1]. The
complete basis of conformal boundary terms in the anomaly
ind ¼ 5was identified in [2],where the respective conformal
charges for a scalar field with either Dirichlet or Robin
boundary conditionswere computed. In the present paper, we
continued the previous study ind ¼ 5 and have computed the
conformal charges forDirac fermions ind ¼ 5 dimensions.A
new subject of research that is in the focus of the present paper
is the boundary terms in the chiral anomaly. To the best of our
knowledge, this issue was not widely discussed before. An
earlier paper, known to us, on this subject is [27], where in
d ¼ 4 dimensions, the boundary terms in chiral anomaly due
to the axial gauge fields (not considered in the present paper)
were found in a rather restrictive case when the boundary is
geodesic. We should also mention here the papers by
Vassilevich et al. [26,28,32,33] on parity anomaly. This
anomaly is different from the chiral anomaly although it
has a similar odd structure.
Below, we summarize our findings:
(i) Boundary terms due to gauge field in chiral anomaly

in d ¼ 3 dimensions.

5The coefficient of χ∇aχ∇bχΩab was reported as 90 for the
first time in [19]. Later in [35], I. Moss corrected this and reported
this coefficient as 30. We thank the referee for bringing this to our
attention.
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(ii) Gravitational boundary term in chiral anomaly in
d ¼ 4 dimensions.

(iii) Boundary conformal anomaly for fermions in di-
mension d ¼ 5 both due to the gravitational field
and the gauge fields.

(iv) The anomaly due to gauge fields for conformal scalars
with either Dirichlet or Robin boundary condition in
d ¼ 5 dimensions that completes our previous study
[2] of anomaly for conformal scalars.

(v) Boundary terms in chiral anomaly in d ¼ 5 dimen-
sions both due to the gravitational field and the gauge
fields.

It would be interesting to develop the holographic aspects
for the present calculations of the anomaly, which is the
subject of awork in progress [36]. It would also be interesting
to find some applications for our findings such as the chiral
anomaly in d ¼ 3 or the boundary term in the chiral anomaly
in d ¼ 4. We leave these issues for a further study.

APPENDIX A: IDENTITIES FOR MATRICES
AND TRACES

γnΠ� ¼ Π∓γn; γaΠ� ¼ Π�γa; χΠ� ¼ Π�: ðA1Þ
∇aγ

� ¼ 0; ∇aγ
n ¼ Kabγ

b; ∇aγ
b ¼ −Kb

aγ
n: ðA2Þ

∇aχ ¼ iγ�γbKab

∇a∇bχ ¼ iγ�ðγc∇aKbc þ γnK2
abÞ; ðA3Þ

We also need the intrinsic derivatives of S ¼ − 1
2
KΠþ,

which are calculated below:

∇̄aS ¼ −
1

2
∇̄aKΠþ −

1

4
K∇̄aχ;

∇̄a∇̄bS ¼ −
1

2
ð∇̄a∇̄bKÞΠþ −

1

4
K∇̄a∇̄bχ

−
1

4
ð∇̄aK∇̄bχ þ ∇̄bK∇̄aχÞ: ðA4Þ

These identities rely only on the commutation relations and
do not depend on the choice of the representation for
gamma matrices and for the chirality matrix γ�.

APPENDIX B: IDENTITIES

Gauss-Codazzi relations

Racbd ¼ R̄acbd − ðKabKcd − KadKbcÞ; ðB1Þ
Rnabc ¼ ð∇cKab −∇bKacÞ; ðB2Þ

where R̄acbd represents the intrinsic Riemann tensor of the
boundary. In particular, in 5 dimensions, we need

R2
nabc ¼ 2∇cKab∇cKab − 2∇cKab∇bKac; ðB3Þ

where the second term can be expanded as (B10).

The contracted equations read

Ran ¼ Rna ¼ ð∇bKb
a −∇aKÞ: ðB4Þ

Rab ¼ R̄ab þ Ranbn þ ðK2
ab − KKabÞ; ðB5Þ

and a double contraction yields

R ¼ R̄þ 2Rnn þ ðTrK2 − K2Þ: ðB6Þ
Thus, one finds for the projected Einstein tensor

Gnn ¼ −
1

2
R̄ −

1

2
ðTrK2 − K2Þ: ðB7Þ

Differential equations

□R ¼ □Rþ∇2
nRþ K∇nR; ðB8Þ

∇nGnn ¼ KabRab − KRnn −∇a∇bKab þ□K; ðB9Þ

∇cKab∇bKac ¼ ∇aKa
b∇cKbc þ KabKcdRacbd

− KacKb
cRab þ KacKb

cRanbn − KTrK3

þ ðTrK2Þ2 þ T:D:; ðB10Þ
∇2

nGnn ¼ −RabRanbn þ R2
nn − Ka

cKbcRab þ TrK2Rnn

þ Kab∇nRab − K∇nRnn −∇aKab∇bK

þ ð∇KÞ2 þ T:D:; ðB11Þ
∇nRab ¼ ∇nRanbn − 2KcdRacbd − Kc

aRbncn − Kc
bRancn

þ KRanbn þ KabRnn − TrK2Kab þ KKacKc
b

þ∇a∇cKc
b þ∇b∇cKc

a −□Kab −∇a∇bK;

ðB12Þ
where we defined ∇nGnn ¼ nkninj∇kGij, □Gnn ¼
ninj□Gij and ∇2

nGnn ¼ nknlninj∇k∇lGij.

APPENDIX C: DERIVATION OF THE ROBIN
BOUNDARY CONDITION

Since Dirac operator is a first order operator, one
imposes the Dirichlet boundary condition on a half of
the Dirac spinor components

Π−ψ j∂M ¼ 1

2
ð1 − iγ�γnÞψ j

∂M ¼ 0: ðC1Þ

Acting the projector on both sides of the eigenvalue
equation, γk∇kψ ¼ λψ , one gets zero again; thus,

Π−ðγk∇kÞψ j∂M ¼ 0: ðC2Þ

Putting γnΠ− on the left-hand side, we get

ΠþγnΠ−ðγk∇kÞψ j∂M ¼ 0; ðC3Þ
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where we have defined Πþ ¼ 1
2
ð1þ iγ�γnÞ and have used

γnΠ− ¼ Πþγn: ðC4Þ

By separating the normal and tangential components, we
will have

ΠþγnΠ−ðγn∇n þ γa∇aÞψ j∂M ¼ 0

→ Π2þγn∇nψ j∂M þ ΠþγnγaΠ−∇aψ j∂M ¼ 0

→ Πþ∇nψ j∂M − Πþγnγað∇aΠ−Þψ j∂M ¼ 0

→ Πþ

�
∇n þ

1

2
γnγa∇aχ

�
ψ j

∂M ¼ 0

→

�
∇n þ

1

2
Πþγnγa∇aχ

�
Πþψ j∂M ¼ 0; ðC5Þ

where we have defined χ ¼ Πþ − Π− ¼ iγ�γn. Comparing
with ð∇n − SÞΠþψ j∂M ¼ 0, we conclude that

S ¼ −
1

2
Πþγnγa∇aχΠþ: ðC6Þ

Now using (A2) and (A3), one deduces

S ¼ −
1

2
KΠþ: ðC7Þ

APPENDIX D: BULK AND BOUNDARY TERMS
IN THE HEAT KERNEL COEFFICIENT ad IN

DIMENSION d [18,19]

1. Heat kernel coefficient in d = 3

B3ðxÞ ¼
1

384ð4πÞ ½96χEþ 16χR − 8χRnn þ ð2Πþ þ 10Π−ÞTrK2 þ ð13Πþ − 7Π−ÞK2

þ 96SK þ 192S2 − 12∇̄aχ∇̄aχ�: ðD1Þ

2. Heat kernel coefficient in d = 4

A4ðxÞ ¼
1

360ð4πÞ2 ð60□Eþ 12□Rþ 2RikjlRikjl − 2RijRij þ 180E2 þ 60REþ 5R2 þ 30ΩijΩijÞ

B4ðxÞ ¼
1

360ð4πÞ2
�
ð−240Πþ þ 120Π−Þ∇nEþ ð−42Πþ þ 18Π−Þ∇nRþ 24□̄K

þ 120KEþ 20KR − 4KRnn þ 16KabRanbn − 4KabRab

þ 1

21
ð224Πþ þ 320Π−ÞTrK3 þ 1

21
ð168Πþ − 264Π−ÞKTrK2 þ 1

21
ð280Πþ þ 40Π−ÞK3

þ 720SEþ 120SRþ 48STrK2 þ 144SK2 þ 480S2K þ 480S3 þ 120□̄S

− 60χ∇̄aχΩan − 24Kab∇̄aχ∇̄bχ − 12K∇̄aχ∇̄aχ − 120S∇̄aχ∇̄aχ

�
: ðD2Þ

3. Heat kernel coefficient in d = 5

B5ðxÞ ¼
1

5760ð4πÞ2
�
360χ∇2

nE − 1440∇nESþ 720χE2 þ 240χ□̄Eþ 240χREþ 48χ∇2Rþ 20χR2

− 8χR2
ij þ 8χR2

ikjl − 120χRnnE − 20χRRnn þ 480RS2 þ 12χ∇2
nR

þ 24χ□̄Rnn þ 15χ∇2
nRnn − 270S∇nRþ 120RnnS2 þ 960S□̄Sþ 16χRabRanbn

− 17χR2
nn − 10χRanbnRa

n
b
n þ 2880ES2 þ 1440S4

− ð90Πþ þ 450Π−ÞK∇nE −
�
111

2
Πþ þ 42Π−

�
K∇nR − 30ΠþKab∇nRanbn þ 240K□̄S

þ 420Kab∇̄a∇̄bSþ 390∇̄aK∇̄aSþ 480∇̄aKab∇̄bSþ 420S□̄K þ 60∇̄a∇̄bKabS

þ
�
487

16
Πþ þ 413

16
Π−

�
ð∇̄KÞ2 þ ð238Πþ − 58Π−Þ∇̄aKab∇̄bK þ

�
49

4
Πþ þ 11

4
Π−

�
∇̄aKab∇̄cKc

b
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þ
�
535

8
Πþ −

355

8
Π−

�
∇̄cKab∇̄cKab þ

�
151

4
Πþ þ 29

4
Π−

�
∇̄cKab∇̄bKac þ ð111Πþ − 6Π−ÞK□̄K

þ ð−15Πþ þ 30Π−ÞK∇̄a∇̄bKab þ
�
−
15

2
Πþ þ 75

2
Π−

�
Kbc∇̄c∇̄aKa

b þ
�
945

4
Πþ −

285

4
Π−

�
Kab∇̄a∇̄bK

þ ð114Πþ − 54Π−ÞKab
□̄Kab þ 1440KSEþ 30KSRnn þ 240KSR − 60KabRabSþ 180KabRanbnS

þ ð195Πþ − 105Π−ÞK2Eþ ð30Πþ þ 150Π−ÞTrK2Eþ
�
195

6
Πþ −

105

6
Π−

�
K2R

þ ð5Πþ þ 25Π−ÞTrK2Rþ
�
−
275

16
Πþ þ 215

16
Π−

�
K2Rnn þ

�
−
275

8
Πþ þ 215

8
Π−

�
TrK2Rnn

þ ð−Πþ − 14Π−ÞKKabRab þ
�
109

4
Πþ −

49

4
Π−

�
KKabRanbn þ 16χKabKb

cRac

þ
�
133

2
Πþ þ 47

2
Π−

�
KacKb

cRanbn þ 32χKabKcdRacbd þ
315

2
KTrK2Sþ

�
2041

128
Πþ þ 65

128
Π−

�
K4

þ 150STrK3 þ
�
417

32
Πþ þ 141

32
Π−

�
K2TrK2 þ 1080K2S2 þ 360TrK2S2

þ
�
375

32
Πþ −

777

32
Π−

�
ðTrK2Þ2 þ 885

4
SK3 þ

�
25Πþ −

17

2
Π−

�
KTrK3 þ 2160KS3

þ
�
231

8
Πþ þ 327

8
Π−

�
TrK4 − 180E2 þ 180χEχE − 120ð∇̄SÞ2 þ 720χð∇̄SÞ2

−
105

4
ΩabΩab þ 120χΩabΩab þ 105

4
χΩabχΩab − 45ΩanΩa

n þ 180χΩanΩa
n − 45χΩanχΩa

n

− 360Ωa
nχ∇̄aSþ 360Ωa

n∇̄aSχ − 45χ∇̄aχΩa
nK − 180∇̄aχ∇̄bχΩab þ 30χ∇̄aχ∇̄bχΩab

þ 90χ∇̄aχ∇nΩa
n þ 120χ∇̄aχ∇̄bΩab − 180χ∇̄aχΩbnKab þ 300∇̄aχ∇̄aE − 180∇̄aχ∇̄aχE

− 90χ∇̄aχ∇̄aχEþ 240□̄χE − 30∇̄aχ∇̄aχR − 60∇̄aχ∇̄bχRab − 30∇̄aχ∇̄bχRn
ab

n

−
675

32
∇̄aχ∇̄aχK2 −

75

4
∇̄aχ∇̄bχKacKb

c −
195

16
∇̄aχ∇̄aχTrK2 −

675

8
∇̄aχ∇̄bχKKab

− 330∇̄aχ∇̄aSK − 300∇̄aχ∇̄bSKab þ 15

4
∇̄aχ∇̄aχ∇̄bχ∇̄bχ þ 15

8
∇̄aχ∇̄bχ∇̄aχ∇̄bχ −

15

4
ð□̄χÞ2

−
105

2
∇̄a∇̄bχ∇̄a∇̄bχ − 15∇̄aχ∇̄aχ□̄χ −

135

2
∇̄aχ∇̄a

□̄χ

�
: ðD3Þ

APPENDIX E: ALGEBRAIC EQUATION FOR CONFORMAL CHARGES IN d = 5

TrK4∶ − 6aþ c2 þ c8 ¼ 261;

KTrK3∶8a − c2 þ 2c7 −
11

6
c8 ¼ −381;

ðTrK2Þ2∶3aþ c1 − 2c7 ¼
1251

4
;

K2TrK2∶ − 6a −
1

2
c1 þ

3

8
c2 þ

47

48
c8 ¼ −66;

K4∶aþ 1

16
c1 −

3

64
c2 −

7

48
c8 ¼

267

16
;

R2
acbd∶aþ c3 ¼ 0;

R2
ab∶ − 4a −

16

9
c3 þ

1

9
c4 ¼ 0;
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R2∶aþ 5

18
c3 −

1

36
c4 ¼ 0;

R2
anbn∶ − 4aþ c4 ¼ 0;

RabRanbn∶8aþ 8

3
c3 −

2

3
c4 ¼ 0;

R2
nn∶4aþ 4

9
c3 −

4

9
c4 ¼ 0;

RRnn∶ − 4a −
8

9
c3 þ

2

9
c4 ¼ 0;

KabKcdRacbd∶4aþ c5 − 2c7 þ
2

3
c8 ¼ 450;

Ka
cKbcRab∶8aþ 2

3
c5 −

1

3
c6 þ 2c7 − c8 ¼ −210;

KKabRab∶ − 8a −
5

6
c5 þ

1

6
c6 ¼ −60;

TrK2R∶ − 2a −
1

12
c5 þ

1

12
c6 þ

1

3
c8 ¼ −60;

K2R∶2aþ 1

8
c5 −

1

24
c6 −

5

48
c8 ¼ 30;

Ka
cKbcRanbn∶ − 8aþ c6 − 2c7 þ

5

3
c8 ¼ 810;

KKabRanbn∶8aþ 1

2
c5 −

1

2
c6 −

1

3
c8 ¼ −240;

TrK2Rnn∶4a −
1

3
c6 − c8 ¼ 30;

K2Rnn∶ − 4a −
1

6
c5 þ

1

6
c6 þ

11

24
c8 ¼ −45;

∇̄cKab∇̄cKab∶2c7 −
1

3
c8 ¼ −300;

∇̄aKa
b∇̄cKbc∶ −

8

3
c7 þ

8

9
c8 ¼ 240;

∇̄aKab∇̄bK∶
4

3
c7 −

7

9
c8 ¼ 0;

ð∇̄KÞ2∶ − 2

3
c7 þ

25

72
c8 ¼ 15;

Kab∇nRanbn∶ −
2

3
c8 ¼ 240;

K∇nR∶
1

12
c8 ¼ −30:

These equations have a unique solution that determines the values for the conformal charges given in the main text.
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