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In the presence of boundaries, the quantum anomalies acquire additional boundary terms. In odd
dimensions, the integrated conformal anomaly, for which the bulk contribution is known to be absent, is
nontrivial due to the boundary terms. These terms became a subject of active study in the recent years. In
the present paper, we continue our previous study [1,2] and compute explicitly the anomaly for fermions in
dimensions d = 3, 4 and 5. The calculation in dimension 5 is new. It contains both contributions of the
gravitational field and the gauge fields to the anomaly. In dimensions d = 3 and 4, we reproduce and clarify
the derivation of the results available in the literature. Imposing the conformal invariant mixed boundary
conditions for fermions in odd dimension d, we particularly pay attention to the necessity of choosing the
doubling representation for gamma matrices. In this representation, there exists a possibility to define
chirality and thus address the question of the chiral anomaly. The anomaly is entirely due to terms defined
on the boundary. They are calculated in the present paper in dimensions d =3 and 5 due to both
gravitational and gauge fields. To complete the picture, we reevaluate the chiral anomaly in d =4
dimensions and find a new boundary term that is supplementary to the well-known Pontryagin term.
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I. INTRODUCTION

The role of quantum anomalies in the modern theoretical
constructions becomes increasingly important. Conformal
anomalies, first discovered by Capper and Duff almost
50 years ago [3], by now serve as excellent example of very
rich and mutually useful interplay between the differential
geometry, quantum fundamental physics and applications.
In the recent years, a new aspect of conformal anomaly
came into play. The presence of boundaries changes rather
dramatically what we used to think about the anomaly.
Indeed, the local geometric invariants from which the
anomaly can be constructed have necessarily even dimen-
sionality. So, that the anomaly is conventionally absent in
space-time of odd dimension d since no invariant of
appropriate odd dimensionality exits. This is no more
true in the presence of boundaries. A geometric quantity,
extrinsic curvature, characterizes how the boundary is
embedded into space-time and it has dimension one.
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This allows one to construct new invariants of both odd
and even dimensionality on the boundary of space-time. As
a consequence, the conformal anomaly or, better to say, the
integrated conformal anomaly can be now nontrivial even if
the dimension of space-time is odd. If dimension is even
there, additionally to the bulk terms, appear boundary terms
with increasingly reach structure as the dimension d grows.
An earlier paper in this direction is [4]. The complete
structure or the building blocks from which one can
construct the boundary anomaly terms is not yet fully
understood for large values of d. In dimensions d = 3 and
d = 4, the situation is by now quite clear after the works
[1,5,6]. In [5], the values of the boundary conformal
charges in dimension d = 4 have been computed for free
conformal fields: scalar fields, Dirac fermions, and gauge
fields. In dimension d =5, a recent progress has been
reached after identifying a complete set of boundary
conformal invariants in this dimension in [2]. The respec-
tive conformal charges for a conformal scalar fieldind = 5
have been computed in [2]. The further developments in
this direction include [7-15].

The primary goal of the present paper is to build on our
previous work [2] and compute the boundary conformal
charges for the fermions in dimension d = 5. Let us briefly
discuss a difficulty that looks technical but whose reso-
lution leads to interesting consequences. Considering
the Dirac fermions in space-time with boundaries, one
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TABLE I. Contributions to boundary terms in conformal and chiral anomaly.

Dimensions d=3 d=4 d=>5

Type of anomaly Conformal Chiral Conformal Chiral Conformal Chiral
Boundary terms due to gravitational field Yes No Yes Yes Yes Yes
Boundary terms due to gauge field No Yes No No Yes Yes

encounters the following problem. One imposes the boun-
dary conditions on the fermion fields of the mixed type: A
half of components of the fermion satisfy the Dirichlet
condition while the other half a conformal Robin type
condition. Thus, one needs to define two projectors I, =
1(14y)and II_ =1 (1 — y) such that IT, +II_ = 1. The
condition on matrix y is that it has to anticommute with
y" = nr, where n* is normal vector to the boundary, and
commute with all other gamma matrices y*,a =1, ...,d — 1
projected along the boundary. In even dimension d, this
matrix can be easily constructed, y = iy*y". Here y* is the
chirality matrix, it anticommutes with all gamma matrices.

. . . d-1 d-1
In odd dimension d, provided one uses the usual 22 x 22
representation for gamma-matrices, such a matrix y* does
not exist. This forces us to use other representation for

. . . d+1 d+1 . . .
gamma matrices of dimension 22 x 2z that is obtained in
the so-called doubling procedure. For earlier discussions of
this representation, see [16,17]. In this representation, it is
known that two chiral matrices exist, what we call below I'}
and I';. The notion of chirality is thus naturally defined.
That is why in the present paper, we also compute the chiral
anomaly in dimensions d = 3, 4 and 5.

In dimension d = 4, the above mentioned problem does
not arise, and one uses the standard representation for
gamma matrices. The respective chiral anomaly is due
to the Pontryagin term, as is well known. However, the
careful analysis presented below reveals a new boundary
term in the chiral anomaly that is supplementary to the
Pontryagin term.

In order to make our consideration general, we also
include the coupling of the fermion field to a background
gauge field and compute the contribution of the gauge field
to the boundary terms in the conformal and chiral anoma-
lies. Our findings are summarized in Table I.

It should be noted that the key tool in our computations is
the heat kernel method. Thus, we heavily rely on the
available results for the heat kernel coefficients for mani-
folds with boundaries given in [18] and [19].

II. THE BASICS

A. Dirac operator in curved space-time

The theory lives on manifold M covered by coordinates
x' and with the metric g; ;- This manifold has a boundary
oM the study of its contribution to the conformal anomaly
is the main topic of this note. We also introduce a basis of

orthonormal tangent vectors, the n-beins e?(x) at each
point on M so that

gij :npqefe?' (1)

We consider a Dirac theory describing a spinor y/(x) on this
manifold. The action reads

S = / dx/~gipir*"V, (2)

where y* = e’j,y” and y? are the Dirac matrices satisfying
the Clifford algebra,

yPy? + ylyP = 2P, qg,p=0,1,...d-1,

n = diag(—1,+1,...,+1). (3)
The covariant derivative is defined as a combination of the
purely gravitational covariant derivative and the gauge field

A; =iB; +A{2%, where A“ form the algebra of non-
Abelian transformations and B, is the Abelian gauge field,

@i = Vi +Al (4)

The gravitational covariant derivative is defined as

1
Vo = (00 + 30l"%, v )

where 77 =1[y”,y7] and wf?

defined via the relation

. . .1
is the spin connection

Vel = 0,ef —T}ef + w” el = 0. (6)

. 2
Defining R;;?? = e{elR;**, one has

R..P4 — aia)qu - ajwfq + [a)[,w']pq- (7)

ij J

A direct calculation shows that

'Also known as coefficients of Fock-Ivanenko [20].

Note that our convention for the Riemann tensor differs by
sign from the one used in [18]. On the other hand, our convention
for Ricci tensor and Ricci scalar agree with [18].
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1
Vi,V)] = ZRiquVqu- (8)

From this, we may define the field strength tensor as

PN 1
Q;=[V.V)|=F;+ ZRijp"Yqu- )

The Laplace type operator for Dirac theory is the square of
Dirac operator,

Ay = (iy*V,)? = =(V* + E)y. (10)
For E, one finds
E = 1R+1[i j]F (11)
- 4 4 VY ij*

B. Fermions in even and odd dimensions

First we discuss the Dirac gamma matrices in even and
odd dimensions.

C. Even dimension d

In even dimensions, there is a unique representation for

the Clifford algebra in terms of the 2% x 27 unitary matrices.
In even dimensions, the following unitary matrix anticom-
mutes with all gamma matrices, and thus, it can be used to
introduce a chiral representation,

vt = _i%},oyl . _yd—l’ (]/*)2 =1. (12)
Explicitly, for d = 2,

]/1 — 027 },* — —]/O]/l — —i6102 — 63, (13)

where ¢',i = 1, 2, 3 are the 2 x 2 Pauli matrices.
For d = 4, one has

. i ~1,23
0 ( 0 —l]I) J123 _ ( 0 —io >
-1 0 ) ic?3 0 )

I 0
¥ _ _7.,0,1,2,3 . 14
vo=-ir'r'r'y <0 —]1> (14)

1. Odd dimension d, doubling trick

In odd dimensions, for the standard representation 27 x
2T for the gamma matrices, the product

v =i

d=3
2

Pt (15)

belongs to the Clifford algebra by itself. Here, two different
signs determine two unequal sets of Dirac matrices. Thus,
in odd dimensions, there does not exist a matrix, y*,

sometimes called the chirality matrix, that would anticom-
mute with all gamma matrices. For the reasons that will be
clear shortly, when we will discuss the appropriate mixed
boundary conditions for the fermions, we would need such
a matrix to exist. This is the primary reason why we shall
consider a doubled representation of gamma matrices
obtained in a procedure sometimes referred to as a doubling
procedure. The physical meaning of this doubling can be
understood in this way that, for chirality to be meaningful,
we need two distinguished spin states in odd dimensions,
which is what the doubling procedure provides [16].
Following the trick, we define

Fk:]/k®021 k=0,1,....,.d—1, (16)

where in the last step, we choose y?~! = 4=, These new

gamma matrices satisfy the Clifford algebra relations,
T 4 Tk = 244 (17)

The product of first d — 2 gamma matrices now is not the
same as I'“!. The respective Dirac fermions have 2%
components, twice as the standard Dirac fermions. The
other interesting feature is that now there exist two
candidates for the chiral matrix,

CP=1. MP=L

(18)

Both these matrices are Hermitian and anticommute with
all gamma matrices (16). Thus, one may define two chiral
type transformations,

r=I®s, I}=IQo0;.

w—eli% and y — Py, (19)

More generally, four matrices, I, I'j, I';, and [['},I7%],
generate a unitary group of transformations. More on
this representation and its applications in physics can be
found in [17].

d=3
In 3 dimensions, we start with

/0 = —ic!, s P2 =% =53 (20)
Therefore,
( 0 —i62> ( 0 —i02>
0 = , Il = ,
—ic? 0 io? 0
62 0
2= . 21
(7 ) e1)

These matrices are Hermitian, except I'% which is anti-
Hermitian. As explained above, we define two different
chirality matrices as
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| s 0
IM=h,®c = 0 o) (22)
and
a0
[5=ho®0 = (O 63>- (23)

These two Hermitian matrices anticommute with all of the
gamma matrices we introduced above. It can be easily
checked that
i T2 = — iy, (24)
and thus,
tr(C; 50T = —4ielik, (25)

d=>5
In 5 dimensions,

: i~123
0= < 0 —L]I> 123 _ < 0 —io )
-1 0 ) ic>3 0

(26)

On the other hand,

I 0
4 _ _;,0,1,2,3 . 27
vt =—=ir’y'ry (0 _]I) (27)

Then, using (16), one can construct I'“,a =0, ..., 4. Two
chirality matrices in 5 dimensions are

I =154 Q0 (28)
and
=Dy ®c. (29)
Then one finds that
IO 28T = g g, (30)

and thus, the trace is

(O30T T™) = 8elikem, (31)

D. Boundary conditions

In the present paper, we are interested in situation when
the space-time M has a boundary dM. We consider a
spacelike boundary so that n?> = n;n* = 1 for the normal
vector n = n*d,. Respectively, near the boundary, one may
separate the normal direction given by vector n and the

directions along the boundary given by a basis of tangent
vectors tXd,a=1,...,d—1. The appropriate mixed
boundary conditions were first formulated by Gilkey and
Branson [21]. In our discussion of the boundary conditions
to be imposed on the Dirac fermions, we follow the chapter
3 in the book of Fursaev and Vassilevich [22] and give some
necessary clarifications.

For a differential operator of order ¢, one has to impose g
initial conditions, i.e., conditions at the initial constant time
hyperurface. If there is a second, final constant time
hypersurface, the required boundary conditions are distrib-
uted between them so that at each component of the
boundary, one has to impose ¢/2 conditions. The Dirac
operator D = iykﬁk is a first order operator so that in this
case, one has to impose the boundary conditions on a half
of fermionic components. Suppose that I1, is the projector
that selects a half of the spinor components. One can define
I1_ = 1 —TII, the projector on the other half. As projectors,
they satisfy the properties: 112 = I and IT, IT_ = I1_I1,.

A natural physical condition is to require that the normal
component of the fermionic current vanishes on the
boundary (for simplicity, we use here the Euclidean
signature),

vl =0, 7" =ngt. (32)
This can be achieved by imposing the Dirichlet boundary
condition

Iy =0, (33)

provided the projector II_ satisfies certain commutation
condition with y". To identify this condition, decomposing
yw = 1,y + II_y and using that the projectors are unitary
and assuming condition (33), we find

vy wlow = v Ly Tyl = my 'y TL Ty, = O,
(34)

where we used the commutativity of the two projectors and
assumed a relation I1, y" = »y"II_. In order to determine
the value of 7, we apply once again projector I1, to both
sides of this relation and get equation 5> = 5 that gives
us n = 1.

The square of Dirac operator D? is an operator of second
order in derivative, and logically one has to impose more
conditions on the spinor components than just (33). These
conditions should be valid at least for the eigenvectors of
the Dirac operator Dy = Ay. Applying projector II_ to
both sides of this equation and assuming the condition (33),
we arrive at

H—DW|0M = 0. (35)
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In order to simplify our discussion, let us consider the flat
space-time and the boundary 0M to be a plane x" = const,
while {x“} are the coordinates on the boundary. Then we
may separate the normal and tangential components in the
Dirac operator, D = iy"d, + iy®d,. Then condition (35)
leads to

H—(ynan + yuau)bM = ynanH+W|0M + H—yaaal//|0M =0.
(36)

Since the last term contains derivatives along the boundary,
we expect this term to vanish due to (33). This is so
provided a commutation relation is valid, IT_y? = y“II_
(again the consistency condition requires that a possible
numerical prefactor # in this relation to be 1). Thus, we
arrive at the Robin type boundary condition on the second
half of the spinor components,

0Ly = 0. (37)

We have also found the commutation relations between the
projectors and the gamma matrices,

I, y" = y"IL, I_y? = yTI_. (38)
Representing I1. = (1 4 y), we find that y has to anti-

commute with y” and commute with y¢. This matrix y can
be constructed as follows:

x =iy y", (39)

where y* anticommutes with all gamma matrices. This is so
called the chirality matrix.

In the case of a curved space-time with a boundary oM
characterized by nontrivial extrinsic curvature K, the
commutations that we performed in (36) are more involved,
and they are performed in Appendix C. The respective
Robin type boundary condition that generalizes (37) is

. 1
(vn - S)H+W = 0’ S= _EKH-&-’ (40)

where K is the trace of the extrinsic curvature, which we
briefly introduce in Sec. IIE. We note that the mixed
boundary conditions (40) are conformal invariant.

Even dimensions. In even dimensions, the mixed boun-
dary conditions on the boundary oM will be realized as

Ty @ (@n = Sy gy = 0. (41)

We remind again that for Dirac spinors IT,. = (1 £ iy*y"),
where y* is the chirality matrix and y" = ngy*.
0dd dimensions. In the standard representation for the

gamma matrices of dimension 2z x 27, there exists no
matrix that would anticommute with all gamma matrices.

This poses a problem for the formulation of appropriate
boundary conditions for the Dirac spinors. This forces us to
use the other known representation for the gamma matrices
that we discussed in section II C 1. Boundary conditions in
odd dimensions are obtained in the same way as in even
dimensions and by replacing y* with T'* and y* with one of
the two chirality matrices, for instance, I'}. So, in odd
dimensions, we set

y =T, —T_ =il (42)

One should note that the duplication due to the existence of
two nonequivalent representations in odd dimensions is
very crucial for properly setting the boundary conditions on
fermions. Otherwise, the set of boundary conditions would
be ill-defined and over-restricted in such cases. As a result
of this duplication, all traces will be doubled when we take
the trace of the various terms contributing to the boundary
conformal anomalies in odd dimensions. Applying these
boundary conditions, we calculate the boundary anomaly
for two explicit examples of d =3 and d =5 in the
following. In odd dimension d, we thus have

trl = 2d,, trll,. =d,, (43)

where d; = 27,
Notice that in any (odd or even) dimension, one has that

try = 0. (44)

Chiral transformations. For a massless Dirac field, one
may introduce a chiral transformation yr — e'® y where y*
is a chirality matrix. The Dirac action is invariant under
such transformation. In even dimension d, the boundary
conditions (41) are also invariant. In the case of odd
dimension d, there exist two chirality matrices I'] and
I'; and, respectively, two possible choices for the chiral
transformations (19). If we choose matrix I'] to define the
projectors II, and II_ in the mixed boundary condition,
then these conditions are invariant under the chiral trans-
formations generated by the other chirality matrix,’ I';. The
invariance under chiral transformations means that the
current j', = yy'y*y is conserved, V,ji, = 0. The conser-
vation is violated in quantum theory that leads to the
quantum chiral anomaly. Below we shall compute the
anomaly in dimensions d = 3, 4 and 5.

The other possibility is to choose I'} as the chirality matrix.
Then this is similar to what one has in the even dimensions; for
instance, d = 4. In particular, one has same difficulty (and same
resolution) in defying the invariant boundary conditions that we
discuss at the end of Sec. III. As far as we can see, the respective
chiral anomaly vanishes both in d =3 and d =5 dimensions.
That is why we do not consider this case here.
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E. Extrinsic geometry

To complete the discussion in this section, let us briefly
review the external geometry. External geometry is about
how a boundary is embedded in a manifold. The character-
istic measure of this geometry is the extrinsic curvature
tensor, or as it is often called in mathematical texts, the
second fundamental form. This tensor will be defined as

Kij = hfth(kl’ll), (45)

where n' is the unit normal vector on the boundary, and
h'. = &, — nn; defines the projection on the boundary. This
tensor is symmetric by construction, with no component in
the normal direction, n'K;; = 0. If it is preferred to consider
the extrinsic curvature as a tensor living on the boundary,
oM, the following pullback can be calculated

Kab - tilrl/?Klj (46)

Accordingly, one can define the induced metric on, or the
first fundamental form of the boundary

hay = tle{;hij = léf{,gi,’- (47)

We denote the trace of this tensor, which frequently appears
in our equations, by K = K| = K¢.

The covariant derivative defined with respect to the
intrinsic metric A, is denoted by V, and the respective
curvature by R, R,,, and R ;.. The relations between the
intrinsic curvature of the boundary and the curvature in the
5 dimensional space-time are given by the Gauss-Codazzi
identities presented in Appendix B.

Under the infinitesimal conformal transformations
09;; = 20g;j, on; =on;, the Weyl tensor transforms as
0Wijiy = 20W,jy;. The extrinsic curvature transforms as
follows:

0Ky = 0Ky + Yap V0, 6K = —cK + 4V 0,
5kab = Gkab» (48)

where V, = n'V; and K, = K, — 7 h,,K is the trace-
free part of the extrinsic curvature tensor. The basic

conformal tensors are, thus, the bulk Weyl tensor W;;y,

and the trace free extrinsic curvature of the boundary K ab-
The intrinsic Weyl tensor of the boundary metric is
expressed in terms of the bulk Weyl tensor and the extrinsic
curvature by means of the Gauss-Codazzi relations.

III. CONFORMAL AND CHIRAL ANOMALIES

The quantization of the fermionic field in a fixed
gravitational and gauge field background leads to the
quantum effective action,

1 .
Wo =—3ln det D?, (49)

expressed in terms of determinant of the square Dirac
operator D?. It can be calculated by using the heat kernel
K(x.x) = (x]e=D|),

1 © ds N
Wo :_[2 TTrK(Dz,x,x,s), (50)

where the trace includes also integration over x. The trace
of the heat kernel is characterized by its small s expansion,

(p—d

TrK (D?,s5) = Zap(bz)sT), s—>0, (51)
p=0

where a,(D?) are the heat kernel coefficients that are
represented by the bulk and boundary integrals,

a P32 = X X
(D) AtrAp( )+/0Mter( ), (52)

where the trace is taken over spinor and group indexes,
A,(x) and B, (x) are local invarinats constructed from the
curvature, gauge fields, and the extrinsic curvature; the
latter invariants appear in the boundary term B, (x).

The invariance of the classical theory under local
conformal transformations means that the respective
classical stress energy tensor is traceless. This property
however is violated in the quantum theory that manifests in
the conformal anomaly. For a quantum Dirac field, the
integrated conformal anomaly in dimension d is determined
by the coefficient a,, see [18,23],

/ (T = —ag(D?). (53)
My

The minus sign here is due to anticommutativity of the
fermion fields in the path integral.

Provided there exists a chirality matrix y*, the theory
classically possesses a conserved axial current j) =
wy'r*'w, V;ji, =0. In quantum theory, the conservation
is modified by a quantum anomaly. The local form of the
anomaly in terms of the heat kernel coefficients was found
in earlier works; see, for instance, [18,23]). When there are
both bulk and boundary contributions to the anomaly, it can
be presented as follows:

Vi(ja(x)) = =2i(tr(y*Ay(x)) + tr(r"Ba(x))3on).  (54)

In dimension d =4, one has a difficulty since the
boundary conditions (41) are not invariant under the chiral
transformations since the chiral matrix y* anticommutes
rather than commutes with y = II1, —II_. Resolution of
this difficulty leads to a generalization of the boundary
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conditions and the matrix y. This issue was earlier
discussed in [24-26]. One introduces a family of the
boundary conditions (known as the chiral bag boundary
conditions) with y(0) defined as

x(0) = iy*y e, (55)

where 6 is a parameter. Under the chiral transformations
w — e Py it transforms as

2(0) = e y(0)e™? =y (0 + 2). (56)

The boundary conditions remain invariant if one trans-
forms 6 — 6 —2¢. This transformation is even more
natural if the parameter of transformation is a local
function of coordinates. Then @ is a function of the
coordinates and to have the theory invariant one intro-
duces axial gauge field that compensates the gradients of
¢(x). This direction was followed in [26]. We do not
consider here this generalization and keep parameter 6 to
be constant. Then one has to compute the heat kernel of
the Dirac operator subject to the boundary conditions
parametrized by 6. The heat kernel coefficients then
become the rather nontrivial functions of #. A remarkable
fact, however, proved in [24-26] is that the heat kernel
coefficient a,(D?,y(6)) is independent of parameter 6.
For the chiral anomaly, this means that

9gTe(r*as(D? x(6))) = 0. (57)

This property justifies that in what follows; we do the
computation of the anomaly for 8 = 0.

The other technical but important remark is the
following. The computation of the chiral anomaly with
the help of (54) requires the asymptotic expansion
trF(x)e=*D*, with F(x) being a matrix, while the results
available in [18] and [19] are given for the case when
F(x) is unity matrix multiplied by a function. So that
these results cannot be directly applicable.* The differ-
ence is essential; there may appear terms that do not
commute with F(x). Some such terms due to different
ordering of the operators in the heat kernel expansion
have been computed in [27]. It should be noted that this
problem does not arise in odd dimensions. Indeed, in this
case, F(x) =TI% commutes with all operators that may
enter the heat kernel expansion, E, Q;;, y, and V. so
that the order of operators is not important in this case
and one may use the asymptotic expansion obtained in
[18] and [19]. In dimension d = 4, the situation is rather
different. The chirality matrix y* = ys commutes with £
and €;; but anticommutes with y and Vx. This means
that in the bulk, one may still use the expansion found

*We thank the anonymous referee for rasing this issue.

in [18] and [19]. However, on the boundary, the order of
operators becomes important. Luckily, the boundary
terms in the asymptotic expansion that contribute to
the chiral anomaly in d =4 were previously computed
in [27]. We return to this issue in Sec. VB when we
compute the chiral anomaly in d = 4.

IV. BOUNDARY ANOMALY FOR DIRAC SPINORS
IN d =3 DIMENSIONS

A. Conformal anomaly

In d =3 dimensions, there are two boundary con-
formal invariants. One invariant is the integrated Euler
density

E, = / R= / (R —2R,, — TrK? + K?),  (58)
oM, oM,

where in the second equality, we used the Gauss-Coddazzi
relations, and the other is

N 1
I, = / Trk? = / <Tr1<2——1<2>, (59)
oM, oM, 2

where K, is the traceless part of the extrinsic curvature
tensor. The general form of the conformal anomaly in
d = 3 dimensions then is

. a c
TN = ——F 4+ —1],. 60
/Md< 19" =~ 35422 T 2561 (60)
For a conformal scalar field, the conformal charges were
computed in [1]. In the present normalization, (a = —1,

¢ = +1) for a scalar field satisfying the Robin boundary
conditions.

Computationally, we use Eq. (53) that expresses
anomaly in terms of the heat kernel coefficient,

/ (T, = —as, (61)
My

of the Dirac operator. The general form of this coefficient is
givenin (D 1). Notice thatin d = 3, one defines y = iI"]T™.
The various constituent terms of a3 and their contributions
are listed below.

Various terms  Extended forms Contribution to anomaly

R R tr(16y) =0

E —IR4+1F,;IT/  w(96y) = 0,u(I'TV) =0
Rnn Rnn tI’(—S}() =0

Trk? Trk?2 tr(201, + 1011_) = 24
K? K? (1310, — 711_) = 12
SK -1K? tr(96I1,) = 192

s2 1K? tr(19211%) = 384
r(V Vi) 4TrK? —-12
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Note that in the third column, we have dropped the
overall factor 384—}%.

Collecting all terms, one finds

1
% = 384(an)

/ (=24TrK? + 12K?),  (62)
oM

and this should be rewritten as a combination of the
conformal invariants (58) and (59). Matching the coeffi-
cients between (60) and (61), we get the following
algebraic equations:

R:a =0,
R,,: a=0,

3
Ter:a—i-Ecl =6,
3

Kz: —Cl—zcl = -3.

Solving these equations, we find
c =4 (63)

The value of the charge ¢ = 4 corresponds to number of
components of the spinor in the doubling representation.
Notice that in terms of the charges, the d = 3 spinor in this
representation can be viewed as equal number of conformal
scalars satisfying the Dirichlet (a = 1,¢ = +1) and con-
formal Robin (a = —1,c¢ = +1) boundary conditions.
Note that in [7] the conformal anomaly due to the Dirac
field in the standard 2 x 2 representation was earlier
computed. Taking however our notes on the difficulties
with imposing consistently the boundary conditions in the
standard representation, that calculation was not fully
eligible. Notice also that the gauge field A; does not make
a contribution to the conformal anomaly in d =3
dimensions.

B. Chiral anomaly in d =3 dimensions

The chiral transformations that preserve the boundary
conditions are defined with respect the chirality matrix I'5.
Computing the chiral anomaly according to (54), we
have to compute the trace in the heat kernel coeffi-
cient with matrix I';. Most of the traces vanish, for
instance, tr(I7y) =0. The only nonvanishing term is
tr(I3xT'TY) = —4€"J. The chiral anomaly then is due to
the gauge fields,

|
tr(I3, B3 (x)) = ——€"VFy;. (64)
87
One can identify "/ = ¢/, the intrinsic epsilon tensor
defined on the boundary oM;. In this expression, we
are supposed to also take trace over the group indexes.

Taking that the non-Abelian generators are traceless, only
the Abelian component survives. The chiral anomaly then
in d = 3 is entirely due to Abelian gauge field B'. The local
chiral anomaly is thus due to a boundary term,

. 1
Vi(jy) = —ZGUOiBj‘SaMg- (65)

Notice that the anomaly has only a boundary contribution
that is precisely of the form of a chiral anomaly in two
dimensions.

V. ANOMALY IN d =4 DIMENSIONS

A. Conformal anomaly in d =4 dimensions

In d = 4 dimensions, the integrated conformal anomaly
has both bulk and boundary parts as was noticed in [5]. The
computation we are about to perform in this section is
the one already done by Fursaev [5]. We of course
reproduce his result and include it here only for the reasons
of completeness of our consideration. In total, there are
four possible conformal invariants so that the integrated
anomaly reads

. b
/ (Tij)g” = —i)([M4] +—2/ Wz'kl
M, / 180 19207° Jpr, Y

Cl rrab G2 3
+ — KW + — TrK”,
24072 AM anbn T 280> Am

(66)

where we excluded the contribution due to the gauge fields.
These contributions will be discussed later separately. The
values for the charges a and b for free fields are well
known. For a Dirac field, one has a = 11 and b = 6. We
here focus on the boundary terms.

The general expression for heat kernel coefficient ay, is
given by (D 2). The various constituent boundary terms of
a4 and their contributions are listed below.

Various terms Extended forms  Contribution to anomaly

V.R V.R tr(120 — 4211, + 18I1.) =0
V,.E —1V,R (601 — 24011, + 120I1_) =0
KR, KR, tr(—41) = —16
KabRanbn KabRanbn tI'(16]I) =64
KR,, KR,, tr(—41) = —16
KR KR tr(201) = 80
KE -1KR tr(1201) = 480
SR -1KR tr(12011, ) = 240
SE tKR tr(72011,) = 1440
Trk? TrK? tr (M) _ 1088

21 21
KTrK? KTrK? tr(msm—zém_) 64

21 7
STrK? —1KTrK? tr(48I1,) = 96

(Table continued)
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(Continued)

Various terms Extended forms  Contribution to anomaly

K3 K3 2801‘l++401'l ) 640
SK? -1K3 (144H )=2 8
S’K }TK3 tr(480I12.) = 960
s3 - é K3 tr(480I13.) = 960
tr(Zvaann) 2KabRallel _60

Ktr(V Vi) 4KTrK? -12
Kt (V yV,x) 4TrK3 —24

tr(V yVays) —KTrK? -120

Above in the contribution to anomaly, we drop the

overall factor 360( 360040 So, for the anomaly,

/ <Tij>gij = —dy, (67)
My

and focusing only on the boundary terms, we find

1
= —56KR —16KR,, — 16KR
ay 360(471’)2/ ( anbn ab nn

928 104

136
20KR - ——TrK3 +—KTrK>+——K3 |.
+20 71 +— KTk +— ) (68)

Matching the coefficients with the general expression (66),
one arrives at the following algebraic equations
KR pn: —8a—24c, = 56,
KR, :8a—12c, = 16,
KR,,:8a—12c; = 16,
KR: —4a+ 4c; = =20,

Tegse 16 144 928

TR T
144 104
KTrK?:8a — —cp = ——,
7 7
o 8,32 136
3 7 2 21"

solving, which, we find

Conformal charges Mixed boundary condition

a 11
b 6
C 6
Cy 5

The value of b comes from matching the bulk terms
and is well known. These values agree with those found
in [5].

Let us now discuss the contribution to the bulk and
boundary conformal anomaly due to the gauge fields. In the

bulk, the possible nontrivial contribution comes from the
terms trQ;; QY = 4F;F' and wE* = L F;;Fytry'y/yky =
—2F;;F. Notice that in these expressions, one also
supposes to take trace over the group indexes; we omit
it here to avoid additional confusion with traces. Among
the boundary terms, there are several terms that depend
eitheron E = F,;y'y/ or Q;; = F,; (we here focus only on
dependence on the gauge fields) that potentially may
produce a contribution to anomaly due to the gauge fields.
However, all these terms identically vanish. For instance,
tr(IT, E) = 0 and tr(yV,xQ¢) = 0. So, we conclude that
the only contribution to the conformal anomaly due to the
gauge fields is in the bulk,

y 1 .
T Ngi =—— | F..Fi, 69
‘//\44< 1,)>g 2471_2 A“ ij ( )

where the trace over the group indexes of the gauge
fields is assumed to be taken. This anomaly is of course
well known.

B. Chiral anomaly in d =4 dimensions

First, we discuss purely gravitational part in the chiral
anomaly. We choose present result in the integrated form,

[ v -2 ([ wtrastn+ [ 5 ' Balp) )

(70)

Analysis shows that only two terms are nonvanishing. One
term is in the bulk, tr(y*Q;;QY) and the other on the

boundary tr(y*V,yQ¢). Taking that Q;;
that V,y =

Rz,kl? }’ and
ir*y’K,, (see Appendix), we find using that

tr(y*yiyjykyf) — _4i€ijkf’
tr(y*gijgij) — _ %eklmnRijklRijmn’
tr(V*ZvaZQz) = ieananachab~ (71)

The first term contributes to the anomaly in the bulk and the
second term to the anomaly on the boundary. As we
discussed earlier in the paper, one cannot directly use
the boundary coefficient B, since it was obtained in the
assumption that it is contracted with a unity operator F(x)
that commutes with all other operators that appear in the
asymptotic expansion. In (70), matrix F(x) = y* commutes
with E and Q;; but anticommutes with y and V,y that
appear on the boundary. Therefore, one cannot directly use
B, given in the Appendix since there may appear several
terms with different ordering of operators that replace a
single term in the commutative case. It is interesting that
precisely the terms that we need for computing the chiral
anomaly were found in [27],
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tr[F(x)(=18¢ V4 Qu, — 12V% Q. — 18Q,,0Vy
+ 1279, V)] (72)

In commutative case [F(x) is proportional to unity matrix],
these terms combine to —60tr(F(x)yV“yQ,,) that comes
from B, in appendix. For F(x) = y*, these terms combine
to produce

—12t(r 7V Q). (73)
where we used that y and V _y anticommute.

Combining these elements of the calculation, we con-
clude that

y 1 y
A vi<.1A> = —384”2 [A €kbpquijkfR g
4 4
+§ / e"“beand,,c}. (74)
5. Jom,

Using (B2), we can rewrite the second integrand as follows:

" KIR, gy = —26" P KIV Ky (75)
therefore,
/V'<J.i>:—; / MPIR s RY
u, A 3847° | Ju, e
_1O [ ey g (76)
5 oM, aVehbd |

where, in the boundary term, we use intrinsic ¢ = "¢
The first term here is ﬁP, where P is the Pontryagin
number defined as

1 .
— W L, ekquRijkleJpq' (77)
The boundary term in the chiral anomaly (74), (76) is new.
At the moment, it is not clear whether it should always be
combined with the Pontryagin term or it is an indepen-
dent term.

The other remarks is that the chiral anomaly has a
structure similar to that of the parity anomaly, see [28],
although the relative coefficients are different. The quan-
tum origin of these two anomalies is however quite
different, see discussion in [26]. For other recent works
on parity anomaly, see [26,28-33].

It is interesting to note that the boundary term (74) is
conformal invariant. Indeed, it can be expressed in terms of
the trace-free extrinsic curvature K,, and the Weyl ten-
sor, enabCKZRndhc = enabckgwnd})c‘

Our last comment in this section concerns the possible
contribution of the gauge fields to the chiral anomaly.

Analysis shows that there is only one term in the heat kernel
that contributes to the anomaly. This is a bulk term

1 . o
tr(y*E?) = —FiFyte(yy'yiy*y”) = —ieM F i Fy,.

| (78)

We conclude that a contribution due to the gauge fields to
the chiral anomaly is given by

vi<j,i4> =

ijke I .
——1 5 € Flijf‘
M, 67 M,

(79)

This is a known result in the literature. No boundary term
due to the gauge fields in the anomaly has been found.

VI. ANOMALY IN d =5 DIMENSIONS

A. Boundary conformal anomaly in d =5 dimensions

The conformal anomaly in 5 dimensions is entirely due
to the boundary terms,

/M4<T,»j>g” _W/Ms (aE4 +28:ck1k>, (80)

k=1

E, is the Euler density integrated over boundary M5, and
x[oMs) = ﬁEﬁt is the Euler number of the boundary.
{I;,k=1,...,8} is a set of eight conformal invariants.
Altogether, they form a complete basis of boundary
conformal invariants in five dimensions. For convenience,

below we give exact expressions for all these invariants.

1. Boundary invariants in d =5 dimensions

We start our discussion of conformal anomaly in d = 5
dimensions by recalling the complete list of boundary
conformal invariants in 5 dimensions [2],

E, = / (R.pg —4R%, + R?)
oM

= / (Ricbd - 4Rib + R* - 4R3nbn + 8Ralembn

5

+4R2, — 4RR,, + 4K KR .1y + 8(K?)PR
—8KKR,, — 2TrK>R + 2K*R — 8(K?*)* R 4
+ 8KK™R ,pn + 4TrK’R,,, — 4K*R,,, — 6TrK*

+ 8KTrK? + 3(Trk?)? — 6K*TrK? + K*), (81)
. 1 1
I, = / (Trk?)? = / [(Trl{z)2 - K*TrK? +—K4] ,
oM oM 2 16
(82)

12 = / TrIA(4
oM

3 3
= / TrK* — KTrK? + = K*TrK*> — —K* |, (83)
oM 8 64
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16 5 8 4 8
I3 = AM W%gbd = AM (Ricbd - ER‘%’? +1—8R2 —|—§RabRanbn + §R3m - §RR,m>, (84)
5 5
! ! 2 4 2
1, = » mebn = AM <§R¢21b - %Rz + Rinbn — gRabRanbn - §R%n -+ §RRM) , (85)
5 5

15 = AM i(abf{CdWacbd
s

2 5 1 1
= / (KabKCdRade -+ 5 (K2>abRab - EKKabRab — ETI'KZR + ngR
oM 5

1 1
+ 5 KKabRanbn - 6 K2Rn11> s (86)

16 :/ k?kaWanbn
oM
/ IK“K””R +]KK“"R + 1 TrK*R ] K%R
= —=K¢ = —1r - =
s\ 3¢ @6 @12 24

1 1 1
+ Kf'KCbRanbn - EKKabRanbn - _TerRnn + _Kann> ) (87)

3 6
17 :/ W%abc
oM

_ - 8 = 4o - 2 -
= / 2V K, VK® — =V K¢V K + -V ,KV,K?® -~ (VK)?
oM 3 3 3
—2KKR ypa — 2(K>) PR o + 2(K?)% R, + 2K TrK> — 2(TrK2)2} , (88)

. 1. 25 paS o e e
Is = A . (Kﬂbvnwanhn - EKK“”WW,H - §va1(gvc1(cb +2(K*)*S,, — Tersg>
5

2 1 2
= AM |:_ KabvnRanbn - EKvnR + _KabKCdRacbd - K?KbcRab
5

3
+ ! TrK?R > KR + > K9K"R ! KKR TrK?R,, + 1 K*R
3 48 3 c anbn 3 anbn nn 24 nn
11 47 7
+ TrK* —= — KTrK?® + — K*TrK?* — — K*
6 48 48
lg /¢ pab 8s a\J wbc Ts ab\7 2% s 2
-3 V.K,,V'K® + §V“KvaK - §VaK V,K + > (VK)?|. (89)

Here, we have substituted S, = (R, — £ Rh,), which is the 4 dimensional Schouten tensor computed with respect to the
intrinsic boundary metric £,,.

2. Heat kernel coefficients in five dimensions

The general form of the coefficient Bs(x) in the expansion of heat kernel is given in (D 3); see [19,34]. According to the
notation of [19],

1

%5 = 5760(4x)?

/ tr(AL + A2 + A), (90)
oM
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where tr is taken on spinor indices. The constituent terms of trA§1'2’3}

tensors are listed in the following three tables.

and their extended forms in terms of the curvature

Various terms of Al Extended forms Contribution to anomaly
V2E —-1V2R tr(360y) = 0
tr(V,ES) 1KV,R —1440

E? L R? tr(720y) = 0
RE —iR tr(240y) = 0
OR V2R 4+ KV,R tr(48y) =0
R2 R2 tr(20y) =0
R, R, +R%, +2R%, tr(=8y7) =0
R’?kff Ricbd + 4Ranlm + 4Rnabc tl‘(8)() =0
R, E —3iRR,, tr(=120y) =0
RR,, RR,, tr(=20y) = 0
tr(RS?) K’R 480
V2R VIR tr(12y) =0
VZR,, VIR, tr(157) =0
tr(V,RS) —2KV,R -270
tr(R,, %) K’R,, 120
tr(STIS) —(VK)? - 1 K>TrK? 960
RPR 4in RPR iom tr(—16y) =0
Run R, tr(=17¢) = 0
Rinbn Rinbn tr(—lO;() =0
tr(ES?) -1K°R 2880
tr(S%) 1K 1440

Various terms of .A§

Extended forms

Contribution to anomaly

KV,E -1KV,R tr(—90IT, — 450I1_) = —2160
KV,R KV,R tr(—Mn — 42I1_) = =390
K v Ranbn KabvnRanbn ( 3OH+) =-120
tr(KOIS) 2(VK)? 240
tr(K**V,V,S) 2V, KV, K 420
tr(V,KVS) —2(VK)? 390
tr(V,K*V,S) -2V KV, K 430
tr(CIKS) 2(VK)? 420
tr(V,V,KS) 2V, KV, K
(VK)? (VK)? (4211, +4211) =225
V, K%V, K V, K%V, K tr(23811,. — 5811_) = 720
"/ avy be a b
V.KiV K V. K4V K tr(49H+ AL ) 60
V. K, VK™ V. K, VK tr(ﬁﬂ+ - ﬁn_) —90
chabvaac chahvaac tl'(151 H+ + 291_[ ) =180
CKK —(VK)? tr(111I0, — 6I1_) = 420
V.V,K*¥K -V, K®V, K tr(—15I1, + 30I_) = 60
KV VK, -V, KV K" tr( s, _%H_) — 120
KV, V,K -V.K"V,K (311, %511 ) = 660
KOk, -V, K,V K@ tr(114I1, — 54I1_) = 240
tr(KSE) 1K’R 1440
tr(KSR,,) —2K’R,, 30
tr(KSR) —2K2R 240
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(Continued)

Various terms of A2

Extended forms

Contribution to anomaly

tr(KR,,S)
tr(KabSRunbn)
K?E

TrK*E

KR

TrK2R
K’R,,

Trk?R,,

KK®R,,
KKR ,on
K9K"R,,
KgKbcRaizbiz

Kab ch Racbd
tr(KS?)

K?S?

Trk?S?

K3S

KTrK*S
TrK3S

1(4

K2TrK?

(TrK?)?

KTrK?
TrK*

—2KK®R,,
_2KKabRanbn
1 2
-iK’R
—1TrK?R
K*R

TrK2R
K’R,,

TrK?R

nn

KKR,,
KKR ,on
K9KbR,,
K? KbcRanbn

—2K?TrK?
—2KTrK3
1(4
K2Trk?

(TrK?)?

KTrK?
TrK*

—60
180
tr(195T1, — 105T1_) = 360
tr(30I1, + 15011_) = 720
(1211, — 1811 ) = 60
tr(5T1, + 25M1_) = 120
( 2571, 4+ 25 ) — _15
(=210, 4221 ) = =30
tr(=T1. — 14I1_) = —60
(1811, —2211) = 60
tr(1611, — 16I1_) =0
(1211 +911) =360
tr(3211, — 3211_) = 0
2160

1080
360
885
4
315
2
150
(2102481 H+ 4 128H ) — 1053

(4171—[+Jr 1411—[ ) 279
4

(375 m, -1 H_) _ 2
tr(25T1, — ZTI_) = 66
tr(”l M.+ 32711 ) 27

=}

Various terms of Ag

Extended forms

Contribution to anomaly

E2

XEYE

tw((VS)?)
tr(;((VS)z)
tr(Q,, Q%)
tr(y Q. Q2)
tr(Qupx Q%)
tr(Q,,L2)
tr(Q,Q25)

tr(y Q4,7 Q)
tr(QuV*S — Q,,VSy)
tr(yV yQ4K)
tr(VorVpr Q)
tr(y VoV Q)
tr(;(va;(vnﬂﬁ)
tr(;(va ﬁbgab)
tr(Zva/Yth Kah)
tr(Va)(V” )
tr(V )(V“;(E)

1
[

(VK)?* + L K°TrK>

(VK )?
acbd 21?

0

—R g +2R;,
—2R?

anbn

nabc

nabc

1?2

nabc

—R?

nabc

21?§nbn
—2KKR
4KKR 00
_4KabKCdRachd
0

4KV, R

anbn

anbn

—4K% KR, . — AV K*“R

4chl KhCRunbn
0
—2TrK’R

tr(—180I) = —1440
tr(180y2) = 1440
~120
720
_ 105

4
120
105

4
—45
180
—45
—360
—45
~180
30
90
120
~180
300
~180
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(Continued)

Various terms of A2

Extended forms

Contribution to anomaly

tr(yV xVyE) 0 =90
tr(0yE) 0 240
tr(VyVyR) 8TrK’R -30
tr(V,yVyR?) 8KYK"R,, —60
tr(V, VxR, ) —8K2K"R 1iom -30
(Vo V'rK?) 8K>TrK> 75
tr(Vor VioxKEK™) 8TrK* 75
tr(ia ;(i";(Ter) 8(TrKk?)? 195
tr(Vor VK K) 8KTrK? 73
tr(V,xV*SK) —2K2TrK? ~330
tr(va;ﬁbSK“b) —2KTrK? ~300
u(VarVrVuxV'y) 8(TrK?)? 15

tr(za;(_vb;(va;(v”x) _16Tg(4 — 8(Trk?)? 5

wy) 8V, KV K" + 8(Trk?)? -1
tr(YaVE)(ViVb)() Sv(;KavaKab + 8TI'K4 _ %
(Vi Viyly) -15
w(V, 5y V) ~8V, K9V K — 8(Trk?)? _13s

In derivation of the second columns of the tables, we have extensively used the identities in A and that trll, = 4 in the
doubling representation in d = 5. By adding the similar terms of the second columns, taking into account the coefficients of
the third columns and after using the identities of Sec. B, we get the following result:

1
5760(4x)? J,

as =

/ (240K“anRan,m —30KV,R
Ms

— 450K KR,y + 210K KR ;, + 60KK“’R,,;, + 60TrK*R — 15K°R
— 810K°K*R,,,;, + 240KKR,,,, — 30TtK?R,,, + 45K°R,,,

267

1251
—261TrK* + 381K TrK> — X (Trk?)? + 66K°TrK?> — T K*

+ 300V K, VK — 240V K4V K" — 15(?1()2) . (91)

It is a curious observation that in this expression, the
Riemann curvature appears only in combination with the
extrinsic curvature. The anomaly thus vanishes for a
geodesic boundary. A technical explanation for this fact
is that in the heat kernel (D 3), all terms that are
expressed only in terms of the Riemann curvature come
with matrix y =II, —II_ whose trace vanishes. In the
case of a scalar field considered in [2], one has that y is
either +1 or —1 depending on the type of the boundary
condition. As a result, the curvature terms are present in
as and in the anomaly. For exactly same reason, such
terms did not appear in d = 3 dimensions for the Dirac
field and appeared for the conformal scalars.

3. Conformal charges in d =5

This expression gives us the integrated conformal
anomaly

/ <Tij>gij = —ds. (92)
OM3

Now it has to be presented as a combination of the
conformal invariants, £, and I; to Ig, and compared to
the general form of the anomaly (80) and determine the
conformal charges (a, cy, ..., cg). Doing this, we arrive at
27 algebraic equations for nine conformal charges that we
present in Appendix E. These equations have unique
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solutions that give the following values for the conformal
charges:

Conformal charges Mixed boundary condition

a 0
(&1 - %
s 621
Cc3 0
Cy 0
Cs 270
co 990
¢ -210
cs -360

4. Comparison with conformal scalar field

It is instructive to compare the found charges for the
fermions with the charges computed earlier in [2] for a
conformal scalar field satisfying either the Dirichlet boun-
dary condition or conformal Robin boundary condition.

Conformal Dirichlet boundary Robin boundary
charges condition condition
‘ 7 -

Denoting the charges for Dirichlet, Robin, and mixed
boundary conditions with indices, D, R, and M, respec-
tively, the following relations are observed between some
charges. For invariants, which are written purely in terms of
the Riemann tensor and its contractions, we find a relation

a = aP +ak =0, iy =P +cf, =0 (93)

For the charge a, we saw a similar relation in d =3
dimensions. For invariants that include the derivatives, we
find a relation

e = 8(cPg + c&y). (94)
No obvious relations were observed for the other charges.

5. Including the gauge fields

Let us now discuss the possible contribution of the gauge
fields to the conformal anomaly in 5 dimensions. There are
two possible terms in the anomaly that we present in the form,

1

WAM (byF oy F*" + byF ,,, F4,), (95)

that are due to the gauge fields. In the heat kernel coefficient
as, the gauge field A; with the field strength F;; may appear
either via E = — R+ 5 F,; 7'y orvia Q;; = 1R, uov*y" + F ;.
There are plenty of such terms in the heat kernel coefficient
(D 3). Most of them give zero after taking the trace over
spinor indexes. The nonvanishing terms are given in the
table below.

Various terms Contribution
including F;; Extended forms to anomaly
tr(E?) —4F ,, F® — 8F ., F" —-180
tr(¢ExE) —4F ,F + 8F ., F" 180
tr(Qaanb) 8FabFab —1275
tr()(Qab)(Qab) 8FabFab %
tr(Q,, Q%) 8F ,, F4 —45
tr(y Q%) 8F,, F¢ —45

We have also checked that the possible cross terms that
contain both F';; and the Riemann curvature do not appear.
Collecting all terms together, we find that the anomaly

.. 3
T. Vg = ——~ F,F*,. 96
AM5< )9 12877 AMS o (%)

Comparing with (95), we conclude that in the anomaly for a
Dirac fermion the charge b; = 0, while the only non-
vanishing charge is b,. At the moment, we do not have an
explanation for this result.

This result is worth comparing with the gauge field terms
in the conformal anomaly for a complex scalar field carrying
a representation for the gauge group G and coupled to the
gauge fields. In this case, y = —1 for the Dirichlet boundary
conditions, and y = +1 for the conformal Robin boundary
conditions; see [2]. We have computed these terms. Only two
terms in the heat kernel coefficient contribute to the anomaly
in this case: Q,,Q and Q,,,Q". Omitting the details that are
quite simple, the result is summarized below.

Dirichlet Robin Mixed
Conformal boundary boundary boundary
charges condition condition condition
by 4 9 0
b, -4 -3 36
We find a relation
bi” = 6(ka + bf), k=1,2, (97)

between the charges for fermions (M) and scalars with
Dirichlet (D) and Robin (R) boundary conditions.

B. Chiral anomaly in d =5 dimensions

1. Parity odd conformal invariants

There are three parity odd conformal invariants in five
dimensions, see [13],
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Ji :/ eadeWabechdef7 (98)
oM

JZ = / eadeWabnechne = 4/ eadevbkaevdkiv
oM M,
(99)

and

Jy = A y e PUREKIW e (100)
5

where W ., is the bulk Weyl tensor with the boundary
indices, and K,, is the traceless part of the extrinsic

curvature tensor. If we include the gauge fields, then there
is one more invariant

J4 = / €nadeFabFCd. (101)
oM 5

The chiral anomaly decomposes as follows:

) 1
V,(ji) = — diJ| + drJy + d3J5+ dyJy).
Ah i) 96(4ﬂ)2( W1+ dydy + dyds + dydy)

(102)

2. Computation using heat kernel coefficients

For the Dirac field, the anomaly is

[ Vi) =2 [ wmsss). (103

There are four terms’ in the heat kernel that produce a
nontrivial trace in (103).

Various parity odd terms

Extended forms

Contribution to anomaly

tr(iFS)(QabQ“h) %enadeRahechdef 120
tr(iF;;(gan gi,‘;) % AR L Rogn® = 2"V, K VK¢ 180
(i3 V V) 26 KK R ey 30
tr(iT3E?) 2eMbedF L F oy 720

It is not difficult to see that in these invariants, the Riemann
tensor can be replaced by Weyl tensor and the extrinsic
curvature by its trace-free part so that these are precisely
invariants that we listed above. Matching the coefficients with
the general form (102), we find the following corresponding
charges.

Conformal charges Mixed boundary condition

d 2
ds 2
d, 48

This completes our consideration of anomaly in d =5
dimensional space-time.

VII. CONCLUSIONS

That the quantum anomalies are modified in the presence
of boundaries by the boundary terms is an interesting
subject of research that came into light in the recent years.
In the present paper, we have developed a systematic
calculation for the boundary terms in the conformal anomaly

>The coefficient of ¥V yV,yQ% was reported as 90 for the
first time in [19]. Later in [35], I. Moss corrected this and reported
this coefficient as 30. We thank the referee for bringing this to our
attention.

and in the chiral anomaly. The conformal anomaly in even
dimensional space-time in this context was studied in [5,6]
(see also earlier paper [4]) where the anomaly in d = 4 was
systematically studied. It is intriguing that the both anoma-
lies, which are usually absent in odd dimensions, can be
nontrivial in the presence of boundaries. For the conformal
anomaly, this is known already for some time [1]. The
complete basis of conformal boundary terms in the anomaly
ind = 5 wasidentified in [2], where the respective conformal
charges for a scalar field with either Dirichlet or Robin
boundary conditions were computed. In the present paper, we
continued the previous study in d = 5 and have computed the
conformal charges for Dirac fermions in d = 5 dimensions. A
new subject of research that is in the focus of the present paper
is the boundary terms in the chiral anomaly. To the best of our
knowledge, this issue was not widely discussed before. An
earlier paper, known to us, on this subject is [27], where in
d = 4 dimensions, the boundary terms in chiral anomaly due
to the axial gauge fields (not considered in the present paper)
were found in a rather restrictive case when the boundary is
geodesic. We should also mention here the papers by
Vassilevich et al. [26,28,32,33] on parity anomaly. This
anomaly is different from the chiral anomaly although it
has a similar odd structure.

Below, we summarize our findings:

(i) Boundary terms due to gauge field in chiral anomaly

in d = 3 dimensions.
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(i1) Gravitational boundary term in chiral anomaly in
d = 4 dimensions.

(iii) Boundary conformal anomaly for fermions in di-
mension d = 5 both due to the gravitational field
and the gauge fields.

(iv) The anomaly due to gauge fields for conformal scalars
with either Dirichlet or Robin boundary condition in
d = 5 dimensions that completes our previous study
[2] of anomaly for conformal scalars.

(v) Boundary terms in chiral anomaly in d = 5 dimen-
sions both due to the gravitational field and the gauge
fields.

It would be interesting to develop the holographic aspects
for the present calculations of the anomaly, which is the
subject of a work in progress [36]. It would also be interesting
to find some applications for our findings such as the chiral
anomaly in d = 3 or the boundary term in the chiral anomaly
in d = 4. We leave these issues for a further study.

APPENDIX A: IDENTITIES FOR MATRICES

AND TRACES
yI =My, yT =Ty pI =TI (Al)
Vir'=0. V" =Kur" Vi’ =-Kiy". (A2)
Vo = ir'r"Kay
VoV =iy (7CvaKbc + V"bi)’ (A3)
We also need the intrinsic derivatives of S = —1KII,,
which are calculated below:
v,S = —lvaKH+ - lKva)(’
2 4
V9,8 = 3 (V9K ~ K9, 9,z
KT KT (A

These identities rely only on the commutation relations and
do not depend on the choice of the representation for
gamma matrices and for the chirality matrix y*.

APPENDIX B: IDENTITIES
Gauss-Codazzi relations

Racbd = Racbd - (Kachd - Kadec>’ <Bl)

Rnabc = (chab - VbKac)’ (B2)
where R,.,, represents the intrinsic Riemann tensor of the
boundary. In particular, in 5 dimensions, we need

R2

2 . =2V.K,, VK -2V K, V°K“, (B3)

where the second term can be expanded as (B10).

The contracted equations read

Ry =R, = (vaZ - vaK) (B4)
Rab = Rab + Ranhn + (Kib - KKah)7 (BS)
and a double contraction yields
R =R+2R,, + (TrK?> - K?). (B6)
Thus, one finds for the projected Einstein tensor
1 1 2 2
G,,=—=R—=(TrK* - K*). (B7)
2 2
Differential equations
OR =0R + V2R + KV,R, (B8)
V.G = KR, — KR,,, -V, V, K + TK, (B9)

VK, V'K =V KV Kb + KPKR 014
— K*“K°R,, + K“K"R,,, — KTtK?

+ (Trk*)? + T.D., (B10)
v%Gnn = _RabRanbn + R%m - KgKbCRab + TerRnn
+ K*V R, — KV, R,, —V KV, K
+ (VK)? +T.D.,, (B11)

ViRabr = VuRanon = 2K““Racoa = KGR pnen = K Rancn
+ KRypn + KopRyw — TrK?K o + KK, K
+V,V.K§ +V,V K5 -~ 0Ky, — V, VK,
(B12)

where we defined V,G,, = nfn'n'V,G;;, 0OG,, =
n'n/00G;; and ViG,, = n*n’n'n’V,V,G;;.
APPENDIX C: DERIVATION OF THE ROBIN
BOUNDARY CONDITION

Since Dirac operator is a first order operator, one
imposes the Dirichlet boundary condition on a half of
the Dirac spinor components

1 L
Mylow =5 (L= ir"y"yloy = 0. (C1)
Acting the projector on both sides of the eigenvalue
equation, YV, = Ay, one gets zero again; thus,

I (r*Vwlow = 0. (C2)
Putting y"I1_ on the left-hand side, we get
L y" T (*V )l = O, (C3)
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where we have defined IT, =1 (1 + iy*y") and have used ~ Where we have defined y = IT, —II_ = iy"y". Comparing

with (V,, — ST y|,, = 0, we conclude that

I (c4) 1
S=- §H+y”yava)(l_[+. (Co)

By separating the normal and tangential components, we

will have Now using (A2) and (A3), one deduces
n n a 1
IL "L (r"V, + 7V )wloy =0 § = —5KIL,. (C7)
= TEy"V,y oy + Ly TILV | 5y = 0
= TV, = Ty 7 (VI |y = 0 APPENDIX D: BULK AND BOUNDARY TERMS
~n(v . 1, oy =0 IN THE HEAT KERNEL COEFFICIENT a,; IN
F\ Ve TRV Vel JWlom = DIMENSION d [18,19]
1 1. Heat kernel coefficient in d =3
- <Vn + EHH’"}’GVM) Lyl =0, (Cs)

Ay(x)

By(x)

1
B3 = 35atam)

[96¢E + 16xR — 8xR,,, + (211, + 10I1_)TrK? + (1311, — 7I1_)K?

+ 96SK + 19282 — 12V yVy]. (D1)

2. Heat kernel coefficient in d =4

1 . . .. B
= . _RIki¢ _ QR Ri 2 2 o
S60(azy? (60DE + 1200R + 2Ry R — 2R, R + 180E + 60RE + SR +300,Q)

1 -
=——— [(—240I1 1201T_)V ,E + (—4211 18T1_)V,R + 240K
+ 120KE + 20KR — 4KR,,, + 16K®R ., — 4K R,

1 1 1
a7 (22411, + 320I1_)TrK? + 1 (16811, — 264T1_)KTrK?* + o (28011, + 40I1_)K?

+ 720SE + 120SR + 48STrK? + 144SK? + 4808%K + 480S° + 1200JS

— 60y VY Q,, — 24KV 4V y — 12KV 3V — 1208V 4 Vx| . (D2)

3. Heat kernel coefficient in d =5

1 3
7500 {360;(V3E — 1440V, ES + 720y E? + 2404CIE + 240y RE + 48y V2R + 20y R?
T

— 8yRY; + 8yR3 ;o — 1204R,,,E — 20y RR,,, 4+ 480RS* + 127 V3R
+ 24y01R,,, + 154V2R,,, — 2708V, R + 120R,,,S* + 960SCIS + 16yR™R,,,,,,
— 17yR2, — 10yR ,,pu R 2, + 2880ES? + 14408*

111 3
— (90IL, + 450I1_)KV,E — (T I, + 42n_> KV,R — 30IL, K’V ,R 4, + 240K[1S
+ 420K*V VS + 390V ,KV*S + 480V KV, S 4 420SCIK + 60V, V,KS

487 413 - - - 49 11 _ -
+ <FH+ + ]—6H_> (VK)? + (23811, — 5811_)V KV, K + (Zm + ZH_> V. K%V K¢
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535 355 - - 151 29 - . }
(711* - ?H_> V.K*VK ,, + (TH* + ZH_) VK, VP K + (11111, — 6I1_) KK

- - 1 7 - 4 2 .
+ (=15I1, + 30I1_)KV,V,K% + (—;m + ;H_>K”CVCV,,K;; + (?m - %H_) KV, V,K

+ (11411, — 54T1_)K“*0IK ., + 1440KSE + 30K SR,,, + 240K SR — 60K ,,R**S + 180K R .1, S

195 105
+ (19511, — 105I1_)K?E + (30IL, + 150I1_)TrK*E + <?H+ - ?H_> K?R

275 215 275 215
+ (5T, + 25I1_)TrK?R + (— e+ FH‘> K2R,, + <— =L+ ?H_> Trk2R,,

109 49
+ (=TI, — 14I1_)KK*R,,;, + <TH L= IH_> KK®*R b, + 16yK ,, Kb R*

133 47 315 2041 65
—II —TII_ |K*“K®R 32yKP KR ~——KTrK?S —1II —TI_ | K*
+ < 2 + + 2 > canbn + Z acbd + 2 r + ( 128 + + 128 )

417 141
+ 150STrK? + <32 I, + 32H_> K>TrK? + 1080K2S? + 360Trk>S>

375 777 885 17

— T, ——TI_ ) (Trk?)* + —SK° 251, — —TII_ |KTrK? + 2160K S*
+<32+32 )(r)+4 +< +2>r+

8 8

105 105
~ 1 Q1207905 + = r Qs Q — 450, Q2 + 180790, 2, — 457,

231 327 - .
+ < I, +— H_) TrK* — 180E? + 180y EyE — 120(VS)? + 720y(VS)?

—360Q9,4V,,S +360Q7,V Sy — 45yV xQ K — 180V .V, y Q% + 304V 1V, y Qb
+90yV ¥V, Q4 + 120,V V’Q,, — 180y V 1 Qp, K + 300V yVE — 180V yVyE
— 90y V y VY E 4 2400y E — 30V ,x VYR — 60V .y V, yR? — 30V ¥V, 2R, %,

- - 195 - -
- ?—;VMV“)(Kz - ?Va;(vb)(K”CKf - %VJV“;(TrKZ - WYSVMVMKK”
- = - = 150 =& = =, 150 o - =, 15 -
— 330V, V*SK — 300V yV,SK® + Isvagvavagvb;( + @5 Vo VoxViyVly — 75 (Oy)?
105: = =,e - = = 1355 =, =
—TVavb;(vavb;(— ISVQ;(V“;(D)(—TVG;(V“D;( . (D3)

APPENDIX E: ALGEBRAIC EQUATION FOR CONFORMAL CHARGES IN d=5

TrK*: —6a + cy + cg = 261,
11
KTrK?:8a — ¢y + 2¢4 —gcfg = —381,

1251
(TrK2)2:3a + cp — 2C7 = T,

1 3 47
KZTI‘KZZ—6CI—§C1+§C2+4—8C8:
K‘“a—l—Lc ic lc _ 207

T 64 48T 16

R2 ,4ia+c3=0,
16 1

R?{b: —40—36'3 +§C4:0,

—66,
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5 |
R a4y —
1189 36

R? t—4da+cy =0,

anbn *

C4:0,

8 2
RR > 8a + 363736 = 0,

4 4
R%n:4a+§c3 ~ ¢ =0,

8 2
RR,,: —4a —§C3 +§C4 =0,
2
KabKCdRacbd:4ll + Cs5 — 2C7 + §C8 = 450,
, 2 1
K?K CRab:Sa +§C5 —§C6 + 2C7 —Cg = —210,

5 1
KK®R,,: —8a—=c5+—ce = —60,

6 6
TerR'—Za—ic —I—ic +lc = —60
‘ 127 127 T3
1 1 5
KZR:2a+§C5_ﬁc6_ﬁc8:30’

5
KeKR ypn: — 8a + cg — 2¢7 3= 810,

1 1 1
KKabRanbn:gd + ECS - EC6 - §C8 == —240,
1
TrK?’R,, :4a — 306 = Cs = 30,
1 1 11
KZR,,”: —4a _ECS +6C’6 +ﬁC8 = —45,

_ 1
chahchab:2C7 - 56’8 = —300,

o 8 8
VKUK : =S eq + 5 eg = 240,

9
- - 4 7
VaK“thK: §C7 _508 = 0,
_ 2 25
(VK)2: —§C7 +7—2C8 = 15,

2
KabvnRanbn L= g Cg = 240,

1
ECS == —30

These equations have a unique solution that determines the values for the conformal charges given in the main text.
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