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Ordinary Hermitian λϕ4 theory is known to exist in d < 4 dimensions when λ > 0. For negative values
of the coupling, it has been suggested that a physical meaningful definition of the interacting theory can be
given in terms of PT-symmetric field theory. In this work, we critically reexamine the relation between
analytically continued Hermitian field theory with quartic interaction and PT-symmetric field theory,
including OðNÞ models. We find that in general PT-symmetric field theory does not correspond to the
analytic continuation of the Hermitian theory to negative coupling, except at high temperature where the
instanton contribution present in the analytically continued theory can be neglected.
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I. INTRODUCTION

Hermitian field theory is built around the presence
of a Hermitian Hamiltonian that is bounded from below.
In quantum mechanics, it has long been known that
Hermiticity and a lower-bounded potential are sufficient
to guarantee a real and lower-bounded spectrum of the
Hamiltonian, thus providing the basis for modern quantum
field theory. However, it has been found that somewhat
weaker conditions than Hermiticity and boundedness,
namely symmetry under parity P and time reversal T ,
still result in real and semidefinite energy eigenspectra [1].
In fact, it has been proved that PT symmetry is sufficient to
guarantee real spectra in quantum mechanics for the
massless theory [2], showing that Hermiticity is not a
necessary condition.
A natural generalization of PT-symmetric quantum

mechanics is PT-symmetric quantum field theory, which
is a fairly recent area of study. In a series of articles, it has
been suggested that Hermitian field theory with a quartic
interaction and negative coupling constant can be related to
PT-symmetric field theory [3–6]. In particular, in [6] it is
conjectured that the partition function ZH of the Hermitian
field theory can be related to the partition function of the
PT-symmetric field theory ZPT in d > 0 dimensions via

lnZPT ðgÞ ¼
1

2

h
ln ZHðλ ¼ −gþ i0þÞ

þ ln ZHðλ ¼ −g − i0þÞ
i
; ð1Þ

where λ is the coupling constant of the Hermitian theory
with λϕ4 interaction and ZH refers to the analytic continu-
ation of the Hermitian theory’s partition function. For the
discussion of the structure in the complex coupling plane,
and the nature of the discontinuity across the cut on the
negative real coupling axis, we refer the interested reader
to Ref. [6].
If the Ai, Bender, Sarkar (ABS) conjecture (1) holds for

quantum field theory with quartic interaction in general
dimensions d, this would provide meaning for quantum
field theories in situations where the potential becomes
unbounded, in particular scalar quantum field theory in four
dimensions; see e.g. Refs. [7–9]. For this reason, it is
interesting to study the precise relation between analyti-
cally continued Hermitian and PT-symmetric field theory.
In particular, we aim to study the ABS conjecture (1) in
cases where both sides of the equation can be evaluated.
This is particularly easy in d ¼ 0, where Ref. [6] already
noted that the partition functions fulfill the relation

ZPT ðgÞ ¼ ReZHðλ ¼ −gÞ; ð2Þ

instead of (1).
In this work we examine these two conjectures in the

d ¼ 1 case, that is, quantum mechanics. Here high-pre-
cision numerical calculations are possible, and we find that
neither conjecture holds at all values of the dimensionless
parameter β3g. However, at high temperatures (equivalently
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at weak coupling), the second conjecture (2) holds to high
precision. We provide numerical evidence and, by consid-
ering the semiclassical expansion in β3g, an argument from
complex analysis indicating that the failure of that con-
jecture to hold at low temperatures (strong coupling) is due
to the presence of nonperturbative bounce1 contributions to
the analytically continued partition function.
The remainder of this paper is structured as follows. We

confirm the result (2) for d ¼ 0 and consider the extension
to multicomponent scalar fields [also known as the OðNÞ
model] in Sec. II. We then continue in Sec. III to study the
quantum mechanical (d ¼ 1) case, where the partition
function for both sides of (1) can be obtained numerically
to high precision. We show that there is no correspondence
of the form of (1); however, the analog of (2) is true to high
precision at low temperatures. The numerical evidence
indicates that the difference between the two sides of (2) is
due to an extra nonperturbative bounce contribution in the
analytically continued partition function. Working in the
path integral formalism, we provide an explanation for this
fact in Sec. IV. Finally, we discuss the implications of our
findings in Sec. V.

II. THE ONE-SITE MODEL

As a warm-up to quantum field theory (QFT), let us first
discuss the limiting case of zero dimensions. This section
will focus on complex-analytic arguments to reveal the
behavior of the partition function without the need to find
closed-form expressions; explicit calculations are provided
in the Appendix.

A. Warm-up: One component

The partition function for standard Hermitian field
theory in d ¼ 0 becomes a single integral over the field:

Zd¼0ðλÞ ¼
Z

∞

−∞

dϕffiffiffiffiffiffi
2π

p e−λϕ
4 ¼ 2Γð5

4
Þ

ð4π2λÞ14 : ð3Þ

As written this partition function is only defined for
Re λ > 0; however, it may be extended to all λ ≠ 0
(although not uniquely, due to a branch point at the
origin) by analytic continuation. This is clearly seen from
the right-hand side of (3); however, without access to
a closed-form solution for the integral, the analytic con-
tinuation is still easily accomplished by deforming the
contour of integration to preserve the convergence of
the integral as λ is rotated from Rþ to elsewhere on the
complex plane. In a slight abuse of notation, for λ ¼ Λeiθ,
we may write

Zd¼0ðλ ¼ ΛeiθÞ ¼
Z

∞eiθ=4

−∞eiθ=4

dϕffiffiffiffiffiffi
2π

p e−λϕ
4

: ð4Þ

This expression also makes clear the nonuniqueness of the
analytic continuation. For example, for negative real values
of λ, the analytic continuation may involve integrating
either along a contour for which ϕ is proportional to eiπ=4 or
one proportional to e−iπ=4. However, the integrals along
these two contours are related by complex conjugation: The
real parts do not differ.
So much for the analytic continuation of the partition

function; now we consider the “PT-symmetric” version.
This version of the partition function is intended to be real
and to correspond to the case λ < 0, but here the integral no
longer converges. To obtain a well-defined partition func-
tion, we will deform the domain of integration from the real
line to some other contour γ. In general, a contour will yield
a convergent integral at λ < 0 if ϕ4 approaches −∞ in
either direction along the contour. From Cauchy’s integral
theorem, two such contours will yield the same partition
function if one can be smoothly deformed into the other
without passing through any regions where egϕ

4

diverges.
We can satisfy all these constraints by defining the PT-

symmetric theory as

Zd¼0
PT ðgÞ ¼

Z
γPT

dϕffiffiffiffiffiffi
2π

p egϕ
4

; ð5Þ

with a contour γPT defined by

ϕðsÞ ¼
�
sei

π
4 s < 0

se−i
π
4 s ≥ 0

ð6Þ

with s∈R parametrizing the contour.
To relate the Hermitian and PT-symmetric partition

functions in this d ¼ 0, one-component case, it is helpful
to define four “partial” integration contours, each connect-
ing the origin to some asymptotic region where ϕ4 → −∞.
Each contour is parametrized by s∈ ½0;∞Þ:

γ1∶ ϕðsÞ ¼ sei
π
4; ð7Þ

−γ2∶ ϕðsÞ ¼ sei
3π
4 ; ð8Þ

−γ3∶ ϕðsÞ ¼ sei
5π
4 ; ð9Þ

γ4∶ ϕðsÞ ¼ sei
7π
4 : ð10Þ

These four contours each lie in a different quadrant of the
complex plane and are numbered accordingly. Finally note
that γ2 and γ3 have reversed orientation, so that the
integration is taken from complex infinity to the origin
rather than vice versa. As a result, each contour is oriented

1We will be dealing with periodic instanton solutions that in
the literature are referred to as “bounces”; hence we will use the
term bounce in the following.
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so that integration is performed from “right to left” on the
complex plane.
With these definitions, the contour defining the PT-

symmetric theory above is given by γPT ¼ γ3 þ γ4. The
(clockwise) analytic continuation is defined by inte-
grating instead along γac ¼ γ3 þ γ1. Denoting for brevity
Ik ¼

R
γk
eϕ

4

, we see that the various partial integrals are
related by

I1 ¼ I�2 ¼ I3 ¼ I�4: ð11Þ

A short calculation therefore relates the (analytically
continued) Hermitian and PT-symmetric partition func-
tions in this case: The PT-symmetric partition function

Z ¼ Γð5
4
Þ

ðπ2gÞ14
is simply given by the real part of the analytically

continued Hermitian partition function:

Zd¼0
PT ðgÞ ¼ Re

�
Zd¼0ðλ ¼ −gÞ

�
: ð12Þ

As noted in [6], this relation is different from the conjecture
(1), which involves the logarithm of the partition function.

B. N-component scalars

We may now investigate the relation between Hermitian
andPT -symmetric field theory for d ¼ 0 forN-component
scalars ϕ⃗ ¼ ðϕ1;ϕ2;…ϕNÞ. In this case, the partition
function for the Hermitian field theory is defined as

Zd¼0
N ¼

Z
dϕ⃗

ð2πÞN2 e
− λ
Nðϕ⃗2Þ2 : ð13Þ

The construction of a PT-symmetric QFT for N-com-
ponent scalars is not trivial, and we refer the interested
reader to Ref. [10] for an in-depth discussion of PT
symmetry in this case. The partition function for PT-
symmetric QFT is defined by

Zd¼0
PT ;N ¼

Z
dϕ⃗

ð2πÞN2 e
g
Nðϕ⃗2Þ2 ; ð14Þ

where the integration is not on the real axis but in the
complex plane. For pedagogical reasons, it is useful to first
consider the explicit case of N ¼ 2 (two component scalar
fields) where ϕ⃗ ¼ ðϕ0;ϕ1Þ. The PT-symmetric field theory
is then defined by using the parametrization (6) for both ϕ0

and ϕ1, effectively parametrizing a “cone” in the complex
four-dimensional parameter space (see Fig. 1). Explicitly,
one has

ϕ0 ¼ s
�
e
iπ
4θð−sÞ þ e−

iπ
4θðsÞ

�
and

ϕ1 ¼ t
�
e
iπ
4θð−tÞ þ e−

iπ
4θðt

��
; ð15Þ

with s; t∈R. The resulting PT-symmetric path integral for
N ¼ 2 therefore is

FIG. 1. The cone and wedge contours considered throughout this paper, in the case of a two-component scalar field. The cone contour
is shown on the top by plotting Imϕ1ðReϕ1;Reϕ2Þ and Imϕ2ðReϕ1;Reϕ2Þ. The wedge contour is similarly portrayed on the bottom.
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Zd¼0
PT ;N¼2 ¼

Z
∞

0

dsdt
ð2πÞ

�
e−

g
2
ðs2þt2Þ2 cos

�
π

2

�
þ e−

g
2
ðs2−t2Þ2

	
:

ð16Þ

It is straightforward to see that the N ¼ 2 PT-symmetric
partition function diverges, because there is a flat direction
s ¼ t in the integrand along with the action is constant. In
fact this finding generalizes to any integer N > 1 when
fields are quantized on the cone as a repeated application
of (15). As a consequence, we find that for N > 1, the
PT-symmetric partition function obeys neither the ABS
conjecture (1) nor the relation (2) proved for N ¼ 1.
However, it is possible to give a meaningful definition of

the path integral with negative coupling constant for the
case N > 1. To this end, consider again the case of N ¼ 2,
but now parametrize fields on a “wedge” in the complex
four-dimensional parameter space (see again Fig. 1).
Explicitly, one then has the wedge contour defined by

ϕ0 ¼ s
�
e
iπ
4θð−sÞ þ e−

iπ
4θðsÞ

�
and

ϕ1 ¼ t
�
e
iπ
4θð−sÞ þ e−

iπ
4θðsÞ

�
; ð17Þ

where again s; t∈R.
As in the one-site case, we will now show that this

contour arises as the real part of the analytic continuation to
negative λ of the Hermitian theory. Let us introduce some
notation to make working with simple multidimensional
integration contours tractable. Given two one-dimensional
contours γa and γb, denote by γa × γb the two-dimensional
contour consisting of points ðza; zbÞ∈C2 with za ∈ γa and
zb ∈ γb. In this notation, the wedge contour (17) defined
above may be written

γwedge ¼ γ3 × ðγ3 þ γ1Þ þ γ4 × ðγ2 þ γ4Þ: ð18Þ

Meanwhile, the clockwise analytic continuation yields a
different contour:

γac ¼ ðγ2 þ γ4Þ × ðγ2 þ γ4Þ: ð19Þ

For brevity, denote the integral along the contour γi × γj by
Iij. The clockwise analytic continuation is equal to
I22 þ I24 þ I42 þ I44, while the integral along the wedge
contour is

Z
γwedge

1

2π
e−S ¼ I33 þ I31 þ I42 þ I44: ð20Þ

As before, to relate these two note that we have the
following relations among the various partial integrals:

I11 ¼ I�22 ¼ I33 ¼ I�44 and ð21Þ

I13 ¼ I�24: ð22Þ

From this it follows that

ReðI22 þ I23 þ I32 þ I33Þ ¼ I33 þ I31 þ I42 þ I44; ð23Þ

confirming the desired identity. The same proof holds
without modification for the case of three or more compo-
nents; all new components are treated as ϕ1.
To review: In the N-component, d ¼ 0 case, we have

examined two contours on which we could attempt to
define the partition function. The cone contour—arguably
the more obvious generalization of theN ¼ 1 case—results
in an undefined partition function. The wedge contour
corresponds exactly to the real part of the analytic con-
tinuation of the original, Hermitian theory to negative
couplings. This establishes an analog of (2) for multi-
component theories in 0 dimensions.
Finally, a brief note on the ABS conjecture itself.

Because the analytic continuation of log Zd¼0 has a non-
zero imaginary part, (2) implies that the ABS conjecture (1)
does not hold at any finite N. However, in the large-N limit,
both the real and imaginary parts of the free energy—for
both the analytically continued and the PT-symmetric
theories—may be expanded in powers of N. The leading
terms in the real parts are proportional to N, but because of
the logarithm the leading term in the imaginary part can at
most be OðN0Þ. As a result, the conjecture (2) directly
implies the ABS conjecture in the large-N limit.
Thus at large N and large N only, the Hermitian and

wedge-contour parametrized partition functions for the
d ¼ 0 case are related through the ABS conjecture (1),
as well as the modified conjecture (2).

III. NUMERICAL COMPARISON

Let us now discuss the case of a single-component
quantum field with a quartic interaction in 0þ 1 dimen-
sions, with both positive coupling sign (the Hermitian
theory) and negative coupling sign (the PT-symmetric
theory). First we will define the different theories under
consideration—two theories constructed via analytic con-
tinuation, and the PT-symmetric theory. Then we detail
numerical schemes for computing a high-precision parti-
tion function in all three cases, and finally we perform a
comparison, the results of which indicate that neither
construction via analytic continuation is equivalent to the
PT-symmetric theory. One, however, is sufficiently closely
related to merit further examination; this is done in the
subsequent section.
The Hermitian theory is defined from the Hamiltonian

HH ¼ p2 þ λ

4
x4; ð24Þ

LAWRENCE, WELLER, PETERSON, and ROMATSCHKE PHYS. REV. D 108, 085013 (2023)

085013-4



from which a partition function ZHðβ; λÞ≡ Tr e−βHHðλÞ is
obtained. As written, this function is defined only on the
right half-plane of complex λ; elsewhere the Hamiltonian is
unbounded below and the trace diverges. However, noting
that solutions to the corresponding time-independent
Schrödinger equation are invariant under a certain simulta-
neous rescaling of x, p, β, and λ, we discover that the
spectrum of HH—and therefore the partition function
ZH—depends only on the combination β3λ. As a result
we find that ZHðβ; λÞ ¼ ZHðβλ1=3; 1Þ. We can use this
relation to analytically continue ZH to values of λ in the left
half-plane.
It is important to point out that our Hamiltonian (24)

differs from that used in the ABS conjecture [6], which
employed an additional mass term. For this reason, the
results in this section correspond to the strong-coupling
(massless) limit of the theory studied in [6]. The failure of
the conjecture in the massless limit is sufficient to establish
failure at some sufficiently small finite mass but not at all
masses.
The analytically continued Hermitian partition function

has a branch point at λ ¼ 0, and as a result the analytic
continuation is not unique. Following the conjecture, we
analytically continue to negative values of λ along both
clockwise and counterclockwise paths. The two resulting
partition functions may be computed as

Zcwðβ; gÞ≡ Tr e−βe
iπ
3HHðgÞ and ð25Þ

Zccwðβ; gÞ≡ Tr e−βe
−iπ

3HHðgÞ; ð26Þ

where as in the previous section we have defined g ¼ −λ to
be the wrong-sign coupling.
From these analytically continued partition functions, we

can define a candidate PT-symmetric theory either by
averaging either the two partition functions or their
logarithms. The former yields a partition function analo-
gous to the one constructed in the d ¼ 0 case (2):

Z1 ≡ ReTre−βe
iπ
3HHðgÞ: ð27Þ

The latter approach yields the partition function of the ABS
conjecture (1):

Z2 ≡



Tre−βeiπ3HHðgÞ




: ð28Þ

The PT-symmetric theory is defined by quantizing the
Hamiltonian (24) at negative coupling λ ¼ −g, on a contour
other than the real line. We will parametrize the contour
xðsÞ∈C by some s∈R. A wide variety of contours yield
the same spectrum; it is sufficient to consider any smooth
contour xðsÞ with jxj ¼ jsj and obeying

exp
�
i arg lim

s→�∞
xðsÞ

�
¼ −ie�iπ

4: ð29Þ

A common choice is to take the contour to be the sum of
two linear pieces going through the origin:

xðsÞ ¼
�
se−i

π
4 s ≥ 0

sei
π
4 s < 0:

ð30Þ

From the spectrum of the Hamiltonian (24), the partition
function of the PT-symmetric theory is obtained in the
usual way:

ZPT ¼
X
n

e−βEn : ð31Þ

All three theories defined above are amenable to high-
precision numerical calculation. In the case of the first two,
we determine the eigenenergies of HH by expressing
that Hamiltonian in the occupation number basis of the
harmonic oscillator and numerically diagonalizing. A
truncation of the first 100 states of the harmonic oscillator
is found to yield eigenvalues of sufficient precision for
this study; all plots and numerical results reported herein
come from a truncation of the first 103 states. With these
eigenenergies determined, it is straightforward to evaluate
either (27) or (28) numerically; the sums exhibit exponen-
tial convergence even at negative coupling.
In order to obtain (31), we exploit the exact duality

demonstrated in [11]: The spectrum of the PT-symmetric
Hamiltonian, quantized on a suitable contour, is equal to
that of

Hdual ¼ p2 − xþ 4x4: ð32Þ

The spectrum of Hdual is obtained, as before, by diagonal-
izing the Hamiltonian expressed in the occupation number
basis of the harmonic oscillator. As before, 100 states are
sufficient for this study, and 103 are used for all results
hereafter.
We are now prepared to compute the three different

partition functions and compare. The results of this
evaluation are shown in Fig. 2. The left panel is a check
of the conjecture (2), which is clearly seen to fail at large β
where the analytically continued partition function
becomes unphysically negative. The right panel checks
the ABS conjecture (1), where both partition functions
exhibit physical behavior but do not match.
Although the left panel refutes (2), there is still surprising

and suggestive agreement at small β (high temperatures
or, equivalently, weak couplings). The precise agreement
at small β followed by sudden onset of disagreement is
suggestive of nonanalytic behavior akin to that of fðxÞ ¼
e−1=x

2

near the origin. The logarithm of the difference
between the two partition functions at small β is shown in
Fig. 3. To high precision, and across several orders of
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magnitude of the partition functions, this difference is
found to be fit by a function

− log ðZPT − Z1Þ ≈
p3
1

β3
þ logðp2 þ p3β

3Þ ð33Þ

with parameters p1 ≈ 3.963, p2 ≈ 0.307, and p3 ≈ 0.035.
The numerically observed form of the failure of (2) at

small β provides a clue as to the origin of the difference for
high values of β, since it has the same parametric dependence
on the coupling—of the form e−1=ðβ3λÞ—as a bounce con-
tribution [12]. The next section explores this further.

IV. PATH INTEGRALS

To explain the relation between the PT-symmetric
theory and the analytically continued partition function
Z1, we switch from the Hamiltonian to the action formal-
ism. The action of either theory is

S ¼
Z

dτ

�
1

2

�
dϕ
dτ

�
2

þ λϕ4

	
; ð34Þ

although making sense of this in either the PT-symmetric
or analytically continued cases (where λ < 0) requires
taking the path integral over an appropriate contour.2 We
will see that the choice of contour is what makes the
difference observed in the previous section: One contour
corresponds to the analytically continued theory and a
different contour to the PT-symmetric theory.
The first subsection below traces through the derivation

of the path integral starting from the Hamiltonian formal-
ism, showing that if the starting point is the analytically
continued theory Z1, one contour (analogous to the wedge
discussed in Sec. II above) is obtained, but if the starting
point is the PT-symmetric theory, the path integral must be

performed over a different contour (the cone). Next we
examine a lattice discretization of the path integral and
show numerically that it yields qualitatively similar results
to the above. After reviewing some basic facts about
Lefschetz thimbles and their intersection numbers, we
show that the two contours have the same contribution
from the trivial saddle point at the origin and, therefore,
must differ in their contribution from some other saddle
point. The final subsection examines the saddle points of
the action and performs a semiclassical expansion around
the nontrivial ones; we find that this expansion matches the
functional form (and, to decent precision, the exponent)
found by fitting the difference of partition functions above.

A. Two contours

First let us perform a loose derivation of a path inte-
gral for the PT-symmetric theory, beginning with the
Hamiltonian HPT ¼ HHðλ ¼ −gÞ. The derivation pro-
ceeds in the usual way, but we use the following resolution
of the identity:

FIG. 2. Numerical checks of the two conjectures. The conjecture (2) is examined in the left panel, where very precise agreement in the
partition functions at small β gives way to unphysical behavior in the analytically continued theory at low temperatures. The ABS
conjecture itself is checked in the right panel, where the logarithm of the partition functions is plotted.

FIG. 3. Detailed study of the failure of (2). The logarithm of the
difference between the two partition functions is plotted at small
β (equivalent to small coupling λ). A fit to the functional form
(33) is performed over the range β∈ ½1.4; 1.8� and compared with
the numerical form over β∈ ½1.4; 4.0�. The fit agrees to high
precision and generalizes well to those smaller temperatures.

2Note that this is not the same as the process of “quantizing on
a contour” that was used to define the PT-symmetric Hamil-
tonian theory. For example, in the path integral formulation, ϕðtÞ
and ϕðt0Þ may live on two different contours in C.
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1 ¼
Z
γPT

dxjxihxj: ð35Þ

As a result, the partition function ZPT ≡ Tre−βHPT reads

ZPT ¼
Z
xðtÞ∈ γPT

DxðtÞe−Sðx;λ¼−gÞ; ð36Þ

where, at every time t, the position xðtÞ is required to be
valued not on the real line but on the deformed contour γPT
used to quantize the PT-symmetric theory.
In the d ¼ 0 case, we were able to show in Sec. II that an

analogous integral corresponded to the real part of the
analytic continuation of the original partition function, but
critically, this held only for N ¼ 1. For a multicomponent
field, obtaining the real part of the analytic continuation
requires the use of the wedge contour, defined by (17) and
depicted in Fig. 1. The same derivation holds here without
modification.

B. On the lattice

For Hermitian theories, the partition function in quantum
mechanics can also be defined as a path integral over real
values of the field ϕ:

Zd¼1
H ðλÞ ¼

Z
Dϕe−S: ð37Þ

The path integral may be discretized by dividing the
imaginary time interval into K sites [13]:

Zd¼1ðλÞ ¼ lim
K→∞

Z YK
i¼1

dϕiffiffiffiffiffiffiffiffi
2πε

p e−Slat ; ð38Þ

where the lattice action is defined as

Slat ¼ ε
XK
i¼1

�ðϕi − ϕiþ1Þ2
2ε2

þ λϕ4
i

	
; ð39Þ

with ε ¼ β
K and periodic boundary conditions ϕKþ1 ¼ ϕ1.

In this form, the partition function is amenable to numerical
computation for given values of λ and β. The number
of sites K must be chosen such that ε ≪ 1 in order to be
close to the continuum limit of the theory. In practice, we
find that in units where λ ¼ 1, the choice ε < 0.5 gives
acceptable quantitative results.
For the PT-symmetric theory, the integration domain is

not real. As with the case of d ¼ 0, one can, however,
choose each ϕi to be given by (6), such that with χ ¼ − π

4

Zd¼1
PT ðgÞ ¼

Z YK
i¼1

dϕiffiffiffiffiffiffiffiffi
2πε

p e−SPT ; ð40Þ

with the PT-symmetric form of the lattice action
SPT ðgÞ ¼ Slatðλ ¼ −gÞ. This is analogous to the cone
contour of previous sections, except now defined for
multiple sites rather than multiple components of the field.
The resulting path integral is convergent but somewhat
unwieldy to implement. Note that it instead of (6) is
possible to choose complex integration contours without
kinks such that the resulting path integral can be cast in
form of a real-integration domain with a real action [14],
which is numerically preferable to (40). However, we find
that (40) with just four sites (K ¼ 4) gives qualitatively
acceptable results for Zd¼1

PT ðgÞ for β < 3; see Fig. 4.
Recalling the discussion in Sec. II, it was found that in

the case of d ¼ 0, the cone contour of integration did not
reproduce the analytically continued Hermitian theory for
more than one field N > 1. However, it was found that a
wedge contour (17) faithfully gave the correct analytic
continuation. For this reason, we consider a different path
integral given by choosing the fields to lie on the wedge
(17) where instead of i ¼ 0; 1; 2;…; N the index in (17)
now refers to the site location, e.g. i ¼ 0; 1; 2;…; K. With
χ ¼ − π

4
, one finds

Zd¼1
wedgeðgÞ ¼

Z
∞

0

ds0ffiffiffiffiffiffiffiffi
2πε

p
Z

∞

−∞

YK−1
i¼1

dsiffiffiffiffiffiffiffiffi
2πε

p
�
e−S

þ þ e−S
−
�
;

ð41Þ

S� ¼ � iπK
4

þ ε
XK−1
i¼0

�
�i

ðsi − siþ1Þ2
2ε2

þ gs4i

	
: ð42Þ

The wedge path integral is convergent and can be evaluated
numerically using efficient numerical integrators such as
VEGAS [15] on modern CPUs for K ≲ 20. Results for
K ¼ 10 for ZwedgeðgÞ are shown in Fig. 4, suggesting that
the wedge path integral indeed corresponds to the analytic
continuation of the Hermitian theory to negative coupling.

FIG. 4. The same as Fig. 2, but comparing results for Zd¼1 from
the Hamiltonian spectrum to those from the path integral. See text
for details.
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C. Intersection numbers

To understand the origin of the difference between the
integrals on the two contours, we must first review the
properties of Lefschetz thimbles (see [16] for a more
detailed exposition). We will assume that the model has
been defined on a finite number of degrees of freedom, as in
the lattice models of the previous section.
Given a holomorphic action SðzÞ of fields z∈CN , we

define the upward flow according to

dzi
dt

¼
�
∂S
∂zi

��
: ð43Þ

The upward flow has the important property that along it
the imaginary part of the action is constant, while the real
part of the action monotonically increases.
The flow vanishes only at solutions to the classical

equations of motion—i.e., the saddle points. To each
saddle point zðσÞ is associated a Lefschetz thimble J σ: a
K-dimensional manifold consisting of the union of all
solutions zðtÞ to (43) obeying limt→−∞ zðtÞ ¼ zðσÞ. We may
similarly define an antithimble as the union of all solutions
obeying limt→þ∞ zðtÞ ¼ zðσÞ. Note that the integral of e−S

along a thimble is finite, while the integral along the
antithimble diverges.
Any integration contour that begins and ends at complex

infinity is homologous to some linear combination of
thimbles, with integer coefficients. In particular, this
implies that the integral of any holomorphic function
(including of course e−S) along that contour is the sum
of the integrals taken along those thimbles:Z

γ
fðzÞ ¼

X
σ

nσ

Z
J σ

fðzÞ: ð44Þ

Once an integration contour has been expressed as a linear
combination of thimbles, we may perform a saddle point
approximation on each thimble. The contribution of the
thimble J σ will be proportional (up to a Jacobian factor)
to e−SðzðσÞÞ.
The integers nσ in (44) are termed intersection numbers.

In practice we commonly find nσ ∈ f0;�1g. If the integrals
on the cone and wedge contour are to differ, then those two
contours must have differing intersection numbers. If the
difference between those two contours is to be suppressed
by a factor of e−1=λβ

3

, then the difference in intersection
numbers must not be at the origin but at a subdominant
saddle point.
In principle, the intersection numbers may be obtained

by evolving the integration contour of interest according to
(43). In the limit of long-flow times, this will approach a
fixed-point manifold exactly equal to some integer combi-
nation of the various Lefschetz thimbles. This is typically
not a practical procedure, but it provides a useful trick for

establishing that an intersection number is 0, as follows.
Recall that the upward flow only increases the real part of
the action. If, for every point z in the integration contour of
interest, the real part of the action is already larger than that
at a saddle point zðσÞ, then the associated intersection
number is necessarily nσ ¼ 0.
We can use this to establish that the cone and wedge

contours have the same intersection numbers with the
thimble extending from the saddle point zð0Þ at the origin.3

In the two-site case, consider the contour defined by the
difference between the cone and wedge contours; we will
show that this contour has intersection number n0 ¼ 0.
Using the notation of Sec. II, the integration contour

that gives the difference between the wedge and cone
contours is

γwedge − γcone ¼ γ3 × ðγ1 − γ4Þ þ γ4 × ðγ2 − γ3Þ: ð45Þ

As is, this contour does intersect the origin and, therefore,
contains a point on which the action is equal to that at the
saddle point. However, the attentive reader may already
observe that the contour intersects the origin twice, with
opposing orientations.
To make clear that the origin has no contribution, we can

infinitesimally deform the contours ðγ1 − γ4Þ and ðγ2 − γ3Þ
away from the origin. This increases the real part of the
action at every point and, therefore, results in a contour
where the inequality SðzÞ > Sðz0Þ is strict. With respect to
this contour, the intersection number with the trivial saddle
point must vanish: n0 ¼ 0.

D. Semiclassics

In the previous sections, we found numerically that the
partition function for the analytically continued Hermitian
theory differs from the partition function of the PT-
symmetric theory but that this difference becomes expo-
nentially small for high temperatures; cf. Fig. 2. In this
section, we consider the high-temperature limit of the
analytically continued theory by performing a semiclassical
evaluation of the path integral. Note that at high temper-
ature the semiclassical evaluation is a good approximation
because quantum fluctuations are highly suppressed.
To wit, when appropriately rescaling τ and ϕ, the

analytically continued partition function is given by

Zðλ¼−gÞ ¼
Z

Dϕe−S; S¼
Z

1

0

dτ

�
ϕ̇2

2
− gβ3ϕ4

	
; ð46Þ

3Here we are being slightly sloppy. The saddle point at the
origin is degenerate, and strictly speaking we ought to break this
degeneracy—and any others—by introducing a small perturba-
tion in the action before we can speak of a unique thimble
decomposition. However, this does not change the results or any
of the reasoning, so we have elided this step to keep the
explanation brief and manageable.
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subject to periodic boundary conditions ϕð0Þ ¼ ϕð1Þ. In
the high-temperature limit, we may attempt to evaluate this
partition function by functional saddle point method.
Specifically, we have

ϕðτÞ ¼ ϕclðτÞ þ ϕ0ðτÞ; S ¼ Sð0Þ þ Sð1Þ þ Sð2Þ þ � � � ;
ð47Þ

where Sð0Þ ¼ S½ϕ ¼ ϕcl� and

Sð1Þ ¼
Z

1

0

dτϕ0
h
−ϕ̈cl − 4gβ3ϕ3

cl

i
; ð48Þ

Sð2Þ ¼
Z

1

0

dτ
ϕ0

2

h
−ϕ̈0 − 12gβ3ϕ2

clϕ
0
i
: ð49Þ

The saddle point condition of vanishing Sð1Þ leads to the
classical equations of motion

ϕ̈cl ¼ −4gβ3ϕ3
cl: ð50Þ

The classical solution ϕcl is given by

ϕclðτÞ ¼
Ωffiffiffiffiffiffiffiffiffiffi
4gβ3

p cn

�
Ωτ þ B;

1

2

�
; ð51Þ

where cn denotes the Jacobi elliptic cn function and Ω and
B are two constants. We may recast the path integral in
terms of these constants as follows. Writing

Z ¼
Z

dϕidϕfffiffiffiffiffiffi
2π

p δðϕi − ϕfÞDϕ0e−S; ð52Þ

where ϕi ¼ ϕclð0Þ, ϕf ¼ ϕclð1Þ, and we perform a change
of variables ϕi;ϕf → Ω; B such that

Z ¼
Z

dΩdBffiffiffiffiffiffi
2π

p δðΩ −ΩnÞ




sn

�
B;

1

2

�
dn

�
B;

1

2

�




Z

Dϕ0e−S;

ð53Þ

where sn and dn denote the Jacobi elliptic sn and dn
functions, respectively, and Ωn ¼ 4nKð1

2
Þ with KðmÞ the

complete elliptic integral of the first kind with modulus m.
Here Ωn with n∈N denotes periodic frequency of the
Jacobi elliptic functions that results from the periodicity
requirement δðϕi − ϕfÞ. Effectively, the integral over the
constant Ω turns into a sum over n:

Z ¼
X∞
n¼0

Z
dBffiffiffiffiffiffi
2π

p




sn

�
B;

1

2

�
dn

�
B;

1

2

�




Z

Dϕ0e−S: ð54Þ

Restricting the classical solution (51) to Ω ¼ Ωn leads to
the classical action

Sð0Þ ¼ Ω4
n

48gβ3
≃
63.02
gβ3

× n4: ð55Þ

Note that this corresponds to a bounce contribution propor-
tional to e−3.98=ðβ3λÞ, consistent with the fit performed
in Fig. 3.
The functional integration over the fluctuations ϕ0 can be

calculated using the Gelfand-Yaglom method; cf. [17].
From Sð2Þ above, the equations of motion for ϕ0 are

ϕ̈0 ¼ −12gβ3ϕ2
clϕ

0; ð56Þ

with ϕcl given by (51) and Dirichlet boundary conditions
ϕ0ð0Þ ¼ ϕ0ð1Þ ¼ 0 because of ϕ ¼ ϕcl þ ϕ0 and ϕclð0Þ ¼
ϕð0Þ, ϕclð1Þ ¼ ϕð1Þ. The Gelfand-Yaglom method impliesZ

Dϕ0e−Sð2Þ ¼ ½uð1Þ�−1
2; ð57Þ

where uðτÞ is a solution to (56) with different boundary
conditions uð0Þ ¼ 0, u̇ð0Þ ¼ 1. The general solution to (56)
can be found by the variation of the classical solution (51),
uðτÞ ¼ δϕcl with respect to the parameters Ω and B. The
solution fulfilling the boundary conditions can then be
constructed straightforwardly, and one finds

uð1Þ ¼ sn2
�
B;

1

2

�
dn2

�
B;

1

2

�
: ð58Þ

Putting everything together, we find in the semiclassical
limit

Zðλ ¼ −gÞ ¼
X∞
n¼0

ð−1Þne−
Ω4n

48gβ3

�
2Kð1

2
Þffiffiffiffiffiffi

2π
p þOðgÞ

�
; ð59Þ

where we have taken the integral limits for B to correspond
to the points where cn ðB; 1

2
Þ ¼ �1. The origin of the factor

ð−1Þn can be understood as follows: Regarding −∂2τ −
12gβ3ϕ2

cl as a Schrödinger operator, we see that for n ¼ 0

the spectrum of the operator is real and positive, so the
square root of the determinant is positive. For n > 0, we
can identify a zero-energy solution for the special case
B ¼ 0 that fulfills the boundary conditions ϕ0ð0Þ ¼
ϕ0ð1Þ ¼ 0 with wave function uðτÞ¼ snðΩn;12ÞdnðΩnτ;12Þ.
For n ¼ 1, this wave function has one node. It is well
known that the ground-state wave function for the
Schrödinger equation has no nodes, so there must be
exactly one energy eigenstate with E < 0 for n ¼ 1 and
B ¼ 0. If B ≠ 0, the energy of the first excited state must
also be negative; otherwise, the determinant of the operator
calculated in (58) would have to be negative. As a result, we
find that for B ≠ 0 and n ¼ 1 there must be two negative
eigenenergies, and hence the sign of det−

1
2 must be negative.

For n ¼ 2, one can repeat this exercise, now noting that for
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B ¼ 0 has three nodes, and hence there must be four
negative energy states for B > 0, n ¼ 2. This generalizes to
higher n, leading to the factor of ð−1Þn shown in (59).
We recognize (59) have the typical form expected for

bounces, with n ¼ 0 the zero-bounce (perturbative) con-
tribution, n ¼ 1 the one-bounce contribution, and n > 1
multibounce contributions.

E. N-component scalars in the large-N limit

Finally, let us consider quantum mechanics in N dimen-
sions, for which the Hermitian partition function reads

Zd¼1
N;H ¼

Z
Dϕ⃗e

−
R

β

0
dτ

h
1
2

˙
ϕ⃗
2þ λ

Nðϕ⃗2Þ2
i
: ð60Þ

Using a Hubbard-Stratonovich transformation introducing
the auxiliary field ζ, this can be rewritten as in [18], so that
after performing the Gaussian integral over ϕ⃗ one has

Zd¼1
N;H ¼

Z
Dζe−

R
β

0
dτNζ2

4λ −
N
2
tr ln ½−∂2τþ2iζ�: ð61Þ

At large N, only the zero mode of the field ζ contributes; if
in addition we limit our consideration to low temperatures,
we have (cf. [19])

Zd¼1
N≫1;Hðβ → ∞Þ ¼

Z
dζ0e

−Nβ

�
ζ2
0
4λþ

ffiffiffiffi
iζ0
2

p �
: ð62Þ

At largeN, the last integral may be calculated exactly using
the saddle point method. There is only one saddle on the
principal Riemann sheet, located at iζ0 ¼ 2−

1
3λ

2
3. One can

identify the stable thimble connecting this saddle to the
real line by the same technique that was used in the
Appendix. Evaluating the action at the saddle, one thus

has lnZd¼1
N≫1;Hðβ → 0Þ ¼ −βEðN≫1Þ

0 , where to leading order

in large N, EN≫1
0 ¼ 3ð2λÞ13

8
N. One can also calculate the

contribution of order OðN0Þ to E0 as follows: Expan-
ding the partition function (61) to second order in fluctua-
tions around the saddle ζ ¼ ζ0 þ ζ0ðτÞ and performing
a Fourier transform on the fields ζ0, we obtain the
fluctuation action in the small temperature limit as
S2 ¼ 1

2

R
dk
2π jζ0ðkÞjð 12λ þ ΠðkÞÞ. Here ΠðkÞ ¼ 1

2

R dp
2π GðpÞ×

Gðpþ kÞ, with G−1ðpÞ ¼ p2 þ ð2λÞ13 such that

ΠðkÞ ¼ 1

ð2λÞ13ðk2 þ 4ð2λÞ23Þ : ð63Þ

Performing the path integral over ζ0 leads to an expression
for the spectral gap accurate to next-to-leading order (NLO)
in large N:

EN≫1
0 ¼ ð2λÞ13

�
3

8
N þ

ffiffiffi
6

p
− 2

2

�
þOðN−1Þ: ð64Þ

A similar calculation can be performed for the “wrong-
sign” partition function defined on the wedge contour.
Starting with the partition function

Zd¼1
wedgeN ¼

Z
C
Dϕ⃗e

−
R

β

0
dτ

h
1
2

˙
ϕ⃗
2
− g
Nðϕ⃗2Þ2

i
; ð65Þ

with ϕ⃗ a complex function of real-valued vectors s⃗ an
obvious generalization to (41) to N components. Since s⃗ is
a real-valued vector field, we introduce a Hubbard-
Stratonovich transformation just as in the Hermitian theory
case. Since the integral over s⃗ is again Gaussian, we find

Zd¼1
wedge;N ¼

Z
Dζ

�
1

2
e−

R
∞
0

dτNζ2

4g −
N
2
tr ln ½−∂2τ−2ζ� þ ζ → −ζ

	
;

ð66Þ
which is still exact for all N. In the large-N limit, we can
again use the fact that the partition function can be
evaluated from the saddle points of the action, which is
the Fourier zero mode ζðτÞ ¼ ζ0. The calculation then
proceeds exactly analogous to the Hermitian case, even
though the saddle point locations ζ0 are complex. One finds

EN≫1
wedge;0ðgÞ ¼

ð2gÞ13
2

�
3

8
N þ

ffiffiffi
6

p
− 2

2

�

−
1

β
ln

�
2 cos

� ffiffiffi
3

p
Nð2gβ3Þ13
16

�	
þOðN−1Þ:

ð67Þ
Comparing (67) and (64), we find that, in the zero

temperature limit to leading and NLO order in large N,

lnZwedgeðgÞ ¼ Re ln ZHðλ ¼ −gÞ: ð68Þ

V. DISCUSSION

In this work, we have examined the relation between
interacting quantum theories with quartic interaction.
Specifically, we have studied if and how analytically
continuing the Hermitian theory to negative coupling can
be related to the PT-symmetric theory.
Based on our detailed calculations performed in d ¼ 0

and d ¼ 1, our findings are as follows.
(i) We showed that a path-integral formulation on a

complex field contour (the wedge) for the wrong-
sign Hermitian theory has the property that its
partition function equals the real part of the ana-
lytically continued Hermitian theory (2).

(ii) We found that this complex integration contour (the
wedge) is different from—and yields a different
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integral than—the complex integration contour used
to define the PT-symmetric theory (the cone).

(iii) We found that the difference in integration contours
corresponds to a nonperturbative contribution to the
partition function (the “bounce”). Evaluating the
leading bounce contribution analytically using semi-
classics, we find excellent numerical agreement with
the difference between the partition functions de-
fined on the two contours.

(iv) We provided evidence from high-precision numeri-
cal calculations that the path integrals defined on the
wedge and cone, respectively, correspond to the
partition function calculated from the known spec-
trum of the Hamiltonian for the analytically con-
tinued Hermitian and PT-symmetric theories.

(v) We found that because the bounce contribution
becomes exponentially suppressed at high temper-
ature (equivalently, weak coupling), the partition
functions defined on the two integration contours are
exponentially close in that limit.

(vi) We found that in the limit of a large number of fields
the difference between the relations (1) and (2)
becomes large-N suppressed.

Based on these findings, we offer the following inter-
pretations concerning the relation between analytically
continued Hermitian and PT-symmetric field theory.

(i) The ABS conjecture (1) is likely incorrect. In all
cases we studied, (1) was violated, for reasons we
have outlined in this work.

(ii) The relation (2) holds to very good approximation at
high temperatures. This is because the nonperturba-
tive corrections to the left-hand side of (2) are
exponentially suppressed at high temperature.

(iii) The analytically continued Hermitian partition func-
tion does have a consistent formulation as a path
integral on a complex integration contour; it is just
not the PT-symmetric integration contour. This
wedge contour gives the exact analytic continuation
of the Hermitian theory for all temperatures and all
number of field components.

(iv) In the large volume (zero temperature) limit, we
expect the relation

lnZwedgeðgÞ ¼ Re lnZHðλ ¼ −gÞ; ð69Þ
which we proved for d ¼ 0, 1, to leading and next-to-
leading order in 1

N to generalize to arbitrary dimen-
sion d.

While the original ABS conjecture does not seem to
hold, we believe that the existence of the relation (69) puts
the analytic continuation of wrong-sign field theories such
as those discussed in Refs. [7–9] on firm footing.
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APPENDIX: ONE-SITE CALCULATIONS
FOR N-COMPONENT SCALARS

In this section, we provide some calculational details for
the case of N-component scalars in d ¼ 0 discussed in
Sec. II in the main text. To start, note that (13) can be
calculated using spherical coordinates in N dimensions.
This leads to

Zd¼0
N ¼ 21−

N
2

ΓðN
2
Þ
Z

∞

0

drrN−1e−
λ
Nr

4 ¼
�
4λ

N

�
−N

4 ΓðN
4
Þ

2ΓðN
2
Þ : ðA1Þ

In particular, for largeN ≫ 1, the asymptotic expansion for
the Γ function then leads to

lnZd¼0
N≫1 ¼ −

N
4
ln
4λ

e1
−
ln 2

2
þOðN−1Þ: ðA2Þ

This large-N behavior may also be obtained directly using
the method of steepest descent. To this end, rewrite

Zd¼0
N ¼

ffiffiffiffiffiffiffiffi
N
4λπ

r Z
dϕ⃗

ð2πÞN2
Z

∞

−∞
dζe−iζϕ⃗

2−ζ2N
4λ : ðA3Þ

Now the integral over ϕ⃗ is Gaussian and can be done
exactly to give

Zd¼0N ¼
ffiffiffiffiffiffiffiffi
N
4λπ

r
2−

N
2

Z
∞

−∞
dζe−

ζ2N
4λ −

N
2
lnðiζÞ: ðA4Þ

For N ≫ 1, the integral can be evaluated exactly using
the method of steepest descent. The saddle point condition
then is

ζ

2λ
þ 1

2ζ
¼ 0; ðA5Þ

which is solved by ζ ¼ �i
ffiffiffi
λ

p
. To find out which saddle

contributes to the path integral, we consider a path para-
metrized by s in the complex ζ plane, so that ζðsÞ ¼ aðsÞ þ
ibðsÞ with real aðsÞ and bðsÞ. The special path we are
interested in is called a Lefschetz thimble, and it is defined
through the solution of the flow equations (43) where here

S ¼ ζ2

4λ þ 1
2
lnðiζÞ. The thimbles have the special property that

the imaginary part of the action is constant along the thimble,
which can easily be seen from noting that

dS
ds

¼ ∂S
∂ζ

dζ
ds

¼




 ∂S
∂ζ





2: ðA6Þ

For the saddle located at ζ ¼ −i
ffiffiffi
λ

p
, S is real, which can be

used to find the corresponding thimbles passing through this
saddle without solving (43). Specifically, one finds that one
thimble is given by

INSTANTONS, ANALYTIC CONTINUATION, AND … PHYS. REV. D 108, 085013 (2023)

085013-11



aðsÞ ¼
ffiffiffi
λ

p
xðsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
atanxðsÞ
xðsÞ

s
; bðsÞ ¼ −

ffiffiffi
λ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
atanxðsÞ
xðsÞ

s
;

ðA7Þ
with xðsÞ ¼ �es on the right and left part of the thimble.
There is also an unstable thimble given by aðsÞ ¼ 0 and
b ¼ −s with s > 0, but this thimble does not connect to the
real line at ζ ¼ �∞, so it is dismissed. For the second saddle
at ζ ¼ þi

ffiffiffi
λ

p
, one finds that in the complex ζ plane the

branch cut of the logarithm implies that these are actually
multiple saddles on different Riemann sheets. Not surpris-
ingly, there are no thimbles that connect to the real line on the
principal Riemann sheet and go through these saddles, so
there is no contribution from the saddle at ζ ¼ �∞ to the
path integral.
Using the stable thimble through the saddle ζ ¼ −i

ffiffiffi
λ

p
,

expanding S½ζ� to quadratic order and doing the Gaussian
integral then gives

lnZd¼0
N≫1 ¼ −

N
4
ln
4λ

e1
−
1

2
ln 2þOðN−1Þ; ðA8Þ

matching the large-N limit of the exact result (A2).
We close this section by giving detailed results for the

d ¼ 0 partition function for N components on the wedge
contour. Explicitly, in the case of N ¼ 2, we have for this
choice of contour

Zd¼0
wedge;N¼2 ¼

Z
∞

0

dsdt
2π

e−
g
2
ðs2þt2Þ

�
2e−

iπ
2 þ 2e

iπ
2

�
¼ 0: ðA9Þ

Comparing this result to the Hermitian OðNÞ result (A1),
one finds that the path integral defined on the wedge
exactly matches the real part of the analytically continued
Hermitian result.
For three or more components, one proceeds in a similar

fashion to find

Zd¼0
wedge;N ¼ 21−

N
2

ΓðN
2
Þ
Z

∞

0

drrN−1e−
g
Nr

4

�
e−

Niπ
4 þ e

Niπ
4

�
2

; ðA10Þ

which proves

Zd¼0
wedge;N ¼ RefZd¼0

N ðλ ¼ −gþ i0þÞg; ðA11Þ
for all N ∈N. At large N ≫ 1, one notes that

lnZd¼0
wedge;N≫1 ¼ −

N
4
ln
4g
e1

−
ln 2
2

þ ln cos
Nπ

4
þOðN−1Þ:

ðA12Þ
Since the logarithm of the cosine is not proportional to N,
in addition to (A11), at large N the d ¼ 0 theory fulfills the
additional relation

lnZd¼0
wedge;N≫1 ¼ Re ln Zd¼0

N≫1ðλ ¼ −gþ i0þÞ þOðN0Þ:
ðA13Þ

Thus at large N, and large N only, the Hermitian and
wedge-contour parametrized partition functions for the
d ¼ 0 case are related through the original conjecture (2).
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