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The sustained intense experimental activity around atomic spectroscopy and the resulting high-precision
measurements of atomic spectral lines attracts interest in Lamb shift as a witness for noninertial effects in
quantum systems. We investigate the Lamb shift in a two-level system, undergoing uniform circular
motion, coupled to a quantum electromagnetic field inside a cavity. We show that when the separation
between different cavity modes is large compared to the width of each cavity mode, both the inertial and
purely noninertial contributions to the Lamb shift are convergent. In addition, we find that the purely
noninertial Lamb shift maximizes away from the atomic resonance by an amount decided by the angular
frequency of the circulating atom, lending itself to efficient enhancement by suitably tuning the cavity
parameters. We argue that the purely noninertial contribution becomes detectable at accelerations
∼1014 m=s2.
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I. INTRODUCTION

In several studies, the noninertial motion has been shown
to modify various properties of quantum systems, ranging
from thermal signature in transition rates [1] and accel-
eration-induced transparency [2] to potentially detectable
noninertial contributions to the geometric phase [3,4].
Moreover, interesting results have been obtained concern-
ing the relationship between entanglement and noninertial
motion [5–12], for example, rotation can lead to the
generation of entanglement [12]. These studies extend
our understanding of quantum physics beyond the well-
understood domain of inertial reference frames into the
domain of noninertial reference frames, thus laying the
groundwork for ultimately investigating novel phenomena
at the interface of quantum physics and gravity [13].
Atoms, in such studies, are usually modeled as two-level

systems coupling locally to a quantum field [1,14]. The
response of such systems is controlled by the field
correlation functions. The field correlators perceived by
the atom are sensitive to its state of motion [1,15–18] or the
presence of gravity, leading to a distinct noninertial or
gravitational [19,20] contribution to the atomic response.
The resulting effects are usually very weak and require
extreme acceleration or gravitational field for a detectable
signature.
Different studies [21–33] have investigated various

properties of noninertial quantum systems under varied
conditions, seeking appreciable noninertial signatures and

ease of measurement in laboratory settings. An observable
of interest in this context is the Lamb shift, or the radiative
energy shift in general (though in this work we will use the
two terms interchangeably).
In this work, we are interested in the correction to the

radiative energy shifts originating from the atom’s non-
inertial motion. The total radiative energy shift in an atom
on a noninertial trajectory has two contributions; inertial
and purely noninertial. The additional purely noninertial
contribution comes due to the acceleration of the atom. The
atom is assumed to be coupled to a quantum electromag-
netic (EM) field inside a cavity. In particular, we are
interested in the effect of the modified density of field
states inside the cavity on the inertial and purely noninertial
contributions to the Lamb shift.
TheLamb shift is a shift in the energy levels of an atomdue

to the atomic electron’s coupling to a quantum electromag-
netic field [34,35]. The Lamb shift in inertial atoms has been
measured with great precision using different experimental
methods [36–39]. As already mentioned, the response of
atoms coupled to a quantum field is determined by the field
correlators, which depend on the atom’s trajectory and
therefore lead to a noninertial signature in the radiative
energy shifts. The energy shift can be an observable of
interest for the detection of the effects of acceleration [40–42]
and gravity [43–47] owing to the theoretical and experimental
advances that atomic spectroscopy has made [39,48–52].
Particularly, transitions in hydrogen atom have been mea-
sured with precision in the 10−11 − 10−12 range for optical
transitions and 10−5 − 10−6 range for microwave transitions
[48,53]. Such precise measurements of transition frequencies
enable the determination of various corrections to the spectral
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lines, including those coming from the atomic electron’s
interaction with a quantum electromagnetic field.
The Lamb shift in atomic systems is predominantly a

nonrelativistic phenomenon in the sense that a major
contribution to the Lamb shift comes from the atomic
electron’s coupling to the field modes with energy less than
the electron’s rest mass energy [54,55]. Therefore, we will
focus on such a nonrelativistic treatment. The Lamb shift in
a two-level atom on a stationary worldline [56], coupled to
a quantum scalar field in free space, has a logarithmically
divergent inertial contribution and a finite correction
coming due to the atom’s noninertial motion [40,41].
The logarithmically divergent inertial contribution neces-
sitates the introduction of an ultraviolet cutoff [55]. Such
cutoffs employed in the nonrelativistic calculations of the
radiative corrections to matter properties lead to cutoff-
sensitive results. See Ref. [57] for a typical example related
to the calculation of anomalous magnetic moment of an
electron.
The quantum electrodynamical properties of an atom

interacting with an EM field get modified if the density of
field states is changed, for example, by introducing con-
ducting mirrors [58]. The EM cavities have been fruitfully
studied in the context of amplification and isolation of the
noninertial quantum field theoretic effects [4,25,59]. The
radiative energy shift, in particular, depends sensitively on
the density of field modes [60]. Using an EM cavity, the
transition rates of an atomcan be either amplified or inhibited
[61]. Therefore, as the Lamb shift arises due to the absorption
and emission of virtual photons by the atomic electron [62],
better control over the energy shifts can be obtained using an
EMcavity [63]. The radiative energy shifts in an inertial atom
in the presence of a mirror [64], in an atom placed between
parallel metal plates [65], and in an atom placed inside a
confocal resonator [66] have been measured in various
experiments which, if the purely noninertial contribution
is appreciable, can conceivably be extended to atoms on
noninertial trajectories.
Here, we study the Lamb shift in an atom undergoing

uniform circular acceleration and coupled to an electro-
magnetic field inside a cavity. Specifically, we focus on the
behavior of the inertial and noninertial contributions to the
total Lamb shift as a function of the cavity’s normal
frequency and discuss the detectability of the noninertial
contribution. We show that when the separation between
different cavity modes is large as compared to the width of
each cavity mode, both the inertial and purely noninertial
contributions to the Lamb shift are convergent, leading to
cutoff-independent results. In addition, we find that the
purely noninertial Lamb shift maximizes away from the
atomic resonance by an amount decided by the angular
frequency of the circulating atom, lending itself to efficient
enhancement by suitably tuning the cavity parameters.
We argue that the purely noninertial contribution can be
detected at accelerations ∼1014 m=s2.

This paper is organized as follows. In Sec. II we discuss
the Lamb shift in an open quantum system from the
perspective of the Lindblad master equation formalism.
In Sec. III, we detail the atom-cavity setup employed in this
work. In Sec. IV, we use the Lindblad master equation
formalism to obtain the Lamb shift in a two-level system on
a circular trajectory inside an EM cavity. Finally, in Sec. V
we discuss the results and conclude with a discussion on the
outlook for the study carried out in this paper.

II. BACKGROUND: LAMB SHIFT

In this section, we discuss the Lamb shift in a small
system S due to its coupling to a large reservoir B. The
intrinsic dynamics of S and B are governed by the
Hamiltonians HS and HB, respectively. The Schrodinger
picture interaction Hamiltonian between the system and the
reservoir can be written as

HI ¼
X
α

Aα ⊗ B̃α; ð1Þ

where Aα ¼ A†
α and B̃α ¼ B̃†

α are the system and the
reservoir operators, respectively. The Lindblad (interaction
picture) master equation governing the dynamics of the
system S is given by [67]

dρSðτÞ
dτ

¼ −
i
ℏ
½HLS; ρSðτÞ� þDðρSðτÞÞ; ð2Þ

where τ is the proper time, ρSðτÞ is the system’s density
operator and DðρSðτÞÞ is called the dissipator of the master
equation as it controls the dissipation and decoherence in
the system.HLS is known as the Lamb shift Hamiltonian as
it leads to a renormalization of the unperturbed energy
levels induced by the system-reservoir coupling.
The Lamb shift Hamiltonian is given by

HLS ¼
X
ν

X
α;β

ℏSαβðνÞA†
αðνÞAβðνÞ; ð3Þ

where

SαβðνÞ≡ 1

2π

Z
∞

−∞
dλGαβðλÞP:V:

�
1

ν − λ

�
; ð4Þ

with

GαβðλÞ≡ 1

ℏ2

Z
∞

−∞
dτ−eiλτ− trB ðB̃αðτ2ÞB̃βðτ1ÞÞ; ð5Þ

τ− ≡ τ2 − τ1, P.V. denoting the Cauchy Principal value
integral, and trBð·Þ denoting the trace over the reservoir
degrees of freedom. Note that GαβðλÞ is the Fourier

NAVDEEP ARYA and SANDEEP K. GOYAL PHYS. REV. D 108, 085011 (2023)

085011-2



transform of the two-point reservoir correlation function.
Further, the

P
ν, where ν≡ ε0 − ε, is extended over all

eigenvalues ε and ε0 of HS with a fixed energy difference ν.
The AβðνÞ are the eigenoperators of the system Hamiltonian
HS and are defined as AαðνÞ≡P

νΠðεÞAαΠðε0Þ, where
ΠðεÞ is the projector on the eigenspace belonging to the
eigenvalue ε [67,68]. The AαðνÞ are also known as the
Lindblad operators.
Now, consider S to be a two-level atom with the excited

state jei and the ground state jgi, interacting with a quantum
electromagnetic field inside an electromagnetic cavity. The
proper frequency gap between the two atomic levels is Ω0

and the atom carries an electric dipole moment four-vector
d̂0μ ¼ ðd̂00; d̂0Þ. In the interaction picture, the dipole moment
operator d̂0ðτÞ is given by d̂0ðτÞ ¼ d0σ− expð−iΩ0τÞþ
d0�σþ expðiΩ0τÞ, where d0 ≡ hgjd̂0ðτ ¼ 0Þjei, and σþ ¼
σ†− ¼ jeihgj is the step-up operator for the atomic states.
The Lindblad operators for S are given by [67]

AðΩ0Þ ¼ d0σ−; Að−Ω0Þ ¼ d0�σþ: ð6Þ

The electromagnetic field is assumed to be in the inertial
vacuum state j0i. The interaction Hamiltonian between the
atom and the electromagnetic field is given byHI ¼ −d̂μEμ

[69], where Eμ ≡ Fμνuν, Fμν is the electromagnetic field
strength tensor and uν is the four-velocity of the atom. The
interaction Hamiltonian takes the formHI ¼ −d̂0 ·E0 in the
rest frame of the atom, whereE0 is the electric field 3-vector
as seen by the atom.Throughout this paper, primedquantities
correspond to the atom’s rest frame.
From Eqs. (3) and (6), for the two-level system we have

HLS ¼ ℏ
X
α;β

ðSαβðΩ0Þðd0ασ−Þ†d0βσ− þ Sαβð−Ω0Þ

× ðd0�α σþÞ†d0�β σþÞ: ð7Þ

For simplicity, we assume that d0 ¼ ð0; d0; 0Þ, and obtain

HLS ¼ ℏjd0j2 ðS22ðΩ0Þσþσ− þ S22ð−Ω0Þσ−σþÞ: ð8Þ

As is clear from the form of HLS in above equation, it
induces transitions between the two atomic levels mediated
by virtual photons. The Lamb shift, Δ, is obtained as

ℏΔ≡ hejHLSjei − hgjHLSjgi
¼ ℏjd0j2ðS22ðΩ0Þ − S22ð−Ω0ÞÞ; ð9Þ

that is

Δ ¼ jd0j2
2π

Z
∞

−∞
dν0G0

22ðν0ÞP:V:
�

1

ν0 þΩ0

−
1

ν0 −Ω0

�
; ð10Þ

where

G0
22ðν0Þ ¼

1

ℏ2

Z
∞

−∞
dτ−eiν

0τ−G0þ
22ðτ−Þ; ð11Þ

with G0þ
22ðτ−Þ≡ h0jE0

yðτ2ÞE0
yðτ1Þj0i being the positive fre-

quency vacuum Wightman function.

III. ATOM-CAVITY SETUP

In this section, we discuss the atom-cavity setup
employed in this study. The atomic transition rates depend
on the field spectral density in the resonant mode, that is, in
the mode with frequency Ω0. From Eq. (10), however, note
that since P.V.ð1=ðν�Ω0ÞÞ vanishes for ν ¼ �Ω0 and
behaves as 1=ðν�Ω0Þ away from ν ¼ �Ω0, the radiative
energy shift depends on the field spectral density in all the
modes, except the resonant mode, with a weight that falls
off away from the resonant mode [70]. If we consider a
cavity such that the frequency separation between different
cavity modes is large as compared to the width of each
cavity mode, then due to the presence of the factor
P.V.ð1=ðν�Ω0ÞÞ in Eq. (10) the dominant contribution
to the energy shift will come from the modes in the vicinity
of the cavity’s normal frequency ωc, as compared to the
contribution of the higher frequencies supported by the
cavity at nωc; n > 1. We assume that the cavity modes are
separated in frequency by much more than their width (i.e.,
a cavity with a high-quality factor). If the inertial rate at
which the radiation deposited in the cavity is damped is
ωc=Q, where Q is the quality factor of the cavity, then the
density of field states inside the cavity is given by [66,71]

ρðωkÞ ¼
1

π

ðωc=QÞ
ðωc=QÞ2 þ ðωk − ωcÞ2

: ð12Þ

Further, to ensure the validity of the Markovian approxi-
mation [67], which is inherent in the derivation of the
master equation (2), we will work in the bad-cavity regime,

g ≪ κ; ð13Þ

where for a cavity of volumeV, g≡ jd0j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωc=ð2ℏϵ0VÞ

p
is the

atom-cavity field coupling constant and κ≡ ωc=Q is the
cavity-field decay rate [72]. For a given atom and a given
normal frequency ωc of the cavity, the condition g ≪ κ will
decide the allowed values of V and Q consistent with the
Markovian approximation. See the caption of Fig. 1.
The variation of P.V.ð1=ðν� Ω0ÞÞ and the density of

field modes ρðνÞ, entering Eq. (10) through the field
correlation function, decide the magnitude of the radiative
energy shift.
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IV. RESULTS

We now consider a two-level atom on a circular
trajectory of angular frequency ω and radius R inside an
electromagnetic cavity of volume V.
In the following subsection, we determine the Fourier

transform of the two-point vacuum Wightman function as
given in Eq. (11) and then use Eq. (10) to obtain the Lamb
shift in the subsequent subsection.

A. Fourier transform of the field correlation function

We consider an atom on a circular trajectory of radius R
and angular frequency ω such that its position four-vector
in the lab frame is given by

xμðτÞ ¼ ðtðτÞ; xðτÞ; yðτÞ; zðτÞÞ
¼ ðcγτ; x0 þ R cosðωγτÞ; 0; z0 þR sinðωγτÞÞ; ð14Þ

where γ ≡ ð1 − ζðωÞÞ−1=2, and ζðωÞ≡ ω2R2=c2. Here γ is
the Lorentz factor and ωR=c is the ratio between the
angular speed v ¼ ωR of the atom and the speed of light c.
To compute G0

22ðνÞ, we need the positive-frequency
vacuum Wightman function G0þ

22ðτ−Þ in the atom’s frame.
We start by noting that G0þ

μν ≡ h0jE0
μðτ2ÞE0

νðτ1Þj0i can be
obtained from its counterpart Gþ

μν ≡ h0jEμðxλ2ÞEνðxλ1Þj0i in
the lab frame using the tensor transformation between the
two frames. Consequently, we have

G0þ
22 ¼

X
αβ

∂xα

∂x02
∂xβ

∂x02
Gþ

αβ ¼ Gþ
22; ð15Þ

where we have used the fact that the rotating ðτ; x0; y0; z0Þ
and the inertial coordinates (t, x, y, z) are related as

x0 ¼ x − x0 − R cos ωt;

y0 ¼ y;

z0 ¼ z − z0 − R sin ωt;

τ ¼ ð1 − ω2R2=c2Þ1=2t; ð16Þ

with ðx0; 0; z0Þ being the center of the circular trajectory.
The electric field perceived by the atom and as reported

by the inertial observer is given by EμðxλÞ ¼ FμνðxλÞuν,
where uν ≡ dxνðτÞ=dτ is the atomic four-velocity in the lab
frame. Therefore, using Eq. (14) we have

E2 ¼ γ½Ey − ωRfBz sinðωγτÞ − Bx cosðωγτÞg�; ð17Þ

which we will use for the computation of Gþ
22. As shown in

Appendix A [73], for the Fourier transform G0
22ðνÞ of the

field correlation function we obtain

G0
22ðν̄Þ¼

γ

3πℏϵ0V

Z
∞

0

dωkρðωkÞωk

h
δðν̄−ωkÞ

þR2ω2

2c2
1

2
½δðν̄−ωkþωÞþδðν̄−ωk−ωÞ�−2ω2

kR
2

5c2

×
n
δðν̄−ωkÞ−

1

2
ðδðν̄þω−ωkÞþδðν̄−ω−ωkÞÞ

oi
;

ð18Þ

where ρðωkÞ is the density of field modes inside the cavity
as given in Eq. (12) and we have also explicitly indicated
the dependence of G0

22 on ν̄≡ ν=γ. Note that to obtain
Eq. (18) we have assumed a closed cavity. If we had
assumed, for example, a concentric resonator instead of a
closed cavity, the angular integrals in the field correlators

FIG. 1. Fig. 1(a) plotsΔ0=η as a function of the cavity’s normal frequency [See Eq. (23)], where we have written ωc ¼ 107 þ ϵ. We see
that the Lamb shift in an inertial atom maximizes when the cavity is tuned to a frequency in the vicinity of the atomic resonance and falls
off on both sides of this region. Since we are considering a two-level system with Ω0 ¼ 107 Hz, we take ωc ∼ 107 Hz. For a cavity with
Q ∼ 107, we take V ∼ 10−5 m3 to ensure consistency with Eq. (13). Therefore η ∼ 10−9 Hz (η≡ jd0j2=3πℏϵ0V), which leads to
Δ0 ∼ 10−3 Hz. For an atom on a circular orbit with angular velocity ω, however, there are additional peaks in the neighborhood of
ωc ¼ ω� Ω̄0. See Fig. 2 as well. Fig. 1(b) gives a plot of Δω=η, defined in Eq. (25), as a function of the cavity’s normal frequency for
ω ¼ 5 × 1011 Hz. In this case, ωc ∼ ω� Ω0 and ω ≫ Ω0. Therefore, for Q ∼ 107 we take V ∼ 10−9 m3, and R ¼ 10−5 m. This
corresponds to η ∼ 10−5 Hz, and an average acceleration a ¼ ω2R ∼ 1018 m=s2 and leads to a purely noninertial Lamb shift
Δω ∼ 10−3 Hz. Such accelerations can be achieved with electrons in storage rings [28].

NAVDEEP ARYA and SANDEEP K. GOYAL PHYS. REV. D 108, 085011 (2023)

085011-4



h0jEiðxμ2ÞEiðxμ1Þj0i and h0jBiðxμ2ÞBiðxμ1Þj0i constituting
G0
22ðν̄Þ [see Appendix A] would have split into two parts,

one with the free space field mode density ρfreeðωkÞ ¼ ω2
k,

and the other with the field mode density modified by the
resonator [66],

ρcavðωkÞ ¼
�
ρðωkÞ; for k inΔΩcav;

ρfreeðωkÞ; for k inΔΩfree
; ð19Þ

where ρðωkÞ is given by Eq. (12), and ΔΩcav is the solid
angle subtended by the resonator mirrors at the center
of the cavity. And, the continuum limit on the free
space part would have been obtained as ð1=VÞPk →
ð2πÞ−3 R dΩk

R
dωk ρfreeðωkÞ.

The qualitative features of interest to us, that is, the
variation of the Lamb shift with cavity detuning, will not
change if we consider a concentric resonator in place of the
closed cavity. Therefore, for convenience, we work with a
closed cavity.

Evaluating the integral in Eq. (18), we obtain

G22ðν̄Þ ¼
γ

3πℏϵ0V

�
ρðν̄Þν̄Θðν̄Þ þ ζðωÞ

4
½ðν̄þωÞρðν̄þωÞΘðν̄þωÞ þ ðν̄−ωÞρðν̄−ωÞΘðν̄−ωÞ�

−
2

5

�
ν̄2R2

c2
ν̄ρðν̄ÞΘðν̄Þ− 1

2

�ðν̄þωÞ2R2

c2
ðν̄þωÞρðν̄þωÞΘðν̄þωÞ þ ðν̄−ωÞ2R2

c2
ðν̄−ωÞρðν̄−ωÞΘðν̄−ωÞ

���
;

ð20Þ

where ΘðxÞ is the Heaviside theta function.

B. Lamb shift in the circulating atom

The Lamb shift in the circulating atom can be obtained by combining Eqs. (10) and (20). To obtain the Lamb shift we first
recast Eq. (10) using ν̄ ¼ ν=γ and Ω̄0 ¼ Ω0=γ, as

Δ ¼ jd0j2
2π

Z
∞

−∞
dν̄G22ðν̄ÞP:V:

�
1

ν̄þ Ω̄0

−
1

ν̄ − Ω̄0

�
; ð21Þ

which, using Eq. (20), leads to the total Lamb shift given by

Δ ¼ γη

2π

Z
∞

−∞
dν̄

�
ρðν̄Þν̄Θðν̄Þ þ ζðωÞ

4
½ðν̄þ ωÞρðν̄þ ωÞΘðν̄þ ωÞ þ ðν̄ − ωÞρðν̄ − ωÞΘðν̄ − ωÞ�

−
2

5

�
ζðν̄Þν̄ρðν̄ÞΘðν̄Þ − 1

2
ðζðν̄þ ωÞðν̄þ ωÞρðν̄þ ωÞΘðν̄þ ωÞ þ ζðν̄ − ωÞðν̄ − ωÞρðν̄ − ωÞΘðν̄ − ωÞÞ

��

× P:V:

�
1

ν̄þ Ω̄0

−
1

ν̄ − Ω̄0

�
; ð22Þ

where η≡ jd0j2=ð3πℏϵ0VÞ, ζðνÞ≡ ν2R2=c2. Eq. (28) shows
the dependence of the Lamb shift on the atom’s acceleration
a ¼ ω2R through the parameter ζðωÞ≡ ω2R2=c2. The
parameter η has the dimensions of inverse time and can be
expressed in terms of the atom-cavity coupling constant
g≡ jd0j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωc=ð2ℏϵ0VÞ
p

, and cavity’s normal frequencyωc as
η ¼ 2g2=3πωc. The volume dependence of Δ is entirely
contained in η. To obtain plots independent of a specific
choice of the mode volume V of the cavity, we are plotting
Δ0=η and Δω=η as a function of the cavity’s normal

frequency ωc. For different values of the atom’s angular
frequency, we take different values of V for an optimum
signal while maintaining consistency with the bad-cavity
regime mentioned in Eq. (13). The captions of Figs. 1 and 2
mention the corresponding values ofV and η. These η values
are then used to determine the purely noninertial and inertial
contributions to the Lamb shift.
From Eq. (22), the Lamb shift of an inertial atom can be

obtained in the limit ω → 0. For the inertial Lamb shift we
obtain
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Δ0 ¼
η

2π

Z
∞

−∞
dνρðνÞνΘðνÞP:V:

�
1

νþΩ0

−
1

ν−Ω0

�
: ð23Þ

The Cauchy Principal value integral can be evaluated
exactly. For a high-Q cavity, specifically, we obtain a
simpler expression given by (see Appendix B)

Δ0 ≈ −ηΩ0

�
ωcðΩ2

0 þ ω2
cÞ logðωc=Ω0Þ

2π2Qðω2
c − Ω2

0Þ2
þ ωc

πðω2
c −Ω2

0Þ
�
;

ð24Þ

for ωc ≠ Ω0. As can be seen in Fig. 1(a), Δ0 maximizes
when the cavity is tuned near, but not exactly at, the atomic
resonance Ω0. The purely noninertial contribution to the
Lamb shift can be obtained as

Δω ¼ Δ − Δ0: ð25Þ

The three integrals in the first line of Eq. (22) are manifestly
convergent. The three integrals in the second line, however,
are individually logarithmically divergent but the total

Lamb shift is convergent as shown in Appendix C. One
can obtain a closed form expression for Δω, however,
the expression is cumbersome without offering additional
insights. Therefore, we instead resort to the plots [Figs. 1(b)
and 2] to illustrate the main features.
Note the presence of ζðν̄� ωÞðν̄� ωÞρðν̄� ωÞΘðν̄�

ωÞ terms in Eq. (22). The plots show that the purely
noninertial contribution to the Lamb shift, in contrast with
the inertial contribution, maximizes away from the atomic
resonance Ω0, in the vicinity of frequencies ω� Ω̄0. This
allows us to isolate and enhance the purely noninertial
contribution relative to the inertial contribution by appro-
priately tuning the cavity.
At this point, recall that the radiative shift to the energy

levels of an atom occurs through processes mediated by
virtual photons. For these processes, the state of the
radiation field remains unchanged in the initial and final
states of the atom-field composite system, and changes
only in the intermediate composite state [62]. These
processes complement the processes in which the emission
or absorption of a real photon is involved which lead to
transitions between different energy levels of the atom.

FIG. 2. The Δω=η versus ωc and Δω=Δ0 versus ωc plots for a two-level system on a circular trajectory of R ¼ 10−5 m with
ω ¼ 5 × 109 Hz [for plots (a) and (b)] and ω ¼ 5 × 1010 Hz [for plots (c) and (d)]. For plots (a) and (c), we have written
ωc ¼ ωþ Ω̄0 þ δ × 105. For values of cavity’s normal frequency in the vicinity of ω� Ω̄0, large spikes in both Δω=η and Δω=Δ0 are
recorded. For clarity, the plots show only the spike at ωþ Ω̄0 [see Fig. 1(b)]. The plots (a) and (b) correspond to an average accelerations
of a ¼ ω2R ∼ 1014 m=s2, while the plots (c) and (d) correspond to an average acceleration of a ¼ ω2R ∼ 1016 m=s2. For the plots we
have taken Q ∼ 107, and V ∼ 10−8 m3 which gives η ∼ 10−6 Hz. See the discussion following Eq. (13) on how to chose cavity
parameters consistent with the bad-cavity regime.
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Figure 3(a) shows the emission rate and Lamb shift in an
inertial atom as a function of the cavity’s normal frequency
ωc. An inertial two-level atom undergoes transitions
dominantly at Ω0, while the Lamb shift in its energy levels
maximizes when the cavity is tuned to a frequency in the
vicinity of Ω0 as shown in Fig. 1(a). As was reported and
exploited in Refs. [4,59], a circulating two-level atom
undergoes transitions at field frequencies ωk ¼ jω� Ω̄0j,
in addition to the transitions at the inertial resonant
frequency Ω0. The purely noninertial decay rate of the
circulating atom is given to the first order in ζðωÞ by [4,59]

Γ↓
ω ¼ ηζðωÞΩ0

2

�
−Ω0ρ

0ðΩ0Þ þ
9

10

ωþ Ω̄0

Ω0

ρðωþ Ω̄0Þ
�
;

ð26Þ

where ρ0ðωkÞ ¼ ∂ρ=∂ωk. Figure 3(b) depicts Γ
↓
ω and Δω as

a function of the cavity’s normal frequency in the neigh-
borhood of ωþ Ω̄0.
Thus we see that for a microwave two-level system,

weakly coupled to EM field inside a bad-cavity, when the
cavity is tuned at the atomic resonance, a maximum inertial
Lamb shift of the order of 10−3 Hz is obtained. Further, by
tuning the cavity in the vicinity of either ωþ Ω̄0 or ω − Ω̄0,
the purely noninertial contribution can be made dominant
[see Figs. 1(b) and 2]. For example, at an average
acceleration a ¼ ω2R ∼ 1014 m=s2, a noninertial contribu-
tion Δω ∼ 10−8 Hz, and for a ∼ 1016 m=s2, a purely non-
inertial contributionΔω ∼ 10−6 Hz to the Lamb shift can be
obtained. Further, at accelerations achievable with electrons
inside storage rings [28], a purely noninertial contribution
as large as ∼10−3 Hz can be obtained. Figures 2(b) and 2(d)
show the enhancement Δω=Δ0 of the purely-noninertial
contribution to the Lamb shift over the inertial contribution.

This enhancement signifies the degree of decontamination
of the Lamb shift from the inertial contribution in the sense
that the interest of some prospective experiment would be
in the purely noninertial contribution. Given that the Lamb
shift in hydrogen atom has been measured to seven
significant digits [39], the purely noninertial contribution
to the Lamb shift can be observed with current [74] or near-
future technology.

V. DISCUSSION AND CONCLUSIONS

In this work, we have studied the radiative energy shifts
in a first-quantized two-level system on a uniform circular
trajectory due to its interaction with a quantum electro-
magnetic field inside a cavity. We have argued that the
radiative energy shift in atomic levels is an observable of
interest for the detection of noninertial effects. We have
shown that the inertial contribution to the Lamb shift in a
circulating atom maximizes in the vicinity of the atomic
resonance whereas the purely noninertial contribution
maximizes away from the atomic resonance at frequencies
decided by the atom’s angular frequency. By suitably
tuning the cavity parameters, an observable purely non-
inertial contribution ∼10−8–10−6 Hz can be obtained for
average accelerations ∼1014–1016 m=s2.
It is instructive to compare the current theoretical

proposal with other proposals aiming at the detection of
the noninertial effects. In free space, the Unruh effect
demands acceleration of the order of 1021 m=s2 if the
detector transition rate [1] or radiative energy shift [40] is
observed, and 1017 m=s2 if the observed quantity is geo-
metric phase [3]. Inside a long cylindrical cavity, however,
it has been argued that the Unruh effect can be detected at
accelerations as low as ∼109 m=s2 by observing the atom’s
spontaneous emission. Similarly, detection of noninertial
effects due to uniform circular motion of an atom inside an

FIG. 3. Plot (a) shows the decay rate Γ0 ¼ ηρðΩ0ÞΩ0 [4,59], and Lamb shift Δ0 [Eq. (23)] of an inertial atom with Ω0 ¼ 10 MHz, as a
function of the cavity’s normal frequency ωc ¼ Ω0 þ ϵ. The general behavior of the two quantities with respect to cavity detuning agrees
well with experimental results [66]. Similarly, plot (b) shows the purely noninertial decay rate Γ↓

ω [Eq. (26)] and Lamb shift Δω

[Eq. (25)] of a circulating atom (with Ω0 ¼ 10 MHz and ω ¼ 50 GHz) as a function of the cavity’s normal frequency
ωc ¼ ωþ Ω0 þ δ × 105. In the plots, a black dot marks the point at which the Lamb shift vanishes, and orange dots mark the
points at which the Lamb shift attains its minimum or maximum value.
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electromagnetic cavity, by observing the atomic sponta-
neous decay rate, requires an acceleration of the order of
1014 m=s2 [59]. Whereas, if the geometric phase is
observed, such noninertial effects may become detectable
at accelerations as low as ∼107 m=s2 [4]. This comparison
illustrates the role of the density of field states in relation to
the amplification of the noninertial effects. In addition, this
comparison points to the fact that different system proper-
ties might differ in their ability to capture such effects,
which can possibly guide the selection and design of
suitable experiments. For example, since the spectroscopic
techniques are much well-established as compared to the
mixed-state geometric phase measurements, the Lamb shift
proposal might be easier to implement than the geometric
phase proposal.
Furthermore, the current work can be generalized in

several directions. For example, we have considered only a
two-level atom but real atoms have more than two levels
which can lead to new features [64]. Also note that we
have worked in the weak-coupling regime. An analysis

involving strong coupling between the atom and the field
can possibly lead to even higher energy shifts.
Additionally, the results obtained here encourage one to

investigate the Lamb shift for the detection of the Unruh
effect [1]. A cavity with a cylindrical geometry suits the
requirement of uniform linear acceleration in the case of the
Unruh effect and has been argued to possibly facilitate its
detection at low accelerations when the atomic transition
rates are observed [25]. The problem of the possibility of
detecting the Unruh effect through the radiative energy
shifts in an atom undergoing uniform linear acceleration
inside a cylindrical cavity will be taken up in a subsequent
work.
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