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We consider a metric-affine extension to the gravitational sector of the Standard Model extension for the
Lorentz-violating coefficients u and sμν. The general results, which are applied to a specific model called
metric-affine bumblebee gravity, are obtained. A Schwarzschild-like solution, incorporating effects of the
Lorentz symmetry breaking through the coefficient X ¼ ξb2, is found. Furthermore, a complete study of
the geodesic trajectories of particles is accomplished in this background, emphasizing the departure from
general relativity. We also compute the advance of Mercury’s perihelion and the deflection of light within
the context of the weak-field approximation, and we verify that there exist two new contributions ascribed
to the Lorentz symmetry breaking. As a phenomenological application, we compare our theoretical results
with observational data in order to estimate the coefficient X.
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I. INTRODUCTION

The problem of a consistent implementation of Lorentz
symmetry breaking (LSB) within the gravitational scenario
differs crucially from the construction of Lorentz-breaking
extensions for nongravitational field theories. Flat space-
times admit Lorentz-breaking additive terms, such as
Carroll-Field-Jackiw [1], aether time [2], and other terms
(see, e.g., [3]), and they can be fundamentally constructed
on the basis of a constant vector (tensor) contracted to
some functions of fields and its derivatives. On the other
hand, in curved spacetimes, such features cannot properly
be applied.
Indeed, constant tensors being well-defined in Minkowski

spacetime, such as the simple conditions like ∂μkν ¼ 0, are
not able to be introduced in an analogous manner in curved
spacetimes. The term ∂μkν ¼ 0 is clearly noncovariant, and
its natural covariant extension, namely, ∇μkν ¼ 0, entails
severe restrictions to the spacetime geometries (the so-called
no-go constraints [4]). As a result, it turns out that the most
natural way to incorporate (local) Lorentz violation into
gravitational theories is based on the mechanism of sponta-
neous symmetry breaking. In this case, Lorentz − =CPT-
violating (LV) coefficients (operators) arise as vacuum
expectation values (VEVs) of dynamical tensor fields, which
are driven by nontrivial potentials.

The generic effective field framework, describing all
possible coefficients for Lorentz=CPT violation, is the
well-known Standard Model extension (SME) [5]. In
particular, its gravitational sector has been defined in a
Riemann-Cartan manifold, in which the torsion is treated
as a dynamic geometrical quantity besides the metric.
Although the gravity SME sector is defined in a non-
Riemannian background, up to now, most studies have
been performed within the metric approach of gravity,
where the metric is the only dynamical geometric field. In
this context, such investigations are mainly based on
obtaining some exact solutions to different models, accom-
modating LSB in curved spacetimes, e.g., bumblebee
gravity [6–14], the Einstein-Aether model [15], parity-
violating models [16–20], and Chern-Simons modified
gravity [21–23]. Signals for Lorentz violation within the
pseudo-Riemannian approach in Solar System experi-
ments were also tested [24–26].
On the other hand, in the literature, despite having the

vast majority of works concerning modified theories of
gravity in the usual metric approach, it is interesting to take
into account more generic geometrical frameworks. Among
more specific motivations for exploiting theories of gravity
in a Riemann-Cartan background, we can point out the
induction of a gravitational topological term [27]. Another
interesting non-Riemannian geometry that has been con-
sidered in the literature is the Finsler one [28], which
possesses a variety of works linking such a geometry to LSB
in recent years [29–33].
However, the most compelling generalization of the

metric approach is the so-called metric-affine (Palatini)
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formalism, in which the metric and connection are supposed
to be independent dynamic geometrical quantities. (For a
discussion and some interesting results within the Palatini
approach, see, e.g., [34,35] and references therein.) In this
scenario, LSB still remains not much explored in the
literature, even though there exist some recent works
involving bumblebee gravity [36–38]. In particular, the
authors have found the field equations and solved them;
additionally, they investigated the stability conditions and
the associated dispersion relations for different matter
sources in the weak-field and post-Newtonian limit. Apart
from that, at the quantum level, they have also computed
the divergent piece of one-loop corrections to the spinor
effective action in two different ways: using the diagram-
matic method (in this case, disregarding the gravitational
effects) and using the Barvinsky-Vilkovisky technique
(considering the gravitational effects). Along the same
line, a metric-affine version of the Chern-Simons modified
gravity invariant under projective transformations has been
proposed [39–41]. The authors solved the field equations
adopting a perturbative scheme since the exact solution of
the connection equation remains unknown, and the quasi-
normal modes of Schwarzschild black holes were deter-
mined in this model.
In this work, we deal with the gravitational sector of the

SME in the metric-affine approach. We assume an LV
coefficient tμναβ ¼ 0, while the other ones, namely, u and
sμν, are nonzero coefficients. In particular, we find the first
exact solution for a particular metric-affine bumblebee
gravity model (different from those proposed in [36–38]),
filling this gap in the literature. Furthermore, we investigate
the role played by the LSB coefficients, confronting our
theoretical results with the observational data of the deflec-
tion of light. Also, we calculate the advance of Mercury’s
perihelion.
This paper is organized as follows. In Sec. II we propose

a metric-affine generalization to the gravitational sector of
the SME, setting the LV coefficient tμναβ ¼ 0; we find the
field equations disregarding fermions as matter sources. In
Sec. III we take a particular model called traceless metric-
affine bumblebee gravity, considering the LV coefficient
sμν to be traceless. We derive and solve the field equations,
using the general expressions found in Sec. II.
Additionally, in Sec. IV we obtain an exact solution,
which describes a static and spherically symmetric space-
time. Next, we present a discussion on the geodesic
trajectories of particles as well as the consequences of
LSB on them. Also, we provide the bounds to LSB
coefficients from astrophysics observational data of the
deflection of light and we compute the advance of
Mercury’s perihelion. Finally, in Sec. V we write the
conclusions to this manuscript.
In this paper, we use the following conventions: the

metric signature ð−;þ;þ;þÞ, κ2 ¼ 8πG, and the Riemann
tensor is defined by Rμ

ναβ ¼ ∂αΓμ
βν þ Γμ

αλΓλ
βν − ðα ↔ βÞ.

II. GENERAL SETUP

We start this section by presenting a metric-affine
generalization of the gravitational sector of the SME [5].
Similarly to the metric case, the action of this sector can be
cast into the following form:

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p fð1 − uÞRðΓÞ þ sμνRμνðΓÞ

þ tμναβRμναβðΓÞg þ Smatðgμν;ψÞ
þ Scoeðgμν; u; sμν; tμναβÞ; ð1Þ

where the geometrical quantities RðΓÞ≡ gμνRμνðΓÞ,
RμνðΓÞ, and Rμ

ναβðΓÞ are the Ricci scalar, Ricci tensor,
and Riemann tensor, respectively, and Smat is the action
describing the contributions of the matter sources, which
are supposed to be coupled to the metric only.1 As was
pointed out before, the action is defined in the metric-affine
(Palatini) formalism, in which the metric and connection
are taken to be independent dynamical quantities a priori.
Furthermore, u ¼ uðxÞ, sμν ¼ sμνðxÞ, and tμναβ ¼ tμναβðxÞ
are coefficients (fields) responsible for the explicit (local)
Lorentz symmetry breaking, as exhaustively discussed
in [5]. It is worth mentioning that the background field
sμν exhibits the same symmetries of the Ricci tensor.
Nevertheless, in the present work, let us assume that it
is a symmetric second-rank tensor, sμν ¼ sðμνÞ. Thereby,
it only couples to the symmetric piece of the Ricci tensor. In
addition, tμναβ possesses the same symmetries of the
Riemann tensor. Finally, the last term in Eq. (1), i.e.,
Scoe, accounts for the dynamical contributions of the
Lorentz-violating coefficients.
In this work, we concentrate our efforts on the nontrivial

effects of Lorentz symmetry breaking involving both the
Ricci tensor and scalar, so that we can restrict the
coefficients sμν and u to be nonzero, while tμναβ is set to
be zero. This happens in part because the connection
equation cannot be solved as a simple metric redefinition
for a nontrivial tμναβ parameter; this problem is known as
the “t puzzle” [42]. In this way, the action that we are
interested in reads

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p fð1 − uÞRðΓÞ þ sμνRμνðΓÞg

þ Smat þ Scoe: ð2Þ

It is worth stressing that the above action is invariant under
projective transformations of the connection,

1Note that fermions possess a natural coupling to the con-
nection; therefore, based on our assumption, we are disregarding
spinors (for the sake of convenience) and we just consider the
bosonic matter sources minimally coupled to the metric.
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Γμ
να → Γμ

να þ δμαAν; ð3Þ

where Aα is an arbitrary vector. It is easy to check that the
Riemann tensor under the projective transformation (3)
changes as follows:

Rμ
ναβ → Rμ

ναβ − 2δμν∂½αAβ�; ð4Þ

as a consequence, the symmetric portion of the Ricci
tensor is invariant under Eq. (3), as well as the whole
action (2).
The model given by the action (2) belongs to a

more generic class of gravitational theories called Ricci-
based theories [43–45]. It has been shown that, for this
class of models, the projective invariance avoids the
emergence of gravitational ghost-like propagating degrees
of freedom [46]. We note that a bootstrap procedure,
using the Palatini approach for spontaneous Lorentz
symmetry breaking in gravity, was presented by the
cardinal gravity model in [47]; however, we follow a
different procedure.

A. Field equations

1. Connection equation

Here we develop the connection equation. To do so, we
vary Eq. (2) with respect to the connection; then, we find
the following field equation:

∇ðΓÞ
α

h ffiffiffiffiffiffi
−h

p
hμν

i
¼

ffiffiffiffiffiffi
−h

p �
Tμ

αλhνλ þ Tλ
λαhμν −

1

3
Tλ

λβhνβδ
μ
α

�
;

ð5Þ

where Tμ
αλ ¼ 2Γμ½αλ� is the torsion tensor. We have also

defined the auxiliary metric

hμν ≡
ffiffiffiffiffiffi−gpffiffiffiffiffiffi
−h

p ½ð1 − uÞgμν þ sμν�: ð6Þ

For our purposes, since we do not take fermions into
account, the torsional terms on the rhs of Eq. (5) can be
gauged away by means of an appropriate gauge-fixing
(projective) choice as a result of the projective invariance of
the model [44]. Therefore, the solution of Eq. (5) (up to an
irrelevant projective mode) is given by

Γμ
να ¼ f μ

ναgðhÞ ¼
1

2
hμλð−∂λhνα þ ∂νhαλ þ ∂αhλνÞ; ð7Þ

where Γμ
να is the Levi-Civita connection of the hμν metric

and hμν is the inverse of hμν. The next step is to provide a
relationship between hμν and gμν. In order to do this, let us
rewrite Eq. (6) in matrix form, namely,

ffiffiffiffiffiffi
−h

p
ĥ−1 ¼ ffiffiffiffiffiffi

−g
p

ĝ−1½ð1 − uÞÎ þ ŝ�; ð8Þ

where all terms that carry a hat are matrices. For example, ŝ
denotes the matrix form of sμα and ĥ−1 denotes the matrix
form of hμν. Now, taking the determinant of the former
equation, we are able to find

ffiffiffiffiffiffi
−h

p
¼ ffiffiffiffiffiffi

−g
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ½ð1 − uÞÎ þ ŝ�
q

: ð9Þ

Substituting Eq. (9) into Eq. (6), one finds

hμν ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Ω̂−1

p gμαðΩ−1Þνα; ð10Þ

wherewe have defined the inverse of the deformationmatrix
by Ω̂−1 ≡ ð1 − uÞÎ þ ŝ and ðΩ−1Þνα ≡ ð1 − uÞδνα þ sνα. By
means of a straightforward calculation, it turns out that

hμν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Ω̂−1

p
gμλΩλ

ν: ð11Þ

Formally, the determinant is evaluated as

det Ω̂−1 ¼ det ½ð1 − uÞÎ þ ŝ� ¼ eTr ln ½ð1−uÞÎþŝ�: ð12Þ

This equation, in general, does not present an analytical
closed form for generic ŝ and û. However, in some specific
cases, we have such a feature, such as if we assume
sμν ¼ ξbμbν and u ¼ 0, where ξ is a coupling constant and
bμ is a vector background field [5]. In this scenario, one
can find an analytical expression for the determinant,
namely,

det Ω̂−1 ¼ det ðÎ þ ξb̂bÞ ¼ eTr ln ðÎþξb̂bÞ ¼ 1þ ξb2; ð13Þ

where b2 ¼ bμbμ.
In order to ensure that the metric hμν is the inverse of hμν,

the deformation matrix must satisfy the relation

δβν ¼ ð1 − uÞΩβ
ν þ sβλΩλ

ν; ð14Þ

or, in matrix form,

Î ¼ ð1 − uÞΩ̂þ ŝ · Ω̂: ð15Þ

Such an equation tells us that Ω̂ should be a function of ŝ
and û, and it can be entirely determined once the explicit
forms of ŝ and û are known. For instance, assuming that the
coefficient for Lorentz violation sμν is traceless, sμμ ¼ 0,
entails that the most general sμν possesses nine independent
degrees of freedom which, in turn, determine the structure
of Ω̂ ruled by Eq. (15). We give an explicit example of how
to calculate the deformation metric from the LV coefficients
in the next section.

VACUUM SOLUTION WITHIN A METRIC-AFFINE BUMBLEBEE … PHYS. REV. D 108, 085010 (2023)

085010-3



The action (2) admits an Einstein-frame (tilded-frame)
form. To see that, we substitute Eq. (6) into Eq. (2),

S̃ ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−h

p
RðhÞ þ S̃matðhμν; u; sμν;ψÞ

þ S̃coeðhμν; u; sμνÞ; ð16Þ

where RðhÞ≡ hμνRμνðhÞ.
A remarkable feature of the Einstein-frame representation

that should be emphasized is that the LV coefficients are
moved from the gravitational to the matter sector. We shall
see that this is the key to solving the vacuum field equations.
Note further that the Lorentz-symmetry-breaking model in
Eq. (16) can be viewed as an Einstein-Hilbert action of hμν
coupled to new bosonic matter sources, interacting with
Lorentz-symmetry-breaking coefficients. As a consequence,
the dynamical field equations for the metric hμν must be
Einstein-like ones incremented by nonlinear couplings of
the matter sources, sμν and u.

2. Metric equation

Here, to continue our study, we present the metric
equation. In this sense, we have to vary Eq. (2) with
respect to the metric; after that, we obtain the expression,

ð1 − uÞRðμνÞðΓÞ −
1

2
gμν½ð1 − uÞRðΓÞ þ sαβRαβðΓÞ�

þ 2sβðμRðΓÞνÞβ ¼ κ2Tμν; ð17Þ

where the stress-energy tensor may be split into two pieces.

Tμν ¼ TðmatÞ
μν þ TðcoeÞ

μν ; ð18Þ

where

TðmatÞ
μν ¼ −

2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LmatÞ

δgμν
ð19Þ

is the stress-energy tensor of the matter source contribu-

tions and TðcoeÞ
μν is the stress-energy tensor of the dynamical

Lorentz-violating coefficients.
To exploit some properties of this model, let us first

contract Eq. (17) with gμν to get

ð1 − uÞRðΓÞ ¼ −κ2T; ð20Þ

where T ≡ gμνTμν. It turns out that the connection is
algebraically related to the trace of the stress-energy tensor.
Similarly, we contract Eq. (17) with sμν to find

sμνRναðΓÞ
�
δαμ

�
1 − u −

1

2
s

�
þ 2sαμ

�
¼ κ2

�
TðsÞ −

1

2
sT

�
;

ð21Þ

where s≡ sμνgμν and TðsÞ ≡ sμνTμν. Plugging Eqs. (20)
and (21) into Eq. (17), we get

ð1−uÞRðμνÞðΓÞþ2sαðμRνÞαðΓÞþ
2

2−s−2u
gμνsβαsαλRλβðΓÞ

¼ κ2
�
Tμν−

1

2
gμνTþ gμν

2−s−2u

�
TðsÞ−

1

2
sT

��
: ð22Þ

The lhs of Eq. (22) shows the nonminimal interaction terms
between u, sμν, R, and Rμν. On the other hand, the rhs of
Eq. (22) depends only on Tμν and sμν. Furthermore, since the
deformation matrix Ω̂ is known, Eq. (22) may be completely
rewritten in terms of hμν, sμν, and Tμν. In addition, sμν and u
also satisfy their own field equations; however, since this is
not important for our purposes right now, we shall not
explicitly derive them.
Let us now explore the behavior of the theory in the first-

order limit to LV coefficients. With this,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Ω̂−1

p
≈

ð1þ 1
2
s − 2uÞ, we have

hμν ≈
�
1þ u −

1

2
s

�
gμν þ sμν;

hμν ≈
�
1 − uþ 1

2
s

�
gμν − sμν: ð23Þ

Taking this limit into account, the action (16) reduces to

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½ð1 − uÞRðgÞ þ sμνRμν� þ � � � ; ð24Þ

where we got rid of the boundary terms, while ellipses
mean high-order terms in u and sμν. This implies that the
former equation that the action that was expanded, up to
first order in the LV coefficients, is identical to the
gravitational sector action of the SME defined in the metric
approach. Such a result has been discussed in [42,48].
However, none of them addressed any possible exact
solutions. We shall treat this issue next.

III. TRACELESS METRIC-AFFINE
BUMBLEBEE MODEL

In this section, we focus on a particular metric-affine
model known as the metric-affine bumblebee model. Such
a case is achieved by taking the LV coefficients u ¼ 0 and
sμν with the following form:

sμν ¼ ξ

�
BμBν −

1

4
B2gμν

�
; ð25Þ

where Bμ is the bumblebee field with B2 ≡ gμνBμBν and sμν

is traceless, which differs from that metric-affine bumble-
bee model considered in [36–38]. The complete action for
this particular bumblebee model takes the form
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SB¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2

�
RðΓÞþξ

�
BμBν−

1

4
B2gμν

�
RμνðΓÞ

�

−
1

4
BμνBμν−VðBμBμ�b2Þ

�

þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lmatðgμν;ψÞ; ð26Þ

where VðBμBμ � b2Þ is the potential that accounts for the
spontaneous Lorentz symmetry breaking. In other words,
the bumblebee field acquires a nontrivial VEV when
hBμi ¼ bμ, i.e., bμ corresponds to a minimum of the
potential. Furthermore, the field strength of Bμ is defined by

Bμν ¼ ðdBÞμν; ð27Þ

where d means the exterior derivative operator. Note addi-
tionally that b2 ≡ gμνbμbν is chosen to be a real constant, so
that bμ is a norm-fixed vector.
The action displayed in Eq. (26) can be rewritten in a

more convenient way as

SB¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
½ð1−uÞRðΓÞþsμνRμνðΓÞ�−

1

4
BμνBμν

−VðBμBμ�b2Þ
�
þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lmatðgμν;ψÞ; ð28Þ

where we define u ¼ ξB2

4
and sμν ¼ ξBμBν in comparison

with the gravitational sector of the SME. Notice that we
have absorbed the traceless piece of sμν of Eq. (25) into the
coefficient u. Defining the matrices û ¼ 1

4
B2Î and ŝ ¼ ξB̂B,

and implementing the general results outlined in the former
section, for this particular case, we are able to find

Ω̂−1 ¼
�
1 −

ξB2

4

�
Î þ ξB̂B: ð29Þ

Its determinant takes the form

det Ω̂−1 ¼
�
1 −

ξB2

4

�
4

det ðÎ þ ξ0B̂BÞ; ð30Þ

where ξ0 ¼ ξ

ð1−ξB2

4
Þ
must be understood as a function of B.

Now, note that

det ðÎ þ ξ0B̂BÞ ¼ eTr ln ðÎþξ0B̂BÞ; ð31Þ

which can analytically be solved by expanding the logarithm
in power series,

Trðξ0B̂BÞ ¼ ξ0BμBμ ¼ ξ0B2;

Tr½ðξ0B̂BÞ2� ¼ ðξ0Þ2BμBαBαBμ ¼ ðξ0Þ2B4 ¼ ½Trðξ0B̂BÞ�2;
..
.

Tr½ðξ0B̂BÞn� ¼ ½Trðξ0B̂BÞ�n: ð32Þ

Therefore, combining Eqs. (30)–(32), we obtain

det Ω̂−1 ¼
�
1 −

ξB2

4

�
3
�
1þ 3

4
ξB2

�
: ð33Þ

In possession of the above result, it is straightforward to get

hμν ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
1 − ξB2

4


	
1þ 3

4
ξB2


r
"
gμν þ ξBμBν	

1 − ξB2

4



#
: ð34Þ

In order to obtain hμν, we first need to find the deformation
matrix Ω̂ in an explicit manner. To do that, we note the fact
that Ω̂ should be linear in B̂B; thereby, its general form is

Ω̂ ¼ AÎ þ CB̂B; ð35Þ

whereA andC are constants to be determined. Substituting it
into Eq. (15), one finds

A ¼ 1	
1 − ξB2

4


 ; C ¼ −ξ	
1þ 3

4
ξB2


	
1 − ξB2

4


 : ð36Þ

As a result,

Ω̂ ¼ 1	
1 − ξB2

4


 Î −
ξ	

1 − ξB2

4


	
1þ 3

4
ξB2


 B̂B: ð37Þ

Having found Ω̂, one straightforwardly concludes from
Eq. (11) that

hμν¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ3

4
ξB2

��
1−

ξB2

4

�s
gμν−ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
1− ξB2

4



	
1þ 3

4
ξB2



vuuut BμBν:

ð38Þ

We now deal with the metric equation presented in
Eq. (17). For our particular case of the bumblebee model,
we have

�
1−

ξB2

4

�
RðμνÞðΓÞ−

1

2
gμνRðΓÞþ2ξ½BαBðμRνÞαðΓÞ�

−
ξ

4
BμBνRðΓÞ−

ξ

2
gμνBαBβRαβðΓÞþ

ξ

8
B2gμνRðΓÞ¼ κ2Tμν;

ð39Þ
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where the stress-energy tensor Tμν ¼ Tmat
μν þ TB

μν, with Tmat
μν

defined analogously to Eq. (19) and

TB
μν ¼ BμσBν

σ −
1

4
gμνBα

σBσ
α − Vgμν þ 2V 0BμBν: ð40Þ

In order to make a simplification, we project Eq. (39)
along gμν, Bμ, and BμBν, respectively, to obtain the
following expressions:

RðΓÞ ¼ −κ2T; ð41Þ

BμRμνðΓÞ ¼
4κ2

ð4þ 3ξB2Þ
�
TμνBμ −

BνT
2

−
2ξBν

4þ 5ξB2

×

�
BαBβTαβ −

1

4
B2T

�
1 −

3

4
ξB2

���
; ð42Þ

BμBνRμνðΓÞ¼
4κ2

4þ5ξB2

�
BμBνTμν−

B2T
8

ð4þξB2Þ
�
: ð43Þ

Plugging Eqs. (41)–(43) into Eq. (39), we have

RμνðhÞ ¼ κ2eff

�
Tμν −

1

2
gμνT þ 2ξgμν

ð4þ 5ξB2Þ

×

�
BαBβTαβ −

B2T
16

ð4 − 3ξB2Þ
�

þ 8ξ

ð4þ 3ξB2ÞBðμ

�
TνÞαBα −

BνÞT
2

−
2ξBνÞ

ð4þ 5ξB2Þ

×

�
BαBβTαβ −

1

4
B2T

�
1 −

3

4
ξB2

����
; ð44Þ

where κ2eff ¼ κ2

1−ξB2

4

.

Recalling that the connection is given by the Christoffel
symbols of hμν, and using Eqs. (34) and (38), one can
rewrite Eq. (44) in the form of a dynamical field equation
for the auxiliary metric hμν in an Einstein-like shape. We
shall display their explicit form later.
Let us now turn our attention to the bumblebee field

equation. Varying the action (26) with respect to Bμ,
one finds

∇ðgÞ
μ Bμα ¼ −

ξ

κ2
gναBμRμνðΓÞ þ

ξ

4κ2
BαRðΓÞ

þ 2V 0ðBμBμ � b2ÞBα; ð45Þ

where the prime above stands for the derivative with respect

to the argument of the potential V and ∇ðgÞ
μ is the covariant

derivative defined in terms of the Levi-Civita connection of
gμν. Inserting Eqs. (41) and (42) into Eq. (45), one gets a
Proca-like equation,

∇ðgÞ
μ Bμα ¼ Mα

νBν; ð46Þ

where we have defined the effective mass-squared tensor by

Mα
ν ¼

�
2V 0 þ ξTð4 − 3ξB2Þ

4ð4þ 3ξB2Þ þ 8ξ2

ð4þ 3ξB2Þð4þ 5ξB2Þ

×

�
BμBλTμλ −

1

4
B2T

�
1 −

3

4
ξB2

���
δαν

−
4ξ

ð4þ 3ξB2ÞT
α
ν: ð47Þ

Note that the new unconventional interaction terms
between the bumblebee field and the stress-energy tensor
allow us to allow us to have new effects which differ from
the metric formulation. One can cite, for example, the
mechanism of spontaneous vectorization that occurs when
the bumblebee field spontaneously acquires an effective
mass near high-density compact objects [49–51]. In
addition, due to the negative sign between the first and
second terms in Eq. (47), the determinant of the effective
mass-squared matrix can assume negative values, leading
to tachyonic-like instabilities.
Observe, however, that Eq. (46) can be cast into a more

convenient form by introducing a conserved current, Jμ. To
see this in more detail, we take the divergence of Eq. (46)
and obtain

∇ðgÞ
μ Jμ ¼ 0; ð48Þ

where

Jμ ¼ Mμ
νBν: ð49Þ

Defining the bumblebee field equation in terms of the
conservation of a current [Eq. (48)] allows us to find regular
solutions more easily. We shall discuss exact solutions of
the metric-affine bumblebee model in the next section.

IV. APPLICATION: A STATIC
AND SPHERICALLY SYMMETRIC SOLUTION

IN THE METRIC-AFFINE TRACELESS
BUMBLEBEE MODEL

This section is aimed at providing a static and spherically
symmetric solution for the metric-affine traceless bumble-
bee model discussed before. Initially, let us restrict our
attention to vacuum solutions which correspond to taking

TðmatÞ
μν ¼ 0, TðmatÞ

μν ¼ 0. Apart from that, we fix the bumble-
bee field to assume its vacuum expectation value, i.e.,
hBμi ¼ bμ, which leads to V ¼ 0 and V 0 ¼ 0.
In this scenario, we start with the field equations displayed

in the last subsection. The first important ingredient is the
metric. Notice that Eq. (44) is the dynamical equation for
the metric hμν. Thereby, it is more convenient to manipulate
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the field equations in the Einstein frame. Since we are
interested in static and spherically symmetric solutions, the
line element in spherical coordinates ðt; r; θ;ϕÞ takes the
following form:

ds2ðhÞ ¼−e2σðrÞdt2þe−2ρðrÞdr2þr2ðdθ2þsin2θdϕ2Þ; ð50Þ

where σðrÞ and ρðrÞ are the metric functions. The second
ingredient is the form of bμ. In order to find a regular
solution, we impose that the norm of the conserved current
in the Einstein frame, J2 ¼ hμνJμJν, vanishes throughout the
spacetime, which guarantees that the current does not
diverge at the horizon.2 Such a requirement is fulfilled by
assuming bμ to have the form

bμ ¼ ½0; bðrÞ; 0; 0�; ð51Þ

which leads to the vanishing of the field strength associated
with it, bμν ¼ ðdbÞμν. As a consequence, Tμν and Jμ vanish
even without imposing any previous condition on bðrÞ.
Before proceeding further, it is worth calling attention to the
conventions that we adopt here: tilded objects are defined in
the Einstein frame, namely, an index can be risen or lowered
using the auxiliary metric, hμν. For example, b̃μ ¼ hμνbν.
Note that, although b2 ¼ gμνbμbν possesses an explicit
dependence on gμν, one can define a new object
b̃2 ¼ hμνbμbν, which depends on hμν. Both of them are

algebraically related to each other by b̃2 ¼ b2 ð1þ3ξb2

4
Þ1=2

ð1−ξb2

4
Þ3=2

.

Thereby, b2 can be properly written in terms of b̃2.
Furthermore, as we mentioned before, b2 is a real constant,
as is b̃2.
The requirement that b̃2 ¼ const leads to bðrÞ ¼

jb̃je−ρðrÞ. Putting all of the aforementioned features
together, the vacuum field equations in the Einstein frame
(44) are drastically simplified to

RμνðhÞ ¼ 0; ð52Þ

whose solution is the well-known Schwarzschild line
element

ds2ðhÞ ¼ −
�
1−

2M
r

�
dt2 þ dr2

ð1− 2M
r Þ

þ r2ðdθ2 þ sin2 θdϕ2Þ;

ð53Þ

and the VEV is given by

bμ ¼
�
0;

jb̃jffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r

q ; 0; 0

�
: ð54Þ

Notice that, although bμ diverges at the horizon (probably
due to an effect of a “bad” gauge choice), the physical
observables are characterized by the scalar invariants built
up from bμ which are finite at the horizon. For example,
b2 ¼ const and J2 ¼ 0, by construction, and bμbνRμν ¼ 0.
In order to find the metric gμν, we substitute Eq. (53) into

Eq. (38), identifying Bμ ¼ bμ. After that, one obtains the
line element for gμν, namely,

ds2ðgÞ ¼ −
ð1 − 2M

r Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3X

4
Þð1 − X

4
Þ

q dt2 þ dr2

ð1 − 2M
r Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3X

4
Þ

ð1 − X
4
Þ3

s

þ r2ðdθ2 þ sin2θdϕ2Þ; ð55Þ

where we have used the shorthand notation X ¼ ξb2, which
effectively represents the Lorentz-violating coefficient.
Note that the line element in Eq. (55) describes an LSB
modified Schwarzschild metric. The LSB coefficient
affects not only the radial component of the metric gμν,
but also its temporal component in a unique way. In order to
investigate the solution, let us compute the Kretschmann
scalar invariant:

K ¼ RαβμνRαβμν ¼ 1

r6ð4þ 3XÞ3=2
�
48XMr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3X

p þ 32MXr
ffiffiffiffiffiffiffiffiffiffiffiffi
4 − X

p

− 12MX2r
ffiffiffiffiffiffiffiffiffiffiffiffi
4 − X

p
þ 32r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3X

p þ 192M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3X

p

− 32r2
ffiffiffiffiffiffiffiffiffiffiffiffi
4 − X

p
− 16r2X

ffiffiffiffiffiffiffiffiffiffiffiffi
4 − X

p
− 12X2Mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3X

p

þ 6r2X2
ffiffiffiffiffiffiffiffiffiffiffiffi
4 − X

p
þ 64Mr

ffiffiffiffiffiffiffiffiffiffiffiffi
4 − X

p
− 144XM2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3X

p

− 3M2X3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3X

p þ 36M2X2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3X

p þ 3X2r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3X

p

þ X3Mr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3X

p
− 64Mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3X

p
−
1

4
X3r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3X

p �
: ð56Þ

2A similar choice was chosen in the context of Galileons in [52,53].
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Clearly, the scalar invariant shows that the effects of LSB
(expressed through X) cannot be absorbed by a simple
coordinate rescaling. If we consider X ¼ 0, we recover the
usual result for the Schwarzschild metric, KS ¼ 48M2

r6 , as
expected. Since the coefficient for Lorentz violation must
be suppressed by a typical high-energy scale [4], then,
assuming X ≪ 1, the effects of LSB at the first-order
expansion in X of the Kretschmann invariant read

K ¼ KS þ
12MX
r6

ðr − 6MÞ þOðX2Þ: ð57Þ

Note that the structure of singularities holds the same in
comparison to the Schwarzschild one. At r ¼ 6M, the
leading term vanishes, so that the effects of LSB at the first-
order level are eliminated, although it cannot be directly
realized from the metric in Eq. (55).

A. Geodesics

Having the knowledge of the LSB metric (55), our focus
now is obtaining information about the effects of LSB in
the geodesic trajectories of particles moving in this space-
time. Since we are dealing with a static and spherically
symmetric metric, there are two Killing vectors associated
with it, namely, ∂t and ∂ϕ. As a result, it suffices to aim at
the radial geodesics. In order to find the geodesics of point
particles, we begin with the following Lagrangian [54]:

L ¼ gμνẋμẋν; ð58Þ

where L can take the values −1, 0, 1, corresponding to the
time-like, null, and space-like geodesics, respectively. The
dot in the former equation means that there is a derivative
with respect to an affine parameter denoted by λ. Then, the
velocity is defined by ẋμ ≡ dxμ

dλ . As it is well known, the
motion of particles is independent of the angular coordinate
θ; so, for the sake of simplicity, we restrict the particle to
move in the equatorial plane, θ ¼ π

2
. In this case, for the

metric (55), we have

L¼ −
ð1− 2M

r Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3X

4
Þð1− X

4
Þ

q ṫ2 þ 1

ð1− 2M
r Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3X

4
Þ

ð1− X
4
Þ3

s
ṙ2 þ r2ϕ̇2:

ð59Þ

Here there are two conserved quantities, E and L, which are
explicitly found by using the Euler-Lagrange equations for
the coordinates t and ϕ, respectively. By doing so, we obtain

E ¼ ð1 − 2M
r Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 3X
4
Þð1 − X

4
Þ

q ṫ; ð60Þ

L ¼ r2ϕ̇: ð61Þ

Putting Eqs. (60) and (61) into Eq. (59), we get the radial
geodesic equation

ṙ2

2
¼

�
1 −

X
4

�
2 E2

2
−
1

2

�
1 −

2M
r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

1þ 3X
4

s �
L2

r2
− L

�
;

ð62Þ

which can be rewritten like

ṙ2

2
¼ E − Veff ; ð63Þ

where we have defined the following quantities:

E ¼
�
1 −

X
4

�
2 E2

2
; ð64Þ

Veff ¼
1

2

�
1 −

2M
r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

1þ 3X
4

s �
L2

r2
− L

�
: ð65Þ

Equation (63) describes the motion of a point particle with a
unit mass and total energy E (64) in the presence of the
effective potential Veff present in Eq. (65). In what follows,
we investigate the impact of LSB in the geodesics for
massive and massless test particles in the innermost regions,
which is supposed to depart from the behavior of general
relativity (GR).

B. Time-like geodesics and the advance of Mercury’s
perihelion in the LSB Schwarzschild spacetime

As can be seen from Eq. (63), the radial motions for
massive particles are confined to the regions where
E − Veff > 0. The turning points occur at E ¼ Veff .
Observe that the circular orbits (r0) arise when the effective
potential is flat, i.e., dVeff

dr jr¼r0 ¼ 0, and these orbits are

stable when d2Veff
dr2 jr¼r0 > 0. In other words, it corresponds

to the situation in which a particle tends to return to its
radial equilibrium (r0) even if it suffers a small displace-
ment from its orbit.
The next step is to investigate the behavior of the

effective potential for massive particles. As discussed
before, the effective potential for massive particles, which
corresponds to time-like geodesics, is achieved by taking
L ¼ −1 in Eq. (65). Note that the zero of the effective
potential is located at the horizon, that is, at r ¼ 2M.
We now investigate how the corrections of LSB affect

the innermost stable orbit (ISCO)—which corresponds to
the limiting situation where the two circular orbits approach
until they collapse into one another—compared with the
GR results. First of all, it is necessary to solve the equation
dVeff
dr ¼ 0 as a function of X. By doing so, however, one
concludes that the LSB does not affect the ISCO. On the
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other hand, it is expected that noncircular orbits will be
affected by LSB. Now, let us illustrate this situation by
considering the precession of Mercury’s perihelion. As it is
well known, the first step is finding the radial coordinate r
in terms of the angular ones ϕ, i.e., rðϕÞ. To do that, we
substitute Eq. (61) into Eq. (63), which reads

�
dr
dϕ

�
2

¼ 2E
L2

r4 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

1þ 3X
4

s ��
r4

L2
−
2Mr3

L2

��
L2

r2
þ 1

��
:

ð66Þ

Now, for convenience, we introduce the new coordinate
y ¼ L2

Mr so that the above expression can be given by

�
dy
dϕ

�
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

1þ 3X
4

s �
L2

M2
þ y2 − 2y −

2M2

L2
y3
�
¼ 2L2

M2
E:

ð67Þ

The second standard step is rewriting it as a second-order
differential equation. This is done by differentiating
Eq. (67) with respect to ϕ and also proceeding with further
simple algebraic manipulations. In this way, we obtain

d2y
dϕ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

1þ 3X
4

s �
y − 1 −

3M2

L2
y2
�

¼ 0: ð68Þ

In contrast to the metric case [7], the LV corrections do not
affect the first term in the former equation. They only
impact the term within parentheses instead. When LV
coefficients are no longer taken into account, we recover
GR, as expected. The best manner to observe their effects is
by treating Eq. (68) perturbatively. Thus, the solution can
be put into the form

y ¼ y0 þ y1 þ � � � ; ð69Þ

where y0 is the unperturbed case and y1 is the first-order
perturbed solution. It is worth mentioning that higher-order
corrections will be neglected in the perturbative scheme
adopted here. Plugging Eq. (69) into Eq. (68), we find

d2y0
dϕ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

1þ 3X
4

s
ðy0 − 1Þ ¼ 0; ð70Þ

which is the zeroth-order piece of the full Eq. (68), and

d2y1
dϕ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

1þ 3X
4

s
y1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

1þ 3X
4

s
3M2

L2
y20 ð71Þ

is the first-order part of Eq. (68). The solution for Eq. (70)
is given by

y0 ¼ 1þ e cos

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

1þ 3X
4

s
ϕ

1
A; ð72Þ

where e is the eccentricity of the orbits. Note that this
equation resembles the standard Newtonian result.
Inserting Eq. (72) into Eq. (71), we are able to get the
solution for the first-order equation, namely,

y1 ¼
3M2

L2

2
4�1þ 1

2
e2
�
−
1

6
cos

0
@2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

1þ 3X
4

s
ϕ

1
A

þ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

1þ 3X
4

s
ϕ sin

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

1þ 3X
4

s
ϕ

1
A
3
5: ð73Þ

From the physical viewpoint, only the third term plays an
important role in our analysis, since the first one is nothing
more than a constant, while the second one oscillates close
to zero. Thereby, the solution of Eq. (69), up to first-order,
may be written as

y ¼ 1þ e cos

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

1þ 3X
4

s
ϕ

1
A

þ 3M2

L2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

1þ 3X
4

s
ϕ sin

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

1þ 3X
4

s
ϕ

1
A: ð74Þ

It is observed from the experimental data that the quantity
ϵ≡ 3M2

L2 ≪ 1 for Mercury [55]. Therefore, the above
equation up to first order in ϵ can be rewritten as

y ¼ 1þ cos

0
@ð1 − ϵÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

1þ 3X
4

s
ϕ

1
A: ð75Þ

With this, we can define the period of the noncircular
orbits as

T ¼ 2π

ð1 − ϵÞ
�ð1 − X

4
Þ3

1þ 3X
4

�−1
2

≈ 2π þ Δα; ð76Þ

where the angle Δα measures the advance of perihelion.
Assuming that LV coefficients are small, we get

Δα ¼ 2πϵþ 3

2
πX ¼ Δα0 þ δLVα; ð77Þ

with Δα0 being the standard contribution from GR, which
is usually rewritten as

Δα0 ¼ 2πϵ ¼ 6πGM
c2ð1 − e2Þa ; ð78Þ
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where we have restored Newton’s constantG and the speed
of light c; furthermore, the constant a denotes the semi-
major axis of the orbital ellipse. The second contribution on
the rhs of Eq. (77) gives rise to new effects ascribed to LSB.
It is important to highlight that such a feature does not have
any similarity with GR. Explicitly, we have

δLVα ¼ 3

2
πX: ð79Þ

In other words, this equation accounts for the LV con-
tributions for the advance of Mercury’s perihelion in the
metric-affine bumblebee gravity. In addition, it is bigger
than the results currently encountered in the literature for
the metric case [7].

1. Estimation of the LSB coefficient from the advance
of Mercury’s perihelion

Our aim here is to estimate X from astrophysics data from
the advance of Mercury’s perihelion. Initially, the theoretical
result predicted from GR is Δα0 ¼ 42.981 as =cty [55–58],
where the units “as” and “cty”mean arcseconds and century,
respectively. By using recent observational data [59,60],
which gives a discrepancy order of 0.002� 0.003 as/cty,
we are capable of estimating an upper bound for X. In fact,
as long as LSB effects are not sensitive to the current
experiments, δLVα should be smaller than the observatio-
nal error (0.003 as/cty or, equivalently, 72.3 × 10−11 as/
orbit). In this way, it is straightforward to conclude that LV
coefficients must satisfy the upper bound X < 7.4 × 10−12.
This result is more stringent than the ones found in the
metric approach [7].

C. Null geodesics and the deflection of light
in the LSB Schwarzschild spacetime

Now we turn our attention to null geodesics, which are
recovered by taking L ¼ 0 in Eq. (65). Note from Fig. 1
that the shape of the effective potential does not depend on
L or L

M, similarly to GR.
We proceed with the computation of the deflection of

light in the weak-field approach. Let us begin considering
Eq. (62) for null geodesics, i.e.,

ṙ2¼
�
1−

X
4

�
2

E2−
�
1−

2M
r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−X

4
Þ3

1þ 3X
4

s �
L2

r2
−L

�
: ð80Þ

We can combine the above equation with those describing
the conserved quantities [Eqs. (60) and (61)] to find

dϕ
dr

¼
"�

1−
X
4

�
2 r4

β2
−
�
1−

2M
r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−X

4
Þ3

ð1þ 3X
4
Þ

s
r2
#−1=2

; ð81Þ

where we have defined the impact parameter β ¼ L
E. We use

this equation to calculate the bending of light in what
follows.
Denoting the turning point of a particular orbit by r0,

we are able to conclude that Eðr0Þ ¼ Veffðr0Þ, which
implies that

1

β2
¼

ð1 − 2M
r0
Þ

r20

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þð1þ 3X

4
Þ

q : ð82Þ

Integrating Eq. (81), we obtain

Δϕ¼2

Z
∞

r0

"�
1−

X
4

�
2 r4

β2
−
�
1−

2M
r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−X

4
Þ3

ð1þ3X
4
Þ

s
r2
#−1=2

dr;

ð83Þ

where the factor of 2 in the above equation arises from the
fact that the regions before and after the turning point
coincide. The former equation can be rewritten in terms of
the new variable defined by u ¼ 1

r; then, Eq. (83) becomes

Δϕ ¼ 2

Z
u0

0

2
64�1 − X

4

�
2 1

β2
− ð1 − 2MuÞu2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3	

1þ 3X
4



vuut

3
75
−1=2

du; ð84Þ

where u0 ¼ 1
r0
. Substituting Eq. (82) into Eq. (84), one gets

Δϕ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

ð1þ 3X
4
Þ

s Z
u0

0

½ð1 − 2GMu0Þu20

− ð1 − 2GMuÞu2�−1=2du; ð85Þ

FIG. 1. Behavior of the effective potential for null geodesics for
a variety of values of L

M. We take X ¼ 0.01.

FILHO, NASCIMENTO, PETROV, and PORFÍRIO PHYS. REV. D 108, 085010 (2023)

085010-10



where we have restored Newton’s constant G for conven-
ience. Let us now solve the former integral perturbatively
since there is no exact solution. Therefore, we expand
Eq. (83) around GM ¼ 0 to obtain

Δϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − X

4
Þ3

ð1þ 3X
4
Þ

s �
π þ 4GM

β
þOððGMÞ2Þ

�
: ð86Þ

As discussed before, the coefficient for LV must be small;
then, assuming X ≪ 1, we have

Δϕ¼ π

�
1−

3X
4

�
þ4GM

β

�
1−

3X
4

�
þOððGMXÞ2Þ: ð87Þ

It is well known that the angular deflection in the weak-
field approximation is defined by [55]

δϕ ¼ Δϕ − π

¼ −
3

4
Xπ þ 4GM

βc2
−
3GMX
βc2

þOððGMX=c2Þ2Þ; ð88Þ

where we have restored the speed of light c. Note that the
first term in rhs of Eq. (88) is the contribution to the angular
deflection arising entirely due to the LSB, with its sign
opposite to that one for the metric-bumblebee model. The
second term in Eq. (88) is the standard GR contribution for a
compact object with mass M. Ultimately, the third term in
Eq. (88) is the second LSB correction for a compact object
with massM, and such a correction is essentially new since
it does not appear in the metric theory [7]. Hence, the
angular deflection due to LSB reads

δLVϕ ¼ 3

4
Xπ þ 3GMX

βc2
; ð89Þ

up to first order in X and GM
c2 .

1. Estimation of the LSB coefficient from the deflection
of light

In order to estimate the LSB coefficient from recent
astronomical data of the deflection of light, we consider the
parametrized post-Newtonian (PPN) approach [61,62]. In
particular, we focus on the PPN parameter γ, which is used
to parametrize the post-Newtonian contributions of space
curvature to the bending of light. The results of GR are
recovered for γ ¼ 1. Within the PPN formalism, the post-
Newtonian deflection angle due to a light ray passing
through a massive body of mass M at a distance β is given
by [63,64]

δPNϕ ¼ 1

2
ð1þ γÞ 4GM

βc2
ð1þ cosψÞ

2
; ð90Þ

where ψ is the angle between the massive body and the
source. Now, let us consider the particular situation in
which the Sun is the deflecting body, i.e., M ¼ M⊙, and
we consider a grazing ray, which means taking β ≈ R⊙ and
ψ ≈ 0. In this case, using the constant values from [65],
we have

δPNϕ ¼ 1

2
ð1þ γÞδGRϕ; ð91Þ

with δGRϕ ¼ 1.751557143 as. Note that, as previously
mentioned, γ ¼ 1 recovers GR.
A variety of observational data on γ from experimental

tests are available (see [66–72], and references therein). We
note the latest accuracy of the PPN parameter γ, which was
achievedusing thevery-long-baseline interferometry (VLBI)
technique [73]. The accuracy obtainedwas 9×10−5. Herewe
assume that the effects of LSB exist in nature and they have
not been observed yet by these experiments because their
effects are supposed to be suppressed by a high-energy scale.
Therefore, the angular deflection due to LSB must be upper
bounded by the stringent constraint δLVϕ < 0.0788201 mas,
which leads to X < 1.62 × 10−10.

V. SUMMARY AND CONCLUSION

We dealt with a metric-affine generalization of the
gravitational sector of the SME imposing projective invari-
ance. To attain this symmetry, we required some conditions
on the LV coefficients, namely, sμν is symmetric in its two
indices and tαβμν ¼ 0. Under these circumstances, we rig-
orously obtained the field equations and found that the
solution of the connection equation is simply the Christoffel
symbols of a disformally related metric, where the disformal
piece is determined by the LV coefficient sμν. As we saw, the
action admitted an Einstein-frame representation.
Having knowledge of the connection, we considered a

particular case corresponding to the metric-affine bumble-
bee gravity in the vacuum. In this context, after some
algebraic manipulations, we were able to rewrite the metric
field equation as an Einstein-like vacuum equation for the
auxiliary metric, hμν. Also, we found an interesting result:
the background metric (gμν) picked up contributions stem-
ming from the bumblebee VEV, which was assumed to
be a space-like vector. Such a solution described a
Schwarzschild-like metric. Remarkably, different from the
metric case [7], our solution presented a nontrivial redshift
factor induced by the effects of the nonmetricity, which was
sourced by the LV coefficient,X ¼ ξb2, as discussed in [38].
We investigated the impact of the LSB on local properties

of this background. For instance, the departing of geodesics
of particles from GR (X ¼ 0), as X larger, is not an
unexpected behavior. Moreover, we computed the advance
of Mercury’s perihelion and the angular deflection of light
within the weak-field approximation. In both cases, we
obtained corrections stemming from the LSB. We provided
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an upper bound for the LV coefficient, X ≈ 10−12, from the
observational data of the advance of Mercury’s perihelion.
In addition, using the most recent observational data from
VLBI for light bending, we found that the LV coefficient
relied on the stringent constraint X < 1.62 × 10−10.
As a natural continuation of this work, we intend to

study the implications of our solutions for the deflection of
light within the strong-field regime. Also, it would be a
promising task to examine new solutions, such as rotating
black holes.

ACKNOWLEDGMENTS

The authorswould like to thank theConselhoNacional de
Desenvolvimento Científico e Tecnológico (CNPq) and
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