
RG flows in 2D chiral gauge theories

Kaan Önder *

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 0WA, United Kingdom

(Received 3 August 2023; accepted 11 September 2023; published 12 October 2023)

We study the dynamics of 2D chiral SUðNÞ gauge theories with fermions in the symmetric,
antisymmetric, and fundamental representations. A consistent infrared limit of these theories consists
of certain coset conformal field theories. There is also a free-fermion phase which shares the same central
charge and ’t Hooft anomalies but does not coincide with the coset models. We show that these two theories
sit on a conformal manifold of infrared theories and are related by a current-current deformation. We further
consider extensions of these theories by adding Dirac fermions and comment on possible renormalization
group flows.
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I. INTRODUCTION

A central challenge of any strongly coupled gauge theory
is determining the low-energy dynamics. This is an
inherently nonperturbative problem and, in general, cannot
be answered rigorously. 2D gauge theories with massless
quarks are examples of such theories. Unlike in 4D, where
the theory becomes strongly coupled by virtue of the beta
function and hence depends on the number of quarks, these
2D theories are strongly coupled for any number of quarks.
This is a consequence of the Yang-Mills coupling having a
positive mass dimension.
The 2D dynamics differ from their 4D counterparts,

notably as the Coleman-Mermin-Wagner theorem rules out
spontaneous breaking of continuous global symmetries
[1,2]. There are however similarities such as confinement,
discrete chiral symmetry breaking, and dynamical mass
generation. As the study of these phenomena are more
tractable in 2D, this makes the 2D models a good testing
ground for understanding these nonperturbative properties.
Together with condensed matter applications, this has led
to a long list of studies of these theories over the years
(see [3–13] for a far from comprehensive list).
The dynamics of chiral gauge theories is particularly

interesting. They can behave very differently from their
vector-like counterparts, not least because they evade the
Vafa-Witten-Weingarten theorems [14,15]. Furthermore,
the Nielsen-Ninomiya theorem [16,17] presents a challenge

in lattice regularizing these theories, ruling out any numeri-
cal analysis (for recent developments on putting 2D chiral
fermions on the lattice, while preserving Abelian sym-
metries, see [18–20]). Understanding the dynamics of
chiral gauge theories rigorously remains one of the big
open questions in quantum field theory.
In interesting recent work, Delmastro et al. [21,22]

studied the dynamics of general 2D gauge theories coupled
to massless Weyl fermions. They considered gauge theories
with a compact, connected gauge group G coupled to left-
and right-handed Weyl fermions in representations Rl and
Rr of G, respectively. They proposed that the low-energy
dynamics of these theories are captured by the coset
conformal field theory (CFT)/topological quantum field
theory,

T IR ¼ UðdimRlÞ1
GμðRlÞ

×
UðdimRrÞ1

GμðRrÞ
; ð1:1Þ

where μðRÞ is the Dynkin index of the representation R.
This renormalization group (RG) flow was also previously
proposed by Komargodski et al. [8] in the context of
adjoint QCD.
The form of this low-energy coset has a very specific

implication. Any chiral flavor symmetry of the deep UV
theory is preserved along the RG flow triggered by the
gauge coupling. In other words, any holomorphic current
of the UV theory remains holomorphic along the RG flow
and descends to a holomorphic current in the deep IR CFT.
The full chiral algebras are preserved along the flow. The
same statements hold true for antiholomorphic currents.
Specifically, Uð1Þ charges of left- and right-moving oper-
ators cannot mix under RG flow.
This is a veryparticular property of the coset proposal (1.1)

and will not hold generically. Along general RG flows,
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conformal symmetry is violated and the charges need not
factorize to left and right movers. When we finally hit the IR
CFT, the IR currents will be some combination of the UV
currents and will not retain the same holomorphic factori-
zation as the UV. Said in another way, the levels of the
AbelianUVand IRchiral algebraswill generically notmatch.
The flow to the coset (1.1) and consequently the

conservation of holomorphic factorization along RG flows
only hold for UV theories composed of Weyl fermions
interacting via gauge interactions. This conservation is no
longer the case if we consider deformations of the UV
theory such as four-fermion interactions or if we include
scalar fields interacting via Yukawa terms. Small deforma-
tions of the UV theory map to small perturbations of the
coset (1.1) and can be systematically studied. Conversely,
large UV deformations can lead to completely different RG
flows and are much more difficult to analyze.
In this paper, we study the effects of such deformations

on certain 2D non-Abelian chiral gauge theories. These
theories have gauge group SUðNÞ and contain a right-
moving Weyl fermion in either the symmetric or antisym-
metric representation, together with a collection of further
left-moving fermions in the antifundamental. Applying the
coset proposal (1.1) to these theories with only gauge
interactions gives a candidate low-energy limit. There is
also a different, rather natural candidate IR phase which
simply consists of free, massless fermions which saturate
all anomalies. This was proposed by Tong [23] in the
context of symmetric mass generation. These free fermions
have mixed global Uð1Þ charges and, unlike the coset
model, do not have the same holomorphic factorization as
the UV chiral theories.
Howare these coset and free-fermion phases related to one

another? We study this question and provide evidence that
four-fermion and Yukawa deformations of the UV gauge
theories change the RG flow and parametrize a conformal
manifold of low-energy theories. These deformations con-
tinuously connect the coset and free-fermion descriptions
which sit at different ends of this conformal manifold. The
mixing of Uð1Þ charges under RG flow plays an important
role in this connection, which we analyze in detail.
We start in Sec. II by introducing the chiral gauge theories

under consideration.We present the candidate coset and free-
fermion phases, discuss their deformations, show that they
can be continuously connected, and conjecture that they live
on a conformal manifold. In Sec. III we consider extending
these chiral theories by adding further antifundamental Dirac
fermions. These theories are 2D analogues of thewell-known
4D Bars-Yankielowicz models [24]. This time, the coset and
free-fermion phases have differing central charges and are not
connected by a conformal manifold. We show that the free-
fermion phase may be an unstable fixed point and comment
onpossibleRGflows.Finally,wediscuss discrete symmetries
in Appendix A and analyze the one-loop renormalization of
four-fermion terms, involvingWeyl fermions, inAppendixB.

II. CHIRAL GAUGE THEORIES

In this section, we study a pair of 2D chiral gauge
theories. Each is built around an SUðNÞ gauge group, with
a Weyl fermion in either the symmetric or antisymmetric
representation, together with a collection of further Weyl
fermions in the antifundamental.
We start in Sec. II A by introducing the first of the chiral

gauge theories which contains an antisymmetric Weyl
fermion. We present its symmetry and anomaly structure,
apply the coset proposal, and compare this to a different
low-energy phase composed of free fermions. In Sec. II B
we present all of the above for a second very similar theory
which contains a Weyl fermion in the symmetric repre-
sentation of the gauge group.

A. SUðNÞ with an antisymmetric fermion

Consider an SUðNÞ gauge theory with a single right-
moving Weyl fermion χ̃ in the , 1 and q left-moving

fermions ψ in the □. Gauge anomaly cancellation requires

q ¼ N − 2;

which follows from the Dynkin indices ,

μð□Þ ¼ 1 for SUðNÞ together with μðRÞ ¼ μðR̄Þ. This is
the 2D analogue of certain 4D chiral theories, with an
antisymmetric fermion, which have been extensively stud-
ied in the literature [25–32]. This chiral theory has a
continuous global symmetry group

G ¼ SUðN − 2Þ ×Uð1ÞR ×Uð1ÞL:

Discrete quotients do not play a role in our story so we omit
them throughout the main text but discuss them in
Appendix A. Under the combination SUðNÞ ×G, the full
collection of fermions transforms as

ð2:1Þ

We will refer to this as the antisymmetric theory. Here and
throughout this paper we denote right-handed fermions
with a tilde and left-handed ones without.
Anomalies constrain the IR physics. It is straightforward

to compute these:

A½SUðN − 2Þ2� ¼ N;

A½Uð1Þ2R� ¼ −
N
2
ðN − 1Þ;

A½Uð1Þ2L� ¼ NðN − 2Þ;
A½Uð1ÞR ·Uð1ÞL� ¼ 0: ð2:2Þ

KAAN ÖNDER PHYS. REV. D 108, 085009 (2023)

085009-2



The theory also has a gravitational anomaly,

A½Grav� ¼ cL − cR ¼ N
2
ðN − 3Þ; ð2:3Þ

and, as discussed in Appendix A, there are no further
discrete anomalies. These must all be reproduced in the IR.
So what is the low-energy physics of this theory? There are
two candidates which have been proposed in the literature.
The first option, proposed in [21,22], is that this theory

flows to a certain coset CFT. The argument for this phase is
natural and intuitive. Consider a 2D gauge theory with a
compact, connected gauge group G and left-/right-handed
Weyl fermions, ψ l and ψ̃ r, in representations Rl and Rr of
G, respectively. The action is

S ¼
Z

d2x

�
−

1

2g2
trðFμνFμνÞ þ iψ†

lD−ψl þ iψ̃†
rDþψ̃ r

�
;

with the usual field strength and covariant derivatives in
light-cone coordinates. Now observe that the Yang-Mills
coupling g has positive mass dimension such that the gluon
kinetic term is classically irrelevant. If we assume this
continues to hold in the full quantum theory, g → ∞ as
E → 0, the kinetic term vanishes under RG flow. The
intuition here is that 2D gluons do not propagate. This
leaves the fermionic terms Leff ∼ ψ†Dψ . The gauge fields
act as Lagrange multipliers and set the gauge currents to
zero. Then bosonizing leads to the coset CFT/topological
quantum field theory, and setting the gauge currents to zero
and bosonizing leads to the coset CFT/topological quantum
field theory [6,8,33,34],

T IR ¼ UðdimRlÞ1
GμðRlÞ

×
UðdimRrÞ1

GμðRrÞ
:

We call this the coset proposal. The vanishing of the kinetic
term is of course a first guess.1 It is possible that classically
irrelevant terms pick up large quantum corrections, become
“dangerously irrelevant,” and alter the low-energy physics.
Nonetheless, the coset proposal is a sensible IR phase.
The coset model factorizes into independent chiral and

antichiral halves. This is a consequence of assuming that
the Yang-Mills kinetic term vanishes in the IR limit. Once
we drop this term, the remaining gauge-field components
A� act as independent Lagrange multipliers for left-/right-
handed fermions and do not mediate any interactions
between them. This means that any symmetry of the UV
gauge theory which is purely holomorphic remains hol-
omorphic in the IR, and similarly for the antiholomorphic
currents. There is no mixing of left- and right-moving
symmetries.

Applying this proposal to the antisymmetric theory gives
our first candidate IR CFT,

T ¼ UðNðN − 2ÞÞ1
SUðNÞN−2

⊗
�
UðNðN − 1Þ=2Þ1

SUðNÞN−2

�

≅ UðN − 2ÞN ⊗ Uð1ÞNðN−1Þ=2:

The equivalence follows from the branching rules of the
cosets. These are known by level-rank duality gðNÞNf

↔
gðNfÞN . Writing out the Uð1ÞL factor explicitly gives

T ¼ ðSUðN − 2ÞN ⊗Uð1ÞNðN−2ÞÞ⊗Uð1ÞNðN−1Þ=2: ð2:4Þ

By construction, the CFT matches the symmetry structure
of the UV theory and reproduces the anomalies (2.2) and
(2.3). This can simply be seen from the levels of the Wess-
Zumino-Witten (WZW) models.
There is a second, rather natural candidate for the IR

physics proposed by Tong [23]. The theory may confine,
reducing to the following gauge singlet fermions in the IR:

λ ¼ ψχ̃ψ ; B̃ ∼ ψN−2χ̃N−1:

Fermi statistics fix λ to have symmetric flavor indices. The
baryonic operator B̃ can be constructed as

B̃ ¼ ϵa1…aN−2
ψa1
i1
…ψaN−2

iN−2
ϵj1…jN χ̃

i1j1…χ̃iN−2jN−2 χ̃jN−1jN ;

where i; j ¼ 1;…; N indices are associated with the SUðNÞ
gauge group and a¼1;…;N−2 indiceswith the SUðN − 2Þ
global symmetry. λ is left moving and B̃ is right moving due
to the spins of the constituent fermions. Under the global
symmetry G, the quantum numbers of the fermions are

ð2:5Þ

It is again straightforward to check that these reproduce the
anomalies (2.2) and (2.3).
How do these two proposals compare? The central

charges of the two low-energy theories are identical,

ccoset ¼ cfermion ¼
N
2
ðN − 3Þ þ 2≡ cIR;

with cIR ≤ cUV for all N ≥ 2 (only the N ¼ 2 case saturates
the bound as the UV theory reduces to a single free right-
handed fermion with no flow). It also is known that the
SUðN − 2ÞN WZW model has a free-fermion representa-
tion in terms of complex fermions in the of SUðN − 2Þ
[35]. This can simply be seen by constructing the current

, where is the symmetric

1Furthermore, as mentioned in [8], the g → ∞ limit is not
strictly meaningful as g is the only scale in the theory. Never-
theless, the coset proposal is a natural candidate for the low-
energy theory.
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representation generator, which reproduces the current
algebra.
So the two theories share the same central charge and the

SUðN − 2Þ chiral algebras match. Are the two theories
identical?
Almost, but not quite. The difference is subtle and

appears in the factorization of the Uð1ÞL ×Uð1ÞR sym-
metries. In the coset proposal, the (anti)holomorphic
current of the UV theory descends to a purely
(anti)holomorphic current in the IR. The left-right decom-
position of Uð1Þ charges is preserved under RG flow.
On the contrary, the fermion phase does not retain the

left-right decomposition. There is charge mixing, where the
IR left mover λ carries charges under both Uð1ÞR × Uð1ÞL
symmetries, and similarly for the IR right mover B̃.
As a consequence, the physics of the two IR proposals

differ. This is intuitively clear from the following argu-
ment.2 Consider creating a wave packet charged only under
Uð1ÞL, and turn on a background gauge field for Uð1ÞL. In
the coset proposal, the wave packet will stay purely left
moving, while in the fermion proposal, the wave packet
will split into right- and left-moving parts.

1. Conformal manifold and RG flows

So how are the coset and massless fermion models
related? They both have the same symmetry structure,
which includes Uð1ÞR ×Uð1ÞL. As a consequence, they
may both be deformed by the exactly marginal current-
current interaction

LIR ¼ ãJJ̄: ð2:6Þ

On the free-fermion side, this corresponds to the four-
fermion term LIR

4 ¼ ãtrðλ†λÞðB̃†B̃Þ. This gives rise to a 1D
conformal manifold MIR of low-energy theories para-
metrized by ã. We propose that the coset and free-fermion
proposals correspond to different points onMIR. They can
be continuously connected to one another by moving along
this moduli space of conformal field theories.
As the conformal manifold MIR is parametrized by

current-current interactions, its origin can be traced back to
the exactly marginal four-fermion deformation

LUV
4 ¼ atrðχ̃†χ̃Þtrðψ†ψÞ ð2:7Þ

of the UV chiral gauge theory (2.1). We propose that as we
vary a, we land on different points on MIR.
So how does the four-fermion deformation (2.7) of the

UV theory affect the RG flow? Let us start with the a ¼ 0
case. The only interactions are due to the gauge fields. If
g → ∞ in the deep IR, this flows to the coset (2.4). We
assume that this is the correct low-energy limit.

Now we turn on the four-fermion deformation (2.7). For
small a ≪ 1, this maps to a JJ̄ perturbation of the IR coset.
Such deformations of WZW models are well understood
[22,36,37]. In terms of the IR conformal manifold MIR,
this corresponds to a small step away from the coset point
to a point on MIR near it.
As we now increase a, we move smoothly along MIR

and flow to different points further away from the coset. We
propose that as a → ∞, the UV theory flows to the free,
confined fermions (2.5). A finite but large a then moves us
away from the free-fermion point by turning on the
marginal four-fermion deformation δLIR

4 ∼ 1
a trðλ†λÞðB̃†B̃Þ.

This is a natural proposal as these are the only possible
deformations of the theories consistent with symmetries.
All anomalies match and both IR theories have the same
central charge. The two low-energy theories exhibit a
strong-weak duality, as a large ∼ãJJ̄ operator deforming
the coset is equivalent to a small ∼ 1

ã JJ̄ term deforming
the free fermions. We present the RG flow schematically
in Fig. 1.
At this point, some subtleties need to be addressed.

First, the deformation (2.6) is written with a finite coup-
ling constant and the currents J and J̄ of the original
unformed theory. It is instead also possible to consider the
deformation

∂LðμÞ
∂μ

¼ JðμÞJ̄ðμÞ; ð2:8Þ

where this time the currents are of the deformed theory with
Jð0Þ ¼ J, etc., so one might worry that this is the correct
deformation to study. In fact, TT̄ deformations with

FIG. 1. Proposed RG flows of the UV chiral gauge theory
(χGT) as it is deformed by the Abelian current-current interaction
LUV
4 ¼ aJJ̄. At a ¼ 0, the theory flows to the coset and as

a → ∞ it flows to free fermions. Both of these theories are
proposed to live on the same conformal manifold MIR. The UV
(dark) regions in the vicinity of these fine-tuned points corre-
spond to small JJ̄ deformations of the IR theories.

2I thank Avner Karasik for pointing this out to me.
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analogous definitions are known to differ significantly [38].
For our simpler JJ̄ case, however, the two deformations
(2.6) and (2.8) coincide. This is because the only effect of
the JJ̄ deformation is to rescale the currents such that
JðμÞJ̄ðμÞ ¼ fðμÞJJ̄ for some function f (see the Appendix
of [39] for details) and the effects of the two deformations
are identical.
Second, it is also possible to consider a single-trace

deformation

L̃UV
4 ¼ btrðψχ̃χ̃†ψ†Þ

of the UV theory which corresponds to a contraction of
gauge currents and will get renormalized. For small b ≪ 1,
the effect of this deformation on the low-energy physics is
identical to the previously considered (2.7). This simply
follows as the gauge dynamics kick in which set the
traceless part of the gauge currents to vanish, leaving
∼ b

N trðχ̃†χ̃Þtrðψ†ψÞ. Further details of this are discussed
below in (2.14). It is not possible to be concrete about large
b but this does not affect our discussion.
Finally, we should understand why the free-fermion

point corresponds to a point asymptotically far out on
the moduli spaceMIR. We will present further evidence for
this below but there is also a simple argument demonstrat-
ing that this should be expected. We should add interaction
terms to the Hamiltonian that are positive definite. This puts
a lower bound on the ã coupling of the free fermions, as
was originally discussed by Coleman for the Thirring
model [40]. If the free fermions were to sit at some finite
value of ã, one direction on MIR would point towards the
coset but the other direction would take us further away on
the moduli space. However, the sign of the four-fermion
coupling would be different for the two directions, meaning
that the fermion theory would become unbounded from
below in one direction. This makes it very reasonable that
the free-fermion point sits at the end of the moduli space
with a single consistent direction away from it.

2. Current mixing from JJ̄ deformations

The mixing of Uð1Þ charges plays an important role for
this proposal to be consistent. If the two theories are to
correspond to different points on MIR, the deformation JJ̄
must rotate left/right currents and cause mixing. Only then
can we start from the coset theory, with diagonal charges,
and deform to the fermion phase with charge mixing and
vice versa.
To this end, we present a simple CFT argument dem-

onstrating that a perturbative JJ̄ deformation leads to a
mixing of Uð1Þ currents. Similar arguments were previ-
ously considered in the Appendix of [39]. Consider a
CFT with a left-moving Uð1ÞL symmetry J and a right-
moving Uð1ÞR symmetry J̄. These necessarily obey the
factorized conservation laws ∂J ¼ ∂J̄ ¼ 0. It follows that

any antiholomorphic operator Ōðw̄Þ can only be charged
under Uð1ÞR and must be neutral under Uð1ÞL. [We focus
on antiholomorphic operators for the rest of this section.
Identical statements hold for the holomorphic sector simply
by swapping Uð1ÞL and Uð1ÞR.] In terms of operator
product expansions, this translates to

J̄ðz̄ÞŌðw̄Þ ∼ q̄ Ōðw̄Þ
z̄ − w̄

; JðzÞŌðw̄Þ ∼ 0 ð2:9Þ

for Ō with charge q̄ under Uð1ÞR.
We now deform the action by the exactly marginal

current-current operator

S0 → S ¼ S0 − ϵ

Z
d2zJðzÞJ̄ðz̄Þ

and ask if this leads to charge mixing. The relevant
correlation function to consider is

hJðzÞŌðȳÞiϵ≠0 ¼ hJðzÞŌðȳÞeϵ
R

d2wJJ̄i0;

where h…i0 are the correlators of the original, undeformed
theory. If this is nonvanishing, Ō has picked up a charge
under Uð1ÞL. Expanding in small ϵ ≪ 1, we get

hJðzÞŌðȳÞiϵ≠0 ¼ ϵhJðzÞŌðȳÞ
Z

d2wJðwÞJ̄ðw̄Þi0 þOðϵ2Þ

¼ −2πkq̄ϵ
ŌðȳÞ
z − y

þOðϵ2Þ; ð2:10Þ

which follows from (2.9) and

JðzÞJðwÞ ∼ k
ðz − wÞ2 and

∂

∂z̄

�
1

z − w

�
¼ 2πδ2ðz − wÞ:

We see that the deformation leads Ō to pick up a charge
under Uð1ÞL.
The charge in (2.10) is not quantized. This seems

problematic but is actually to be expected. The noninteger
charges only appear with respect to the original holomor-
phic current J and it is instead possible to define a nonchiral
current whose charges remain conserved as the deformation
is turned on [39]. This can be viewed as a choice of active
versus passive transformation and is consistent with our
proposal. As the deformation is turned on, antiholomorphic
operators can pick up charge under Uð1ÞL with the original
current J.

3. Continuously connecting the proposals

We now exhibit a continuous path, preserving symmetry,
from the UV gauge theory with no four-fermion terms, to
the IR free-fermion phase. This is the 2D analogue of the
well-known 4D “complementarity” arguments considered
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in [29,41,42] and continuously connects the coset and free-
fermion proposals.
We start by writing the gauge and flavor indices of the

fermions explicitly; these are χ̃ij and ψ i
a, where i; j ¼

1;…; N are the gauge indices and a ¼ 1;…; N − 2 is the
flavor index under the SUðN − 2Þ global symmetry.
We then extend the UV theory by introducing N − 2

antifundamental scalars ϕia coupled to the fermions by the
Yukawa term

LY ¼ yϕψχ̃ þ H:c:;

where the coupling y has a dimension of mass. The addition
of the scalar does not change the symmetry structure,
including the discrete quotients discussed in Appendix A.
However, the Uð1Þ currents do get modified due to the
scalars and are no longer holomorphic. This will be crucial
to reach the free-fermion phase. Together with the fer-
mions, the quantum numbers of the fields read

ð2:11Þ

The gauge and Yukawa couplings, g and y, have mass
dimension, and as the mass mϕ of the scalar varies the
theory has two different phases. In the m2

ϕ ≫ g2 and m2
ϕ ≫

y2 phase, the scalars simply decouple and we are left with
the original gauge theory. We assume this then flows to the
coset (2.4).
This decoupling is strictly true in the m2

ϕ=g
2 → ∞ and

m2
ϕ=y

2 → ∞ limits. For mϕ much larger than the other
couplings but finite, integrating out the massive scalars will
lead to effective interactions of the low-energy theory. To
track such leading-order effective interactions, we probe the
theory at the energy scale E with m2

ϕ ≫ y2 ≫ E2 ≫ g2.
Integrating out the scalars results in the gauge current-
current deformation

LE
eff ¼

y2

2m2
ϕ

trðJJ̄Þ ð2:12Þ

of the original antisymmetric theory (2.1) without scalars.
Here the gauge current in holomorphic coordinates reads

Jij ¼ −ψ†a
j ψ i

a; J̄ij ¼ 2χ̃†ikχ̃jk; ð2:13Þ

which follows from the relation between the antisymmetric

and fundamental generators .

Now, as we flow to lower energies g2 ≫ Ẽ2 the gauge
dynamics kick in. Assuming that it is irrelevant, we drop

the gauge kinetic term and the remaining gauge-fermion
interaction trðAμJμÞ sets the traceless parts of (2.13) to zero.
This reduces (2.12) to the deformation

LẼ
eff ¼

y2

2Nm2
ϕ

trðJÞtrðJ̄Þ; ð2:14Þ

which is simply the exactly marginal Uð1Þ current-current
deformation introduced in (2.7). In the deep IR, we end up
with the coset (2.4) deformed by a small Uð1Þ current-
current deformation ∼JJ̄.
Another regime, m2

ϕ ≪ −g2, is the Higgs phase. We
construct a potential to form a diagonal vacuum expectation
value,

In terms of the scalar Lagrangian, the vacuum expectation
value is set by v2 ¼ jmϕj2=λ, where λ is the jϕj4 coefficient.
The effect of this vacuum is to Higgs the gauge group
SUðNÞ → SUð2Þ. The global symmetries are left intact,
albeit after locking with the gauge symmetry. To see this,
we write the most general SUðNÞ × SUðN − 2Þ ×Uð1ÞL ×
Uð1ÞR transformation acting on ϕ as

ϕ → e−2πiðαþα̃ÞU�ϕV†;

with U∈ SUðNÞ and V ∈ SUðN − 2Þ. The choice

U ¼
�
V�e−2πiðαþα̃Þ 0

0 U0e2πiðαþα̃ÞðN−2Þ=2

�
;

with U0 ∈ SUð2Þ, leaves the vacuum invariant. The global
symmetries remain (as they must in 2D) but the gauge
group has been Higgsed down to SUð2Þ. To analyze the
Uð1Þ charges more closely, we take the linear combinations
QV ¼ ðQL −QRÞ=2 and QA ¼ ðQL þQRÞ=2 such that the
fields have the charges

We further define an unbroken axial symmetry Uð1Þ0A by
mixingUð1ÞA with a suitable generator of the SUðNÞ gauge
symmetry,
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Q0
A ¼ QA þ 1

2
diagð−2;…;−2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

N−2

; N − 2; N − 2Þ;

such that Q0
A½hϕi� ¼ 0.

In this Higgs phase, all scalars are gapped. The
Yukawa interaction results in a mass term of the form
vy

P
N
i¼1

P
N−2
a¼1 ψ iaχ̃ia. This gives a mass to most of the

fermions. The only ones that survive in the IR transform
under SUðNÞ × SUðN − 2Þ ×Uð1ÞV × Uð1Þ0A as

ð2:15Þ

with the remaining SUð2Þ gauge group decoupling. Cru-
cially, B̃ is in the antisymmetric representation of SUð2Þ,
but this is a singlet. Translating the Uð1Þ charges back to
the original Uð1ÞL × Uð1ÞR basis, we recover the massless,
free fermions in (2.5):

We find that the massless spectrum consists of massless
fermions. These fermions are free in the strict m2

ϕ=g
2 →

−∞ limit and any effective interaction generated must be
suppressed by g2=jmϕj2.
Such effective interactions are generated by integrating

out the heavy gauge fields. The scalar vacuum expectation
value gaps most of the gauge fields by the term

−v2
XN
i¼1

XN−2

a¼1

ðAμÞiaðAμÞai :

The only remaining massless gauge fields ðAμÞIJ with
indices I; J∈ fN − 1; Ng are those of the unbroken
SUð2Þ. The gauge fields are also coupled to the fermions
by the usual trðAμJμÞ interaction with the gauge currents
(2.13). The fact that the generators of the suðNÞ Lie
algebra are traceless leads to trðAμJμÞ ¼ trðAμJ μÞ, where
J μ ¼ Jμ − IN trðJμÞ=N is the traceless part of the gauge
current. From here, we can integrate out the heavy gauge
fields which results in current-current interactions,

Leff ¼ −
1

2v2
ðJ a

bJ̄
b
a þ J a

I J̄
I
aÞ þ H:c:;

with a; b ¼ 1;…; N − 2 and I ¼ N − 1; N. Among these
terms is a current-current interaction for the massless
fermions,

Leff ⊃
1

N2v2
ðψ†

½ab�ψ
½ab�Þðχ̃†IJ χ̃IJÞ≡ 1

2N2v2
trðλ†λÞðB̃†B̃Þ;

ð2:16Þ
where λab ¼ ψ ½ab� and B̃ ¼ ϵIJ χ̃IJ are the massless IR
fermions written above in (2.15).

We find that in the Higgs phase the massless fields do not
sit at the free-fermion point, except when m2

ϕ=g
2 → −∞.

Instead, the gauge interactions induce the exactly marginal
coupling (2.16) on the low-energy theory and we have an
interacting CFT in the IR.
This fits well with the dynamics and IR conformal

manifold proposed above. In the strict m2
ϕ=g

2 → −∞ limit
we hit free fermions. As we then vary the dimensionless
ratio m2

ϕ=g
2, this turns on the marginal deformation (2.16)

and we trace a path in the moduli space of conformal field
theoriesMIR. As we reach the opposingm2

ϕ ≫ g2 limit, we
have the coset theory (2.4) deformed by the Uð1Þ current-
current interaction JJ̄. Finally, in the strict m2

ϕ=g
2 → ∞

limit, we hit the undeformed coset model. By analyzing the
extended UV theory (2.11), we have thus continuously
connected the free-fermion and coset phases.
We finally note that in [23] Tong originally conjectured

free fermions as the end point of the pure gauge theory with
no Higgs fields. However, the Higgsing argument of this
section provides good evidence that this is not the case. The
free-fermion theory arises in the deep Higgs phase. Then,
as we go back to the un-Higgsed phase, we deform the free
fermions by a four-fermion term and end up with the coset
as the IR limit of the un-Higgsed theory.

B. SUðNÞ with a symmetric fermion

We now move on to consider a similar SUðNÞ chiral
gauge theory with a right-moving Weyl fermion in the
and N þ 2 left-moving fermions in the □. The Dynkin
index ensures that the theory is non-
anomalous. Ignoring any discrete subtleties, the global
symmetry group is

G ¼ SUðN þ 2Þ × Uð1ÞR ×Uð1ÞL;

under which the fermions transform as

ð2:17Þ
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We refer to this as the symmetric theory. It is again possible
to turn on the exactly marginal deformation

LUV
4 ¼ atrðχ̃†χ̃Þtrðψ†ψÞ

and our goal is to understand the low-energy physics as a
function of a. There are again two candidates.
Setting a ¼ 0, the coset proposal (1.1) gives

T ¼ UðNðN þ 2ÞÞ1
SUðNÞNþ2

⊗
�
UðNðN þ 1Þ=2Þ1

SUðNÞNþ2

�

≅ UðN þ 2ÞN ⊗ Uð1ÞNðNþ1Þ=2;

where the Uð1ÞL level is explicitly UðN þ 2ÞN ≡
SUðN þ 2ÞN ×Uð1ÞNðNþ2Þ. Again, by construction, we
have decoupled chiral and antichiral CFTs with no charge
mixing.
Option two is the confined, massless gauge-singlet

fermions proposed by Tong [23]. These are

λ ¼ ψχ̃ψ ; B̃ ∼ ψNþ2χ̃Nþ1:

This time, fermi statistics fix λ to have antisymmetric flavor
indices and the baryonic state B̃ can be constructed as

B̃ ¼ ϵa1…aNþ2
ψa1
i1
…ψaNþ2

iNþ2
ϵj1…jN χ̃

i1j1…χ̃iNjN∂−χ̃
iNþ1iNþ2 ;

where the ∂− is necessary to ensure that B̃ is right moving
even though its constituents include one more left mover
than right mover. It is straightforward to check that the
anomalies match.
Much of the story we presented for the antisymmetric

theory repeats itself for the symmetric case. The central
charges of the IR proposal are again identical: cIR ¼
NðN þ 3Þ=2þ 2 < cUV for all N ≥ 2. The symmetries
and anomalies match. Again, the only obstruction to
bosonizing/fermionizing the two low-energy theories to
one another are the Uð1Þ levels. The fermions have charge
mixing under RG flow, whereas the coset remains
factorized.
We propose that the RG flows of the symmetric theory

take the form we have presented for the antisymmetric
theory (see Fig. 1). The a ¼ 0 case is assumed to flow to
the coset. Then, as a → ∞, the symmetric theory flows to
free fermions. The two low-energy theories sit on different
ends of a 1D conformal manifold MIR.

1. An extended UV theory

For the symmetric theory, the Higgs and confined
fermion phases differ and we cannot repeat the comple-
mentarity argument. Instead, in this section we construct a
path in field space that continuously connects the fermions
and the coset. The result is not as strong as the previous
complementarity argument but shows that the free fermions

and the coset are in the same deformation class [42]. The
construction we present is the 2D analogue of the 4D
construction in Sec. 3.2 of [29].
To achieve this, we start with a different UV theory. We

show that as we dial some parameters, we can interpolate
between the symmetric chiral gauge theory and the mass-
less free fermions.
The parent UV theory we consider is a G ¼ SUðN þ

2Þ × SUðNÞ gauge theory with the matter content

The first four rows are fermions and the bottom two rows
are scalars. The symmetry structure follows from the
interaction terms,

L ∼ ψ̃Nþ2ηNþ2 þ ϕNλ†B̃ þ ϕψ̃λþ θψ̃ηþ H:c: ð2:18Þ
The indices of the first two terms are explicitly

ψ̃Nþ2ηNþ2 ¼ ϵi1…iNþ2ϵa1…aNþ2
ðψ̃ I1

i1
ηa1I1 Þ…ðψ̃ INþ2

iNþ2
ηaNþ2

INþ2
Þ

ϕNλ†B̃ ¼ ϵI1…INϵi1…iNþ2ϕi1I1…ϕiNINλ
†
iNþ1iNþ2

B̃;

where i represents SUðN þ 2Þ gauge indices, a represents
SUðN þ 2Þ global indices, and I represents SUðNÞ gauge
indices.The first term is highly irrelevant. It does not affect the
low-energy physics but simply enforces the Uð1Þ symmetry
structure we are looking for. The second term will be
important for symmetric mass generation below.
There is a coupling constant g2Nþ2 and g

2
N associated with

each factor in the gauge group G. We analyze this theory in
the fixed g2Nþ2 ≫ g2N limit (as opposed to in [29] where this
ratio was varied) such that the strongly coupled dynamics
of SUðN þ 2Þ kick in first. We then vary the remaining
parameters, the masses of the scalarsmϕ andmθ, to connect
the two different theories of interest.
We start by taking m2

θ ≫ g2Nþ2 and m2
ϕ ≪ −g2Nþ2. θ is

simply heavy and decouples from the low-energy physics.
We give ϕ the diagonal vacuum expectation value
hϕIii ¼ vδIi. At energies jm2

ϕj ≫ E ≫ gN , this results
exactly in the Higgs phase of the extended antisymmetric
theory presented in Sec. II A. This is the same as the
confined fermion phase of the antisymmetric theory and
leaves the massless fermions χ̃ in the of SUðNÞ and the
singlet ρ. All together, the following massless fermions
remain:
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with all scalars decoupling. But now the second term in
(2.18) descends to a mass term,

ϕNλ†B̃ ∼ vNρ†B̃:

This is the symmetric mass generation mechanism
described in [23]. This gaps both singlet fermions and
leaves us with

as the IR theory. This is exactly the symmetric gauge theory
of interest, which at low energies flows to the coset.
Now we instead take m2

ϕ ≫ g2Nþ2 and m2
θ ≪ −g2Nþ2. ϕ

decouples and we give θ a color-flavor locking vacuum
expectation value hθiai ¼ vδia which completely Higgses
the SUðN þ 2Þ gauge group,

SUðN þ 2Þgauge × SUðN þ 2Þglobal → SUðN þ 2Þ0global;

leaving the remaining global symmetries intact. From the
Yukawa term ∼θψ̃η in (2.18), the vacuum gaps all ψ̃ and η
and leaves the massless fermions

in addition to a decoupled SUðNÞYang-Mills term which is
gapped. The low-energy physics is that of the massless
confined fermions. The Uð1Þ charges can be matched
to the previous basis in (2.17) by taking QR ¼ Q1 and
QL ¼ 2Q1 −Q2.

III. 2D BARS-YANKIELOWICZ MODELS

In this final section, we study chiral gauge theories
which are simple generalizations of the symmetric and anti-
symmetric theories considered in Sec. II. These extended
theories have the same chiral matter as before but with p
additional Dirac fermions. They correspond to 2D ana-
logues of the 4D Bars-Yankielowicz models [24].
We focus on the extension of the antisymmetric

theory. The story presented here is nearly identical for the
symmetric theory. Consider an SUðNÞ gauge theory with a
single right-movingWeyl fermion in the , 1. In addition,we

have p right-moving fermions in the□ and a further q left-
moving fermions also in the□. Gauge anomaly cancellation
requires q ¼ N − 2þ p and the continuous global sym-
metry group is

G ¼ SUðN − 2þ pÞ × SUðpÞ ×Uð1Þ1 × Uð1Þ2 × Uð1Þ2:

Under the combination SUðNÞ ×G, the full collection of
fermions transforms as

ð3:1Þ

The theory can be deformed by the four-fermion terms,

LUV
4 ¼ a1trðχ̃†χ̃Þtrðψ†ψÞ þ a2trðρ̃†ρ̃Þtrðψ†ψÞ

þ a3χ̃
†
ijχ̃

jkðψ†Þiaψa
k þ a4ðρ̃†ÞiIρ̃Ijðψ†Þjaψa

i ; ð3:2Þ

where the i and j indices are associated with the SUðNÞ
gauge group, the a indices with the SUðN − 2þ pÞ flavor
group, and the I indices with the SUðpÞ global symmetry.
The first two terms are again Uð1Þ current-current inter-
actions and remain exactly marginal under RG flow. The
remaining two terms are gauge current-current interactions.
They mix color indices between the different fermions and

will generically pick up quantum corrections, making them
marginally relevant or irrelevant.
There are two non-Abelian ’t Hooft anomalies,

A½SUðqÞ2� ¼ −A½SUðpÞ2� ¼ N; ð3:3Þ
and a further three Abelian anomalies,

A½Uð1Þ21� ¼ −
N
2
ðN − 1Þ;

A½Uð1Þ22� ¼ NðN − 2þ pÞ;
A½Uð1Þ23� ¼ −Np; ð3:4Þ
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with all mixed Uð1Þa ·Uð1Þb anomalies vanishing for
a ≠ b. Finally, there is the gravitational anomaly

A½Grav� ¼ cL − cR ¼ N
2
ðN − 3Þ: ð3:5Þ

This theory again has two candidate IR phases.
The first is the coset proposal. Applying (1.1) gives the

IR CFT,

T ¼UðNðN − 2þpÞÞ1
SUðNÞN−2þp

⊗
�
UðNðN − 1Þ=2Þ1 ⊕UðNpÞ1

SUðNÞN−2þp

�
:

We get the diagonal coset for the right current as the right-
handed χ̃ and ρ̃ are in different representations of the gauge
group. The branching rules of the left-current coset are
again known by level-rank duality which leads to the
equivalent CFT

UðN − 2þ pÞN ⊗
�
UðNðN − 1Þ=2Þ1 ⊕ UðNpÞ1

SUðNÞN−2þp

�
: ð3:6Þ

The central charge of the CFT is

ccoset ¼
2NðN2 − 1Þ
2N − 2þ p

−
NðN þ 5Þ

2
þ 2Npþ 2: ð3:7Þ

The anomalies can also be matched by the following
confined, massless, gauge-singlet fermions:

λS ¼ ψχ̃ψ ; λA ¼ ρ̃ð∂þχ̃Þð∂þρ̃Þ;
λ̃B ¼ ρ̃ χ̃ ψ ; B̃ ∼ ψN−2þpχ̃N−1ðρ̃†Þp

Fermi statistics fix λS to have symmetric flavor indices,
whereaswe have chosen to antisymmetrize the flavor indices
of λA. The baryonic operator B̃ can be constructed as

B̃ ¼ ϵa1…aN−2þp
ψa1
i1
…ψ

aN−2þp

iN−2þp
ϵj1…jN χ̃

i1j1…χ̃iN−2jN−2 χ̃jN−1jNϵI1…Ipðρ̃†ÞiN−1
I1

…ðρ̃†ÞiN−2þp

Ip
;

with the same index conventions as above. Under the global symmetry G, the quantum numbers of the fermions are

ð3:8Þ

It is straightforward to check that these reproduce the anomalies (3.3)–(3.5). The fermions again need not be free and can be
deformed by the classically marginal operators

LIR
4 ¼ g1trðλ†SλSÞtrðλ̃†Bλ̃BÞ þ g2trðλ†SλSÞðB̃†B̃Þ þ g3trðλ†AλAÞtrðλ̃†Bλ̃BÞ

þ g4trðλ†AλAÞðB̃†B̃Þ þ g5ðλ†SabλbcS Þðλ̃†BcI λ̃aIB Þ þ g6ðλ†AIJλJKA Þðλ̃†BaK λ̃aIB Þ
þ g7λIJA λ

ab
S λ̃†BaI λ̃

†
BbJ þ H:c: ð3:9Þ

The first four terms are exactly marginal as they are Abelian
current-current deformations. The remaining terms mix
flavor between the different fermions and in general will be
renormalized. We analyze this below.
The central charge of the fermions is

cfermion ¼
1

2
ðN2 þ 4ðp − 1Þ2 þ Nð4p − 3ÞÞ: ð3:10Þ

Unlike the cases we have seen so far, where the IR
proposals have been consistent with the c-theorem [43]
for all allowed N and p, this proposal is not. The condition
cUV > cfermion requires NðN − 1Þ − 2ðp − 1Þ2 > 0. This is
satisfied for all N ≥ 2 when p ¼ 1 but requires 2N ≥
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8pðp − 2Þ þ 9
p

for p ≥ 2, which gives the approx-
imately linear bound

N ≳ ffiffiffi
2

p
p

for large N and p. For fixed N, the UV theory cannot flow
to this fermion phase at large p.

A. Dynamics

The central charges of the two IR candidates satisfy

cfermion > ccoset

for all allowedp andN (except for the special caseN ¼ 2 and
p ¼ 1 discussed below). As the central charges are not equal,
the equivalence of the two proposals and the possibility that
they live on the same conformal manifold are ruled out.
So what is the low-energy physics of the extended UV

theory? This again depends on the four-fermion couplings
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ai in (3.2). We first consider the gauge theory with all
ai¼0 and assume that this flows to the coset (3.6). As
discussed in [44], this coset admits an interesting ’t Hooft
(or, more precisely, Veneziano-like) large-N limit, N → ∞,
p → ∞, with

λ ¼ p
N

kept fixed. In the λ ≪ 1 limit, ccoset ∼OðN2Þ and the IR
theory is well approximated by the p ¼ 0 coset (3.6). In
the opposing λ ≫ 1 limit, the central charge instead scales as
ccoset ∼OðNpÞ and the IR coset is approximately UðpÞN×
UðpÞN . This is the coset describing the low-energy dynamics
of SUðNÞ QCD with p flavors, which in the λ ≫ 1 limit
approaches pN free Dirac fermions [22,44].
Now turning on small four fermion deformations

(jaij≪1) corresponds to small deformations of the coset.
In the λ ≫ 1 limit, depending on which UV deformations
we turn on, this induces Thirring- or Gross-Neveu-type
interactions on the approximately free pN Dirac fermions.
As we make the four-fermion deformations large, it is

difficult to be precise about the low-energy physics. We
conjecture that in the N ≳ ffiffiffi

2
p

p region there is a finely
tuned ai ¼ a�i ≫ 1, which might be at infinity, that flows to
the confined free fermions (3.8). Specifically, the operators
in the gauge theory must be fine-tuned to set the deforma-
tions of the fermions (3.9) to zero.
Moving slightly away from the finely tuneda�i will turn on

the four-fermion deformations of the IR theory. As we show
below, some of these deformations are marginally relevant
and will drive the fermions to a new fixed point. We do not
knowwhat this fixed point is. One option is that the fermions
flow to the coset. This is schematically shown in Fig. 2.
The p ¼ 1 and N ¼ 2 case is special. The UV theory

has the matter content of Nf ¼ 1 SUð2Þ QCD and an
additional singlet fermion χ̃. Crucially, there is no non-
Abelian global symmetry and the central charges of the
candidate phases match cfermion ¼ ccoset. The coset reduces
to Uð1ÞL2 ⊗ Uð1ÞR2 ⊗ Uð1ÞR1 , with L and R indicating the
chiral/antichiral nature of the CFT. This is simply the coset
of SUð2Þ QCD with Nf ¼ 1 in addition to Uð1ÞR1 , which is
equivalent to the decoupled free fermion χ̃. The fermion
phase instead consists of three fermions λS, λ̃B, and B̃ with
mixed charges under the Uð1Þ’s.
We propose that the RG flows of this theory are similar to

the p ¼ 0 case studied in Sec. II A. We again assume the
UV theory with no four-fermion deformations flows to the
coset. This is of course consistent with the free fermion χ̃
remaining decoupled from theQCD theory.We then propose
that turning on large four-fermion deformations in the UV
will lead the theory to flow to free fermions. We conjecture
that both IR theories live on the same conformal manifold
M̃IR. They can be continuously connected to each other by
exactly marginal Uð1Þ current-current deformations. The
novelty here is that M̃IR is 2D and is parametrized by the

current-current deformations∼JLJ̄R1 þ JLJ̄R2 as there are two
independent antichiral currents. What makes this particular
case special is that there are nonon-Abelian symmetries. This
means that the classically marginal deformations of the two
IR theories must remain exactly marginal, and leads to the
existence of a conformal moduli space.
The same arguments we have presented in this section go

through for the extended version of the symmetric theory.
There are again the coset and confined massless fermion
low-energy phases. The flow to the free-fermion theory is
again prohibited for large p at finite N and the conjectured
RG flows take the form sketched in Fig. 2. The only
difference is that the p ¼ 1, N ¼ 2 special case no longer
exists. This is a consequence of the c-theorem ruling out the
fermion phase in the IR for these values.

B. Renormalization of the fermion phase

We have seen that the free-fermion phase (3.8) admits
seven four-fermion deformations,

LIR
4 ¼ g1trðλ†SλSÞtrðλ̃†Bλ̃BÞ þ g2trðλ†SλSÞðB̃†B̃Þ

þ g3trðλ†AλAÞtrðλ̃†Bλ̃BÞ þ g4trðλ†AλAÞðB̃†B̃Þ
þ g5ðλ†SabλbcS Þðλ̃†BcI λ̃aIB Þ þ g6ðλ†AIJλJKA Þðλ̃†BaK λ̃aIB Þ
þ g7λIJA λ

ab
S λ̃†BaI λ̃

†
BbJ þ H:c: ð3:11Þ

These are classically marginal. In the quantum theory, JJ̄
deformations of the Uð1Þ currents remain exactly marginal.
In our case, these correspond to linear combinations of the
first four terms above and lead to a 2D conformal moduli
space constructed out of the Uð1Þ3 currents. The remaining
operators will pick up quantum corrections, becoming

FIG. 2. Proposed RG flows of the UV gauge theory (χGT), in the
N ≳ ffiffiffi

2
p

p region, as it is deformed by four-fermion interactions
with couplings ai. At ai ¼ 0, the theory flows to the coset, and at
finely tuned ai ¼ a�i it flows to free fermions. Shifting slightly
away froma�i generically turns onmarginally relevant four-fermion
operators of the fermions, driving the theory to a new fixed point.
This may be the coset or a different CFT.
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marginally relevant or irrelevant. In this section, we present
these beta functions to one-loop order. The details of the
calculations are shown in Appendix B.
The chiral symmetry prevents mass terms and there are

no propagator corrections. Furthermore, the first four terms
in (3.11) receive no one-loop corrections. This significantly
simplifies the nonzero contributions and only terms that
mix flavor between different fermions pick up corrections.
The beta functions read

βðg5Þ ¼ −
1

2π
½g1g5 þ g25ðN þ pÞ þ g27p�;

βðg6Þ ¼ −
1

2π
½g3g6 þ g26pþ g27ðN þ pÞ�;

βðg7Þ ¼ −
1

2π
½g1g7 þ g3g7 þ g5g7ðN þ pÞ þ g6g7p�;

with βðgiÞ ¼ 0 for i ¼ 1;…; 4. The diagrams that contribute
to the first four beta functions do not mix different vertices
and therefore vanish. This is exclusive to one loop and these
couplings will acquire corrections at higher order, leaving
only the Uð1Þ current-current operators exactly marginal.
The beta functions admit a large set of fixed-point

solutions such as the obvious g5 ¼ g6 ¼ g7 ¼ 0 and any
g1;…; g4. The trivial Gaussian fixed point is unstable and
has relevant directions. There are also more interesting
fixed-point solutions, such as

g1 ¼ −ðN þ pÞg5; g3 ¼ −pg6; g7 ¼ 0;

with any value of the remaining couplings. The Jacobian at
this fixed point has the eigenvalues

Δ1 ¼ −
π

2
ðN þ pÞg5; Δ2 ¼ −

π

2
g6;

with a further five zero eigenvalues such that there are two
marginal directions for positive values of g5 and g6.
The takeaway lesson is that the IR fermion phase admits

marginally relevant deformations and is unstable. To hit the
free-fermion phase, the four-fermion deformations (3.2) of
the UV gauge theory must be finely tuned.
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APPENDIX A: NO DISCRETE ANOMALIES

Throughout the main text, we only consider continu-
ous symmetries and omit any discrete subtleties. In this
appendix, we comment on discrete quotients and show that
matching perturbative ’t Hooft anomalies are enough to
ensure that there are no extra discrete anomaly matching
conditions.
For simplicity we focus on the antisymmetric theory of

Sec. II A. Similar arguments apply to the other theories. As
discussed in Sec. II A, the naive global symmetry group of
this theory is

H ¼ SUðN − 2Þ × Uð1ÞR ×Uð1ÞL:
This captures the Lie-algebraic part of the global symmetry
but may have shortcomings. First, are there any additional
disconnected components? The answer is no. In 2D there is
no non-Abelian theta angle so there cannot be any extra
discrete transformations that shift the theta angle by 2πZ.
Second,Hmight not act faithfully on the fermions. To find

redundant elements, consider the most general center trans-
formation ofSUðNÞ × SUðN − 2Þ accompanied byUð1ÞR×
Uð1ÞL transformations. The action on the fermions is

χ̃ → e4πim=Ne2πiαr χ̃;

ψ → e−2πim=Ne2πik=ðN−2Þe2πiαlψ ;

where m; k∈Z parametrize the center of SUðNÞ and
SUðN − 2Þ, respectively, and αr;l parametrizes the actions
ofUð1ÞR;L. It is always possible to eliminate a general center
transformation by Uð1Þ transformations. For the SUðNÞ
center transformation (m ¼ 1, k ¼ 0), we can take

αr ¼
N − 2

N
and αl ¼

1

N

to cancel the center transformation modulo 2π. Similarly,
for an SUðN − 2Þ center transformation (m ¼ 0, k ¼ 1) we
can take

αl ¼
N − 3

N − 2
:

The correct faithfully acting symmetry group is then obtained
by quotienting these transformations and is

G ¼ SUðN − 2Þ ×Uð1ÞR ×Uð1ÞL
ZN × ZN−2

:

Now one might worry that this quotient leads to extra
discrete anomaly-matching conditions. As argued in [31],
this cannot be the case. The matching of perturbative H
anomalies is enough to ensure anomaly matching for
the faithful symmetry group G. This follows by simply
noticing that a discrete quotient can introduce anomalies only
by changing the periodicity of the theta angles for back-
ground gauge fields. But as Π0ðHÞ ¼ 0, theta terms cannot
be generated and there are no extra anomalies for G.
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APPENDIX B: RENORMALIZATION
OF FOUR-FERMION INTERACTIONS

In this appendix, we describe in some detail the one-loop
renormalization of four-fermion interactions involvingWeyl
fermions.We start by discussing the renormalization of four-
fermion terms consisting ofK left-handed and a single right-
handed Weyl fermion. This is the form of the exactly
marginal deformations of the confined fermion phases in
Sec. II. We show that the one-loop beta function vanishes, as
it must for JJ̄ deformations. TheK ¼ 1 case agrees with the
famous Thirring model [45]. We then reproduce the large-N
beta function of the chiral Gross-Neveu model [46] by
working explicitly in terms of Weyl, not Dirac, fermions.
Finally, we present details of the renormalization of the 2D
Bars-Yankielowicz models discussed in Sec. III.

1. K left-handed and a single right-handed
Weyl fermion

Consider K ≥ 1 left-moving Weyl fermions λi and a
single right mover B̃. This admits a unique four-fermion
deformation preserving the SUðKÞ × Uð1Þ2 symmetry with
the action

S ¼
Z

d2xiλ†i ∂−λ
i þ iB̃†

∂þB̃ þ gðλ†i λiÞðB̃†B̃Þ:

The deformation corresponds to the JJ̄ deformation of the
Uð1Þ symmetries and is exactly marginal. We now show
that the one-loop beta function indeed vanishes.
The propagators in momentum space appear as ∼i=k�,

with k� ¼ k0 � k1 in light-cone coordinates. The Feynman
rule for the vertex is ig. We draw solid lines for λ and dotted
lines for B̃.
Symmetry prohibits any mass terms. Diagrammatically,

this can be seen at one loop by looking at the propagator
correction, e.g., for hB̃†B̃i,

at zero external momentum. Wick rotating takes the
propagator factor k� → kE� ¼ ikE0 � k1, with k0 ¼ ikE0 .
Then, the Euclidean integral takes the form

ðigÞKi
Z

d2kE

ð2πÞ2
i
kEþ

;

with kEþ ∈C such that the integral is over the whole
complex plane. This vanishes as a corollary ofZ

C
d2zzk ¼ 0 ðB1Þ

for all k∈Znf0g.
Moving onto the vertex, the one-loop corrections are

given by the diagrams

The two diagrams differ by a minus sign because of the
orientation of the fermion arrows, and the two contributions
cancel. As expected, the vertex is explicitly not renormal-
ized to one-loop order.
It is also worth noting that Lorentz symmetry prohibits

four-fermion terms, such as jB̃j4. In terms of diagrams,
the one-loop corrections to such a vertex have the formR

d2k
ð2πÞ2

1
k2−

which, after Wick rotating, vanish following (B1),

as required. Any fermion loop that contains only left-moving
or only right-moving fermions must necessarily vanish.

a. Chiral Gross-Neveu model

The chiralGross-Neveumodel consists ofNDirac fermions
Ψi interacting through a four-fermion term. In the chiral basis,
wewrite the Dirac fermions in terms of theirWeyl fermions as
Ψi ¼ ðρi; χ̃iÞT such that the interaction term is

LχGN ¼ g2

2
½ðΨ̄iΨiÞ2 − ðΨ̄iγ

5ΨiÞ2� ¼ g2ðχ̃†i ρiÞðρ†j χ̃jÞ:
Crucially, the flavor indices mix between the left- and right-
moving fermions. We now reproduce the famous large-N
asymptotic freedom of this model while working with Weyl
fermions. This will serve as a nice warm-up for the more
involved calculations below. We use the same conventions as
above with solid lines for ρ and dotted lines for χ̃.
As above, any mass corrections vanish. The only one-

loop vertex contribution at large N is

at vanishing external momentum and we Wick rotate for the final equality. The momentum integral can be calculated using
dimensional regularization. Working in d ¼ 2 − ϵ dimensions, it reads
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Z
ddk
ð2πÞd

1

k2
¼ Γð1 − d

2
Þ

ð4πÞd=2 ¼ 1

4π

�
2

ϵ

�
þ regular in ϵ: ðB2Þ

Then, writing the dimensionless coupling as g2 ¼ g2ðμÞμϵ
results in the four-point function

Γ ∼
iNg4

4π

�
2

ϵ

�
ð1þ ϵ logðμ2ÞÞ;

where we ignore terms regular in ϵ. In the MS scheme, we

choose the counterterm iδg2 ¼ −iNg4ðμÞ
ð2πϵÞ to cancel the pole

which leads to the effective vertex

g2effðμÞ ¼ ig2ðμÞ þ iNg4ðμÞ
2π

logðμ2Þ:

Finally, the condition μ
∂g2eff
∂μ ¼ 0 gives the beta function

βðg2Þ ¼ −Nðg2Þ2
π

:

Happily, this matches the famous original result of Gross
and Neveu [46].

2. Bars-Yankielowicz models

Finally, we analyze, to one loop, the low-energy candi-
date phase of the Bars-Yankielowicz model consisting

of confined fermions (3.8). The Feynman rules for the
propagators with momentum k� are

where solid lines correspond to SUðN − 2þ pÞ indices and
dashed lines to SUðpÞ. We indicate the symmetry structure
of the first three fermions by drawing double lines which
are (anti)symmetrized where necessary. There are seven
interaction terms,

LIR
4 ¼ g1trðλ†SλSÞtrðλ̃†Bλ̃BÞ þ g2trðλ†SλSÞðB̃†B̃Þ

þ g3trðλ†AλAÞtrðλ̃†Bλ̃BÞ þ g4trðλ†AλAÞðB̃†B̃Þ
þ g5ðλ†SabλbcS Þðλ̃†BcI λ̃aIB Þ þ g6ðλ†AIJλJKA Þðλ̃†BaK λ̃aIB Þ
þ g7λIJA λ

ab
S λ̃†BaI λ̃

†
BbJ þ H:c:;

with the corresponding vertices

We can now compute the one-loop corrections. There are a
number of observations that significantly simplify the calcu-
lation. First, as we saw for the p ¼ 0 case above, there are no
propagator corrections. Second, any fermion loop containing a
fermion of single chirality (i.e., a loop with only a left-moving
fermion) is identically zero as a corollary of (B1). Finally,
any vertex correction to interactions of the form trðLH×
LHÞtrðRH × RHÞ, for left-/right-handed fermions with the
trace over the flavor indices, is zero. This is due to a similar
cancellation as in the p ¼ 0 case above where contributions
from twodiagramsof opposing internal fermionarrows exactly

cancel. This means that g1;…; g4 receive no one-loop correc-
tions and only operators that mix flavor get modified.
Nontrivial corrections are due to diagrams that mix

flavor, such as
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where we write q ¼ N − 2þ p and define the Wick-rotated
integral

I ¼ i
Z

d2k
ð2πÞ2

1

k2
;

which is common to all such diagrams at zero external
momentum. The numerical factor in front is due to the
fermion loop and the symmetry of λS. There are the further
diagrams
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Only the first six diagrams scale with q or p due to the
closed flavor loops. The remaining diagrams have no such
loops because of the vertices or because they are nonplanar.
Summing these and using the renormalization scheme
discussed above in the chiral Gross-Neveu model results
in the beta functions

βðg5Þ ¼ −
1

2π
½g1g5 þ g25ðN þ pÞ þ g27p�;

βðg6Þ ¼ −
1

2π
½g3g6 þ g26pþ g27ðN þ pÞ�;

βðg7Þ ¼ −
1

2π
½g1g7 þ g3g7 þ g5g7ðN þ pÞ þ g6g7p�:
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