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A new method to work out the Hermitian correspondence of a PT -symmetric quantum mechanical
Hamiltonian is proposed. In contrast to the conventional method, the new method ends with a local
Hamiltonian of the form 1

2
p2 þ 1

2
m2x2 þ vðxÞ without any higher-derivative terms. This method is

available for Hamiltonians with general antilinear symmetries in the perturbative regime. Possible
extensions to multivariable quantum mechanics and quantum field theories are discussed.
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I. INTRODUCTION

The discovery of real-spectra PT -symmetric
Hamiltonians [1] has inspired a lot of research beyond
conventional Hermitian quantum theories [2,3]. Originally,
in [1] it was found that Hamiltonians of the form
H ¼ p2 þm2 − ðixÞNðN ≥ 2Þ have real spectra. Later,
the general framework to describe a PT -symmetric quan-
tum theory was established [4–7]. A nontrivial metric
operator η ¼ e−Q satisfying ηHη−1 ¼ H† is necessary [5]
for the unitary evolution generated by a non-Hermitian
PT -symmetric Hamiltonian H, which differs from
Hermitian quantum mechanics. With the help of this metric
operator, a real-spectra PT -symmetric Hamiltonian H
can be recast to an isospectral Hermitian Hamiltonian
h ¼ e−Q=2HeQ=2 equipped with the ordinary Dirac inner
product. A remarkable example is the isospectral Hermitian
Hamiltonian for H ¼ p2 − gx4, as described in [8,9]. The
stability for the −x4 potential is essential to guarantee the
stability of the Higgs vacuum [3]. Moreover, a generic
method [10] has been developed to calculate the metric
operator for a perturbative PT -symmetric Hamiltonian
of the form H ¼ H0 þ ϵH1 where H0 is Hermitian and
H1 is anti-Hermitian. In this case, Q has the form

Q ¼ ϵQ1 þ ϵQ3 þ � � �, and each term can be determined
perturbatively as follows [3]:

½H0;Q1�¼−2H1; ½H0;Q3�¼−
1

6
½½H1;Q1�;Q1�;� �� : ð1Þ

The isospectral Hermitian Hamiltonian h acquired from
this procedure is in general nonlocal in the sense of
containing terms in an arbitrarily high order of momentum
p, which render the physical meaning of h rather obscure.
However, there are vast degrees of freedom in generating h
as demonstrated in [11]. In this paper we give an explicit
method to calculate the local version of h for perturbative
PT -symmetric Hamiltonians whose free parts are non-
degenerate. In contrast to the nonlocal h from the above
conventional method, we believe a local form has apparent
physical meanings and will bring inspirations to the
research of PT -symmetric theories. Also, our method
applies to Hamiltonians with general antilinear symmetries,
because no explicit properties of spatial-inversion and time-
reversal symmetries are used in the subsequent derivations.
From now on, PT symmetry stands for any general
antilinear symmetry.
Here we summarize the main procedures of our new

methods and the structure of this paper. In Sec. II, we
start from a single-variable Hamiltonian HV ¼ 1

2
p2þ

1
2
m2x2 þ Vðx; pÞ, where Vðx; pÞ ¼ P∞

n¼1 g
nVnðx; pÞ is

the sum of various polynomial functions Vnðx; pÞ of x
and p with coupling constant g. We assume HV respects
unbroken PT symmetry. Then we show a similarity
transformation of HV leads to a manifestly diagonal
Hermitian Hamiltonian HN ¼ mðN þ 1

2
Þ þ FðNÞ, where
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FðNÞ ¼ P∞
n¼1 g

nfnðNÞ is the sum of various polynomial

functions fnðNÞ of N and N ¼ a†a in which a ¼ ffiffiffi
m
2

p
xþ

i
ffiffiffiffiffi
1
2m

q
p is the standard annihilation operator.1 In Sec. III, we

transform HN to hv ¼ 1
2
p2 þ 1

2
m2x2 þ vðxÞ, where vðxÞ ¼P∞

n¼1 g
nvnðxÞ is the sum of various polynomial functions

vnðxÞ of x only. The transformation from HV to HN is a
typical diagonalization procedure. And the key point
of the transformation from HN to hv is the existence of
a one-to-one correspondence between the nth order poly-
nomials of N and x2. In Sec. IV, we calculate hv in the ix3

model as an example. When generalizing to multivariable
Hamiltonians, the one-to-one map exists only in the case
where the free part of HV is nondegenerate, and this is
discussed in Sec. V together with the generalization to
quantum field theories. We conclude in Sec. VI.

II. DIAGONALIZATION OF A HAMILTONIAN
WITH THE D-OPERATION

Consider a single-variable Hamiltonian with one2 real
coupling constant g:

HV ¼ 1

2
p2 þ 1

2
m2x2 þ

X∞
n¼1

gnVnðx; pÞ: ð2Þ

As stated in Sec. I, Vnðx; pÞ is a polynomial function of x
and p respecting PT symmetry. Creation and annihilation
operators can be defined as usual

a† ¼
ffiffiffiffi
m
2

r
x − i

ffiffiffiffiffiffiffi
1

2m

r
p; a ¼

ffiffiffiffi
m
2

r
xþ i

ffiffiffiffiffiffiffi
1

2m

r
p: ð3Þ

In the Fock space defined by a† and a, diagonal operators
are in the form

P∞
n¼0 cnN

n because of the commutation
relation ½a; a†� ¼ 1. We define a linear operation DðÞ on
any operator O that can be expanded by polynomial
functions of x and p to take out the diagonal part of O
such that DðOÞ ¼ P∞

n¼0 c
O
n Nn. To be concrete, for an

operator O possessing an expansion of the form
O ¼ P

nl a
O
nlx

npl, we first recast it into a series of a
and a† using (3), and then we have O ¼ P

nl b
O
nla

†nal

where bOnl is determined by aOnl and (3) systematically.
Because a†nal with n ≠ l has vanishing diagonal compo-
nents, we simply have DðOÞ ¼ P

n b
O
nna†nan. Making use

of established relations such as a†nan ¼ NðN − 1Þ � � �
ðN − nþ 1Þ, we finally have DðOÞ ¼ P∞

n¼0 c
O
n Nn where

cOn is determined by bOnn and is unique by the description of
the entire procedure. For example,

Dð1Þ ¼ 1; DðxÞ ¼ DðpÞ ¼ 0;

Dðx2Þ ¼ 1

m2
Dðp2Þ ¼ 1

2m
ð2N þ 1Þ; � � � : ð4Þ

A diagonal operator O satisfies O ¼ DðOÞ. If we want to
diagonalize HV with a similarity transformation e−R, it is
enough to satisfy the condition

e−RHVeR ¼ Dðe−RHVeRÞ: ð5Þ

Assume HV can be evaluated in the perturbative regime,
and then R can be written as a perturbation series
R ¼ P∞

n¼1 g
nRn. Taking out nth order terms on both sides

of (5), we have

½H0; Rn� ¼ Dð½H0; Rn�Þ þDðVnÞ − Vn

þD

0
B@Xn

j¼2

X
k1þ���þkj¼n

fk1 ;…;kjg

½½H0; Rk1 �;…; Rkj �
j!

þ
Xn−1
l¼1

Xn−l
j¼1

X
k1þ���þkj¼n−l

fk1 ;…;kjg

½½Vl; Rk1 �;…; Rkj �
j!

1
CA

−

0
B@Xn

j¼2

X
k1þ���þkj¼n

fk1 ;…;kjg

½½H0; Rk1 �;…; Rkj �
j!

þ
Xn−1
l¼1

Xn−l
j¼1

X
k1þ���þkj¼n−l

fk1 ;…;kjg

½½Vl; Rk1 �;…; Rkj �
j!

1
CA; ð6Þ

where H0 ≡ 1
2
p2 þ 1

2
m2x2 ¼ mðN þ 1

2
Þ.

Because H0 is diagonal, ½H0; Rn� has vanishing diagonal components and Dð½H0; Rn�Þ ¼ 0. ½H0; Rn� is thus determined
completely by lower-order Rks. It is obvious that DðOÞ −O has vanishing diagonal components such that it is in the formP

k;lðk≠lÞ c0
O
kla

†kal. We also have the relation ½H0; a†kal=ðmðk − lÞÞ þ αklðNÞ� ¼ a†kal where αklðNÞ is an arbitrary
function of N, so that all Rn can be solved iteratively from (6). HN ≡ e−RHVeR is thus in the form HN ¼ mðN þ 1

2
Þ þP∞

n¼1 g
nfnðNÞ as stated in Sec. I, where fnðNÞ is given by

1ℏ ¼ 1 is assumed.
2Generalization to multi-coupling Hamiltonians is straightforward.
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fnðNÞ ¼ D

0
B@Vn þ

Xn
j¼2

X
k1þ���þkj¼n

fk1 ;…;kjg

½½H0; Rk1 �;…; Rkj �
j!

þ
Xn−1
l¼1

Xn−l
j¼1

X
k1þ���þkj¼n−l

fk1 ;…;kjg

½½Vl; Rk1 �;…; Rkj �
j!

1
CA: ð7Þ

Given a Hermitian HV with all Vnðx; pÞ Hermitian,
obviously R1 is anti-Hermitian3 by ½H0; R1� ¼ DðV1Þ −
V1 which is the n ¼ 1 version of (6). Because the
commutator of a Hermitian operator and an anti-Hermitian
operator is Hermitian, the right-hand side of (6) is always
Hermitian by induction, and thus all Rn are anti-Hermitian
and e−R is unitary. However, for PT -symmetric HV ,
Vnðx; pÞ is not necessarily Hermitian, and Rn is not
anti-Hermitian, resulting in a nonunitary e−R. This is
reasonable: if HV is PT -unbroken and has a real spectrum,
HN must be Hermitian4 because it is diagonal and iso-
spectral to HV by the similarity transformation e−R, and
thus Hermitian HN and non-Hermitian HV cannot be
related by a unitary transformation.
For a PT -symmetric HV , the Hermiticity of HN ¼

e−RHVeR results from HN ¼ DðHNÞ which is the defini-
tion (5) of HN that means HN is diagonal. A diagonal
operator is not necessarily Hermitian even with entirely real
eigenvalues. However, we work in Fock space where
number states formed a set of complete and orthonormal
basis in the ordinary Dirac inner product, and thus
guaranteeing the Hermiticity of HN . In other bases, con-
cluding the Hermiticity of an operator O satisfying
O ¼ DðOÞ must be cautious.5

III. THE LOCAL POTENTIAL FROMADIAGONAL
HAMILTONIAN

The diagonalization ofHV makes use of theD-operation,
and one may think that HV can be recovered from the

diagonal HN by some D−1-operation. However, the
D-operation is not bijective as shown by (4) such that
D−1 does not exist. The nonexistence of D−1 indicates that
there are many different Hamiltonians, which is similar to
the same diagonal HN . As we are going to show, there
exists a local Hermitian hv similar to HN serving as the
Hermitian correspondences of HV .
To invert the diagonalization procedure, we make use of

the fact thatDðx2nÞ is a polynomial function ofN written as

Dðx2nÞ ¼
Xn
k¼0

XnkNk; ð8Þ

where Xnn ≠ 0. Then we can define a linear operation LðÞ
on any operator O as follows:

LðOÞ ¼ LðDðOÞÞ; Lð1Þ ¼ 1;

LðNnÞ ¼ 1

Xnn

�
x2n −

Xn−1
k¼0

XnkLðNkÞ
�

ðn ≥ 1Þ; ð9Þ

and LðNnÞ can be solved iteratively resulting in a 2nth
order polynomial function of x.
The requirement that hv ≡ e−KHNeK is local is simply

e−KHNeK −H0 ¼ Lðe−KHNeK −H0Þ: ð10Þ

Assume K has a perturbative expansion K ¼ P∞
n¼1 g

nKn.
Taking out nth order terms on both sides of (10), we have

½H0; Kn� ¼ Lð½H0; Kn�Þ þ LðfnðNÞÞ − fnðNÞ

þ L

0
B@Xn

j¼2

X
k1þ���þkj¼n

fk1 ;…;kjg

½½H0; Kk1 �;…; Kkj �
j!

þ
Xn−1
l¼1

Xn−l
j¼1

X
k1þ���þkj¼n−l

fk1 ;…;kjg

½½flðNÞ; Kk1 �;…; Kkj �
j!

1
CA

−

0
B@Xn

j¼2

X
k1þ���þkj¼n

fk1 ;…;kjg

½½H0; Kk1 �;…; Kkj �
j!

þ
Xn−1
l¼1

Xn−l
j¼1

X
k1þ���þkj¼n−l

fk1 ;…;kjg

½½flðNÞ; Kk1 �;…; Kkj �
j!

1
CA: ð11Þ

3R1 can always be taken to be anti-Hermitian by choosing all αklðNÞ ¼ 0 in the analysis about the solution of (6) in the paragraph
before (7). DðV1Þ − V1 is Hermitian, and any a†kal must appear as the combination a†kal þ a†lak, R1 is thus anti-Hermitian by the
relation ½H; a†kal=ðmðk − lÞÞ − a†lak=ðmðk − lÞÞ� ¼ a†kal þ a†lak.

4In this paper we deal with PT -unbroken HV only, and HN is no longer Hermitian with a PT -broken HV . The existence of HN is
rather questionable with a PT -broken HV with an exceptional point.

5We thank the referee for this reminder.
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Because ½H0; Kn� has vanishing diagonal components, we have Lð½H0; Kn�Þ ¼ 0 by using Dð½H0; Kn�Þ ¼ 0 and (9).
½H0; Kn� is thus determined completely by lower-order Kk’s. From (8) and (9) it is obvious thatDðLðOÞÞ ¼ DðOÞ, which is
to say LðOÞ −O has vanishing diagonal components, for any operator O. Kn can thus be solved iteratively by the same
reason of Rn ’s as in Sec. II. From (9), hv is finally written in the form hv ¼ 1

2
p2 þ 1

2
m2x2 þP∞

n¼1 g
nvnðxÞ where vnðxÞ is

given by

vnðxÞ ¼ L

0
B@fnðNÞ þ

Xn
j¼2

X
k1þ���þkj¼n

fk1 ;…;kjg

½½H0; Kk1 �;…; Kkj �
j!

þ
Xn−1
l¼1

Xn−l
j¼1

X
k1þ���þkj¼n−l

fk1 ;…;kjg

½½flðNÞ; Kk1 �;…; Kkj �
j!

1
CA: ð12Þ

If HN is Hermitian, all Kn are anti-Hermitian by the same
arguments as those in Sec. II and thus e−K is unitary
resulting in a Hermitian hv.

IV. ix3 AS AN EXAMPLE

The ix3 model is a popular toy model for studying
PT -symmetric theories [2,3,10,12]. However, a local form
of the isospectral Hermitian Hamiltonian has not been
given yet. Here we calculate the hv for HV ¼ 1

2
p2 þ

1
2
m2x2 þ igx3 up to Oðg3Þ and show that hv is indeed

local. Higher-order calculation is systematic as shown by
(6), (7), (9), (11), and (12) but rather tedious. Higher-order
terms can be calculated whenever needed and will not be
presented in this paper.
Various quantities entailed in the calculation of hv for

HV ¼ 1
2
p2 þ 1

2
m2x2 þ igx3 are as follows, up to Oðg3Þ,

and we take all homogeneous terms when solving for Rn
from (6) to be zero:

R1 ¼
−i

mð2mÞ3=2
�
a†3

3
þ 3a† þ 3a†2a − 3a†a2 − 3a −

a3

3

�
;

R2 ¼
1

mð2m4Þ
�
3

2
a†4 − 18a†2 − 12a†3aþ 12a†a3 þ 18a2 −

3

2
a4
�
;

f1ðNÞ ¼ 0; f2ðNÞ ¼ 1

8m4
ð30N2 þ 30N þ 11Þ;

LðNÞ ¼ mx2 −
1

2
; LðN2Þ ¼ 2

3
m2x4 −mx2;

v1ðxÞ ¼ 0; v2ðxÞ ¼
5

2m2
x4 −

1

2m4
: ð13Þ

The expression for hv is thus

hv ¼
1

2
p2 þ 1

2
m2x2 þ 5g2

2m2
x4 −

g2

2m4
þOðg3Þ: ð14Þ

A typical result of h using the conventional method
proposed in [10] is [12]

h¼1

2
p2þ1

2
m2x2þ 3g2

2m4

�
fx2;p2gþm2x2þ2

3

�
þOðg3Þ;

ð15Þ

where the appearance of fx2; p2g ¼ x2p2 þ p2x2 makes
the physical interpretation of h rather complicated.

V. GENERALIZATION TO MULTIVARIABLE
QUANTUM MECHANICS AND QUANTUM FIELD

THEORIES

Consider a multivariable Hamiltonian with coupling
constant g

HV ¼
X
i

�
1

2
p2
i þ

1

2
m2

i x
2
i

�
þ
X
n¼1

gnVnðfxjg;fpkgÞ: ð16Þ

If there is no degeneracy in the free part
H0 ¼

P
i ð12p2

i þ 1
2
m2

i x
2
i Þ, which is to say that all linear

combinations of the integral multiple of mi in the formP
i nimiðni ∈Z; ∃ nj ≠ 0Þ is nonzero, there is no obstacle

in calculating hv from HV . First, the D-operation is
generalized trivially resulting in functions of Ni ¼ a†i ai,

and DðOÞ −O is a linear combination of
Q

i;j a
†ni
i a

lj
j

ðPi;j ðnimi − ljmjÞ ≠ 0Þ for any operator O. Second,
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Rn is guaranteed to have solutions by the explicit commu-

tation relation ½H0; ð
Q

i;j a
†ni
i a

lj

j Þ=ð
P

i;j ðnimi − ljmjÞÞ þ
αfni;ljgðfNkgÞ� ¼

Q
i;j a

†ni
i a

lj

j . Next, the L-operation is
also generalized trivially resulting in functions of xi, and
Kn is soluble the same as Rn. Finally, we get a local hv ¼P

i ð12p2
i þ 1

2
m2

i x
2
i Þ þ

P
n¼1 g

nvnðxiÞ as the isospectral
Hermitian Hamiltonian of HV .
However, if degeneracy does occur inH0,DðOÞ −O has

terms in the form of
Q

i;j a
†ni
i a

lj
j where

P
i;j ðnimi−

ljmjÞ ¼ 0. Consequently, Rn has no solution and the
whole procedure breaks down.
A quantum field theory is multivariable, of course.

However, Lorentz symmetry requires that all relativistic
quantum field theories have the same spectra as free
theories. Therefore, any perturbatively well-defined rela-
tivistic quantum field theory is equivalent to its correspond-
ing free theory up to a similarity transformation that
is constructed explicitly in textbooks such as [13]. A
PT -symmetric relativistic quantum field theory is thus
isospectral to any local Hermitian theories having the same
mass, and restricting conditions other than equivalent
spectra are needed to isolate a meaningful one for a
PT -symmetric relativistic quantum field theory.

VI. SUMMARY AND OUTLOOK

In this paper we propose a new method to calculate
isospectral Hermitian Hamiltonians of PT -symmetric
Hamiltonians, and local expressions are acquired for those
whose free parts are nondegenerate. Moreover, a general
antilinear symmetry rather than explicit PT symmetry is
enough for our method, which is particularly helpful when
dealing with higher-dimensional problems where there are
many choices for an antilinear symmetry. A real spectrum
accompanied by a set of complete eigenvectors, which is
guaranteed by an unbroken antilinear symmetry [5–7], is
the only thing needed6 to result in a local and Hermitian
Hamiltonian that is isospectral to the ordinary Hamiltonian.
In summary, we diagonalize a quantum mechanical
Hamiltonian and transform the diagonalized one into a
Hermitian Hamiltonian with a local potential making use of
a correspondence between nth order polynomials of N and
x2. However, this correspondence, which is denoted as the
L-operation, is not unique. There are many polynomials
that lead to the same result as x2n under the D-operation

because Dðx2kþ1Þ ¼ 0 is satisfied for any rational number
k. Therefore, various definitions of LðNnÞ can differ by
arbitrary functions of x2kþ1, thus resulting in different hv’s
that differ from each other by arbitrary functions of x2kþ1,
too. This nonuniqueness reflects spectral equivalence of
different potentials and disappears once we specify the
parity property of hv. Furthermore, our method is only of
formal sense, because perturbation theories in infinite-
dimensional space are rather tricky.7

We have only dealt with PT -unbroken theories in this
paper. The Hermiticity of hv is guaranteed by the
Hermiticity ofHN , and the Hermiticity ofHN is guaranteed
by the unbroken PT -symmetry of HV as explained at the
ends of Secs. II and III. We do not expect a Hermitian hv for
a PT -brokenHV , because a PT -broken HV has a complex
spectrum and is not even diagonalizable in the exceptional
point [3]. As the conventional method is also not valid for
PT -broken theories, we left discussions of PT -broken
theories for future work.
Our method is also incapable of dealing with theories

degenerate in their free parts as discussed in Sec. V.
However, the conventional method is also invalid in this
case. For example, consider a PT -symmetric Hamiltonian
H ¼ 1

2
p2
1 þ 1

2
p2
2 þ 1

2
m2x21 þ 1

2
ð2mÞ2x22 þ igx21x2, and the

first-order equation needed to calculate the metric operator
exp ðP∞

n¼1 g
2nþ1Q2nþ1Þ is ½H0; Q1� ¼ −2ix21x2, which has

no solution because h2; 0j½H0; Q1�j0; 1i ¼ 0 is not consis-
tent with −2ih2; 0jx21x2j0; 1i ¼ −2i=ð2mÞ3=2 where j2; 0i
and j0; 1i are bases in the Fock space of H0 ¼
1
2
p2
1 þ 1

2
p2
2 þ 1

2
m2x21 þ 1

2
ð2mÞ2x22. We hope more powerful

methods can be developed to handle degeneracy problems.
Although degeneracy also occurs in quantum field

theories, Lorentz symmetry makes all quantum field
theories with the same physical mass equivalent to each
other. While the conventional method picks up a Hermitian
h for a PT -symmetric Hamiltonian H by its explicit
calculation procedure, we point out that there is no special
choice of h if we consider only the spectrum of a
PT -symmetric Hamiltonian H, and further constraints
must be added to select a meaningful Hermitian h. We
hope to extract more physical information from PT -
symmetric quantum field theories, thus being able to
construct a special Hermitian Hamiltonian h for a PT -
symmetric HamiltonianH, which carries the same physical
information as H.

6We thank the referee for the observation of generality of our
method.

7We thank the referee for pointing this out.
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