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Quantum entanglement harvesting in the relativistic setup attracted a lot of attention in recent times.
Acquiring more entanglement within two qubits may be very desirable to establish fruitful communication
between them. On the other hand use of reflecting boundaries in a spacetime has close resemblance to
the cavity quantum-optomechanical systems. Here, in presence of two reflecting boundaries, we study
the generation of entanglement between two uniformly accelerated Unruh-DeWitt detectors which are
interacting with the background scalar fields. Like no-boundary and single-boundary situations,
entanglement harvesting is possible for their motions in opposite Rindler wedges. We observe that the
reflecting boundaries can play double roles. In some parameter space it causes suppression, while in other
parameter space we can have enhancement of entanglement compared to no-boundary and single-boundary
cases. Thus increase of boundaries has significant impact in this phenomena and a suitable choices of
parameters provides desirable increment of it.
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I. INTRODUCTION

Quantum entanglement is one of the predictions of
quantum theory, which shows fascinating nonlocal proper-
ties. Two observers can be entangled, even if they are
spacelike separated. This phenomenon is crucial to many
quantum information theoretic processes, such as quantum
teleportation [1–4], cryptography [5,6], and compu-
tation [7]. In recent decades, many studies have been done
to understand this phenomenon in relativistic setup in flat
and curved spacetimes. This phenomenon also plays a
vital role in understanding the black hole information
paradox [8–10], the quantum nature of gravity [11,12],
black hole thermodynamics [13,14], etc.
Any quantum field theory’s vacuum is an entangled state

from a local observer’s point of view [15]. The Bell-CHSH
inequality is maximally violated in the field’s vacuum
[16–19]. Two Unruh-DeWitt (UDW) detectors [20,21]
locally interacting with the background quantum field can
extract this entanglement from the quantum vacuum. This
process of entanglement extraction is popularly known as
“entanglement harvesting.” Entanglement harvesting is
possible even if the detectors are causally disconnected
and it is independent of the internal structure of the
detectors. The formulation for understanding this harvest-
ing phenomenon is first solidified by Reznik [22,23] and
then further improved in [24–26], where proper time
ordering is introduced into the picture. These studies

usually deal with two two-level detectors interacting with
the background field and are in an initial uncorrelated state.
To study the characteristics of the harvested entanglement
for these bipartite systems, negativity and concurrence are
well established as a measure of entanglement. The nature
of the harvested entanglement depends on the background
geometry [27–33], boundary conditions [29,34], motion of
the detectors [24,25,33,35–40], etc.
The entanglement dynamics between two detectors is an

observer-dependent phenomenon [35,41–46]. It is well-
known that acceleration of the detectors promotes entan-
glement between the detectors under certain circumstances
[22,24,37,38,47]. One can consider the interaction between
the detectors and the background field to be eternal, which
allows one to avoid the switching effects due to switching
functions [21]. For eternal interaction in free Minkowski
space, it is known that two accelerated detectors can get
entangled if they are only in antiparallel motion. In a recent
study [48], the influence of a reflecting boundary on
entanglement harvesting between two UDW detectors
was studied with a finite-time interaction switching func-
tion, where it was observed that entanglement between two
UDW detectors gets suppressed in the presence of a
reflecting boundary. However, there exists a parameter
space where a reflecting boundary can enhance the corre-
lation between the detectors. One also observed enhance-
ment in entanglement harvesting near an extremal black
hole compared to a nonextremal black hole in some
parameter spaces [49]. Understanding the role of reflecting
boundaries is crucial due to its applicability to cavity
quantum optomechanical systems (cavity QED) with
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numerous practical applications [50]. Reflecting bounda-
ries also play an essential role in the context of holographic
entanglement entropy [51], secure quantum communica-
tion over long distances [52–54], the Casimir-Polder inter-
action [55–57], the radiative properties of atoms [58–65],
the geometric phase [66], and the modified entanglement
dynamics [67,68], etc.
As we mentioned in the earlier work [48], presence of a

reflecting boundary can suppress or enhance entanglement
harvesting between two detectors, depending on the
parameter space under consideration. One can ask whether
the similar effect of boundary also holds in presence of
multiple boundaries. Will these effects—entanglement
suppression and enhancement due to the presence of a
reflecting boundary—be amplified if multiple reflecting
boundaries are present there? It will be very interesting if
one finds more enhancement in the harvested entanglement
in presence of multiple boundaries. There have been no
studies done so far analyzing the entanglement harvesting
phenomena in presence of multiple reflecting boundaries.
In this study, we have done a detailed analysis of such a
phenomena, considering two reflecting boundaries. We
compare the harvested entanglement in presence of double
boundaries with the entanglement harvested in single- and
no-boundary systems. Here we consider the reflecting
boundaries are extended in the x-y plane and located
at z ¼ 0 and z ¼ L. The detectors accelerate along the
x-direction. We use Green’s functions for two reflecting
boundaries as provided in [21,65,69] and follow the formu-
lation for entanglement harvesting utilized in [25,37]. To
study the fate of entanglement between two detectors, we
investigate the concurrence [70–72] as a measure of the
harvested entanglement. Here we consider three types of
arrangements for detector trajectories to apprehend the
effect of the boundaries. First, we take one detector near the
first boundary and another near the second boundary,
equally distanced from z ¼ L=2. Second, we take both
the detectors in the same z positions, i.e., zA ¼ zB. Third,
we fixed the position of one detector in-between regions
of the boundary planes and moved another detector to
understand the influence of the boundaries. We observe that
entanglement enhancement and suppression are also pos-
sible in the presence of double boundaries. The enhance-
ment and suppression of harvested entanglement due to the
presence of boundaries is more perceptible for the double-
boundary system.
This paper is organized as follows. In Sec. II, we discuss

the framework for entanglement harvesting between two
UDW detectors interacting with a minimally coupled,
massless scalar field through monopole terms. This section
discusses the mathematical description of the entanglement
harvesting condition. In Sec. III, we discuss the trajectories
and the Green’s functions of the two accelerated UDW
detectors in the presence of reflecting boundaries and
investigate the individual detector transition probabilities.

Subsequently, in Sec. IV, we discuss the possibility of
entanglement harvesting between the detectors in parallel
and antiparallel motion. Also, the properties of the har-
vested entanglement are analyzed. Finally, in Sec. V, we
conclude with an overall discussion of the results.

II. THE MODEL: FRAMEWORK FOR
ENTANGLEMENT HARVESTING

We now briefly present our model of two UDW detectors
which are simultaneously interacting with background-
massless real-scalar fields. Following the analysis of
[25,26] the main working formulas, valid until the sec-
ond-order perturbative expansion, will be given.
Let us consider two observers, Alice and Bob, with two-

level Unruh-DeWitt detectors, denoted as A and B. We
consider the detectors pointlike and interacting with a
massless, real scalar field ϕðXÞ through monopole inter-
action. Then the interaction action is given by

Sint ¼
X
j¼A;B

λj

Z
∞

−∞
dτjκjðτjÞmjðτjÞϕ

�
xjðτjÞ

�
; ð1Þ

where λj is the coupling constant between the jth detector
(j ¼ A, B) and the scalar field, κjðτjÞ and τj are the
interaction switching function and proper time for the jth
detector, respectively. The monopole operator of the
detector’s are taken as

mjðτjÞ ¼ eiHjτj
�jejihgjj þ jgjihejj

�
e−iHjτj : ð2Þ

Here jgji and jeji are the ground and exited states of the jth
detector, respectively.
The initial state of the composite system is taken to be

jini ¼ j0MijEA
0 ijEB

0 i, where j0Mi is the Minkowski vac-
uum, the state of the field and jEj

ni (n ¼ 0, 1) is the nth state
of the jth detector. The final state of the system in the
asymptotic future can be obtained as jouti ¼ TfeiSintgjini.
One can get the reduced density matrix for the detectors
ρAB by tracing out the field degrees of freedom from the
final total density matrix, which in the basis of fjEA

1 ijEB
1 i;

jEA
1 ijEB

0 i; jEA
0 ijEB

1 i; jEA
0 ijEB

0 ig is expressed as [25]

ρAB ¼

0
BBB@

0 0 0 λ2E

0 λ2PA λ2PAB 0

0 λ2P⋆
AB λ2PB 0

λ2E⋆ 0 0 1 − λ2PA − λ2PB

1
CCCA

þOðλ4Þ: ð3Þ

Here for simplification we choose λA ¼ λB ¼ λ. The
structure of the density matrix depends on the choice of
the initial detectors’ state and the monopole operator
considered. For our particular monopole operator given
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in Eq. (2), expressions for the detectors’ density matrix elements are

Pj ¼
Z

∞

−∞

Z
∞

−∞
dτjdτ0jκjðτjÞκjðτ0jÞe−iΔEðτj−τ

0
jÞGWðxj; x0jÞ;

E ¼ −
Z

∞

−∞

Z
∞

−∞
dτBdτ0AκBðτBÞκðτ0AÞeiΔEðτ

0
AþτBÞiGFðxB; x0AÞ;

PAB ¼
Z

∞

−∞

Z
∞

−∞
dτBdτ0AκBðτBÞκAðτ0AÞeiΔEðτ

0
A−τBÞGWðxB; x0AÞ: ð4Þ

The quantities GWðxi; x0jÞ; GFðxi; x0jÞ are respectively the
positive-frequency Wightman function and the Feynman
propagator, defined as

GWðxi; x0jÞ ¼ h0MjϕðxiÞϕðxjÞj0Mi;
iGFðxi; x0jÞ ¼ h0MjTfϕðxiÞϕðxjÞgj0Mi: ð5Þ

The detailed analysis of the density matrix one may look
into [25]. The detectors are taken to be identical and hence
we denoted ΔE ¼ Ej

1 − Ej
0 for all j.

Since our system is a bipartite system, any negative
eigenvalue of the partial transposition of the reduced density
matrix [see Eq. (3)] confirms entanglement between the
detectors [73,74]. The absolute value of sum of all negative
eigenvalues is known as the negativity, a measure of
entanglement. For our density matrix, there will be a negative
eigenvalue if the following condition is satisfied [25,37]

PAPB < jEj2: ð6Þ

Once the above condition is satisfied, one may study
various measures to quantify the harvested entanglement.
In this regard, a convenient entanglement measures is the
concurrence [defined as CðρABÞ ¼ maxf0; 2λ2CJðρABÞg]
[25,70–72], which is very useful for estimating the entan-
glement of formation EFðρABÞ (see [25,70–72]). For our
two qubits system the quantity CJ is obtained as [25]

CJðρABÞ ¼
�jEj − ffiffiffiffiffiffiffiffiffiffiffiffi

PAPB

p �
: ð7Þ

This quantity CJ can have both positive or negative values.
Due to the definition of the concurrence (C), negative values
of CJ implies zero concurrence of the two-detector system.
Therefore, harvesting entanglement between the detectors
required positivity of the quantity CJ. Also note that
positivity of this quantity automatically implies the con-
dition (6). Therefore, studying this quantity enables us to
understand the characteristics of entanglement between two
detectors due to the background spacetime and motions of
detectors with specific configurations. For simplicity of the
model and analytically handling the computations, like
in earlier investigations [25,33,37–40], we will consider
eternal interaction; i.e., κj ¼ 1 in the subsequent analysis.
It can be pointed that Pj can be identified as the individual
detector’s transition probability, whereas in literature E is
usually called as entangling term.

III. ACCELERATED DETECTORS WITH
REFLECTING BOUNDARIES

Let us consider the (3þ 1)-dimensional Minkowski
spacetime [coordinates are denoted as (t, x, y, z)] with
two parallel reflecting boundaries extended in the x-y
plane; one is at z ¼ 0 and another at z ¼ L. In the context
of cavity quantum electrodynamics, the quantity L is known
as cavity length. The positive-frequency Wightman function
for a massless scalar field in (3þ 1)-dimensional Minkowski
spacetime in the presence of reflecting boundaries is given
by [21,65,69]1

GWðx; x0Þ ¼ −
1

4π2
X∞
n¼−∞

�
1

ðt − t0 − iϵÞ2 − ðx − x0Þ2 − ðy − y0Þ2 − ðz − z0 − 2LnÞ2

−
1

ðt − t0 − iϵÞ2 − ðx − x0Þ2 − ðy − y0Þ2 − ðzþ z0 − 2LnÞ2
�
: ð8Þ

By construction, this green function vanishes at z (or z0Þ ¼ 0 or L. Considering only n ¼ 0 term, one gets the Wightman
function in presence of a single reflecting boundary at z ¼ 0. In this particular situation, among two terms—the first term
corresponds to the unbounded Minkowski space and the second term is due to the boundary effect.

1In the book by Birrell and Davies [21], the factor of 2 with L in the Green function of Eq. (8) is missing (we feel it is a typo). The
same factor can be found in the original work [69], and in a recent work [65].
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The trajectories of the detectors uniformly accelerating along x-direction in terms of their proper times are given
by [21,37,38]

tA ¼ a−1A sinhðaAτAÞ; xA ¼ a−1A coshðaAτAÞ; yA ¼ 0; zA ¼ zA;

tB ¼ a−1B sinhðaBτBÞ; xB ¼ �a−1B coshðaBτBÞ; yB ¼ Δy; zB ¼ zB; ð9Þ

where 0 < zA; zB < L. aA and aB are respectively the
acceleration of the detectors A and B. The “þ” (−) sign
in xB corresponds to motion of the detector B in the right
(left) Rindler wedge.
Now, let us calculate Pj. The denominators of the

Wightman function in (8) for a single detector (i.e. any

one of the detectors among A or B is moving either in left or
in right Rindler wedge) are evaluated below. Here we can
drop the detector subscripts as these quantities are same
for any detector. Using the trajectories (9), one obtain the
denominators of the first and second terms in the paren-
thesis of (8) as

ðt − t0 − iϵÞ2 − ðx − x0Þ2 − ðy − y0Þ2 − ðz − z0 − 2LnÞ2 ¼ 4a−2ðsinh2ðaðτ − τ0Þ=2 − iϵÞ − a2L2n2Þ;
ðt − t0 − iϵÞ2 − ðx − x0Þ2 − ðy − y0Þ2 − ðzþ z0 − 2LnÞ2 ¼ 4a−2ðsinh2ðaðτ − τ0Þ=2 − iϵÞ − a2ðz − LnÞ2Þ: ð10Þ

These two quantities have the same proper time depend-
ence with different additional constants. Hence, one can
write them in a combined way as 4a−2ðsinh2ðaðτ − τ0Þ=2 −
iϵÞ − g2nÞ with gn as Lan and aðzþ LnÞ for the first and
second denominators, respectively. To calculate the tran-
sition probability, we need to perform time integrations on
the first equation of (4) by using (8) and (10). The two
terms in the Wightman function provide identical integra-
tions and therefore performing the following form of
integration is sufficient to achieve the goal. Following [37]
one finds

−
a2

16π2

Z Z
dτdτ0

eiΔEðτ−τ0Þ

sinh2ðaðτ − τ0Þ=2þ iϵÞ − g2n

¼ δð0Þ
2ðeπα − 1Þ

sin ðα sinh−1ðjgnjÞÞ
jgnj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2n þ 1

p ; ð11Þ

where, α ¼ 2ΔE=a. Here we used coordinate transform
T ¼ ðτ þ τ0Þ=2; σ ¼ τ − τ0 and performed contour integral
over σ-variable. Then the transition probability of jth
detector is obtained as

Pj ¼
Z Z

dτdτ0eiΔEðτ−τ0ÞGWðx0; xÞ

¼ δð0Þ
2ðeπα − 1Þ

X∞
n¼−∞

 
sinðα sinh−1ðjLanjÞÞ
jLanj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jLanj2 þ 1

p
−

sinðα sinh−1ðjaðzj þ LnÞjÞÞ
jaðzj þ LnÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaðzj þ LnÞj2 þ 1

q
!
: ð12Þ

This will be needed for testing the validity of the entangling
condition (6) and the calculation of concurrence (7).

Before proceeding to this, few comments are in order.
First of all, note that when Ln=zj ≫ 1, two term in (12) will
cancel each other. This can happen for large values of n and
therefore we may set a cut off on upper and lower limit of n
in order to evaluate the summation in (12). Therefore, later
in numerical calculation we choose max jnj as a large finite
value. Secondly, only the n ¼ 0 term in (12) refers to the
transition probability of an accelerated detector with single
reflecting boundary. Finally, the term for n ¼ 0 in the first
part reproduces the same in unbounded Minkowski space-
time (see [37]),

Pj ¼
δð0ÞΔE

aðeπα − 1Þ : ð13Þ

IV. ENTANGLEMENT HARVESTING

In this section, we will evaluate the entangling term for
the accelerated detectors. First we will calculate it for the
parallel motion of the detectors; i.e., the detectors are in
same Rindler wedge, namely in right wedge. Then the
antiparallel motion; i.e., one detector is in right wedge and
other one is in left wedge, will be considered.

A. Parallel acceleration

The evaluation of the quantity E requires the Feynman
propagator, which can be expressed as

GFðxA;xBÞ ¼
i

4π2
X∞
n¼−∞

�
1

ðtA − tBÞ2− ðxA − xBÞ2− ρ2n;− − iϵ

−
1

ðtA − tBÞ2− ðxA − xBÞ2− ρ2n;þ− iϵ

�
; ð14Þ
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where ρ2n;� ¼ Δy2 þ ðzA � zB − 2LnÞ2. We need to
numerically analyze the final outcomes for our later
purpose of comparing the concurrence quantity for differ-
ent boundary systems. As mentioned earlier, we must have
0 < zA; zB < L. Now, for a finite fixed value of Δy, if we
consider n is sufficiently large, then the last term in ρ2n;�
will dominate. Hence, one will have ρ2n;� ≈ 4L2n2. There-
fore the quantities inside the parenthesis of Eq. (14)

corresponding to large n will cancel each other. Thus, the
infinite summation in Eq. (14) effectively can be replaced
by a finite summation (the same is also true for the
antiparallel acceleration of the detectors).
The quantities in the denominators can be reexpressed

using the detector trajectories given in Eq. (9). For parallel
motion of the detectors (with “+” sign in xB), one
obtains

ðtA − tBÞ2 − ðxA − xBÞ2 − ρ2n;� − iϵ ¼ 1

aAaB

�
eaAτA−aBτB þ e−aAτAþaBτB −

�
aA
aB

þ aB
aA

þ aAaBρ2n;�

��
− iϵ

¼ 1

aAaBx

	
u −Mn;� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

n;� − 1

q
þ iϵ


	
u −Mn;� −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

n;� − 1

q
− iϵ



: ð15Þ

Here we define Mn;� ¼ ðaA=aB þ aB=aA þ aAaBρ2n;�Þ=2
and u ¼ eaAτA−aBτB . Performing integration over the vari-
ables τA and τB, one obtain the final expression for E given
in (4) as

EðΔEÞ ¼
X
n

i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

n;− − 1
q δ

	
ΔE
aA

þ ΔE
aB



1 − e−

2πΔE
aA

×
n
e
iΔE
a σn;− − e−

2πΔE
aA e−

iΔE
a σn;−

o

−
i

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

n;þ − 1
q δ

	
ΔE
aA

þ ΔE
aB



1 − e−

2πΔE
aA

×
n
e
iΔE
a σn;þ − e−

2πΔE
aA e−

iΔE
a σn;þ

o
; ð16Þ

where σn;� ¼ log ðMn;� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

n;� − 1
q

Þ. The steps of the

above calculation is not new. It has been followed from
Sec. III of [37]. The expression in (16) contains the Dirac-
delta function with argument ΔE

aA
þ ΔE

aB
, which always

vanishes as ΔE; aA; aB all are positive. On the other hand
Pj is always positive and nonvanishing quantity. Since
possibility of entanglement harvesting requires to satisfy
the condition (6), entanglement harvesting is not possible
for parallel motion of the detectors. This situation is similar
to the case where no reflecting boundary is considered
[37,38]. The same result is also valid for the identical
system with a single reflecting boundary as well.

B. Antiparallel acceleration

For the antiparallel motion of the detectors, the trajecto-
ries are given in (9) with “−” sign in the xB. Therefore,
we find

ðtA − tBÞ2 − ðxA − xBÞ2 − ρ2n;� − iϵ ¼ −
1

aAaB

�
eaAτAþaBτB þ e−aAτA−aBτB þ

�
aA
aB

þ aB
aA

þ aAaBρ2n;�

��
− iϵ

¼ −
1

aAaBy

	
vþMn;� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

n;� − 1

q
þ iϵ


	
vþMn;� −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

n;� − 1

q
− iϵ



; ð17Þ

where we define v ¼ eaAτAþaBτB . Again, performing inte-
gration over the variable τA and then over τB, one obtain the
final expression for E given in (4) as

EðΔEÞ¼−
1

2

δ
	
ΔE
aA
−ΔE

aB



sinh

	
πΔE

aA


 X∞
n¼−∞

 
sin
	
ΔEσn;−
aA



sinhðσn;−Þ

−
sin
	
ΔEσn;þ

aA



sinhðσn;þÞ

!
:

ð18Þ

Here again, the steps of Sec. III in [37] have been followed.

For numerical analysis, practically we do not have to
sum over infinite terms. In fact the terms up to n ¼ N (i.e.
terms from −N to N), where N is chosen to be sufficiently
large such that the conditions mentioned below Eq. (14)
are satisfied, will be enough to consider. The reasons
are as follows. First, notice that the entangling term
contains the terms like fðσn;−Þ − fðσn;þÞ where fðσn;�Þ ¼
sinðΔEσn;�=aAÞ= sinhðσn;�Þ. The numerator of this func-
tion can have values between −1 and 1. However, the
denominator is a massive number for large value of Ln;
therefore, the larger values of n, fðσn;�Þ becomes smaller
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and smaller, and ultimately can be negligible. Second, note
that the quantities σn;� have n-dependence through ρn;�
[defined below Eq. (14)]. Moreover we already observed
that ρn;þ ≈ ρn;− for large values of Ln with Δy; zA and zB
satisfy the earlier mentioned conditions [see the discussion
after Eq. (14)]. Thus, a finite summation will be sufficient
for the numerical analysis. We have also verified this
feature numerically, where it turns out that the quantity
E becomes constant after a significantly large value of N.
For instance corresponding to our chosen fixed parameters,
we found that N ¼ 2000 is enough for our purpose. This
is because just below and above N ¼ 2000, E becomes
constant (see Fig. 5 in the Appendix).
As we mentioned earlier, only the n ¼ 0 term provides

us the effect of a single reflecting boundary at z ¼ 0. Using
this we obtain the entangling term in the presence of a
single reflecting boundary as

EðΔEÞ ¼ −
1

2

δ
	
ΔE
aA

− ΔE
aB



sinh

	
π ΔE

aA



 
sin
	
ΔEσ0;−
aA



sinhðσ0;−Þ

−
sin
	
ΔEσ0;þ

aA



sinhðσ0;þÞ

!
:

ð19Þ

Among the two terms of the above, the first term corre-
sponds to the entangling term for the unbounded
Minkowski space. Therefore, the same situation with no
boundary is given by

EðΔEÞ ¼ −
1

2

δ
	
ΔE
aA

− ΔE
aB



sinh

	
π ΔE

aA


 sin
	
ΔEσ0;−
aA



sinhðσ0;−Þ

: ð20Þ

Like the entangling terms with single or double boundaries,
it also depends on the perpendicular separation between
the detectors’ trajectories. All of the entangling terms
contain the Dirac-delta function with the argument of
ΔEð1=aA − 1=aBÞ. Therefore, to harvest a nonzero amount
of entanglement, one must take aA ¼ aB.
Note that when the entangling term is nonvanishing, it

contains δð0Þ [like Pj in Eq. (12)]. Thus, the quantity (CJ)
in (7) can be expressed as CJ ¼ δð0ÞCI , where CI is a finite
quantity. This is a well-known artifact of the eternal
interaction between the detectors and the background
quantum field. However, in order to quantify entangle-
ment through concurrence it is legitimate to define con-
currence per unit time, which is given by the positive values
of CI. This proposal is already well-known in literature
[21,37,38]. In our later analysis, we only focus on the
quantity CI. Now we study CI to understand the features of
entanglement harvesting; this will be done numerically. For
that we introduce dimensionless parameters z̄j ¼ zjΔE,
Δ̄y ¼ ΔyΔE, āj ¼ aj=ΔE, and L̄ ¼ L0ΔE. Here we con-
sider, L0 ¼ L for the double-boundary system (where L is
position of the second boundary); otherwise L0 is just a

numerical parameter, which determines the intradistance
between the detectors. For our numerical analysis, we
choose Δ̄y ¼ 0.1 and use solid, dotted, and dashed lines
to represent no-boundary, single-boundary and double-
boundary systems, respectively.

1. Case-I

We consider that both detectors are accelerating in an
antiparallel manner along the x-direction. The detector A is
positioned near the boundary at z̄ ¼ 0, and the detector B is
near the boundary at z̄ ¼ L̄. Both detectors are equally
distanced from the z̄ ¼ L̄=2 plane, which is implemented
by the constraint z̄A þ z̄B ¼ L̄. We also consider the same
positions of the detectors for the no-boundary and single-
boundary systems to compare the concurrence among
them. Therefore, we use the same constraint z̄B ¼ L̄ −
z̄A in the expressions of CI for the single and no-boundary
systems with 0 < z̄A < L̄. Note that L̄ ¼ L0ΔE ¼ LΔE for
the double-boundary system and for single and no-boun-
dary systems, L̄ ¼ L0ΔE is just a numerical parameter.
In Fig. 1, we plot CI with respect to the dimensionless

inverse acceleration of the detector A (i.e., ΔE=aA) with
(a) L̄ ¼ 1.0, (b) L̄ ¼ 5.0, and (c) L̄ ¼ 10.0, respectively.
We also choose different colors to describe the results
with different z̄A values. In these plots, one can see that
entanglement harvesting is possible only in a particular
range of acceleration values, depending on the other
parameters L̄, z̄A, and number of boundaries in the
considered systems. For lower separation between the
boundaries (L̄ ¼ 1.0) in Fig. 1(a), we observe that CI for
any particular value of ΔE=aA and z̄A, has maximum value
for the no-boundary system and minimum value for the
two-boundary system. Also, for a particular value of z̄A, the
allowed range of acceleration for entanglement harvesting
is much suppressed for the double-boundary system and
less suppressed for the single-boundary system. However,
as L̄ increases, we can have different scenario. For instance,
with L̄ ¼ 5.0 and 10.0 [see, Figs. 1(b) and 1(c)], one
observes that the allowed range of accelerations for
entanglement harvesting in the single- and double-
boundary systems are almost equal to that of the no-
boundary system. Also, suppression of the peak of CI for
any particular value of ΔE=aA and z̄A is very small for the
single- and double-boundary systems compared to the no
boundary system. For L̄ ¼ 5.0, Fig. 1(b) shows that for
any particular value of z̄A, the concurrence quantity has
maximum suppression for the double-boundary system for
a smallerΔE=aA value. However, for a higherΔE=aA value
and any fixed z̄A, there is enhancement in CI quantity
compared to the no boundary CI quantity. The maximum
enhancement is always for the double-boundary system.
The similar nature of enhancement in CI is also observed
for L̄ ¼ 10.0 [see Fig. 1(c)]. Thus, it appears that the
presence of reflecting boundaries suppresses entanglement
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harvesting between two detectors for small L̄ values.
However, compared to an unbounded situation, the entan-
glement harvesting can be enhanced by introducing reflect-
ing boundaries with a large separation between them.
It is also perceivable that for any particular L̄, as the value

of z̄A goes from 0 to L̄=2, the distance between the
detectors decreases. As a consequence, the concurrence
quantity for a particular ΔE=aA increase as z̄A goes from 0
to L̄=2 (in allowed parameter range, where CI > 0). After
crossing the value of L̄=2, for any z̄A ¼ L̄=2þ dð≤ L̄Þ, the
concurrence quantity at any particular ΔE=aA will have the
same value as it has for z̄A ¼ L̄=2 − d (see, Fig. 2). This

symmetrical nature of CI around z̄ ¼ L̄=2 is expected due
to the symmetry (z̄A; z̄BÞ ¼ ðz̄B; z̄AÞ in the Wightman
function in Eq. (8).

2. Case-II

After analyzing the case where the detectors have a
different perpendicular separation between them, here we
consider the situation where the detectors have a fixed
perpendicular separation (z̄A ¼ z̄B; Δ̄y ¼ 0.1). Again we
consider the detectors to be accelerating in an antiparallel
manner along the x-axis. Keeping the separation between

(a) (b)

(c)

FIG. 1. We plot CI with respect to the dimensionless inverse acceleration ΔE=aA: (a) for L̄ ¼ 1.0; (b) for L̄ ¼ 5.0; and (c) for
L̄ ¼ 10.0, respectively. Different colors are used for different fixed values of z̄A with the constraint z̄A þ z̄B ¼ L̄. Here we used solid,
dotted and dashed lines to represent no-boundary, single-boundary, and double-boundary systems, respectively.
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the detectors fixed, we take the z̄-coordinates of both
detectors between 0 and L̄=2. Therefore, the change in
CI for different z̄A ¼ z̄B is solely due to the influence of the
boundaries.
Therefore, for the no-boundary system, CI has the same

value for a particular value ofΔE=aA with any fixed z̄A. For
smaller values of L̄ (say, L̄ ¼ 1.0), CI will be suppressed
due to the presence of a boundary. The suppression of the
CI quantity for the single- and double-boundary system is
already observed for z̄A;B ¼ L̄=2 (with L̄ ¼ 1) in Fig. 1(a).
The suppression will be even higher for other z̄A;B values
when z̄A;B < L̄=2. Note that, the double boundary CI has a
symmetrical nature around z̄ ¼ L̄=2 for any particular
value of ΔE=aA (similar to the case-I). However, this is

not true for the single-boundary system as both detectors
keep moving away from the boundary at z̄ ¼ 0. Further
increasing z̄A, the single boundary CI will eventually
become the same for the no-boundary system.
However, the enhancement in the concurrence quantity is

only possible for larger L̄ values (L̄≳ 5.0). In Fig. 3(a), we
have shown this no boundary CI quantity in a black solid
line, while the single and double-boundary systems are
shown in dotted and dashed lines, respectively. Here we
observe that as z̄A;B increases, the concurrence for single-
and double-boundary systems at any particular ΔE=aA
increase for any fixed value of L̄. For fixed z̄A ¼ L̄=2ð¼
2.5Þ and a higher value of ΔE=aA, there is enhancement in
concurrence quantity for the single- and double-boundary
systems. However, the latter one enjoys slightly more.
Also, the allowed ranges of accelerations for entanglement
harvesting increase with z̄A. In Fig. 3(b), we have plotted
the concurrence quantity CI with respect to L̄ with con-
sideration that z̄A;B ¼ L̄=2 (remember for double-boundary
systems L̄ ¼ L0ΔE ¼ LΔE, therefore both positions of
the detectors and the second boundary is changing). Here
we again see that CI for single- and double-boundary
systems increase with L̄ for a fixed value of ΔE=aA.
Entanglement enhancement is observed for a large value of
ΔE=aAð¼ 1.0Þ, which is more for the double-boundary
system.

3. Case-III

Finally, we consider a situation where detector B is fixed
at z̄ ¼ 5.0ðL̄ ¼ 10.0Þ and different z̄-positions for detector
A has taken in the range of 0 < z̄A < 5.0. Here again, we
consider the detectors to be accelerating in an antiparallel

0 1 2 3 4 5
–0.02

0.00

0.02

0.04

0.06

0.08

z

ΔE

a
=0.2

ΔE

a
=0.5

ΔE

a
=1.5

FIG. 2. We plot CI with respect to z̄A with L̄ ¼ 5.0 and
z̄A þ z̄B ¼ L̄. Different colors are used for different fixed values
of ΔE=aA. Here we used solid, dotted, and dashed lines to
represent no-boundary, single-boundary, and double-boundary
systems, respectively.

(a) (b)

FIG. 3. (a) We plot CI with respect to ΔE=aA with L̄ ¼ 5.0 and z̄A ¼ z̄B. Different colors are used for different z̄A values. (b) We
plotted CI with respect to L̄ with consideration of z̄A ¼ z̄B ¼ L̄=2. Different colors are used for different fixed ΔE=aA values. Here we
used solid, dotted and dashed lines to represent no-boundary, single-boundary, and double-boundary systems, respectively.
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manner along the x-axis. We observe a boundary-induced
enhancement in CI for any ΔE=aA value (in the allowed
ranges of accelerations) with all fixed z̄A values (see,
Fig. 4). We also see that CI for double-, single-, and no-
boundary systems increase as z̄A is approaching z̄B for any
choice of L̄. The entanglement amplification due to the
double boundary is more perceptible compared to the single
boundary system. Like the previous cases, enhancement in
CI due to the presence of boundary is only possible for larger
L̄ values, not for smaller L̄ values.

V. DISCUSSION AND IMPLICATIONS

We have investigated the influence of multiple reflecting
boundaries on entanglement harvesting between two uni-
formly accelerated UDW detectors. In literature, existing
studies suggest that entanglement harvesting in the pres-
ence of a single reflecting boundary can get suppressed or
enhanced depending on the parameter space. However, no
studies have been conducted on whether increasing the
number of reflecting boundaries enhances similar features.
Here we have done a comparative study on entanglement
phenomena between two detectors in the presence of
double-, single-, and no-reflecting boundaries. We consid-
ered the monopole coupling model with the eternal switch-
ing function of the interaction to obtain a simple analytic
expression of the concurrence quantity. Due to this choice
of the switching function, we found that entanglement
extraction from the field vacuum is only possible for the
antiparallel motion of the detectors. Since we considered

identical detectors with the same energy gap, their accel-
eration must have the same magnitude. We observe that
detectors’ entanglement increases as the vertical separation
between them decreases for any number of boundaries. For
the single- and double-boundary systems, the entanglement
gets suppressed if any one or both of the detectors are
near the boundary or boundaries. Entanglement degrada-
tion is much higher for the double-boundary system than
the single-boundary system. Entanglement harvesting
increases as the detectors move away from the boundary
or boundaries. For small separations between the bounda-
ries, the influence of the boundaries is strong, leading to
higher degradation. As the separation increases, the boun-
dary influence on the detectors decreases; the concurrence
approaches the same for no-boundary system. In some
specific parameter spaces, the double-boundary concur-
rence crosses the free space as well as the single boundary
situations. Similar nature of concurrence is also found
for the single-boundary system, where the degradation
and the enhancement of the entanglement only depend
on distance from the first boundary. One of the important
observations is—the double-boundary concurrence de-
grades more whenever there is a degradation. The same
also holds for the enhancement of entanglement harvesting.
Therefore, an overall conclusion can be drawn that the
presence of a more number of reflecting boundaries
enhances the similar effect observed for a single-reflecting
boundary system.
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APPENDIX: FINITE SUMMATION FOR EQ. (18)

After Eq. (18), we analytically argued why one can
perform a finite sum over n instead of the infinite sum.
Here we give two plots in Fig. 5, which show how the
absolute value of the entangling term changes with respect
to maxfng ¼ N with other parameters are fixed. Here
we consider Δ̄y ¼ 0.1; z̄A ¼ 2.0; z̄B ¼ 3.0, L̄ ¼ 5.0, and
ΔE=aA ¼ 0.5, 0.67, 1.0, 2.0. We used different colors to
represent differentΔE=aA values. These plots show that the
entangling term changes for small values of N, while it
remains constant for large N. Note that for N ¼ 0, the
quantity jEj corresponds to the single-boundary system.
The same is also true for the other fixed-parameter

values.
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FIG. 4. We plotted CI with respect toΔE=aA and fixed values of
z̄A. Here we used z̄B ¼ 5.0 and L̄ ¼ 10.0. Different colors are
used for different z̄A values. Here we used solid, dotted, and
dashed lines to represent no-boundary, single-boundary, and
double-boundary systems, respectively.
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