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It is well known that entanglement is widespread in quantum field theory, in the following sense:
every Reeh-Schlieder state contains entanglement between any two spatially separated regions. This
applies, in particular, to the vacuum of a noninteracting scalar theory in Minkowski spacetime.
Discussions on entanglement in field theory have focused mainly on subsystems containing infinitely
many degrees of freedom—typically, the field modes that are supported within a compact region of
space. In this article, we study entanglement in subsystems made of finitely many field degrees of
freedom, in a free scalar theory in Dþ 1-dimensional Minkowski spacetime. The focus on finitely
many modes of the field is motivated by the finite capabilities of real experiments. We find that
entanglement between finite-dimensional subsystems is not common at all, and that one needs to
carefully select the support of modes for entanglement to show up. We also find that entanglement is
increasingly sparser in higher dimensions. We conclude that entanglement in Minkowski spacetime is
significantly less ubiquitous than normally thought.
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I. INTRODUCTION

Quantum field theory has revealed unexpected and
nonintuitive lessons about the way nature works.
Arguably, one of the most notorious results of this
paradigm is the Reeh-Schlieder theorem [1]. It applies
to free and interacting theories alike. To discuss its
consequences in the simplest possible context, we will
restrict to free real scalar field theories in Dþ 1-
dimensional Minkowski spacetimes. This restriction
ensures that the concepts discussed here cannot be
attributed to the interactions of the field theory under
consideration; they are intrinsic properties of any
quantum field theory.
Consider operators of the form Φ̂F ≔

R
dVFðxÞΦ̂ðxÞ,

where FðxÞ is a smooth function and dV the space-
time volume element. These are called smeared field
operators, and FðxÞ are smearing functions (the smear-
ing ensures that Φ̂F is a well-defined operator in the

Hilbert space1). It is well-known that the Hilbert space
of the theory can be generated from states of the form

jΨi ¼ Φ̂F1
Φ̂F2

� � � Φ̂FN
j0i; ð1Þ

in the sense that any state can be approximated
arbitrarily well by such states, for appropriate choices
of smearing functions F1ðxÞ;…; FNðxÞ. This is not
surprising and simply tells us that we can create any
excitation of the field by acting with an appropriate
combination of operators. Intuitively, one can imagine
creating an excitation with support in a small laboratory
by acting with a suitable set of smeared operators
supported within the laboratory.
What is rather surprising—and this is the content of the

Reeh-Schlieder theorem—is that one can generate the
entire Hilbert space from states of the form (1) even if
we restrict the smearing functions to be supported within an
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1In the sense that it maps states to other states. This is not the
case without smearing; for instance, Φ̂ðxÞ acting on the vacuum
produces a state with infinite norm, h0jΦ̂ðxÞΦ̂ðxÞj0i → ∞, which
is clearly not part of the Hilbert space. Smeared field operators do
not have this problem and are suitable candidates for the
elementary observables of the theory, from which one can
generate the full algebra of observables.
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arbitrarily small open set of Minkowski spacetime. In
simple words, one can excite the field in an arbitrary
corner of the Universe by acting on the vacuum with
operators supported exclusively within our small lab. (One
cannot use this fact, however, to produce faster-than-light
communication [2–4].)
Although puzzling at first, this is reminiscent of the

properties of maximally entangled states in quantum
mechanics [2]. Consider two quantum mechanical systems
with Hilbert spaces HA and HB of the same dimension n,
and let jΨi be a pure maximally entangled state. It is well
known that every state in HA ⊗ HB can be obtained by
acting on jΨi with an operator restricted to subsystem A:

∀ jαi∈HA ⊗ HB there exist ÔA such that

jαi ¼ ÔA ⊗ ÎBjΨi;

where ÎB is the identity operator in HB (see, for in-
stance, [5]).2

This is similar to the content of the Reeh-Schlieder
theorem for quantum field theory, if we identify the field
degrees of freedom inside our small lab with subsystem A
and all the rest with subsystem B. The Reeh-Schlieder
theorem reveals that the vacuum state is an extraordinarily
rich state regarding its entanglement structure [6]. In
particular, it has been shown that the Reeh-Schlieder
theorem implies that, if A and B are subsystems made
of all the field degrees of freedom contained within two
regions of spacetime VA and VB, respectively, and the two
regions are spacelike separated, then subsystems A and B
are always entangled when the field is prepared in the
vacuum [6,7]. The entanglement content of quantum field
theory has been reinforced by calculations of the geometric
entanglement entropy associated with an open region of
space V (see [8–13], and references therein).
These results have taught us a profound lesson about

quantum field theory: entanglement is “ubiquitous” in the
vacuum; and since the short-distance behavior is the same

for all states, entanglement is equally ubiquitous in any
other state (in Minkowski spacetime, every state with
bounded energy satisfies the Reeh-Schlieder property
[14]), reflecting the fact that entanglement between spa-
tially separated regions is an intrinsic property of quantum
field theory.
The results summarized so far involve subsystems

containing infinitely many degrees of freedom (typically,
all the field modes supported within a region V). Although
this is of interest to understand the conceptual and
mathematical content of quantum field theory, it would
be desirable to extend the discussion to finite dimensional
subsystems of this theory. This is the goal of this paper.
This extension is of direct practical interest since exper-
imentalists have access only to a finite set of such
field modes.
There is a common belief that entanglement is ubiqui-

tous in quantum field theory, even if we restrict to finite
dimensional subsystems. In particular, it is usually taken
for granted that any pair of field degrees of freedom are
entangled in the vacuum state. This intuition is supported
by the following fact. Given a fixed field mode compactly
supported in a region B of spacetime, if we choose an
arbitrary compact region A separated from the first, the
Reeh-Schlieder theorem guarantees that there is at least
one mode within region A that is entangled to the fixed
mode in region B, when the field is in the vacuum state [7].
However, the theorem does not tell us how many modes in
A are entangled with the fixed mode in B, or how
complicated such modes are. Since region A hosts infi-
nitely many modes, the belief that any pair of modes, one
in A and one in B, are entangled in the vacuum is an
(unjustified) extrapolation of the actual content of the
Reeh-Schlieder theorem. The primary goal of this paper is
to check whether this extrapolation is actually true. We
find that it is not.
We proceed as follows. We construct a family of locally

defined individual modes of a scalar field theory in Dþ 1-
dimensional Minkowski spacetime by smearing the field
and its conjugate momentum in space (see Sec. II A for the
relation between smearing in space and in spacetime). The
smearing function can be intuitively thought of as defining
a “pixel” of the field theory: the support of the smearing
determines the size of the pixel, corresponding to the
maximum resolution of a detector, while the shape of the
smearing function determines the resolution of the detector
within the pixel. In this way, one can divide the space into
disjoint pixels, each describing a single degree of freedom
of the field theory (this is illustrated in Fig. 1). Any finite
region contains a finite number of such pixels.
This strategy has the advantage that, given any two

regions, each containing NA and NB degrees of freedom,
one can use standard techniques in quantum mechanics of
finite dimensional systems to quantify correlations and
entanglement. All the difficulties and subtleties intrinsic to
quantum field theory are removed. In particular, the

2This is true not only for maximally entangled states, but also
for any state whose Schmidt form,

jΨi ¼
Xn
i

cijiiAjiiB; ð2Þ

has all coefficients ci different from zero. These are sometimes
called totally entangled states (maximally entangled states
correspond to ci ¼ 1=

ffiffiffi
n

p
for all i).

The proof goes as follows. One basis state jiiAjjiB ∈HA ⊗ HB
can be obtained from jΨi by acting on it with the operator
1
cj
jiihjjA ⊗ ÎB. Similarly, we can create any other basis element in

HA ⊗ HB. Hence, for each and every state in HA ⊗ HB, there is
a linear combination of such operators whose action on jΨi
produces the desired state, and such linear combination can be
written in the form ÔA ⊗ ÎB. Note that this argument fails if any
of the coefficients cj are equal to zero.
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calculations are free of the divergences that plague the
calculation of the geometric entanglement entropy asso-
ciated with a region in quantum field theory. A similar
strategy has been used before in [15–19] to evaluate mutual
information, entropy, quantum discord, and to search for
violations of a type of Bell inequalities, with interesting
applications in cosmology (see also [20]).
One can think of our “pixelation” of space as a way

of defining a lattice field theory out of the continuum theory.
With the crucial difference that one is not restricting the
degrees of freedom before quantization—something we
want to avoid since the entanglement content of lattice
field theory can be very different from the theory in the
continuum—in particular, it is far from obvious if some
analog of the Reeh-Schlieder theorem exists for lattice
theory. Our strategy contains the benefits and kindness of
lattice field theories, while keeping the richness of the
continuum. The lattice constructed in this way is defined by
the capabilities of experimentalists, rather than by a drastic
truncation of the degrees of freedom prior to quantization.
(We extend this strategy in different directions, for instance,
by allowing different pixels to overlap.)
The main lesson of this article is that entanglement is

significantly less ubiquitous than one would have thought.
In particular, for D ≥ 2 we do not find entanglement
between pairs of modes supported in nonoverlapping
regions, unless we fine-tune the family of field modes to
maximize the contact between the subsystems (this fact can
be explained by the analysis in [21], which shows that
entanglement between regions is sharply concentrated
close to the boundary). We also observe that entanglement
is weaker in higher dimensions.
In the rest of this article, we proceed as follows. In

Sec. II, we describe the way we isolate individual field

degrees of freedom that are localized in a region of space in
a free scalar theory. We describe how to compute the
reduced state describing a finite number of such modes and
how to obtain properties of interest such as von Neumann
entropy, correlations, mutual information, and entangle-
ment. In Sec. III, we apply this formalism to two modes
belonging to a simple, yet physically interesting, family of
modes. We increase the number of modes in each sub-
system in Sec. IV and evaluate whether entanglement
shows up between these “richer” subsystems. In Sec. V,
we extend our analysis to a larger family of smearing
functions. In Sec. VI, we discuss choices of pairs of field
modes for which we do find entanglement. Finally, Sec. VII
collects the main results of this article, discusses their
relevance, and puts them in a larger perspective. Some
details of the calculations in Sec. III have been relegated to
Appendix A. In Appendix B, we show that the smearing
functions introduced in Secs. III, V, and VI yield well
defined observables, notwithstanding the fact that some of
them are not smooth.
Throughout this paper, we use units in which ℏ ¼ c ¼ 1.

II. SUBSYSTEMS, REDUCED STATES,
AND ENTANGLEMENT

Field theories describe physical systems with infinitely
many degrees of freedom. In experiments, however, we
only have access to a finite subset of them. We describe
in this section the way we isolated individual field
degrees of freedom localized in a region of space in a
free scalar field theory (generalization to other types of
free fields is straightforward). We then describe how to
compute the reduced quantum state restricted to a finite
set of such degrees of freedom when the field is prepared
in the vacuum and how to compute properties of interest

FIG. 1. Representation of a quantum field in a portion of a Cauchy hypersurface, Σt, that a detector might access at an instant of time.
The detector is made of a finite number of pixels (represented by the red circles on top of Σt) and captures a simplified (smeared) version
of the field in each of its pixels, as represented by the output of the detector on the laptop. The smearing process provides a way to define
a lattice theory out of the continuum field theory, by assigning the smeared field in each of the pixels of the detector with a lattice node,
as depicted in the rightmost part of the figure.
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from it, such as the von Neumann entropy, correlations,
mutual information, and entanglement.

A. Defining individual modes of the field

In order to fix the basic concepts, let us consider first an
analog situation in standard quantum mechanics. Let us
consider a set of N harmonic oscillators, and let ˆr⃗ ≔
ðx̂1; p̂1;…; x̂N; p̂NÞ be the vector of canonical operators.
The canonical commutation relations can be succinctly
written as ½r̂i; r̂j� ¼ iΩij, where Ω is the (inverse of the)
symplectic structure of the classical phase space

ΩN ¼ ⨁
N

i¼1

Ω2; Ω2 ¼
�

0 1

−1 0

�
:

A general observable that is linear in the canonical
variables can be written as Ôv⃗ ≔ vir̂i, (sum over repeated
indices is understood) with v⃗∈R2N . Vectors v⃗ can be
identified with elements of Γ�, the dual of the classical
phase space, establishing a correspondence between linear
observables in the classical and quantum theories. Written
in this way, all Ôv⃗’s have dimensions of action, and their
commutation relations are given by the symplectic product
of the corresponding v⃗’s,

½Ôv⃗; Ôv⃗0 � ¼ iviv0jΩij: ð3Þ

Any noncommuting pair of linear observables
ðÔv⃗; Ôv⃗0 Þ defines a subsystem with a single degree of
freedom (we will refer to subsystems like this as “modes
of the system”)—more precisely, the subsystem is
defined by the algebra generated by the pair ðÔv⃗; Ôv⃗0 Þ
[14]. For instance, subsystems corresponding to each
individual oscillator are defined by the pairs ðx̂I; p̂IÞ,
I ¼ 1;…; N. However, the definition is more general and
includes modes which are combinations of several
oscillators (when the oscillators are coupled to each
other by springs, the normal modes of the Hamiltonian
are familiar examples of such combinations). This pro-
cedure provides a simple recipe to extract individual
modes of our systems. This idea can be extended to field
theory as follows.
A field theory hosts infinitely many degrees of freedom.

This is true even if we restrict to an arbitrarily small open
region of space. Intuitively, at each point in space x⃗, we have
an independent pair of canonically conjugated operators
ðΦ̂ðx⃗Þ; Π̂ðx⃗ÞÞ, and each such pair defines a single mode of
the system; since any region contains infinitelymany points,
the region hosts as many independent modes. This is only
heuristic because, as mentioned in the Introduction, neither
of the objects Φ̂ðx⃗Þ nor Π̂ðx⃗Þ are well-defined operators.
We need to smear them out. The standard procedure is
to smear the covariant operator Φ̂ðxÞ against a function

in spacetime3 Φ̂F ≔
R
dVFðxÞΦ̂ðxÞ, with FðxÞ a smooth

function compactly supported in a regionV. This is the set of
linear observables in the theory—in this covariant formu-
lation, the conjugate momentum Π̂ ¼ d

dt Φ̂ is not needed.
Given two operators defined in this way, their commutation
relations are

½Φ̂F1
; Φ̂F2

� ¼ iΔðF1; F2Þ; ð4Þ
where

ΔðF1; F2Þ ≔
Z

dVdV 0F1ðxÞF2ðxÞΔðx; x0Þ; ð5Þ

and Δðx; x0Þ ≔ GAdðx; x0Þ −GRetðx; x0Þ is the difference
between the advanced and retarded Green’s functions of
the Klein-Gordon equation. Equation (4) is simply the
smeared version of the familiar covariant commutation
relations ½Φ̂ðxÞ; Φ̂ðx0Þ� ¼ iΔðx; x0Þ.
With these definitions, given any two smearing functions

F1 and F2 compactly supported in a region V, and such that
the associated field operators do not commute, the pair
ðΦ̂F1

; Φ̂F2
Þ defines—again, via the algebra it generates—an

individual mode of the system localized in region V. This
strategy provides a simple way of extracting from the
field theory individual degrees of freedom localized in a
given region.
It is essential to keep inmind that there are infinitely many

independentmodes within any open regionV and that a non-
commuting pair ðΦ̂F1

; Φ̂F2
Þ defines just one of them. Put

plainly, one should not identify a regionV with a singlemode.
To finish this subsection, we summarize how, in free

field theories, the discussion above can be translated to a
canonical picture, where instead of smearing fields in
spacetime, one smears the field and its conjugate momen-
tum only in space. This reformulation looks closer to the
example of N harmonic oscillators given above, and we
will use it in the rest of this article.
In the canonical picture, linear observables are operators

of the form

Ôf;g ≔
Z
Σt

dDxðgðx⃗ÞΦ̂ðx⃗; tÞ − fðx⃗ÞΠ̂ðx⃗; tÞÞ; ð6Þ

where the integral is restricted to a Cauchy hypersurface Σt
of a Dþ 1-dimensional Minkowski spacetime, which for
simplicity in this paper will be chosen to be a hypersurface
defined by a constant value of the time coordinate t of any
arbitrary inertial frame—although nothing will change in
the discussion if we use a more complicated choice. The
functions fðx⃗Þ and gðx⃗Þ are compactly supported in a

3Convenient choices for smearing functions in Minkowski
spacetime are functions in Schwartz space [22] or functions of
compact support sufficiently differentiable (see Appendix B). We
will restrict to the latter since this will allow us to localize field
modes in compact regions.
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region R of such Cauchy t ¼ constant hypersurface,
and Π̂ðx⃗; tÞ ≔ d

dt Φ̂ðx⃗; tÞ. As for the example of harmonic
oscillators, we can identify pairs of functions ðfðx⃗Þ; gðx⃗ÞÞ
with elements of the dual phase space Γ�; then, all operators
Ôf;g have dimensions of action. Operators defined from
pairs of the form ð0; gðx⃗ÞÞ are called pure field operators;
similarly, pairs of the form ðfðx⃗Þ; 0Þ are called pure
momentum operators.
The commutation relations in the canonical formulation

are given by the symplectic product of the smearing
functions

½Ôf;g; Ôf0;g0 � ¼ iΩððf; gÞ; ðf0; g0ÞÞ ≔ i
Z
t
dDxðfg0 − gf0Þ:

In this context, individual modes of the system localized in
a region of space R are selected by choosing two pairs of
functions ðf; gÞ and ðf0; g0Þ supported within R and such
that the commutator in the previous equation is different
from zero. This is the way we will define localized field
modes in this article. The simplest choice is a subsystem
defined from a pure field and a pure momentum operator,
Ô1 ¼

R
t d

DxgΦ̂, Ô2 ¼
R
t d

DxfΠ̂ such that
R
t d

Dxfg ¼ 1,
and consequently, ½Ô1; Ô2� ¼ i. However, more general
combinations will also be considered in this article.
The relation between the covariant and canonical pic-

tures is given by the following map between functions F of
compact support in spacetime and pairs of functions ðf; gÞ
compactly supported in space (see, for instance, [23–25]
for further details). Recall that the commutator bidistribu-
tion Δðx; x0Þ satisfies the field equations in both its
variables. Hence, by smearing the x0 dependence of Δ
with F, we are left with a solution of the field equations,
sðxÞ ≔ R

dVΔðx; x0ÞFðx0Þ. By reading Cauchy data
from sðxÞ corresponding to a t ¼ constant hypersurface,
and fðx⃗Þ ¼ sðx⃗; tÞ; gðx⃗Þ ¼ d

dt sðx⃗; tÞ, we obtain a map
FðxÞ → ðfðx⃗Þ; gðx⃗ÞÞ, which in turn defines a map Φ̂½F� →
Ôf;g between operators smeared in spacetime and operators
smeared in space.4 This map preserves the commutation
relations because the properties of Δ guarantee that
ΔðF;F0Þ is mapped to Ωððf; gÞ; ðf0; g0ÞÞ (see [23] for a
simple proof).

B. Finite-dimensional subsystems and reduced states

Consider now a finite set of independent modes of the
field. They are defined by a set of 2N operators Ôi, which
can be straightforwardly normalized to satisfy

½Ôi; Ôj� ¼ iΩij: ð7Þ

The algebra generated by these observables is isomorphic
to the algebra of a quantum mechanical system with N
bosonic degrees of freedom (mathematically, the associated
Weyl algebra is a type I von Neumann algebra). Hence,
the difficulties intrinsic to field theories are removed
by restricting to such a finite set of modes; one is in the
realm of standard quantum mechanics to define reduced
states, entropies, and entanglement. Physically, we think of
this N-dimensional subsystem as encoding the degrees of
freedom that a particular experimentalist may be able to
measure.
We now describe how to compute the reduced quantum

state for a finite set of modes when the field is prepared in
the vacuum state (see [17,19] for previous similar calcu-
lations). It is well known that such state is always mixed
[6,7,26], something that we will confirm with several
examples. This is an important message to keep in mind:
in quantum field theory all physically allowed reduced
states describing subsystems localized within a compact
region of space are mixed; this is a drastic departure from
standard quantum mechanics.
Given an arbitrary state ρ̂ in the full theory, the task of

finding the reduced state for a subsystem of N modes is
complicated. However, there is a significant simplification
when ρ̂ is a Gaussian state. This is the case for the standard
vacuum in Minkowski spacetime; we will restrict in the
following to such states, although the generalization to
other Gaussian states is straightforward.
Recall that a Gaussian state in field theory is completely

and uniquely characterized by its one- and two-point dis-
tributions, hΦ̂ðxÞi and hΦ̂ðxÞΦ̂ðx0Þi, respectively. From
these distributions, one obtains the first and second
moments for any mode of the field by smearing them out.
For the vacuum, the one-point distribution is zero. Higher-
order correlators can all be obtained from hΦ̂ðxÞΦ̂ðx0Þi.
Recall also that the reduced state of a Gaussian state is also
Gaussian. Therefore, the reduced state for our N-mode
subsystem is completely characterized by

hÔii and hÔiÔji: ð8Þ

For the vacuum state, hÔii ¼ 0 for all i. Hence, the
characterization of the reduced quantum state for our sub-
system reduces to merely compute the second moments
hÔiÔji, a task that we will do repeatedly in this article.
Furthermore, we can decompose the second moments in

their symmetric and antisymmetric parts,

4This map is onto but not invertible. The reason is that the
operator-valued-distribution Φ̂½x� has a Kernel, given by func-
tions of the form ð□ −m2ÞG, with G a function of compact
support in spacetime; i.e., Φ̂ðxÞ smeared with ð□ −m2ÞG
vanishes for all G. In passing to the canonical formulation,
this kernel is conveniently eliminated by the map FðxÞ →
ðfðx⃗Þ; gðx⃗ÞÞ defined by Δðx; x0Þ because Δ has the same Kernel
as Φ̂ðxÞ. Hence, while the map F → Φ̂F has a Kernel, implying
that different smearing functions do not necessarily define
different operators, the map ðf; gÞ → Ôf;g has the advantage
that is faithful.
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h0jÔiÔjj0i ¼ 1

2
h0jfÔi; Ôjgj0i þ 1

2
h0j½Ôi; Ôj�j0i; ð9Þ

where curly brackets represent the standard anticommuta-
tor. Notice that the antisymmetric part, the commutator, is
equal to iΩij and is state independent. Therefore, all
information of the reduced state is actually encoded in
the anticommutator part. It is common to call that part the
covariance matrix of the reduced state,

σij ≔ h0jfÔi; Ôjgj0i: ð10Þ

Therefore, the calculation of the reduced state of an N-
mode subsystem when the field is in the vacuum reduces to
computing the covariance matrix σ. It completely and
uniquely characterizes the reduced state (keeping in mind
that the first moments are all zero).
Several interesting aspects of the reduced state can be

readily obtained from σ in an elegant manner. For instance,
Heisenberg’s uncertainty principle is encoded in the state-
ment that the matrix σ þ iΩ is positive semidefinite,5 and
the reduced state is pure if and only if the eigenvalues of
σikΩkj are all �i (in which case the pair (σij;Ωij) defines a
Kähler structure in the classical phase space [24,27]). We
will use this criterion to confirm that all reduced states we
will obtain from the Minkowski vacuum are mixed.
The information contained in the covariance matrix σ can

be invariantly characterized by its symplectic eigenvalues,
denoted by νI, with I ¼ 1;…; N, and defined as the
modulus of the eigenvalues of the matrix σikΩkj, under-
stood as a linear map in C2N . Many quantities of interest for
us can be readily obtained from the symplectic eigenvalues.
For instance, the von Neumann entropy of the reduced state
is given by [28]

S½σ� ¼
XN
I

��
νI þ 1

2

�
log2

�
νI þ 1

2

�

−
�
νI − 1

2

�
log2

�
νI − 1

2

��
: ð11Þ

C. Correlations and entanglement

Given two subsystems, A and B, made of NA and NB
modes, respectively, we will be interested in computing the
correlations and entanglement between them when the field
is prepared in the vacuum.
The correlations between concrete pairs of observables

Ôi and Ôj can be computed straightforwardly since they
correspond to the elements of the covariance matrix.
On the other hand, the total amount of correlations

between the two subsystems can be quantified by means of
the mutual information IðA;BÞ, given by

IðA; BÞ ¼ SA þ SB − SAB; ð12Þ

where SA, SB, and SAB are the von Neumann entropies of
subsystems A, B and the joined system AB, respectively.
We will check with concrete examples that the mutual
information of general subsystems is different from zero in
field theory, as expected, since correlations are ubiquitous.
However, it is important to keep in mind that a nonzero
mutual information IðA;BÞ does not imply that the two
subsystems are entangled since IðA;BÞ quantifies all
correlations, both of classical and quantum origins. To
evaluate whether the subsystems are entangled, we need to
go beyond mutual information.
The evaluation of the entanglement between arbitrary

subsystems is a subtle issue in quantum field theory; a
rigorous strategy to quantify such entanglement has been
proposed only recently in [7]. The difficulty originates, of
course, from the possibly infinite number of degrees of
freedom each subsystem may have. Although subsystems
made of infinitely many modes are important to understand
the conceptual and mathematical structure of quantum field
theory, in practical situations one has access to a finite
number of modes. For finite-dimensional subsystems, one
can apply the techniques developed in quantum mechanics
to define and quantify entanglement. This is the strategy we
follow in this paper.
Given a finite set of modes of the field, we are interested

in dividing them into two subsystems, A and B, and
evaluating whether—and how much—they are entangled
when the field is prepared in the Minkowski vacuum. For
this task, we need to find an appropriate entanglement
quantifier. Entanglement entropy, commonly used in many
applications in quantum mechanics, is unfortunately use-
less for our task: entanglement entropy is a quantifier of
entanglement only when the total state describing the two
subsystems is pure. As discussed above, this is never the
case for a finite set of modes in quantum field theory.
Quantifying entanglement for mixed states is a subtle

question, and there is generally not a simple necessary and
sufficient criterion for entanglement. However, such a
necessary and sufficient criterion does exist in restricted
situations, such as the setup we investigate in this paper, as
we explain now.
One easily-computable measure of entanglement for

pure and mixed states alike is the logarithmic negativity
(LN) [29,30], which we will denote by EN . A nonzero
value of the LN implies a violation of the positivity of
partial transpose (PPT) criterion [30]. This in turn implies
that a nonzero value of the LN is a sufficient condition for
entanglement; but it is not necessary for general quantum
states. However, when restricting to Gaussian states and
when, additionally, one of the subsystems is made of a
single mode, regardless of the size of the other subsystem,
the LN is different from zero if and only if the state is
entangled. Furthermore, under these circumstances the LN5In the sense that ðσij þ iΩijÞv̄ivj ≥ 0 for all vi ∈C2N .
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is a faithful quantifier of entanglement, in the sense that
higher LN means more entanglement [28].
The LN is a lower bound for the entanglement that can be

distilled from the system via local operations and classical
communications. For Gaussian quantum states, the value of
the LN has an operational meaning as the exact cost (where
the cost is measured in Bell pairs or entangled bits) that is
required to prepare or simulate the quantum state under
consideration [31,32].
The LN for a Gaussian quantum state can be directly

computed from its covariance matrix. Consider an NA þ
NB-mode Gaussian state ρ̂ of a bipartite system, with
covariance matrix σAB, where NA and NB are the number of
modes in each subsystem. The LN for the bipartition can be
computed as

EN ¼
XNAþNB

J¼1

maxf0;−log2ν̃Jg; ð13Þ

where ν̃J are the symplectic eigenvalues of σ̃, defined as

σ̃AB ¼ TσABT; ð14Þ

where T ¼ I2NA
⊕ ΣNB

, and ΣNB
¼⊕NB

σz is a direct sum
of NB 2 × 2 Pauli-z matrices. The relation between the LN
and the PPT criterion can be understood by noticing that σ̃
is actually the covariance matrix of the partially transposed
density matrix ρ̂⊤B , where the transpose is taken only in the
B subsystem; therefore, the nonpositivity of ρ̂⊤B implies
that some of the symplectic eigenvalues ν̃I are smaller
than 1, producing EN > 1 (see, e.g., Ref. [28] for further
details).
Observe also that a sufficient condition for quantum

entanglement is minfν̃Jg < 1.
We will mostly use the LN in situations in which it is

faithful (that is, when NA ¼ 1). Nevertheless, we will also
analyze the LN of bipartitions of “many versus many”
modes in Sec. V, which will be of interest since EN > 0 is
always a sufficient condition for entanglement; although in
this case it is not necessary, so EN ¼ 0 does not imply the
absence of entanglement. In any case, since the LN is a
lower bound for distillable entanglement, EN ¼ 0 indicates
that whatever entanglement may be contained in the system
cannot be distilled.

III. CORRELATIONS AND ENTANGLEMENT
BETWEEN TWO DEGREES OF FREEDOM

In this section, we apply the formalism presented above
to a simple, yet illustrative, situation: two modes supported
in disjoint regions of space and each defined by a pure field
and a pure momentum operator. We evaluate correlations,
entropy, mutual information, and entanglement between the
two modes. We use a family of smearing functions which,
for massless fields, permits to derive analytical expressions

in any number of space dimensions D > 1. (The D ¼ 1
case requires attention since one needs to introduce a mass
to avoid infrared divergences; we solve the massive case
numerically.)
We find no entanglement between the two modes for all

values of D > 1, i.e., we find that the reduced state is
separable for the family of modes used in this section.
We generalize this calculation to include a larger number

of modes in Sec. IV, to other smearing functions, and more
general definitions of modes in Sec. V.

A. Smearing functions, correlations,
and covariance matrix

Consider two D dimensional balls, A and B, with radius
R in a Dþ 1-dimensional Minkowski spacetime, and let ρ
be the distance between their centers in units of R. The balls
are assumed to be disjoint so that ρ > 2 (see Fig. 2).
We consider in this section two modes, each supported

within region A and B, respectively, and defined as follows.
The mode in A is defined by a pair of noncommuting
operators of the form

Φ̂A ≔
Z

dDxfAðx⃗ÞΦ̂ðx⃗Þ;

Π̂A ≔ c
Z

dDxfAðx⃗ÞΠ̂ðx⃗Þ; ð15Þ

where fAðx⃗Þ is a function compactly supported in region A,
and c is an arbitrary constant with dimensions of inverse
energy (mutual information and entanglement between two
subsystems will not depend on the value of c since
changing c amounts to performing a symplectic trans-
formation restricted to one subsystem, and these quantities
are invariant under such “local” transformations). In this

FIG. 2. Illustration of two spacelike separated balls of radius R
in a t ¼ constant Cauchy hypersurface in Dþ 1-dimensional
Minkowski spacetime. A function fAðBÞðx⃗Þ compactly supported

in region A (B) defines a single field-mode ðΦ̂AðBÞ; Π̂AðBÞÞ, as
shown in Eq. (15).
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section, we denote the pair of noncommuting operators
defining the modes of interest as ðΦ̂A; Π̂AÞ, rather than
ðÔ1

A; Ô
2
AÞ, as we did in the last section, in order to

emphasize that we choose them to be a pure field and
pure momentum operators, respectively. The mode B is
similarly defined by using a function fBðx⃗Þ compactly
supported in region B.
For the smearing functions fiðx⃗Þ, i ¼ A, B, in this

section we will use the following one-parameter family
of non-negative functions:

fðδÞi ðx⃗Þ ¼ Aδ

�
1 −

jx⃗ − x⃗ij2
R2

�
δ

Θ
�
1 −

jx⃗ − x⃗ij
R

�
; ð16Þ

where x⃗i is the center of the ball i, andΘðxÞ is the Heaviside
step function—which ensures that fðδÞi ðx⃗Þ is compactly
supported within a ball of radius R centered at x⃗i; Aδ is a
normalization constant determined below and δ a positive

real number. Figure 3 shows the shape of fðδÞi ðx⃗Þ for some
values of δ.
The parameter δ determines the differentiability class of

fðδÞi ðx⃗Þ. For example, for δ ¼ 0, fðδÞi ðx⃗Þ reduces to the
Heaviside function, which is discontinuous. For δ ¼ 1,
the function is continuous, but its first derivative is not. The

differentiability class of fðδÞi ðx⃗Þ is Cδ−1 for integer δ. In
order for the smeared operators Φ̂i and Π̂i to be well
defined, it suffices to choose δ ≥ 1, as we will see below by
explicitly computing their quantum moments in the vac-
uum. Furthermore, although these and other smearing
functions we use in this article are not infinitely differ-
entiable, we argue in Appendix B that this is actually not a

restriction. This is because there always exists smooth
functions of compact support defining modes whose
physical properties are the same as for the modes we
actually use, up to arbitrarily high accuracy.
In the following, we will explore modes defined from

fðδÞi ðx⃗Þ for different finite δ ≥ 1, even considering non-
integer values.
An advantage of this family of smearing functions is that

their Fourier transform has a simple expression in terms of
Bessel functions (see Appendix A). This is true in any
spatial dimension D and makes it possible to obtain
analytical expressions for the quantities of interest for all
D. Later in this article, we consider other families of
smearing functions, including infinitely differentiable ones.
The results are qualitatively similar, although in those cases
we perform calculations numerically.
The commutator between the four operators Φi, Πi, with

i ¼ A, B are

½Φ̂A; Φ̂B� ¼ ½Π̂A; Π̂B� ¼ 0;

½Φ̂A; Π̂B� ¼ ½Φ̂B; Π̂A� ¼ ic
Z

dDxfðδÞA fðδÞB ¼ 0: ð17Þ

The last integral vanishes because fðδÞA ðx⃗Þ and fðδÞB ðx⃗Þ are
supported in disjoint regions. On the other hand,

½Φ̂i; Π̂i� ¼ ic
Z

dDxðfðδÞi Þ2 ≠ 0; i ¼ A; B: ð18Þ

We fix the (dimensionful) constant Aδ in the definition of

fðδÞi by demanding that ½Φ̂i; Π̂i� ¼ i. This implies that

Aδ ¼ c−1=2R−D=2π−D=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1þD=2þ 2δÞ

Γð1þ 2δÞ

s
: ð19Þ

The covariance matrix of the reduced state for the two
modes of interest can be readily obtained by computing
vacuum expectation values of symmetrized products of Φ̂i

and Π̂i. It is easy to check that hfΦ̂i; Π̂jgi ¼ 0 in the
Minkowski vacuum and that hΦ̂Ai ¼ hΦ̂Bi≕ hΦ̂i and
hΠ̂Ai ¼ hΠ̂Bi≕ hΠ̂i, since we are using the same smearing
function in both regions. With this, the covariance matrix of
the total system takes the form

σAB ¼
�
σredA C

CT σredB

�
; ð20Þ

where

σredA ¼ σredB ¼ 2

� hΦ̂2i 0

0 hΠ̂2i

�
ð21Þ

FIG. 3. Shape of the smearing functions fðδÞi ðx⃗Þ for a few values
of δ. Since these functions are spherically symmetric around their
center x⃗i, we plot them versus the dimensionless radial coor-
dinates r ≔ jx⃗ − x⃗ij=R. Note that the larger δ is, the less support
fðδÞi has near the boundary.
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is the covariance matrix of each mode, and C ¼
diagðhfΦ̂A; Φ̂Bgi; hfΠ̂A; Π̂BgiÞ describes their correlations.
When the field is massless and forD > 1, we obtain (see

Appendix A for details of the calculation)

hfΦ̂i; Φ̂jgi ¼ 2N2
δ

R
c

�
J Dð−1; δÞ i ¼ j

LDð−1; δ; ρÞ i ≠ j
; ð22Þ

hfΠ̂i; Π̂jgi ¼ 2N2
δ

c
R

�
J Dð1; δÞ i ¼ j

LDð1; δ; ρÞ i ≠ j
; ð23Þ

where

J Dðλ; δÞ ¼ 2−1−2δþλ
ΓðDþλ

2
ÞΓð1þ 2δ − λÞ

Γð1þ δ − λ
2
Þ2ΓðD−λ

2
þ 2δþ 1Þ ; ð24Þ

LDðλ; δ; ρÞ ¼ ρ−ðDþλÞ ΓðDþλ
2
ÞΓðD=2Þ

21þ2δ−λΓðD
2
þ 1þ δÞ2Γð− λ

2
Þ

× 3F2

"
1þ λ

2
; Dþλ

2
; Dþ1

2
þ δ

D
2
þ 1þ δ; Dþ 1þ 2δ

;
4

ρ2

#
; ð25Þ

and

N2
δ ¼

22δΓð1þ D
2
þ 2δÞΓð1þ δÞ2

Γð1þ 2δÞΓðD=2Þ : ð26Þ

A few comments are in order. First of all, from these
expressions one can check that, as expected, the field and
momentum self-correlations are positive and bounded
functions of δ, for δ ≥ 1 (for δ ¼ 0, the momentum self-
correlations diverge). On the other hand, these expressions
show that the correlations between both modes behave, for
large separations ρ ≫ 1, as

hfΦ̂A; Φ̂Bgi ¼ ρ−ðD−1Þ R
c
ðuðδ; DÞ þOðρ−2ÞÞ; ð27Þ

and

hfΠ̂A; Π̂Bgi ¼ −ρ−ðDþ1Þ c
R
ðvðδ; DÞ þOðρ−2ÞÞ ð28Þ

for D > 1, where

uðδ; DÞ ¼ 2−2δ−1ΓðD−1
2
ÞΓðδþ 1ÞΓð1

2
ðDþ 4δþ 2ÞÞ

Γðδþ 1
2
ÞΓðD

2
þ δþ 1Þ2

and

vðδ; DÞ ¼ 2−2δδΓðDþ1
2
ÞΓðδÞΓð1

2
ðDþ 4δþ 2ÞÞ

Γðδþ 1
2
ÞΓðD

2
þ δþ 1Þ2

are positive functions6 that depend on δ and the spacetime
dimension.
The dependence hfΦ̂A; Φ̂Bgi ∼ ρ−ðD−1Þ and hfΠ̂A; Π̂Bg ∼

−ρ−ðDþ1Þ is precisely what is expected, providing a good
check to our expressions.
Figure 4 shows these correlations for D ¼ 2 and D ¼ 3

dimensions of space and for a massless field. One can
see that, although at small separations ρ ≈ 2, the cross-
correlations depend on the details of the smearing func-
tions, in particular, on the value of δ; at large separations
they behave as expected for all δ ≥ 1.
We have also included in Fig. 4 the D ¼ 1 case. As

mentioned before, in this case one needs to introduce a
mass m to the field to avoid infrared divergences. When
m ≠ 0, we do not find closed analytical expressions for the
correlation functions, and the results presented in Fig. 4
have been obtained numerically.

B. Mutual information and entropy

The results in the previous subsection confirm that,
within the family of modes we have considered, any pair
of them with one mode supported in region A and the other
in region B are correlated.
As discussed in Sec. II, the total amount of correlations

between both modes can be quantified using their mutual
information, defined in expression (12). To compute this
quantity, we first need the von Neumann entropies of each
system separately, SA and SB, and the entropy of the joined
system, SAB.
Since the reduced covariance matrices for each subsys-

tem are identical when the field is in the Minkowski
vacuum, σredA ¼ σredB , so are their entropies. Expression
(11) shows that all we need to compute this entropy is
the symplectic eigenvalue of σredA . Using the form of σredA
given in (21), this symplectic eigenvalue is, for D > 1,

νA ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΦ̂2ihΠ̂2i

q

¼
Γðδþ 1Þ2ΓðD

2
þ 2δþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓðD−1

2
ÞΓðDþ1

2
ÞΓð2δÞΓð2δþ2Þ

Γð1
2
ðDþ4δþ1ÞÞΓð1

2
ðDþ4δþ3ÞÞ

r
ΓðD

2
ÞΓðδþ 1

2
ÞΓðδþ 3

2
ÞΓð2δþ 1Þ :

ð29Þ

This quantity is larger than 1, confirming that the reduced
state corresponding to a single mode is a mixed quantum

6The correlator hfΠ̂A; Π̂Bgi is, therefore, negative. This, in
turn, implies that the submatrix C of σAB is negative, even when
we are using non-negative smearing functions. Consequently, the
covariance matrix σAB in (20) describes a Gaussian state which is
not manifestly separable, according to Simon’s separability
criterion [33]. Additional calculations are needed to show that
this state is indeed separable.
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state [7,19]. From this, we obtain an analytical expression
for SA, which we plot in Fig. 5.
We see that the entropy depends on δ; hence it depends

on the details of the smearing function. This is expected
since the smearing function actually defines the concrete
mode, whose entropy we are evaluating. We observe that
the larger δ is, the smaller the entropy is. Larger δ
corresponds to smearing functions with more weight
around the center of the region and less support close to
the boundary. In other words, we find that modes supported
closer to the boundary have larger entropy.
We also observe, interestingly, that SA decreases mono-

tonically withD. In the limitD → ∞, for a fixed δ, we have

lim
D→∞

ν21dof ¼
Γð2δÞΓðδþ 1Þ4Γð2δþ 2Þ

Γðδþ 1
2
Þ2Γðδþ 3

2
Þ2Γð2δþ 1Þ2 ; ð30Þ

from which we obtain a finite value of SA.
7

It is tempting to interpret SA as a quantifier of the
entanglement between a single mode in region A and the
rest of the degrees of freedom of the field theory (infinitely
many, some supported within A and some outside).
However, as emphasized in [7], such an interpretation is

an unjustified extrapolation of results in standard quantum
mechanics, because there the Hilbert space of the total
system is always a product of the Hilbert spaces of the two
subsystems; this is not true in quantum field theory, if the
subsystems A and B are complementary.
The second ingredient entering the expression for the

mutual information is the entropy of the joined system of
the two modes, SAB. This quantity can also be obtained
analytically for D > 1, by plugging in Eq. (11) the form of
the two symplectic eigenvalues of σAB:

ν� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2hΦ̂2i � hfΦ̂A; Φ̂BgiÞð2hΠ̂2i � hfΠ̂A; Π̂BgiÞ

q
:

ð31Þ

Notice that although both field and momentum correlations
depend on the radius R of the regions where the modes are
supported, this dependence cancels out in the combination
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FIG. 5. The von Neumann entropy SA of a single mode as a
function of the dimension of space D and different values of δ.

FIG. 4. Correlations between two field modes versus the dimensionless distance between the centers of the spherical regions where
each mode is supported. ρ ¼ 2 corresponds to the two regions touching each other. The plots for D ¼ 2 and D ¼ 3 describe the
correlations of a massless field and are obtained analytically, while for D ¼ 1 we introduce a small mass μ ¼ mR ¼ 10−2 to avoid
infrared divergences, and compute the correlations numerically. All plots show that correlations depend on the details of the smearing
functions, particularly on the value of the parameter δ. On the other hand, at large separations the fall-off behavior of all correlations is
as expected.

7It is intriguing to note that the double limit δ → ∞ and
D → ∞ produces SA → 0 (pure state). However, since the δ → ∞
limit of our smearing functions 3 produces a Dirac-delta
distribution, we do not find a clear physical interpretation for
this mathematical result.
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of correlation functions appearing in (31). Consequently,
ν� and quantities derived from it, like mutual information,
entropies, and entanglement, remain invariant under
rescalings.
We plot the mutual information IAB versus the distance

between the two regions in Fig. 6, for D ¼ 1 (left panel),
D ¼ 2 (middle figure), and when D ¼ 3 (right panel), for
different values of δ. (As in the previous subsection, the
D ¼ 1 case is computed numerically).
We observe that the mutual information is finite, and its

short-distance behavior (ρ≳ 2) depends on the details of
the smearing functions. However, its long-distance behav-
ior (ρ ≫ 2) is given by IðA;BÞ ∼ ρ−2ðD−1Þ for D > 1 (we
have explicitly checked this up to D ¼ 10 and expect this
fall-off behavior to be true for all D). This is the expected
result, and it is compatible with results obtained previously
in [15,17,18] for D ¼ 3.
An important lesson we extract from this analysis is that,

for a fixed distance between the regions supporting two
modes, the total correlations (classical and quantum)
between them are weaker the larger the dimension D of
space is.

C. Entanglement

We use the LN to evaluate whether the correlations
between two single modes discussed in the previous
subsection contain any entanglement. The LN, defined
in (13), is obtained from the symplectic eigenvalues of σ̃AB,
the partial-transposition of the covariance matrix σAB,
which are given by

ν̃� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2hΦ̂2i � hfΦ̂A; Φ̂BgiÞð2hΠ̂2i ∓ hfΠ̂A; Π̂BgiÞ

q
:

ð32Þ

Recall that LN is different from zero only if at least one of
these symplectic eigenvalues is smaller than 1. By compar-
ing this expression with (31) and by taking into account that
hfΠ̂A; Π̂Bgi is negative while hfΦ̂A; Φ̂Bgi is positive for our
smearing functions, one can see that ν̃þ ≥ νþ, while ν̃− ≤
νþ (recall, ν� are the symplectic eigenvalues of σAB). Since
both ν� are larger than1, only ν̃− can possibly contribute to
the LN.
Furthermore, we also see from the expression above that

ν̃− would be smaller than 1 only if the momentum cross-
correlation hfΠ̂A; Π̂Bgi is “negative enough” and that the
LN (if different from zero) must fall off with the distance
between the regions at a rate dictated by the dimensionD of
space. For this reason, we organize the discussion in the rest
of this section in terms of the number of spacetime
dimensions.

1. D= 1

As discussed above, in D ¼ 1 we compute the correla-
tion functions numerically, and from this we evaluate ν̃−,
from which we compute the LN using Eq. (13). We are
interested in understanding: (i) whether the LN is different
from zero; and if the answer is in the affirmative, (ii) how
the LN depends on the mass m of the field, on the distance
between the regions A and B, and on the details of the
smearing function. The answers to these questions are
contained in Figs. 7 and 8.
On the one hand, Fig. 7 shows the LN versus the

dimensionless mass μ, for a fixed distance ρ between the
two regions and for different values of δ. Since the LN
decreases with ρ, we choose in this plot the minimum
possible value of ρ, namely ρ ¼ 2. The main messages we
extract from this figure are the following: (1) For δ ¼ 1, we
find that the LN is different from zero and, consequently,
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FIG. 6. Mutual information for two field modes versus the dimensionless distance between the centers of the spherical regions where
each mode is supported. ρ ¼ 2 corresponds to the two regions touching each other. The plots for D ¼ 2 and D ¼ 3 correspond to a
massless field and are obtained analytically, while for D ¼ 1 we introduce a small mass μ≡mR ¼ 10−2 to avoid infrared divergences
and compute the mutual information numerically. All plots show that the short-distance behavior of the mutual information depends on
the details of the smearing functions through the value of the parameter δ. However, at large distances the dependence on δ decreases and
the fall-off behavior is as expected.
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the two modes are entangled. (2) For δ ≥ 1.7 the LN
vanishes for any value of the mass μ. This shows that the
LN is very sensitive to the shape of the smearing function.
The smearing functions fðδÞ that we use in this section have
more support close to the boundary of the region for smaller
δ. Since correlations fall off with distance, it is therefore
expected that modes with larger support close to the
boundary (δ close to 1) are more correlated (and entangled)
than modes defined with δ ≥ 1. Figure 7 confirms that this
intuition is correct and, furthermore, shows that pairs of
modes supported in disjoint regions are not entangled at all
if we use δ⪆1.7. (3) The LN between these two modes is
very sensitive to the mass of the field. For δ ¼ 1, the LN
reaches a maximum when μ ≪ 1, decreases very fast when
μ ≈ 1, and completely vanishes when μ ≳ 10.
On the other hand, Fig. 8 shows the way the LN changes

with the distance ρ between the regions A and B. This plot
is computed for a small value of the dimensionless mass,
μ ¼ 10−2, for which we know from the previous plot that
LN is close to its maximum. Again, we find that the LN is
different from zero only for δ close to 1. We observe that the
LN falls off rapidly with the distance ρ, and completely
vanishes beyond ρ ≈ 2.2 (i.e., when the separation between
the boundaries of the two regions is about 20% of their
radius). Note that this falloff is much faster than the one we
obtained for the mutual information IAB ∼ ρ−1.

2. D > 1

For the number of spatial dimensions larger than 1 we
can compute the LN analytically for massless fields (this is
the most interesting case since entanglement is expected to

be larger when μ → 0, as we saw above). Substituting
the value of the correlation functions reported in (22)
and (23) in expression (32), we see that ν̃− is larger than 1
for all distances ρ and all values of δ, including δ ¼ 1.
Consequently, we obtain

EN ¼ 0 ∀ δ ≥ 1 and ∀D > 1: ð33Þ
The fact that we find less entanglement in D ≥ 2 than
in D ¼ 1 is compatible with the fact that correlations
are stronger in lower dimensions, as shown in the last
subsection.
In summary, we conclude that the correlations captured

by the mutual information computed in the previous section
are mainly classical correlations and do not originate from
entanglement. For the family of modes we have explored in
this section, only in the special caseD ¼ 1, small mass μ, δ
close to 1, and small separation between the two regions,
we find that the two modes are entangled. In all other cases,
the reduced state is separable.
In Sec. V, we extend the family of smearing functions

and show that these conclusions are not peculiar to the
special smearings used in this section. In Sec. VI, we will
show how we can find entanglement between two modes
by carefully selecting their region of support.

IV. ENLARGED SUBSYSTEMS

In this section, we extend the previous calculations by
enlarging the number of modes in our two subsystems, with
the goal of studying whether such an enlargement leads to
the emergence of entanglement. We will show that it does
in D ¼ 2; in contrast, for larger dimensions we have not
been able to find entanglement in any of the multimode

FIG. 7. LN for D ¼ 1 as a function of the dimensionless mass,
μ ¼ mR (R is the radius of the regions of support of A and B),
when the regions A and B are kept at a fixed dimensionless
distance ρ ¼ 2. The LN reaches a maximum when μ ≪ 1,
decreases monotonically, and vanishes when the mass of the
field reaches a threshold that depends on the details of the
smearing function. The LN is zero for all μ if δ≳ 1.7.
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FIG. 8. LN for D ¼ 1 between the two field modes as a
function of the dimensionless distance between the centers of the
spherical regions, where each mode is supported, for a fixed
dimensionless mass of the scalar field (μ ¼ 10−2) and for
different smearing functions.
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configurations described below. We work in this section in
D ≥ 2 spatial dimensions and massless scalar fields and use
the same smearing functions as in the previous section, for
which all results can be obtained analytically. We will use
smearing functions with δ ¼ 1 since this is the case for
which entanglement is more likely to appear. The extension
to other values of δ is straightforward.
Our setup in this section is made of NA þ NB modes,

defined in disjoint regions in a similar manner as done in
the last section. Having more than two modes raises the
question of how to distribute them in space. We will restrict
attention to configurations that are more likely to show
bipartite entanglement. These are configurations for which
the two subsystems are as close as possible. Since we are
considering spherical regions, this problem is tantamount to
packing spheres as densely as possible in a D-dimen-
sional space.

A. D= 2

A natural way of generalizing the results in the last
section is by adding new modes to subsystem B, while
minimizing the distance to subsystem A—the latter will be
kept composed of a single mode for the moment; i.e.,
NA ¼ 1. This is achieved in D ¼ 2 in the way shown in
Fig. 9, namely by locating the modes in subsystem B

forming a hexagonal configuration around the mode A
[34]. Figure 9 shows the results for the LN between A and
B as a function of NB, when the distance between modes is
as small as possible (the expression for EN is lengthy and
not particularly illuminating, and we do not write it
explicitly). The main feature of Fig. 9 is that the LN
becomes different from zero if NB > 4. It is interesting to
see that, in contrast to D ¼ 1, in two spatial dimensions
we need to enlarge our subsystems to be able to capture
any entanglement.
Figure 9 also shows that the LN saturates as the number

of “layers” in subsystem B increases, in the sense that
adding more layers does not change its value. The
interpretation here is that the outer layers are too far away
from subsystem A to contribute to the entanglement. Now
that we have found a configuration containing entangle-
ment, we study the way this entanglement changes with
the “distance” between the two subsystems. Such distance
can be varied in many different manners. As an illustra-
tive example, we consider the configuration depicted in
Fig. 10(a). In Fig. 10(b) we plot the LN versus the distance
ρ for this system, containing NB ¼ 6 modes in subsystem
B. We observe that the LN falls off very fast, completely
vanishing when the distance between the surfaces of the
regions is less than 10% of their radius.

1 5 10 50 100
0.00
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0.03
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FIG. 9. LN between subsystems A and B for different values of the number of modes NB in subsystem B and NA ¼ 1, in two spatial
dimensions, D ¼ 2. The NB modes are distributed in space as illustrated in the top part of the figure, where the orange central disk
represents the region of support of the single mode in A, and the blue disks are the regions where each of the NB modes are supported.
We use smearing functions fðδÞ with δ ¼ 1 in this plot. The plot shows that A and B are entangled as long as NB ≥ 5.
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Next, we consider configurations where both subsys-
tems, A and B, are made of multiple modes (recall that
when both NA and NB are larger than 1, a nonzero value
of LN is a sufficient but not a necessary condition for
entanglement). In this case, there are plenty of geometric
configurations that one can consider. In what follows, we
mention two that we find particularly interesting. The first
one is depicted in Fig. 11 and consists of 2N disjoint
regions placed alongside a straight line, with alternating
regions belonging to each subsystem. This configuration is

interesting because, for N ¼ NA ¼ NB ≥ 2, the LN is
different from zero and grows linearly with N, as shown
in Fig. 11.
A second configuration we explore consists of A and B

each made of a hexagonal cell with N disjoint modes and
separated from each other as shown in Fig. 12. This figure
shows that for this configuration the LN decreases rapidly
with the separation and completely vanishes when the
distance ρ (defined as depicted in Fig. 12 and measured in
units of the radius of the individual disks) is larger than 0.3.

(a)
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(b)

FIG. 10. (a) Configuration we use to test the way the LN varies with distance inD ¼ 2. The blue disks represent the regions of support
of the six modes forming subsystem B, while the orange disk is where the single mode in A is supported. (b) LN between subsystems A
and B, corresponding to the configurations showed in Fig. 10(a), versus ρ, defined as the distance between centers in units of the radius
(hence, ρ ≥ 2). We obtain the covariance matrix for this system analytically. However, since for NB ¼ 6 it is a relatively big matrix, we
compute its symplectic eigenvalues numerically; this is why we only show EN for a discrete set of ρ’s (blue dots).
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FIG. 11. (a) Configuration in D ¼ 2 consisting of NA ¼ NB ¼ 10 modes placed alongside a straight line. The orange discs represent
the regions of support of the modes forming subsystem A, while the blue discs represent the regions of support of the modes that
constitute subsystem B. (b) LN between subsystems A and B, corresponding to the configuration shown in Fig. 11(a), as a function of the
number of modes NB (NA) within subsystem B (A).
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This configuration is inspired by the type of systems
considered in lattice field theory. The behavior of the LN in
1þ 2 dimensional Minkowski spacetime has been inves-
tigated in such context [35,36]. In lattice field theory, each

field degree of freedom “lives” at the nodes of the lattice,
and subsystems A and B are each made of NA and NB
modes, respectively. One can then consider two regions,
each containing N nodes, and evaluate the entanglement

(a)

0.0 0.1 0.2 0.3 0.4
0.001
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0.050

0.100

(b)

FIG. 12. (a) D ¼ 2 configuration of two subsystems made of NA ¼ NB modes. (b) LN versus the distance ρ (in units of the radius of
the individual small regions) corresponding to the D ¼ 2 configuration of Fig. 12(a). The small kink around ρ ∼ 0.14 is a boundary
effect caused by the concrete geometric configuration we use in this example.

FIG. 13. (a) Configuration of modes inD ¼ 3 in a hexagonal close-packed with a single mode in subsystem A and NB ¼ 18modes in
subsystem B. (b) Example of a configuration we used to compute the LN in D ¼ 3. The blue spheres represent the regions of support of
the NB ¼ 1088 modes, while the orange sphere is where the single mode in subsystem A is supported. (c) Configuration in D ¼ 3. The
blue spheres represent the regions of support of the NB ¼ 1922 modes, while the orange spheres represent the regions of support of the
NA ¼ 961 modes in subsystem A. We find that LN vanishes in this configuration.
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between the two regions when the field is prepared in the
vacuum.
Numerical computations [35,36] have revealed that

entanglement between two regions in lattice field theory
has many similarities with our findings. In particular, lattice
calculations also show that, for a finite number of modes,
the LN becomes zero abruptly beyond some threshold
separation distance. The fall off of the LN with distance is
found to be exponential [35]. Although one cannot com-
pare our calculations with the result of lattice field theory in
a detailed manner, mainly because we have included only a
finite number of modes in our calculations, our results
indicate that in the continuum theory the LN for a finite
number of modes falls off significantly faster with the
distance between the two regions than its counterpart in
lattice field theory. It would be interesting to have a more
detailed comparison, but this is beyond the scope of
this work.

B. D= 3

Next, we apply the same strategy to the case of D ¼ 3
spatial dimensions; namely, we generalize the results of
Sec. III by adding new modes to subsystem B, supported in
disjoint regions located close to subsystem A. InD ¼ 3, the
densest regular arrangement of spheres can be achieved by
placing them either in a face-centered cubic configuration,
or in a hexagonal close-packed configuration. We choose
the latter. We illustrate one such configuration in Fig. 13(a).
We have computed analytically the covariance matrix

for this set up, including up to NB ¼ 1088 modes in sub-
system B, while keepingNA ¼ 1 [see Fig. 13(b)]. From this
covariance matrix, we have computed the LN (with the
assistance of software for symbolic calculations, such as
Mathematica) for a massless noninteracting scalar field and
for the family of smearing functions introduced in (16).
Contrary to the situation in D ¼ 2, in D ¼ 3 we have

found that the LN is zero for NB up to 1088. This is true
even for smearing functions with δ equal or close to 1, for
which we found entanglement in D ¼ 2 for NB ≥ 5.
This result confirms the trend we found in the last

subsections: entanglement is “weaker” or “sparser” in
higher dimensions.
We have further extended our calculations by increasing

also the number of modes in subsystem A. One such
configuration is showed in Fig. 13(c). We have increased
the number of modes until NA ¼ 961 and NB ¼ 1922 and
obtained LN equal to zero in all cases. Entanglement for
D ¼ 3 is too weak or diluted to be captured using the finite
number of modes we have used so far. In the next two
sections, we extend the family of modes and the way they
are distributed in space.

V. OTHER SMEARING FUNCTIONS

In this section, we extend our calculation in different
directions, with the goal of checking whether the absence of

entanglement between pairs of modes supported in disjoint
regions in D ≥ 2 (or finite sets of them for D ≥ 3) is a
peculiarity of the concrete family of modes we have used so
far. We generalize our calculations in different directions,
by (i) considering other families of smearing functions
including some without a definite sign, and (ii) by mixing
field and momentum operators. In none of these cases have
we found entanglement between subsystems A and B in
D ≥ 2 for pairs of modes supported in disjoint spherical
regions.

A. Other positive semidefinite smearing functions

In addition to the smearing functions introduced in
Eq. (16), we have explored the following families of
non-negative smearing functions, all spherically symmetric
around a center x⃗i and where r is the distance to the center
in units of the radius R of the region of support:
(1) hðnÞðrÞ ¼ AnΘð1 − rÞcosnðπ

2
rÞ, n > 1∈N,

with An a normalization constant. This family has
been used before in [37].

(2) gðrÞ ¼ AΘð1 − rÞ exp ð− 1
1−r2Þ.

(3)

wðδÞðrÞ ¼ Aδ

8<
:

1 0 < r ≤ 1

− 1
δ ðr − 1Þ þ 1 1 < r ≤ 1þ δ

0 r > 1þ δ

:

This family has been used before in [16].
(4) jðnÞðrÞ ¼ AnΘð1 − rÞð1 − rnÞ, n > 1∈N.
All these functions and their first derivatives are con-

tinuous (gðrÞ is actually smooth). We argue in Appendix B
that this is sufficient for our purposes.

B. Non-semi-positive definite smearing functions

We have explored the following family ofL2-orthonormal
functions of compact support,

kðnÞðrÞ ¼ sin 2πnr
2πnr

Θð1 − rÞ: ð34Þ

Again, these functions and their first derivatives are con-
tinuous. When these functions are used to define modes
supported in disjoint regions, we find no entanglement
between them. In the next section,wewill use these functions
to definemodes supported in the same region (this is possible
since these functions are orthogonal to each other for
different values of n), in which casewe do find entanglement
(see Sec. VI A below).

C. Combinations of field and momentum

The modes of the field used in the calculations presented
in previous sections were all defined from pairs of operators
of the form of a pure-field and a pure-momentum operator,
ðΦ̂i; Π̂iÞ, both constructed from the same smearing function
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[up to an exact factor c in Π̂i, needed to ensure that both
operators have the same units (action)].
We extended here these calculations by considering

modes defined from (the algebra generated by) pairs of
canonically conjugated operators of the following form:

Ôð1Þ
A ¼ 1ffiffiffiffiffiffiffi

2N
p

XN
i¼1

ðΦ̂ð2i−1Þ
A − Π̂ð2iÞ

A Þ; ð35Þ

Ôð2Þ
A ¼ 1ffiffiffiffiffiffiffi

2N
p

XN
i¼1

ð−Φ̂ð2i−1Þ
A þ Π̂ð2iÞ

A Þ; ð36Þ

where Φ̂ðnÞ
A and Φ̂ðnÞ

A indicate field and momentum oper-
ators, respectively, smeared with the element kðnÞðrÞ of the
family of orthonormal functions written in Eq. (34).

Therefore, each of these two operators ÔðiÞ
A is made by

combining pure-field and pure-momentum operators, each
constructed from different smearing functions. The ortho-
normality of the smearing functions kðnÞðrÞ guarantees that
Ôð1Þ

A and Ôð2Þ
A are canonically conjugate.

Subsystem B is defined in the same way, with support in
a spherical region as close as possible to the support of
subsystem A. We have explored different values of N, from
1 to 10 in (35), and we have not found entanglement
between the two subsystems in any case.
The analysis of this section reveals that the absence

of entanglement in D ≥ 2 between pairs of modes sup-
ported in two disjoint spherical regions is not unique to
the smearing functions we have chosen, but a rather
generic fact.

VI. PAIRS OF ENTANGLED MODES

The analysis so far shows that, for D ≥ 2, finding
entanglement between two field modes is not an easy task,
or at least not as easy as one would have thought. In fact, in
none of the modes explored so far have we found pairwise
entanglement for D ≥ 2. We have presented results for a
massless scalar field, but introducing a mass only makes
entanglement weaker. Does this mean that it is actually
impossible to find pairs of modes of the field which are
entangled?Absolutely not. Entanglement is intrinsic to every
quantum state of multimode systems, even in ordinary
quantum mechanics, in the sense that, for every quantum
state, one can find subsystems that are entangled [38,39].
As a simple illustrative example, consider two uncoupled

harmonic oscillators prepared in the ground state (the
product of ground states of each oscillator). This is a
product state, and therefore, the subsystems defined by
ðx̂A; p̂AÞ and ðx̂B; p̂BÞ are obviously not entangled.
However, it is not difficult to find other partitions of the
systems for which entanglement shows up in the ground
state. A simple choice is made by the two subsystems
ðx̂1; p̂1Þ and ðx̂2; p̂2Þ, where

x̂1 ¼ cosh zx̂A þ sinh zx̂B;

p̂1 ¼ cosh zp̂A − sinh zp̂B;

x̂2 ¼ sinh zx̂A þ cosh zx̂B;

p̂2 ¼ − sinh zp̂A þ cosh zp̂B;

with z∈R. Subsystems ðx̂1; p̂1Þ and ðx̂2; p̂2Þ are obtained
by mixing the original oscillators, but each pair defines a
licit mode of the system. It is straightforward to check that
the LN between these two modes is EN ¼ 2z

ln 2; therefore,
there is entanglement between these two modes for all
z ≠ 0, and it grows monotonically with z.
This example reminds us about the well-known fact that

entanglement is not a property of a quantum state alone; it
is an attribute of a state and a choice of subsystems.
Furthermore, for every quantum state of a multimode
system there are choices of subsystems for which entan-
glement is present [39]. When we simply say that a
quantum state is not entangled, it is because we implicitly
assume a natural or physically preferred set of modes of the
systems.
Coming back to field theory in Minkowski spacetime,

it is straightforward to find modes which are entangled
in the vacuum, by simply mimicking the example of the
two harmonic oscillators. Consider any pairs of modes
ðΦ̂A; Π̂AÞ and ðΦ̂B; Π̂BÞ considered in previous sections, for
which we found that the reduced state is separable. From
them, we can construct new modes ðΦ̂1; Π̂1Þ and ðΦ̂2; Π̂2Þ,
where

Φ̂1 ¼ cosh zΦ̂A þ sinh zΦ̂B;

Π̂1 ¼ cosh zΠ̂A − sinh zΠ̂B;

Φ̂2 ¼ sinh zΦ̂A þ cosh zΦ̂B;

Π̂2 ¼ − sinh zΠ̂A þ cosh zΠ̂B;

with z∈R. We have shown that there exists a minimum
value of jzj above which the new subsystems are entangled.
(Contrary to the example of harmonic oscillators, jzj must
be above a nonzero threshold. The reason is that, in field
theory, the reduced state describing the two modes together
is always mixed (nonzero entropy). This mixedness acts
as a source of noise for entanglement, requiring a mini-
mum amount of “squeezing” intensity jzj to entangle the
modes. The threshold value of jzj depends on the smearing
functions chosen to define the initial pair of modes.)
Although we can define a new pair of modes, ðΦ̂1; Π̂1Þ

and ðΦ̂2; Π̂2Þ, that are entangled, they are not supported in
disjoint regions since each mode is a combination of a part
supported in region A and a part in B. In this sense, these
modes are nonlocal and somewhat unnatural.
In the remaining of this section, we describe other—less

obvious and therefore more informative—examples of
pairs of entangled modes in field theory.

HOW UBIQUITOUS IS ENTANGLEMENT IN QUANTUM FIELD … PHYS. REV. D 108, 085005 (2023)

085005-17



A. Independent modes with overlapping support

Motivated from the intuition that entanglement falls off
very rapidly with distance, we consider two modes defined
in the same region of space. This can be done by defining
each mode from pairs ðΦ̂n; Π̂nÞ using the smearing func-
tions in the family kðnÞðrÞ defined in (34). These functions
are orthogonal to each other for different values of n, hence
they define independent (commuting) modes. We will use
n ¼ nA to define mode A, and n ¼ nB ≠ nA for mode B.
We have found that such two modes are entangled

in D ¼ 3. The entanglement is largest when nA ¼ 1 and
nB ¼ 2 and decreases with both nA and nB. These results
are illustrated for D ¼ 3 in Fig. 14.

B. Rindler modes

A well-known example of pairs of modes that are
entangled in the vacuum is that of Rindler modes. For
completeness, in this subsection we use our tools to check
that the right-Rindler and left-Rindler modes are indeed
entangled. This is an example of modes with support in
disjoint regions which, nevertheless, are entangled.
Let âR

ωk⃗⊥
and âL

ωk⃗⊥
be standard right and left, respectively,

Rindler annihilation operators (see, for instance, [40]),
where ω is the Rindler frequency, and k⃗⊥ ¼ ðkx; kyÞ is
the momentum in the directions perpendicular to the
Rindler acceleration, which we assume to be in the z-
direction. From these operators and their adjoints, we build
two modes ðX̂R

ωk⃗⊥
; P̂R

ωk⃗⊥
Þ and ðX̂L

ωk⃗⊥
; P̂L

ωk⃗⊥
Þ:

X̂R
ωk⃗⊥

¼ 1ffiffiffi
2

p ðâR
ωk⃗⊥

þ âR†
ωk⃗⊥

Þ; ð37Þ

P̂R
ωk⃗⊥

¼ −iffiffiffi
2

p ðâR
ωk⃗⊥

− âR†
ωk⃗⊥

Þ; ð38Þ

X̂L
ω0k⃗0⊥

¼ 1ffiffiffi
2

p ðâL
ω0k⃗0⊥

þ âL†
ω0k⃗0⊥

Þ; ð39Þ

P̂L
ω0k⃗0⊥

¼ −iffiffiffi
2

p ðâL
ω0k⃗0⊥

− âL†
ω0k⃗0⊥

Þ: ð40Þ

They are independent of each other (i.e., they com-
mute) and satisfy canonical commutation relations,

½X̂RðLÞ
ωk⃗⊥

; P̂RðLÞ
ω0k⃗0⊥

� ¼ iδðω − ω0Þδ2ðk⃗⊥ − k⃗⊥Þ.
Following the procedure introduced in Sec. II, we

compute the components of the covariance matrix
σRLðω; k⃗⊥;ω0; k⃗0⊥Þ of the reduced system for these two
modes, supported in different wedges, in the Minkowski
vacuum. They are

hðX̂RðLÞ
ωk⃗⊥

Þ2i ¼ 1

2
tanh ðπω=aÞ−1δ3ð0Þ; ð41Þ

hðP̂RðLÞ
ωk⃗⊥

Þ2i ¼ 1

2
tanh ðπω=aÞ−1δ3ð0Þ; ð42Þ

and

hfX̂R
ωk⃗⊥

; X̂L
ω0k⃗0⊥

gi ¼ sinh ðωπ=aÞ−1δðω − ω0Þδ2ðk⃗⊥ þ k⃗0⊥Þ;
ð43Þ

and

hfP̂R
ωk⃗⊥

; P̂L
ω0k⃗0⊥

g ¼ − sinh ðωπ=aÞ−1δðω − ω0Þδ2ðk⃗⊥ þ k⃗0⊥Þ:
ð44Þ

The constant a is the acceleration of the Rindler frame. The
presence of Dirac deltas is a result of the normalization of
the modes and, as usual, it can be removed by using wave
packets instead of plane waves.
Note that σRL is “diagonal” in the labels ðω; k⃗⊥Þ and

ðω0; k⃗0⊥Þ, so right and left modes with different labels
ðω; k⃗⊥Þ are uncorrelated and unentangled, as expected.
From the previous expressions, we compute the partially

transposed covariance matrix and its symplectic eigenval-
ues for ω0 ¼ ω and k⃗⊥ ¼ −k⃗0⊥. The smallest of these
eigenvalues is

ν̃− ¼ δ3ð0Þ tanh
�
ωπ

2a

�
: ð45Þ

This eigenvalue is smaller than 1 for any a ≠ 0.
Consequently, right and left Rindler modes with the same
labels ðω; k⃗⊥Þ are entangled in the Minkowski vacuum as
long as a ≠ 0, and their entanglement grows monotonically
with a.
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FIG. 14. LN between two modes of the form ðΦ̂i; Π̂iÞ, i ¼ A, B,
defined in the same region of space, from the family of
orthonormal functions kðnÞðrÞ introduced in (34). System A is
defined using kðnAÞðrÞ and similarly for system B, with nA ≠ nB.
We plot the LN vs nB, for nA ¼ 1. Two messages can be extracted
from this plot: (i) the two modes are entangled, and (ii) entangle-
ment is larger the closer nA and nB are.
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This calculation refers to Rindler modes defined using
plane waves for which, strictly speaking, all quantities
above blow up. The calculations can be made finite by
replacing plane waves by wave packets, and the finite part
of (45) should be understood as the limiting result when the
support of the wave packets tends to the entire Rindler
wedge. It is an interesting question whether the use of wave
packets with finite support requires a minimum acceler-
ation a for right and left modes to be entangled.

C. Entanglement between spherical shells

Since correlations decrease with the distance between the
two subsystems, we have explored other configurations for
two modes, where the “contact” between A and B is
maximized. Such is the case when subsystem A has support
within a sphere, while subsystem B is supported in a
spherical shell surrounding it. The region of support of each
mode is illustrated in Fig. 15.
In this section, we construct modes from pairs of operators

of the form ðΦ̂i; Π̂iÞ, i ¼ A, B, similarly to Sec. III, with the
difference that, in this section, we use the following smearing
functions:

fAðr;RAÞ ¼ cos2
�
π

2

r
RA

�
ΘðRA − rÞ; ð46Þ

for the sphere (subsystem A), and

fBðr;RB;dBÞ ¼
(
sin2

�
π r−RB

dB

	
RB ≤ r≤RBþdB

0; otherwise
ð47Þ

for the shell (subsystem B). These functions and their first
derivatives are continuous.
While the smearing function in the sphere depends only

on one parameter, namely the radius RA, the mode in the
shell is parametrized by the inner radius RB and the
thickness of the shell dB. We have checked that for a
massless scalar field the quantities we evaluate in this
section (the LN) do not change if we rescale these three
parameters simultaneously. Therefore, we have only two
independent parameters, which we choose to be RB and dB
measured in units of RA. Another freedom we play with is
the dimension of space D.

FIG. 15. Regions of support for two field modes. The orange sphere is where the mode defining subsystem A is supported, while the
mode in B is supported in the blue shell. The two panels illustrate the freedom we have in the distance between the sphere and the shell,
as well as the thickness of the shell. (a) The distance between the sphere and the shell is zero, such that RA ¼ RB. (b) The sphere and the
shell are separated by a nonvanishing distance, such that RB − RA > 0.
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FIG. 16. LN as a function of the spatial dimension, D, for the
configuration of two modes depicted in Fig. 15(a), i.e., when
there is no gap between the sphere and the shell, RA ¼ RB ¼ 1.
We choose dB ¼ 0.5 for this plot.
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We compute the LN between subsystems A and B and the
way it changes with RB, dB and D. The results of this
section are obtained numerically.
First, Fig. 16 shows the value of the LN when there is no

gap between the shell and the sphere ðRA ¼ RBÞ (the
optimal case) and for a fixed value of dB. The LN is
evaluated as a function of the dimensionality of space D.
The main lessons from this plot are that (i) the LN is
different from zero, and (ii) it decreases in higher dimen-
sions, completely vanishing for D > 6 for the values of dB
we have chosen.
Next, we study how the LN depends on the distance

between A and B, as quantified by RB − RA. This is shown

in Fig. 17 for several values of D. As expected, the LN
quickly falls off with the distance between both subsystems
and disappears beyond some threshold distance. Once
more, we see that entanglement is weaker in higher
dimensional theories.
Finally, we study how the LN depends on the thickness

of the shell dB. Figure 18 shows a curious result: the LN is
different from zero in a finite interval and vanishes when dB
is either bigger or smaller than this interval.
As a final curiosity, we plot in Fig. 19(a) an “onionlike”

configuration, in which we increase the number of spheri-
cal shells and assign one mode per shell alternating
between modes in subsystem A and B. Figure 19(b) shows
what is expected: the LN grows monotonically with the
number of layers.

0.00 0.01 0.02 0.03 0.04 0.05 0.06
0.000

0.005

0.010

0.015

0.020

0.025

0.07

FIG. 17. LN for the same configuration as in Fig. 16, now
plotted versus the separation between the sphere and the shell, for
different spatial dimensions D. We used dB ¼ 0.5 for the thick-
ness of the shell (all distanced measured in units of RA).
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0.000

0.005
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0.015

FIG. 18. LN as a function of the width of the shell, when there
is no gap between the sphere and the shell. Interestingly, the LN is
different from zero only in a finite interval of dB.
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FIG. 19. (a) Regions of support of modes in an onionlike configuration. The orange sphere and shells belong to subsystem A, and the
blue shells belong to subsystem B. (b) LN as a function of the total number of degrees of freedom N ¼ NA þ NB. As expected from our
previous results, the LN grows with the number of shells.
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In summary, in this subsection, we have (finally) found
configurations of two modes compactly supported in
disjoint regions that are entangled in D ≥ 2 spatial dimen-
sions. Entanglement is fragile, in the sense that it dis-
appears when increasing the distance between the modes or
the dimension of space. These results contain a valuable
message: entanglement can be found in pairs of disjoint and
compactly supported modes, but one needs to carefully
choose their spatial configuration. This is in consonance
with recent results in [21], which indicate that the entan-
glement between regions RA and RB is largely concentrated
in modes sharply supported near the boundaries.

VII. DISCUSSION

Entanglement in quantum field theory has been dis-
cussed in detail from diverse perspectives. The entangle-
ment entropy associated with a region of space R is perhaps
the most studied quantity in this context [41]; it has played
an important role in many developments in theoretical
physics, ranging from black holes [8–11] to the quantum
nature of spacetime [12,42,43]. This entropy also presents
some inconveniences. In the first place, it is intrinsically
divergent, requiring a regulator to extract a finite value from
it, a procedure that introduces ambiguities. Moreover, the
Hilbert space of the field theory is not of the form
HR ⊗ HR̄, with HR the Hilbert space of the field degrees
of freedom within region R and HR̄ the analog for the
region R̄ complementary to R. This implies that one is
outside the standard realm to define entanglement in
quantum mechanics, making it unclear how to interpret
this entropy in terms of entanglement between region R and
its complement [7].
On the other hand, starting from the Reeh-Schlieder

theorem [1], it is possible to show that the field degrees of
freedom supported within two compact regions of space,
RA and RB, which are separated from each other, are
entangled for any state satisfying the Reeh-Schlieder
property. The separation guarantees that entanglement is
finite [6,7]. In Minkowski spacetime, the Reeh-Schlieder
property holds for any state of finite energy, including the
vacuum, implying that entanglement is ubiquitous in this
theoretical paradigm.
These results, although of great conceptual interest,

involve subsystems with infinitely many degrees of free-
dom and do not tell us how much finite sets of field modes
are entangled, or even if they are entangled at all. The
primary goal of this paper is to introduce a strategy to
address these questions and answer them in some concrete
examples.
The calculations in this article are restricted to a free

scalar theory in Dþ 1-dimensional Minkowski spacetime.
We extract individual degrees of freedom (modes) of the
field, localized in a compact region of space, by smearing
the field and its conjugate momentum against functions of
compact support. Each mode defines an algebra isomorphic

to the algebra of an ordinary harmonic oscillator. This
strategy provides a way of extracting a finite set of modes
out of the field in a local and covariant manner, to which the
standard tools of quantum mechanics to evaluate entangle-
ment can be applied. In particular, our strategy is free of
divergences plaguing other approaches.
The focus on a finite number of modes is motivated by

the finite capabilities of observers. The resulting system has
all the benefits of a lattice field theory regarding conceptual
and computational simplicity, while keeping the richness
and subtleties of the continuum theory. In contrast to lattice
field theory, we do not truncate the degrees of freedom prior
to quantization. The concrete family of modes under
consideration depends on the choice of smearing functions.
We have explored different families in this work and have
focused on results that are common to all of them. For some
of our smearing functions, we obtain results analytically in
D spatial dimensions. For other smearings, we proceed
numerically. We have tested our numerical tools against the
analytical results when they are available and checked that
they agree to high precision.
Using the Gaussianity of the Minkowski vacuum, we

have computed the reduced state describing a finite number
of modes and evaluated its entropy, mutual information,
and entanglement. In particular, we have checked that the
reduced state describing finite dimensional subsystems is
always mixed, in agreement with general results [26].
The main lesson from our analysis is that it is difficult to

find pairs of modes supported in disjoint regions of space
separated by a nonzero distance that are entangled. The
difficulty increases with the dimensionality of space.
Namely, in D ¼ 1 it is relatively easy to find pairs of such
modes which are entangled, but this task becomes increas-
ingly challenging for D ≥ 2. In fact, we find that the
regions of support of two modes need to be carefully
chosen to find any entanglement forD ≥ 2. One example of
a configuration for which we find entanglement is when
one mode is supported within a sphere while the other
mode is supported on a spherical shell surrounding the
sphere. This configuration is efficient in minimizing the
distance between both modes and is able to capture
pairwise entanglement. (Another configuration in which
we have found pairwise entanglement for D ≥ 2 is when
two independent modes coexist in the same region of
support.)
In the cases where we find entanglement between a pair

of modes, or between two subsystems each made of a finite
number of them, we have checked that the entanglement
quickly disappears when the distance between the sub-
systems increases.
Hence, we conclude that entanglement in field theory is

not as prevalent as normally thought. It is ubiquitous when
considering subsystems containing infinitely many modes,
but not for finite dimensional systems. This is an important
lesson which, to the best of our knowledge, has not been
pointed out before. Furthermore, this result is compatible
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with the Reeh-Schlieder theorem, which guarantees that
given a field mode supported in a region RA, and a second
region RB, there exists at least one mode in RB that is
entangled with the given mode in RA [7]. However, the
theorem does not tell how many modes in RB are entangled
with the given mode in RA, or how complicated such a
mode is. Our results show that one needs to carefully select
the mode in RB to find any entanglement. This is com-
patible and complementary to the results recently obtained
in [21], which indicate that the entanglement between
regions RA and RB is largely concentrated in modes sharply
supported near the boundaries.
We finish by pointing out the relation between our results

and the protocol of entanglement harvesting in quantum
field theory [37,44,45]. This protocol couples the field
theory to two nonrelativistic systems, which play the role of
detectors. These detectors are turned on only for a finite
amount of time and are separated in space in such a way
that they remain spatially separated during the interval they
are on. The detectors are prepared in their respective ground
states, so the initial state of the system made of the two
detectors is a product state with no entanglement. After the
interaction, one is interested in knowing whether the two
detectors end up in an entangled state. If they do, because
the detectors do not interact with each other, nor do they
interact via the field since they remain spatially separated,
then the only possible origin of the entanglement is
entanglement in the field itself which has been swapped
to the detectors by means of the interaction. In this sense,
the detectors “harvest” entanglement from the field.
Our calculations raise the question of where the entan-

glement harvested in the detectors is coming from, since
generic pairs of field modes are not entangled. An answer to
this question requires a detailed analysis of which modes of
the field—and how many of them—detectors actually
couple to. Such analysis goes beyond the scope of this
paper and will be reported in [46].

ACKNOWLEDGMENTS

The content of this paper has benefited enormously from
discussion with: A. Ashtekar, E. Bianchi, B. Elizaga-
Navascues, A. Delhom, G. Garcia-Moreno, S. Hollands,
E. Martin-Martinez, J. Polo-Gomez, A. del Rio, K. Sanders,
and V. Vennin. I. A. and D. K. are supported by the NSF
Grant No. PHY-2110273 and by the Hearne Institute for
Theoretical Physics. S. N. is supported by theUniversidad de
Valencia, within the Atracció de Talent Ph.D Fellowship
No. UV-INV- 506 PREDOC19F1-1005367.

APPENDIX A: DETAILS

In this appendix, we provide some of the details that have
been omitted in Secs. III and IV. In particular, we compute
the components of the covariance matrix for a system
consisting of N spacelike separated modes of a scalar field

in Dþ 1-dimensional Minkowski spacetime. We assume
that the N-modes are supported in spacelike separated
spherically symmetric regions of radius R. For simplicity,
all the modes we consider are extracted using the same
smearing function, which in addition we take to belong to
the family presented in Eq. (16), that is

Φ̂i ¼
Z

dDxfðδÞi ðx⃗Þϕ̂ðx⃗Þ; ðA1Þ

and

Π̂i ¼ c
Z

dDxfðδÞi ðx⃗Þπ̂ðx⃗Þ; ðA2Þ

with i ¼ 1;…; N and such that jΔx⃗ijj > 2R for every i ≠ j
(to ensure that the regions are truly disjoint).
Imposing canonical commutation relations between the

operator pairs ðΦ̂i; Π̂iÞi¼1;…;N (that is, ½Φ̂i; Π̂j� ¼ iδij)
allows us to compute the normalization constant Aδ for
any dimension,

Aδ ¼ c−1=2R−D=2π−D=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1þD=2þ 2δÞ

Γð1þ 2δÞ

s
: ðA3Þ

As we already mentioned, one of the advantages of the
functions (16) is that theirD-dimensional Fourier transform
has a simple expression in terms of Bessel functions. In
particular, we find (see Theorem 4.15 in Sec. IV. 4 of [47])

f̃ðδÞi ðk⃗Þ ¼
Z

dDxeik⃗·x⃗fðδÞi ðx⃗Þ

¼ eik⃗·x⃗iAδΓðδþ 1Þ2δð2πÞD2 ðkRÞ−ðD2þδÞJD
2
þδðkRÞ;

where JD
2
þδðkRÞ is the Bessel function of the first kind of

order D
2
þ δ. The relevant two-point functions in the

Minkowski vacuum can be computed straightforwardly,
and one finds

hfΦ̂i; Φ̂jgi ¼ RDþ1

Z
dDq
ð2πÞD

jf̃ðδÞi ðqÞj2eiq⃗·ρ⃗ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ μ2

p ;

hfΠ̂i; Π̂jgi ¼ c2RD−1
Z

dDq
ð2πÞD jf̃ðδÞi ðqÞj2eiq⃗·ρ⃗ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ μ2

q
;

and

hfΦ̂i; Π̂jgi ¼ 0;

where q⃗ ¼ Rk⃗, ρ⃗ij ¼ Δx⃗ij
R ¼ x⃗i−x⃗j

R is the dimensionless dis-
tance between the centers of the spherical regions centered
at x⃗i and x⃗j, and μ ¼ mR is the dimensionless mass.
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Interestingly, in the massless limit (μ ¼ 0) the integrals in the correlation functions above can be solved analytically using
the following integrals:

Z
∞

0

dtt−βJνðαtÞJμðαtÞ ¼
αβ−1ΓðβÞΓ
νþμ−βþ1

2

�
2βΓ


−νþμþβþ1
2

�
Γ

νþμþβþ1

2

�
Γ

ν−μþβþ1

2

� ; ðA4Þ

if Reðνþ μþ 1Þ > Reβ > 0, α > 0 (Eq. 6.574.2 in [48]) and

Z
∞

0

dttβ−1JαðatÞJμðbtÞJνðctÞ ¼
2β−1aαbμc−α−μ−βΓ


αþμþνþβ
2

�
Γðαþ 1ÞΓðμþ 1ÞΓ
1 − αþμ−νþβ

2

�
× F4

�
αþ μ − νþ β

2
;
αþ μþ νþ β

2
; αþ 1; μþ 1;

a2

c2
;
b2

c2

�
; ðA5Þ

which holds if Reðαþ μþ νþ βÞ > 0, Reβ < 5
2
, a > 0,

b > 0, c > 0 and c > aþ b (Eq. 6.578.1 in [48]) where

F4ðα; β; γ; γ0; x; yÞ ¼
X∞
m¼0

X∞
n¼0

ðαÞmþnðβÞmþn

ðγÞmðγ0Þnm!n!
xmyn; ðA6Þ

with j ffiffiffi
x

p j þ j ffiffiffi
y

p j < 1, is the Appell hypergeometric func-
tion of the fourth kind.8 Using Eqs. (A4) and (A5), the
two point correlations in the massless limit (μ ¼ 0) can be
written as

hfΦ̂i; Φ̂jgi ¼ 2N2
δ

R
c

�
J Dð−1; δÞ i ¼ j

LDð−1; δ; ρijÞ i ≠ j
; ðA7Þ

hfΠ̂i; Π̂jgi ¼ 2N2
δ

c
R

�
J Dð1; δÞ i ¼ j

LDð1; δ; ρijÞ i ≠ j
; ðA8Þ

where

J Dðλ; δÞ ¼ 2−1−2δþλ
ΓðDþλ

2
ÞΓð1þ 2δ − λÞ

Γð1þ δ − λ
2
Þ2ΓðD−λ

2
þ 2δþ 1Þ ; ðA9Þ

LDðλ; δ; ρÞ ¼ ρ−ðDþλÞ ΓðDþλ
2
ÞΓðD=2Þ

21þ2δ−λΓðD
2
þ 1þ δÞ2Γð− λ

2
Þ

× 3F2

"
1þ λ

2
; Dþλ

2
; Dþ1

2
þ δ

D
2
þ 1þ δ; Dþ 1þ 2δ

;
4

ρ2

#
; ðA10Þ

and

N2
δ ¼

22δΓð1þ D
2
þ 2δÞΓð1þ δÞ2

Γð1þ 2δÞΓðD=2Þ : ðA11Þ

APPENDIX B: FROM SMEARING FUNCTION
FINITELY DIFFERENTIABLE
TO SMOOTH FUNCTIONS

The set of smooth (i.e., infinitely differentiable) func-
tions of compact support, C∞

0 ðRDÞ, provides a mathemati-
cally convenient habitat for the smearing functions used to
define smeared operators supported on a compact region
of space. In some parts of this paper, however, we have
used smearing functions which are only finitely differ-
entiable. This is true, in particular, for the smearing
functions fðδÞ introduced in Sec. III. For them, we were
able to derive results analytically. In this appendix, we
address the question of whether the finite differentiability
of these functions limits the range of validity of the results
obtained from them. We show that this is not the case.9

(We restrict in this appendix to massless fields in D ≥ 2,
but the arguments can be extended to the massive case
and D ¼ 1.)
Our argument goes as follows. In the first place, we

identify a space of (not necessarily smooth) functions for
which the smeared operators constructed from them are all
well defined in the standard Fock space in Minkowski
spacetime. Secondly, we argue that, for each smearing
function in this family, there always exists another function
in C∞

0 ðRDÞ producing the same physical predictions with
arbitrarily high accuracy. This implies that restriction to this
family of functions does not limit the validity of our results.
Finally, we show that the finitely-differentiable functions
we have used in some portions of this paper belong to this
family.
Definition 1. (Definition 1.31 in [49]) Let s∈R. The

homogeneous Sobolev space ḢsðRDÞ is the space of
tempered distributions f over RD, with locally integrable
Fourier transform and satisfying

8Notice that when x ¼ y and γ1 ¼ γ2, this function reduces to a
generalized hypergeometric function, that is F4ðα; β; γ; γ; x; xÞ ¼
3F2ðα; β; γ − 1

2
; γ; 2γ − 1; 4xÞ.

9P. R. M. thanks K. Sanders for pointing out the argument
spelled out in this Appendix.
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kfk2s ≔
Z
RD

dDk
ð2πÞD jk⃗j2sjf̃ðk⃗Þj2 < ∞; ðB1Þ

where f̃ denotes the Fourier transform of f.
(Proposition 1.34 in [49]) ḢsðRDÞ is a Hilbert space if

and only if s < D=2, with inner product

ðfjgÞs ¼
Z
RD

dDk
ð2πÞD jk⃗j2sf̃ðk⃗Þ ¯̃gðk⃗Þ; ðB2Þ

(bar denotes complex conjugation).
The connection between homogeneous Sobolev spaces

and the content of this paper becomes clear by noticing that
the vacuum expectation value of smeared operators can be
written in terms of this inner product as

hΦ̂2½f�i ¼ 1

2
ðf; fÞ−1=2; ðB3Þ

hΠ̂2½f�i ¼ 1

2
ðf; fÞ1=2; ðB4Þ

hfΦ̂½f�; Φ̂½g�gi ¼ ℜðf; gÞ−1=2; ðB5Þ

hfΠ̂½f�; Π̂½g�gi ¼ ℜðf; gÞ1=2; ðB6Þ

hfΦ̂½f�; Π̂½g�gi ¼ 0; ðB7Þ

with ℜ denoting the real part. For completeness, we prove
here one of these equalities; the rest are proven similarly as
follows:

hfΦ̂½f�; Φ̂½g�gi ¼
Z

dDxfðx⃗Þ
Z

dDx0gðx⃗0Þ
Z

dDk
ð2πÞD eik⃗·x⃗

dDk
ð2πÞD eik⃗

0·x⃗0 hfϕ̂k⃗; ϕ̂k⃗0 gi

¼
Z

dDk
ð2πÞD

1

2jk⃗j
ðf̃ ¯̃gþg̃ ¯̃fÞ ¼ ℜðfjgÞ−1=2; ðB8Þ

where we have used Φ̂ðxÞ ¼ R
dDk
ð2πÞD ϕ̂k⃗e

ik⃗·x⃗, and hϕ̂k⃗ϕ̂k⃗0 i ¼
1

2jkj δðk⃗þ k⃗0Þ.
This automatically implies that if we smeared the field Φ̂

with functions in Ḣ−1=2ðRDÞ, and the momentum Π̂ with
functions in Ḣ1=2ðRDÞ, then the second moments (B3)–(B6)
are all finite forD ≥ 2. This in turn implies that the action of
these operators in the Minkowski vacuum produces a state
with finite norm. We will not make such a distinction and
restrict all smearing functions to belong to the intersection
Ḣ−1=2ðRDÞ ∩ Ḣ1=2ðRDÞ, so they can be used to smear both
field and momentum operators. This restriction will bring
additional conveniences, as we discuss below.
Furthermore, if â†w is the creation operator associated

with a function wðx⃗Þ∈C∞
0 ðRDÞ, then the commutators

½Φ̂½f�; â†w� ¼ 1
2
ðf; wÞ−1=2, and ½Π̂½f�; â†w� ¼ ðf; wÞ1=2 are

finite. This implies that the operators Φ̂½f� and Π̂½f�
produce states of finite norm when acting on a dense
subspace of the entire Fock space. Hence, as long as the
smearing functions belong to Ḣ−1=2 ∩ Ḣ1=2, the associated
operators are well defined.
Secondly, the intersection Ḣ−1=2ðRDÞ ∩ Ḣ1=2ðRDÞ is a

subspace of L2ðRDÞ (Proposition 1.32 in [49]). Since
C∞
0 ðRDÞ is dense in L2ðRDÞ, it is also dense in

Ḣ−1=2ðRDÞ ∩ Ḣ1=2ðRDÞ. This automatically implies that,
given any function f∈ Ḣ−1=2ðRDÞ ∩ Ḣ1=2ðRDÞ, and a

small real number ϵ > 0, one can always find a function
fϵ ∈C∞

0 ðRDÞ such that kf − fϵk�1=2 < ϵ, and conse-
quently, the second moments (B3)–(B6) defined from f
and fϵ are equally close.
Finally, it remains to check that all the functions we use

in this paper actually belong to Ḣ−1=2ðRDÞ ∩ Ḣ1=2ðRDÞ.
For the family of functions fðδÞðxÞ introduced in Sec. III,
this has been shown in Appendix A, whenever δ ≥ 1 and
D > 1. To see this, recall that the Fourier transform of the
functions in this family consists of products of monomials
and Bessel functions ([see Eq. (A3)], and one can easily
check that they are all locally integrable for δ ≥ 1 and
D ≥ 1. In addition, in Appendix A we showed that
k�1=2f̃ðδÞðkÞ∈L2ðRDÞ (by showing explicitly that the
integral can be solved analytically) for δ ≥ 1 and D ≥ 2.
Notice that this implies kfk�1=2 ¼

R
dDkjkj�1jf̃ðδÞj2 < ∞.

Hence, we conclude that fðδÞðxÞ∈ Ḣ−1=2ðRDÞ ∩ Ḣ1=2ðRDÞ
for δ ≥ 1 and D ≥ 2.
The case δ ¼ 0 (Heaviside step function) is special, since

fð0ÞðxÞ∈H−1=2ðRDÞ but fð0ÞðxÞ ∉ H1=2ðRDÞ (which leads
to the presence of the UV divergences in the momentum
self-correlations, as first noticed in [15]).
We have also checked explicitly that all the smearing

functions introduced in Sec. V belong to Ḣ−1=2ðRDÞ ∩
Ḣ1=2ðRDÞ.
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