
Exact renormalization of wave functionals yields continuous MERA

Samuel Goldman,1 Nima Lashkari ,2 Robert G. Leigh ,1 and Mudassir Moosa 2

1Department of Physics, University of Illinois, 1110 W. Green St., Urbana Illinois 61801-3080, USA
2Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA

(Received 31 January 2023; accepted 14 September 2023; published 6 October 2023)

The exact renormalization group (ERG) is a powerful tool for understanding the formal properties of
field theories. By adapting generalized ERG schemes to the flow of wave functionals, we obtain a large
class of continuous unitary networks, a special case of which includes a class of Gaussian continuous
multiscale renormalization Ansätze (cMERAs). The novel feature of these generalized wave functional
ERG schemes is allowing for modifications of the dispersion relation, which drastically changes the
entanglement structure of the ultraviolet states. Through our construction, we demonstrate that cMERA can
be derived from a more fundamental “microscopic” principle, which amounts to the usual RG principle of
path integral independence, suitably adapted to quantum states of the field theory. The establishment of
such a principle may provide a path forward for exploring cMERA beyond the free field regime, and for
understanding the nature of entanglement renormalization intrinsically in the continuum.
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I. INTRODUCTION

In the study of entanglement and its properties in many
body systems and field theories, a well-established con-
nection has emerged between the study of tensor networks
and holographic quantum gravity. The central element of
this dialogue is entanglement renormalization, a powerful
tool for understanding the structure of real-space entangle-
ment in lattice theories and other discrete quantum
mechanical systems with spatial structure [1,2].
A particularly important example, known as the multi-

scale renormalization ansatz (MERA), is a tensor network
model in which local or quasilocal unitary operations act to
remove entanglement between nearby sites. The lattice is
then dilated by an isometry and the process is repeated,
resulting in a final lattice state with similar long-range
correlations to the initial state, but with much simpler
small-scale structure. It is also of theoretical interest to
consider a “reversed” process where entanglement is added,
rather than removed. One starts with a spatially unen-
tangled state and uses local unitaries to entangle neighbor-
ing sites. This describes a process by which one efficiently
generates states with entanglement at many different scales,
such as in the ground state of interacting QFTs.
The connection between MERA and holography comes

from the identification of the depth, or scale, of the MERA

network with the radial coordinate of an asymptotically
anti–de Sitter (AdS) spacetime [3,4]. Since its inception,
the proposed connection between tensor networks and
geometry have yielded many valuable insights into features
of quantum gravity, such as the Ryu-Takayangi formula [5].
Despite the success of tensor network models in studying

holography, the program is ultimately a toy model. Because
of its discrete nature, the “dual geometry” of MERA
describes, at best, a discretized approximation of space-
time. This limitation has motivated definitions of MERA-
like networks directly in the continuum. The program,
designated continuous MERA (cMERA), consists of a one-
parameter family of unitary maps ÛðzÞ with z∈ ð1;∞Þ and
Ûð1Þ ¼ Î [6]. Explicitly, the unitary operator takes the form
of a path-ordered exponential,

ÛðzÞ ¼ Pz

h
eið
R

z

1

dz0
z0 ðK̂ðz0ÞþL̂ÞÞ

i
: ð1Þ

The Hermitian generator L̂ is the Weyl scaling in d
spacetime dimensions,1

L̂ ¼ d − 2

4

Z
x⃗

�
φ̂ðx⃗Þπ̂ðx⃗Þ þ π̂ðxÞφ̂ðx⃗Þ�; ð2Þ

and the operator K̂ðzÞ implements the analog of an
entangling operation on neighboring sites,
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1We use the Weyl scaling for its simplicity, but note that our
choice is different from the relativistic and nonrelativistic scaling
operators defined in [5].
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K̂ðzÞ ¼ 1

4

Z
x⃗;r⃗

gzðr⃗Þ
�
φ̂ðx⃗Þπ̂ðx⃗þ r⃗Þ þ π̂ðx⃗þ r⃗Þφ̂ðx⃗Þ�; ð3Þ

with gzðr⃗Þ some quasilocal smearing function that falls off
at large r. The entangling kernel gzðr⃗Þ is chosen such that if
jΛi is a field theory state with no real space entanglement,
then

ÛðzÞjΛi⟶z→∞jΩi; ð4Þ

where jΩi is some highly entangled state such as the
ground state of a relativistic field theory. In this way,
cMERA mimics the state preparation of lattice MERA
networks.
The forms of MERA and cMERA are motivated by

qualitative features of the Wilsonian renormalization group
(RG). However, unlike MERA, which is constructed from
an underlying microscopic principle, the definition of
cMERA networks is essentially ad hoc; it is built to
connect two particular states along a flow in a way which
is reminiscent of the end points of MERA. Moreover,
unlike its discrete partner, which has seen success in
describing ground states of strongly coupled lattice theo-
ries, cMERA has generally resisted attempts to go beyond
Gaussian states and free field theories. These two problems
are not entirely unrelated; without a well-defined micro-
scopic principle, it is not manifest what the appropriate
steps are to include interactions in a cMERA.
The question then, of whether one can define cMERA

from an underlying RG principle directly in the continuum,
is one of great interest for developing a complete picture of
continuous entanglement renormalization, and ultimately
for applications of cMERA in holography and gravity. In
this paper, we will argue that such a principle indeed exists,
and it is in fact precisely the usual notion of an RG principle
used in the exact renormalization group (ERG) [7], suitably
adapted to field theory states. The groundwork for our
analysis was laid in [8–10]. By modifying the renormal-
ization scheme of Polchinski, it was shown that one can
derive an ERG of wave functionals whose flow is unitary
and has precisely the form of Eq. (1). However, this flow
lacked some important properties of cMERA; the starting
point of the unitary flow did not yield an unentangled state
as in (4) and the disentangler was completely nonlocal in
position space, unlike the desired quasilocal smearing
function of (3).
To overcome the challenges of constructing cMERA

from the ERG, it is useful to note that in many cMERA
models, the UV physics is modified in such a way that it is
effectively nonrelativistic. In particular, the ground state
jΩnri of a nonrelativistic boson takes the form

hφjΩnri ∼ exp

�
−#

Z
x⃗
φðx⃗Þφðx⃗Þ

�
: ð5Þ

As we can see from the right-hand side, this wave func-
tional factorizes in position space, and thus has no real-
space entanglement. This motivates us to generalize the
ERG by considering smooth cutoff functions that modify
the dispersion relation, allowing for the UV to be non-
relativistic.
In this work, we implement ERG schemes that are

general enough to include, as special cases, cMERAs, i.e.,
the unitary flows we derive have the necessary conditions
of (1), (4), and (3) with quasilocal kernels gzðr⃗Þ. The paper
is structured as follows. In Sec. II, we review the adaptation
of the Polchinski ERG scheme to wave functionals. In
Sec. III, we introduce the modified regulating scheme
which implements cMERA, and compute the resulting RG
flow equations from the path integral. Appendix D includes
a discussion of the generalized ERG in the Hamiltonian
picture that makes the connection to cMERAs more
manifest. In Sec. IV, we conclude and comment on
generalizations and applications.

II. REVIEW OF THE ERG FOR STATES

We begin with a brief review of the adaptation of ERG to
the flow of states in the singlet sector of theOðNÞmodel as
constructed in [8]. The main principle is to implement an
ERG regulator in “sliced” path integrals that correspond
to the wave functionals of quantum states. In local field
theories, this path integral integrates over field configura-
tions on half of spacetime M− in the past of a spacelike
surface Σ (which we take for simplicity to be a constant-
time hypersurface). Arbitrary quantum states are obtained
by operator insertions in Euclidean time, and a basis is
chosen by fixing arbitrary field configurations φðx⃗Þ on Σ.
Since in this paper we are interested in establishing a

precise connection between the ERG and existing Gaussian
cMERA constructions, we will confine our attention to the
(regulated) free fixed point of the OðNÞ scalar model in d
spacetime dimensions. A useful trick that was introduced
in [8] is to write the generator of quantum states that are
created by arbitrary singlet operators acting on the ground
state. The corresponding path integral can be written

hφðx⃗ÞjΩ½b�i ¼
Z

½Dϕ�ϕð0;x⃗Þ¼φðx⃗Þ
ϕð−i∞;x⃗Þ→0

eiðS0þSIþSbþUbÞ; ð6Þ

where2

Sb ¼
Z
M−

ϕ · b · ϕ ð7Þ

and we have implemented a Dirichlet boundary condition
on Σ to select the corresponding basis for the Hilbert space.

2We will often use abbreviated DeWitt notation ðA · ϕÞðxÞ ≔R
y Aðx; yÞϕðyÞ, and will leave implicit the contracted OðNÞ
indices.
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If we fix the distribution bðx; yÞ to some value in Euclidean
time, then the resulting state is Gaussian; importantly,
however, note that more generally bðx; yÞ can be regarded
as a source, and so one may construct arbitrary non-
Gaussian states by taking derivatives of hφðx⃗ÞjΩ½b�i.
Using this formalism, the ERG is interpreted as a flow
in the space of singlet states, coordinatized by bðx; yÞ.
In (6), the integration is over arbitrary field configura-

tions in the interior of M− while S0 is a suitably regulated
kinetic term that we will describe below. Ub is a field-
independent term that sets the normalization of the path
integral. By SI we denote interaction terms which, in
the context of the OðNÞ model, should be taken to include
all multitrace singlet operators. Indeed, with regard to
the generating functional, one finds that the exact ERG
equations close only on the full set of such operator
sources. An important exception is the choice SI ¼ 0,
which constitutes a consistent truncation of the ERG flow
equations. As we have noted, such a truncation is sufficient
for describing existing cMERA constructions, and we take
this choice for simplicity. However, there is no obstruction,
in principle, to including a nonzero SI; we will comment
further on the effect of multitrace operators and interactions
in the discussion section.
In contrast to the partition function that is invariant under

the RG flow, the wave functionals evolve as a function of
scale. An ERG regulated action can be written in the form3

S0½ϕ;φ� ¼ −
1

2zd−2

�Z
M−

ϕ ·D2 · ϕ −
Z
Σ
φ · K−1

∂t · ϕ

�
;

ð8Þ

where K is a regulator and the differential operator D2 was
taken in [8] to be of the form

D2 ≔ K−1ðz2∇⃗2=M2Þð−∂2t þ ∇⃗2Þ;
lim
s→∞

KðsÞ → 0; lim
s→0

KðsÞ ¼ 1: ð9Þ

Here, we regard M as an ultraviolet cutoff scale on
momenta, and z has been introduced so that M=z plays
the role of a renormalization scale. Importantly, we have
chosen K such that it regulates large spatial momentum p⃗2,
as opposed to the relativistic invariant pμpμ. With this
choice S0 has no more than two time derivatives in the bulk
and one time derivative on Σ. This is consistent with a
proper symplectic structure in phase space.

The regulated action in (8) is symmetric under the
transformation

z → λz; M → λM; ϕ → λðd−2Þ=2ϕ: ð10Þ

This is a full quantum symmetry of the wave functional

hφjΩ½b;M; z�i ¼ hλðd−2Þ=2φjΩ½b; λM; λz�i; ð11Þ

if the Jacobian coming from the path integral measure is
absorbed into Ub. This generalizes to a much larger
background symmetry involving a bilocal linear action
on the fields, but we will suppress some of these details
here. We regard (11) as a background Ward identity.
There are two steps involved in the ERG. For the details

of the calculations involved, the reader may consult [8] and
Appendix A. The first step is to lower the cutoffM → M=λ.
After some formal manipulations, one finds that the
infinitesimal transformation can be written as a differential
operator acting on the wave functional,

−M∂MhφjΩ½b�i ¼ hφj
�
β½b� δ

δb
þ iK̂

�
jΩ½b�i; ð12Þ

where K̂ is a self-adjoint disentangler as in (3) with

gz ¼ M∂M logK ð13Þ

and

β½b� ¼ b · Δb · b; Δb ¼
1

z
M∂MðD−2Þ ð14Þ

can be regarded as a β-function, a functional of the state
source b. In the second step of ERG, we make an
infinitesimal symmetry transformation of the form (11)
to bring M back to its original value. Infinitesimally, the
result can be written as

hφjðz∂z þM∂M − iL̂Þ · jΩ½b�i ¼ 0; ð15Þ

where L̂ is the scaling operator in (2). Combining (15) with
(12), we arrive at the flow equation

z∂zhφjΩ½b�i ¼ hφj
�
β½b� δ

δb
þ iK̂þ iL̂

�
jΩ½b�i: ð16Þ

This equation can be integrated by enforcing the RG flow
equation z∂zbðzÞ ¼ β½bðzÞ� for the source. We say that such
states have “jumped onto the flow”, and we obtain the
unitary flow equation

jΩðz; bðzÞÞi ¼ Pz

h
ei
R

z

1

dz0
z0 ðK̂ðz0ÞþL̂Þ

i
jΩð1; bð0ÞÞi: ð17Þ

3We recall from [8] that the term with support on Σ is required
in order for the boundary conditions to be consistent. Indeed,
classically, the variation of the action has the form δS0½ϕ� ¼
−
R
Σ δϕ · K−1 · ∂tϕ on shell, and so Dirichlet conditions on Σ are

consistent. Allowing time derivatives in the regulator function
would spoil the canonical structure.
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As was remarked in [8] and recapitulated in the introduc-
tion, the ERG flow in (17) resembles the unitary flow in the
cMERA construction, but differs from the cMERA flow in
some crucial aspects. In the next section we will modify the
ERG construction to accommodate the additional features
of cMERA.

III. NONRELATIVISTIC FLOWS

As we noted in the introduction, the UV limit of many
cMERA models resembles the theory of a nonrelativistic
boson. Although the regulated action in (8) is not strictly
Lorentz invariant due to the regulating function, it retains
the dispersion relation of a Lorentz invariant theory. A
crucial feature of the ERG is the freedom to choose the
regulating function. In particular, there is no a priori reason
to pick a regulator which respects such a dispersion. Thus,
the modification that we make in this paper is to generalize
the regulator so that

Snr0 ½ϕ;φ� ¼ −
1

2zd−2

Z
M−

ϕ · D̃2 · ϕ −
1

2zd−2

Z
Σ
φ · K−1

0 ∂t · ϕ

ð18Þ

with

D̃2 ¼ −K−1
0 ∂

2
t þ K−1

s ∇⃗2

¼ K−1
s

�
−v−2ph ∂2t þ ∇⃗2�: ð19Þ

Here, we have introduced two distinct functions which we
call K0 and Ks that regulate the temporal and spatial parts
of the free action, respectively. Now the regulated action
has a dispersion controlled by the ratio of the two regulating
functions,

ω ¼ vph p; vph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0=Ks

p
: ð20Þ

Ks plays the role of a regulator for momentum modes of
the field, and we take it to be a function of zp=M with
KsðuÞ → 0 at large u and KsðuÞ → 1 at small u.
We are left with some freedom in the choice of K0. Here

we will take K0 to be a function of zp=M and p=μ for some
new intermediate scale μ. The transformation in (11) then
remains a symmetry of the action and we can repeat the
previous ERG construction. To summarize, we consider

Ksðzp=MÞ; vphðp=μ; zp=MÞ: ð21Þ

At this stage, there are two scales in the problem: 1) the
renormalization scale M=z, and 2) an intermediate scale μ
where we might allow the dispersion to transition, for
example, from a nonrelativistic to a relativistic form;
see Fig. 1.

Before proceeding, let us note that this choice of
regulator is natural if we consider the path integral in
phase space or in first order terms. Then,

hφðx⃗ÞjΩ½b�i ∼
Z

½DπDϕ�ϕð0;x⃗Þ¼φðx⃗Þ
ϕð−i∞;x⃗Þ→0

eiðS0þSBþUbÞ; ð22Þ

where

Snr0 ½ϕ; π� ¼
Z

dt

�
π · ϕ̇ −

1

2
π · K0 · π þ 1

2
ϕ · K−1

s ∇⃗2 · ϕ

�
:

ð23Þ

So we see that in phase space,Ks and K0 appear as separate
regulator functions for the momentum modes of the field
and its conjugate momentum field, respectively.
It is well-known that the ground state wave functional in

a free theory is Gaussian. It can be written in the form

hφjΩi ∼ exp

�
−
1

2

Z
p⃗
G−1φaðp⃗Þφað−p⃗Þ

�
;

G ¼ zd−2
ffiffiffiffiffiffiffiffiffiffiffi
K0Ks

p
p

¼ zd−2Ks
vph
p

: ð24Þ

where in the second line we have written the kernel G in
terms of the functions K0, Ks defining the path integral. In
Appendix D, we verify this is the correct wave functional
by canonically quantizing the Hamiltonian at a scale z.
The key observation is that the ground-state wave

functional is controlled by the combination K̃ ¼ Ksvph.
To understand how this controls the entanglement of the
state, it is conceptually useful to keep in mind the three
distinct regions of momentum space defined by our set of
regulators. Explicitly, these three regions are:

(i) Low momentum modes with p ≤ μ,
(ii) Intermediate momenta with μ ≤ p ≤ M=z,
(iii) High momentum modes with p ≥ M=z.

FIG. 1. The smooth cutoff function Ks suppresses the high-
momentum modes above p > M=z. The phase velocity vph
transitions from relativistic vph ¼ 1 to the nonrelativistic vph ∼ p
at some crossover scale p ∼ μ. In nonrelativistic ERG, the
combination K̃ ¼ Ksvph controls the locality of the disentangler
which can be smoother than Ks.
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As a regulator, Ks effectively “removes” the high-momen-
tum modes in region III. Thus, the behavior of the ground
state is essentially controlled by the regions I and II. In
these regions we have Ks ∼ 1, and so the kernel G in the
wave functional is entirely determined by the phase
velocity vph=p. Note that in the UV, when z is very small,
region II’s contribution to the wave functional dominates
that of region I, whereas in the IR only region I contributes.
With this in mind, we regard region II as controlling the UV
behavior of the ground state while region I controls the IR
behavior.
If we want the UV state to be unentangled in position

space, as in (5), we need the dispersion in region II to
be such that vph ∼ p for almost all p. In other words, the
UV dispersion should be the nonrelativistic ωðpÞ ∼ p2,
whereas a relativistic IR requires limz→∞vph ¼ 1. These are
requirements that are not hard to satisfy. As an explicit
example, consider the choice

vphðp=μ; zp=MÞ2 ¼ 1þ
�

M2

p2z2

��
p4

μ4

�
: ð25Þ

Indeed, in the regime μ ≪ p ≪ M=z, we have ω ∼ M
zμ2 p

2

while ω → p for p ≪ μ. So for z ∼ 1, there is a large range
of momentum over which the dispersion is nonrelativistic,
whereas as when z has increased beyond M=μ, a transition
to a relativistic dispersion occurs. In Appendix E, we
establish that this choice corresponds to a particular
construction discussed in [11] called magic cMERA. A
sketch can be found in Fig. 1.
What remains to be done is to repeat the ERG analysis

for the generator of quantum states in the presence of the
nonrelativistic regulator. In fact, the analysis is a straight-
forward generalization, and we obtain (see Appendix A)

z∂zhφjΩ½b�i ¼ hφj
�
−trM

�
β̃½b� · δ

δb

�
þ iK̂þ iL̂

�
jΩ½b�i;

ð26Þ

where

β̃½b� ¼ b · Δ̃b · b; Δ̃b ¼ M∂MðD̃−2Þ; ð27Þ

and

g̃z ¼ M∂M logðKsvphÞ: ð28Þ

We see that each of these kernels depends on both K0 and
Ks, or equivalently Ks and vph. Specializing the analysis to
the ground state by setting b to zero, one indeed finds the
ground state wave functional is of the form (24).
In comparing these nonrelativistic flows to cMERA, it is

clear that with choices such as the one in (25) the UV states

are unentangled. What remains to be checked the locality of
the disentangler. For any nonrelativistic flow, the expres-
sion for the kernel of the disentangler gz is given by the
logarithmic derivative of K̃ ¼ Ksvph. It is this quantity
which then decides the local properties of the coarse-
graining. Given a choice such as that in (25), the growth of
vph has the effect of widening the regulator in momentum
space. This in turn sharpens the disentangler in position
space, giving the desired real-space coarse graining. On
more general grounds, since vph grows with p to obtain a
disentangled UV state, the cutoff function will always have
some amount of smoothing, leading to a local kernel for the
disentangler in position space. For some explicit examples,
see Appendix B.

IV. SUMMARY AND DISCUSSIONS

In summary, we have generalized the ERG to include
nonrelativistic flows of quantum states. In doing so, we
have demonstrated by construction that cMERA can be
defined intrinsically in the continuum from a microscopic
description. By regulating the time and space derivatives
in the Lagrangian separately, we have allowed for a cutoff
dependent dispersion relation that changes the real space
entanglement pattern of the ground state. By choosing these
two regulators such that the theory is spatially unentangled
in the UV, we have recovered the usual coarse-graining
operators found in earlier cMERA constructions.
Perhaps the most promising feature of our generalized

ERG is that it provides a systematic method to include
interactions. Incorporating interactions in cMERA models
using operator methods has proven to be difficult. For
progress in this direction, see [12–15]. On the other hand,
the path integral makes the incorporation of interactions
straightforward, at least in principle. The major technical
difficulty is in finding appropriate limits where the ERG
flow equations become tractable. While in this paper we
explored the free fixed point, the ERG is also well-behaved
in large N expansions and for certain exactly solvable
deformations such as TT̄ [16]. These features of the ERG
offer an exciting potential avenue to consistently define
interacting cMERAs and ultimately make contact with
holography, and the establishment of our result here is an
important first step in that process.
Another interesting observation concerning our gener-

alized RG flows is that they can accommodate more exotic
unitary networks than cMERA. Indeed, by appropriately
choosing the smooth cutoff functions K0 and Ks, we can
tune the properties of the ground state wave functional both
in the UV and the IR. For example, we could construct a
ground state which takes the form

hϕðx⃗Þj0i ∝ exp

�
−
1

2

Z
p⃗
pαφð−p⃗Þφðp⃗Þ

�
ð29Þ
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for any non-negative real number α. The choice α ¼ 1
coincides with the relativistic free boson while α ¼ 0 yields
the unentangled ground state of the nonrelativistic free
boson. Other choices correspond to Lifshitz-like disper-
sions ω ∼ p1þα. We leave the exploration of such networks,
their entanglement properties, whether the operator algebra
is of type I or type III, and the connection to recent work
in [17] to future investigations. Note that the ERG forma-
lism discussed here can accommodate any Gaussian theory,
including theories without a local action such as general-
ized free fields.
It would also be interesting to further explore the

connection between renormalization and error correction
as put forth in [18]. There, the RG flows are viewed as an
encoding channel for a particular set of low-energy states.
How does the error correction picture generalize to the
full ERG scheme, and what is the role of the large N limit?
By exploring large N in both the interacting and non-
interacting cases, we may use these continuous unitary
networks as a toy model for better understanding the role
of large N in holographic systems in contrast to other
features of holographic models such as large gap and strong
coupling.
Finally, in the ERG there are natural generalizations

that lead to nonunitary flows which go beyond standard
cMERA networks. In general, the expectation is that such
ERG schemes correspond to a one-parameter family of
quantum channels. These nonunitary channels may eluci-
date features of RG which connect to nonunitary entangle-
ment renormalization schemes such as continuous tensor
network renormalization (cTNR), and the nonunitary
generalization of MERA such as those discussed [5,19].
Furthermore, extending our formalism to nonunitary ERG
schemes may shed light on questions regarding RG
monotones and irreversibility.
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APPENDIX A: ERG FOR NONRELATIVISTIC
STATES

Let us recall the definition of the excited states we
consider in the body of the paper,

hφðx⃗ÞjΩ½b�i¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z½b;Ub�

p Z
½Dϕ�φ expð−Snr0 ½ϕ;φ�−SbÞ;

Snr0 ¼ −1
2zd−2

�Z
M−

ϕa ·D̃2 ·ϕa−
Z
Σ
φa ·K−1

0 ∂tϕ
a
���
Σ

�
;

Sb¼
1

2zd−2

Z
M−

ϕa ·b ·ϕaþUb: ðA1Þ

By requiring these states to be normalized, the prefactor in
the state is determined to be

Z½b;Ub� ¼
Z

½Dϕ� exp
�
−

1

2zd−2

Z
M

ϕa · ð−D̃2 þ bÞ

· ϕa − Ub

�
: ðA2Þ

This object may be regarded as the Euclidean “partition
function” corresponding to the state jΩ½b�i. It is then
natural to require that Z½b;Ub� satisfy the usual ERG
condition z d

dz Z½b;Ub� ¼ 0. This will generally only be
possible if the sources b and Ub themselves flow as running
couplings. We must be careful to do this in a way that is
consistent with the factorization of the path integral into
states. This is done by first computing z d

dz hφðx⃗Þjb̃i directly,
where jb̃i ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z½b;Ub�
p jΩ½b�i is the unnormalized path

integral state. Then,

z
d
dz

Z½b;Ub� ¼
Z

½Dφ�
�
z
d
dz

hb̃jφðx⃗Þi
�
hφðx⃗Þjb̃i

þ
Z

½Dφ� hb̃jφðx⃗Þiz d
dz

hφðx⃗Þjb̃i ¼ 0: ðA3Þ

Taking the derivative of the unnormalized path-integral
state yields

z
d
dz

hφðx⃗Þjb̃i ¼ −
Z

½Dϕ�φ
�
z
d
dz

Snr0 þ z
d
dz

Sb

�
e−S

nr
0
−Sb :

ðA4Þ

Evaluating the derivatives explicitly, one finds,

z
d
dz

Sb ¼
1

2zd−2

Z
M−

ϕa ·

�
z
d
dz

b

�
· ϕa

−
d − 2

2zd−1

Z
M−

ϕa · b · ϕa þ z
d
dz

Ub; ðA5Þ

z
d
dz

Snr0 ¼ −
1

2zd−2

Z
M−

ϕa · D̃2 · Δb · D̃2 · ϕa

−
1

2zd−2

Z
Σ
φa · g · K−1

0

�
z2∇2

M2

�
∂tϕ

a
���
Σ

ðA6Þ
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−
ðd − 2Þ
2zd−1

Z
M−

ϕa · D̃2 · ϕa −
ðd − 2Þ
2zd−1

Z
Σ
φa · K−1

0 · ∂tϕa
���
Σ
;

ðA7Þ

where we have defined the bilocal kernels

Δbðx; yÞ ¼ z
d
dz

ðD̃2Þ−1ðx; yÞ;

gðx⃗; y⃗Þ ¼
�
z
d
dz

log ðK0ðz2∇2=M2Þ∂tÞ
�
ðx⃗; y⃗Þ: ðA8Þ

To proceed we will need to use a result which is straight-
forward to prove (see for example Appendix D. 1 of [8]).
For our path integral states, the identity is a Schwinger-
Dyson equation for operator insertions O in the path
integral which reads

O
δSnr0
δϕ

∼
δO
δϕ

−
δSb
δϕ

: ðA9Þ

Applying this identity twice to the first term of (A6), one
obtains

−
1

2zd−2

Z
M−

ϕa · D̃2 · Δb · D̃2 · ϕa

∼ −
1

2zd−2

Z
M−

�
trðD̃2 · ΔbÞ − trðΔb · bÞ

þ ϕa · b · Δb · b · ϕa
	
: ðA10Þ

Similarly in the third term of (A6), we have

−
d − 2

2zd−1

Z
M−

ϕa · D̃2 · ϕa

¼ −
d − 2

2zd−1

�
trðIdM−

Þ −
Z
M−

ϕa · b · ϕa

�
; ðA11Þ

where IdM−
is the delta function restricted to the lower half

plane. By comparing all the terms we have written out so
far, we see that all the quadratic insertions in the integrand
are canceled if the source b satisfies

z
d
dz

b ¼
Z
M−

b · Δb · b: ðA12Þ

Since quadratic terms contain no boundary dependence and
using the fact that Z½b;Ub� is reflection symmetric, this
result is also the necessary flow equation to ensure such
terms cancel in the expression for the partition function as
well. What remains then are the normalizations and a
boundary term,

z
d
dz

hφðx⃗Þjb̃i ¼ −
Z

½Dϕ�φ e−Snr0 −Sb
�
z
d
dz

Ub þ
1

2

Z
Σ
φa ·ΔΣ

·
δ

δφa −
1

2zd−2

Z
M−

tr

�
D̃2 ·Δb −Δb

· bþ d− 2

z
IdM−

��
; ðA13Þ

where we have also defined the boundary kernel
ΔΣðx⃗; y⃗Þ ¼ gðx⃗; y⃗Þ þ d−2

z δðd−1Þðx⃗ − y⃗Þ. Plugging this into
the expression for Z½b;Ub�, we then obtain

z
d
dz

Z½b;Ub� ¼ −
Z

½Dφ�½Dϕ� e−Snr0 †−S†b

�
2z

d
dz

Ub −
1

zd−2

×
Z
M−

tr

�
D̃2 · Δb − Δb · bþ d − 2

z
IdM−

�

þ 1

2

Z
Σ

�
φa · ΔΣ ·

δ

δφa þ
δ⃖

δφa · ΔΣ · φa

��
× e−S

nr
0
−Sb : ðA14Þ

The dagger in the above expression denotes Euclidean-time
reflection. The difference in order in the last two terms
ensures that the time derivative pulled down comes from
the correct half of the Euclidean plane. But, we may then
integrate by parts in the path integral, producing the
commutator ½φaðx⃗Þ; δ

δφaðy⃗Þ� ¼ −δðd−1Þðx⃗; y⃗Þ. We then con-

clude that invariance of the partition function demands

z
d
dz

Ub ¼
1

2zd−2

Z
M−

tr

�
D̃2 · Δb − Δb · bþ d − 2

z
IdM−

�

þ 1

4

Z
Σ
trðΔΣÞ: ðA15Þ

Using this last relation, we may finally conclude that the
normalized wave functional satisfies the flow equation

z
d
dz

hφðx⃗ÞjΩ½b�ðzÞi ¼
Z

½Dϕ�φe−Snr0 −Sb
�
1

2

Z
Σ
φa · g ·

δ

δφa

þ 1

4

Z
Σ
trðgÞ

�
ðA16Þ

or, written more symmetrically,

z
d
dz

hφðx⃗ÞjΩ½b�ðzÞi ¼
Z

½Dϕ�φe−Snr0 −Sb
�
1

4

Z
Σ



φa · g ·

δ

δφa

þ δ

δφa · g · φ
a

��
: ðA17Þ
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APPENDIX B: QUASILOCAL DISENTANGLERS

Equation (13) relates the kernel of the disentangler in (3)
to the smooth regulator function K,

gz ¼ M∂M logK: ðB1Þ

It is natural to choose functions K which smoothly
approximate a Heaviside function centered at the effective
scale M=z. In this appendix, we explore two such choices
of K that lead to quasilocal disentanglers. The first choice
of K suppresses the high-momentum modes exponentially,
and the other choice suppresses them by a power law,

Kexp;αðzp=MÞ ¼ 1þ e−α

1þ eαðzp=M−1Þ ;

Kpl;αðzp=MÞ ¼ 1

1þ ðzp=MÞ2α ; ðB2Þ

and both tend to a sharp cutoff in the limit α → ∞.
It follows from (B1) that these choices correspond to the

disentanglers with the kernel

gexp;αðpÞ ¼
αzp
M

�
1 −

1

1þ eαðzp=M−1Þ

�
;

gpl;αðpÞ ¼ 2α

�
1 −

1

1þ ðzp=MÞ2α
�
; ðB3Þ

respectively. In real space they become

gexp;αðr⃗Þ ¼
αz
Mjrj

�
δðr⃗Þ − 1

1þ eαðzj∇rj=M−1Þ

�
;

gpl;αðr⃗Þ ¼ 2α

�
δðr⃗Þ − 1

1þ ðz2∇2
r=M2Þα

�
; ðB4Þ

and their disentanglers are

K̂ðzÞ ¼ 1

4

Z �
φ̂aðx⃗Þgzðr⃗Þπ̂aðx⃗þ r⃗Þ þ H:c:

�
: ðB5Þ

The term proportional to the δðr⃗Þ is manifestly quasilocal,
so we only need to consider the remaining nonlocal term. In
position space, the exponential and the power law cases,
respectively, give

αz

ð2πMÞd=2rd=2−1
Z

∞

0

dp
pd=2þ1

1þ eαðpz=M−1Þ Jd=2−1ðpr=MÞ;

2α

ð2πÞd=2rd=2−1
Z

∞

0

dp
pd=2

1þ ðzp=MÞ2α Jd=2−1ðpr=MÞ: ðB6Þ

Both integrals are oscillating functions of r=z with an
amplitude that decays. As we increase α and z the dis-
entangler kernel gzðr⃗Þ becomes more nonlocal. However,

for all values of α, the decay of gexp in r is power law,
whereas the decay of gpl is exponential in r; see Fig. 2.

APPENDIX C: CALCULATING THE GROUND-
STATE WAVE FUNCTIONAL

Here, we calculate the ground-state wave functional in
the theory with the nonrelativistic cutoffs K0 and Ks at
any z by evaluating the path integral for generic transition
amplitudes first and then taking a limit. This discussion
closely parallels the one presented in [8].
Consider the transition amplitude between times t− and

tþ with fixed field configurations φ− and φþ, respectively,

hφþ; tþjφ−; t−i≡ Z½φ��≡N
Z

½Dϕ�φþ
φ−e

iSnr
0 ðC1Þ

with the nonrelativistically regulated action

Snr0 ¼ 1

2zd−2

Z
tþ

t−

dt
Z

dDx⃗ϕðt; x⃗Þ
�
−K−1

0

�
−

z2

M2
D⃗2

�
D2

t

þ K−1
s

�
−

z2

M2
D⃗2

�
D⃗2

�
ϕðt; x⃗Þ ðC2Þ

þ
X
�

� 1

2zd−2

Z
Σ
dDx⃗φ� · K−1

0

�
−

z2

M2
D⃗2

�
·Dtϕ

���
t�
:

ðC3Þ

The normalization of the path integral N is fixed using
the conditions of orthonormality and factorization by a
complete set of states [8].
We make the field redefinition ϕ ¼ ϕc þ χ with ϕc the

classical solution to the equations of motion subject to the
boundary conditions φ� and χ the quantum fluctuations
forced to zero at the boundary. The classical solution is

FIG. 2. Log-log plot of the position space kernels gpl in orange
and gexp in blue. Power law suppression in momentum space
leads to exponential falloff in position space and vice versa. Plot
values are α ¼ 10 and d ¼ 1.
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ϕðt; x⃗Þ ¼
Z

dDp
ð2πÞD eip⃗·x⃗



eiωp⃗ðt−t−Þ e

iωp⃗Tφþðp⃗Þ − φ−ðp⃗Þ
2ieiωp⃗T sinωp⃗T

− e−iωp⃗ðt−t−Þ e
−iωp⃗Tφþðp⃗Þ − φ−ðp⃗Þ
2ie−iωp⃗T sinωp⃗T

�
ωp⃗¼

ffiffiffiffi
K0
Ks

p
p

ðC4Þ

which gives

ϕ̇ðtþ; p⃗Þ ¼
ωp⃗

sinωp⃗T

�
φþðp⃗Þ cosωp⃗T − φ−ðp⃗Þ

	
;

ϕ̇ðt−; p⃗Þ ¼
ωp⃗

sinωp⃗T

�
φþðp⃗Þ − φ−ðp⃗Þ cosωp⃗T

	
: ðC5Þ

The shift of the field leaves a path integral over χ with
Dirichlet boundary conditions times a classical boundary
action

SB ¼
X
�

� 1

2zd−2

Z
Σ
dDx⃗φ�K−1

0 Dtϕcjt�

¼ 1

2zd−2

Z
dDp⃗
ð2πÞD

ωp⃗

sinðωp⃗TÞ
K−1

0

�
z2

M2
p⃗2

�

×
�
cosðωp⃗TÞðφþðp⃗Þφþð−p⃗Þ þ φ−ðp⃗Þφ−ð−p⃗ÞÞ

− 2φþðp⃗Þφ−ð−p⃗Þ
�
; ðC6Þ

where T ¼ tþ − t− and

ω2
p⃗ ¼ K0

Ks
p2: ðC7Þ

The path integral over χ can be evaluated using eigen-
functions of D⃗2 giving the explicit expression for the free
transition amplitude (see [8] for more detail),

Z½φþ;φ−� ¼
Y
p⃗

�
z2−dK−1

0 ωp⃗

i2π sinðωp⃗TÞ
�N=2

× exp

�
i

2zd−2

Z
dDp⃗
ð2πÞD

ωp⃗

sinðωp⃗TÞ
×K−1

0

�
cosðωp⃗TÞðφþðp⃗Þφþð−p⃗Þ

þφ−ðp⃗Þφ−ð−p⃗ÞÞ− 2φþðp⃗Þφ−ð−p⃗Þ
�� ðC8Þ

which is Gaussian in φ�.
Consider the case where the contour is purely Euclidean,

running from ti ¼ iT to tf ¼ −iT. As discussed in [8], in
the limit T → ∞ the falloff of the transition amplitude with
T factors into pieces given by the ground-state wave
functional. Using (C8) we have

lim
β→∞

Z½φþ;φ−� ¼
Y
p⃗

�
z2−dK−1

0 ωp⃗

πe2ωp⃗T

�N=2

× exp

�
−

1

2zd−2

Z
dDp⃗
ð2πÞD K−1

0

�
z2

M2
p⃗2

�

× ωp⃗

�
φþðp⃗Þφþð−p⃗Þ þ φ−ðp⃗Þφ−ð−p⃗Þ

��
¼ e−2TEΩΨ�

Ω½φþ�ΨΩ½φ−�: ðC9Þ

From here it is easy to isolate the expression for the ground-
state wave functional in the regulated theory,

ΨΩ½φ� ¼
Y
p⃗

ðz2−dπ−1ωp⃗K−1
0 ÞN=4

× exp

�
−

1

2zd−2

Z
dDp⃗
ð2πÞD

ffiffiffiffiffiffiffiffiffiffiffi
p⃗2

K0Ks

s
φðp⃗Þφð−p⃗Þ

�
:

ðC10Þ

APPENDIX D: CANONICAL QUANTIZATION
AND OPERATOR RENORMALIZATION

A complementary viewpoint is obtained by considering
the canonical quantization of the model (18) at a given scale
set by z. This can be interpreted as a Gaussian deformation

Sdef ¼
Z
x
πaðxÞK−1

s ðv−2ph − 1ÞπaðxÞ ðD1Þ

away from the relativistically dispersing theory that fine-
tunes the dispersion vphp to the desired form. As in (23),
the Hamiltonian corresponding to the regulated action is
quadratic,

HðzÞ ¼ 1

2

Z
p⃗

�
K0π

að−p⃗Þπaðp⃗Þ þ K−1
s p2φað−p⃗Þφaðp⃗Þ�

¼ 1

2

Z
p⃗
p vph

�
Gπað−p⃗Þπaðp⃗Þ þ G−1φað−p⃗Þφaðp⃗Þ�;

ðD2Þ

where G ¼ zd−2K̃=p is the same distribution appearing
in (24). The factors of zd−2 inG correspond to the canonical
dimension of the field under a Weyl rescaling. It will lead to
the scaling operator L̂ in the RG flow.
We canonically quantize the theory by defining the scale-

dependent annihilation operator
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b̂az ðp⃗Þ ¼
1ffiffiffi
2

p �
G−1=2 φ̂aðp⃗Þ þ iGþ1=2π̂aðp⃗Þ�;

ĤðzÞ ¼ 1

2

Z
p⃗
ωp⃗ b̂

a
zðp⃗Þ†b̂a;zðp⃗Þ þ EΩÎ; ðD3Þ

which depends on K0 and Ks only through the combination
G. We can think of the act of increasing z as corresponding
[20,21] to a canonical transformation Ûz that renormalizes
the free field and its canonical-conjugate momentum field
according to

b̂z ¼ ÛzâÛ
†
z ;

Ûzφ̂
aðp⃗ÞÛ†

z ¼ G−1=2φ̂aðp⃗Þ;
Ûzπ̂

aðp⃗ÞÛ†
z ¼ G1=2π̂aðp⃗Þ: ðD4Þ

Such unitary transformations are called the unitary squeez-
ing operators,

Ûz ¼
Y
p⃗

Ŝp⃗

�
−
1

2
logG

�
;

Ŝp⃗ðξÞ ≔ exp
�
ξâ†aðp⃗Þâ†að−p⃗Þ − ξ�âaðp⃗Þâað−p⃗Þ

�
;

âðp⃗Þ ¼
ffiffiffiffi
p
2

r
φ̂aðp⃗Þ þ

iπ̂aðp⃗Þffiffiffiffiffiffi
2p

p : ðD5Þ

More explicitly,

Ûz ¼ exp

�
i
2

Z
p⃗
logG

�
φ̂ð−p⃗Þπ̂ðp⃗Þ þ π̂ð−⃗pÞφ̂ðp⃗Þ��:

The vacuum at scale z is related to the free field vacuum by
jΩðzÞi ¼ ÛzjΩi because it is annihilated by all b̂αz ðp⃗Þ. In
other words, the vacuum at scale z satisfies

ðφ̂aðp⃗Þ þ iGπ̂aðp⃗ÞÞjΩðzÞi ¼ 0 ðD6Þ

which is solved by the vacuum-squeezed wave functional
in (24).
We can write down (D5) as a unitary flow

Ûz ¼ ei
R

z

1

dz0
z0 ðK̂ðz0ÞþL̂Þ; ðD7Þ

where L̂ is the scaling operator in (2), and K̂ is the
disentangler in (3) with the new kernel in (28) in exact
analogy with (26). Note that if the phase velocity vph is
chosen to be independent of z, one has to multiply (D7) by
an initial unitary that corresponds to an irrelevant defor-
mation at z ¼ 1.

APPENDIX E: MAGIC cMERA

In [11] an example of cMERA for two-dimensional
massless free bosons was constructed with the special
property that at any point along the flow, the state ÛzjΛi
was the exact ground state of a strictly local Hamiltonian
HðzÞ,

ĤðzÞ ¼ 1

2

Z �
π̂ðxÞ2 þ ð∂xϕ̂Þ2 þ

1

z2Λ2
ð∂xπ̂Þ2

�
: ðE1Þ

This construction was called magic cMERA. It corresponds
to an irrelevant deformation of the theory similar to (D1)
that modifies the dispersion relation in the UV to allow for
unentangled states. To see this explicitly, we rewrite the
Hamiltonian in momentum space, and notice that it takes
the form in (D2) for the choice

K0 ¼ 1þ p2

z2Λ2
; Ks ¼ 1: ðE2Þ

The dispersion relation is modified to

vph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

z2Λ2

s
ðE3Þ

which has the desired form both in the IR limz→∞vph → 1,
and in the UV it becomes nonrelativistic

z ≪ 1∶ vph ∼
p
zΛ

: ðE4Þ

Note that this deviates from our discussion of cMERA up
to here, because we were requiring the state at z ¼ 1 to be
the unentangled nonrelativistic ground state jΛi. To arrange
for jΛi at z ¼ 1, the authors of [11] also considered a
deformation of (E1) by a mass term Λϕ̂2.
Deep in the UV the ground-state wave functional in (24)

factors in real space as in (5) as desired. Comparing to our
ERG construction, we make the following two observa-
tions. Note that the dispersion of magic cMERA in (E3) is
the special case in (25) with Λ ¼ μ2=M. Second, in our
nonrelativistic ERG, Ks played the role of a smooth
regulator. Here, since Ks ¼ 1 the magic cMERA corre-
sponds to an unregulated version of the theory. Thus, the
ERG construction can be thought of as an elaboration in the
context of a properly regulated theory.
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