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We continue the study of the Tomita-Takesaki modular conjugation for a massless Dirac field in a
generic multicomponent region in 1þ 1 spacetime dimensions. In this paper we focus on the computations
for a thermal state on a circle, namely on the euclidean torus. By analytic continuation from the modular
flow we arrive at an explicit expression for the modular conjugation in this scenario and derive its relevant
limits. In contrast to the case of the vacuum on the line, this new result has a nonlocal behavior even for
connected regions. It also presents a novel contribution coming from the purification one has to introduce in
order to deal with a mixed state; a term that maps the algebra of operators of the region to a copy of the
global one, the so-called “second world” algebra.
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I. INTRODUCTION

Over the last years the study of entanglement and
information-theoretic aspects of quantum field theory
(QFT) has become increasingly important. For instance,
we can mention the well-known renormalization group
flow irreversibility theorems, which were proven in several
contexts using the strong subadditivity of the entanglement
entropy or the monotonicity of the relative entropy [1–5].
There have also been applications in the proof of several
energy inequalities [6,7], and even to holography, for
example in the derivation of the linearized Einstein equa-
tions in the bulk from entanglement properties of the
boundary conformal theory [8–11].
In many of these applications, the knowledge of entan-

glement or modular Hamiltonians has proven to be
extremely valuable. Although the first known examples
of modular Hamiltonians where local [12–15], in general
they are very complicated nonlocal quantities [16–20].
Since it is defined as the logarithm of the density matrix,
the modular Hamiltonian is ultimately ill-defined in any
continuum theory such as QFT; but surprisingly, the

dynamics it generates—the modular flow—does have a
well-defined continuum limit. The modular flow emerges
in a rigorous way in the context of the Tomita-Takesaki
modular theory of operator algebras (see Sec. II or [21,22]
for a review), which is a very rich topic concerned about the
properties of the modular operator (Δ) and the modular
conjugation (J). It is the former operator which is related to
the modular flow and hence the modular Hamiltonian.
Much less attention has been paid to the modular

conjugation and explicit expressions are available in very
few cases, most of them being vacuum states reduced to
single component regions. Famous examples are the vacuum
state of any theory reduced to the Rindler wedge (this is
the well-known Bisognano-Wichmann theorem [12,13]) or a
conformal field theory (CFT) in a double cone region [23].
More recently, an explicit expression for J was found in the
case of the vacuum state for a free massless fermion in 1þ 1
spacetime dimensions (a chiral fermion) reduced to an
arbitrary multicomponent region [24]. Also, the modular
conjugation for thermal states is known for the chiral fermion
reduced to a double cone [25]. In this article we seek to
expand this result to more general regions.
The paper is organized as follows. In Sec. II we introduce

the Tomita-Takesaki theory and discuss some of its proper-
ties and relation to QFT. In Sec. III we describe the relevant
aspects about the model we are interested in, a thermal state
of the chiral fermion in 1þ 1 spacetime dimensions living
on a circle. Section IV contains the main result of our work:
an explicit expression for the modular conjugation operator
for multicomponent regions in our model. Previously,
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we introduce the method employed to derive this result
reviewing the recently found case of a vacuum state on the
infinite line [24], which is simpler. Our computation shows
some interesting novelties related to the nonzero temperature
of the state, in particular it displays an explicit contribution
form the copy of the theory (the “second world”) one
introduces to purify the state, and in this section we describe
this contribution in detail. Also in this section we derive
some interesting limits of our result and compare them with
previously known examples, when possible. Finally, in
Sec. V we conclude with a discussion of our results.

II. TOMITA-TAKESAKI THEORY

Tomita-Takesaki theory is the study of von Neumann
algebras admitting a cyclic and separating vector. We refer
the reader to our previous work on the subject for a review
of these concepts [24]. The starting point is the introduction
of the Tomita operator, defined over the dense set of states
generated by such an algebra A acting on the cyclic and
separating vector jΩi by

SajΩi ¼ a†jΩi: ð2:1Þ
This is an unbounded antilinear operator satisfying S2 ¼ 1,
and thus invertible with S−1 ¼ S. It is also closeable so it
admits a unique polar decomposition,

S ¼ JΔ1=2; ð2:2Þ
where Δ is positive and J antiunitary. These are the
modular operator and modular conjugation associated
with A and jΩi, respectively. The main result of Tomita-
Takesaki theory is stated in terms of these two operators,

ΔisAΔ−is ¼ Aðs∈RÞ and JAJ ¼ A0; ð2:3Þ
which means that the modular operator defines a one-
parameter group of automorphisms on the algebra called
the modular flow, and that the modular conjugation gives
an isomorphism between the algebra and its commutantA0.
Another important property which is fundamental for our
work is that J ¼ J†, and thus J2 ¼ 1.
For finite-dimensional algebras acting on some factor

of a product Hilbert space, the modular operator is closely
related to the reduced density matrices associated with jΩi,
and the modular flow is given by the dynamics generated
by these density matrices. Furthermore, the modular flow
coincides with the time evolution in the case of a thermal
state of unit temperature. This last fact is generalized to
infinite-dimensional algebras via the so-called KMS con-
dition and its relation to Tomita-Takesaki theory. Consider
a state ϕ and let α∶R ×A → A be a one-parameter group
of automorphisms of A which may be thought as some
dynamics on the system. One says that α satisfies the
Kubo-Martin-Schwinger (KMS) condition with respect to
ϕ if for every a; b∈A there exists a complex functionGðzÞ

analytic on the strip Im z∈ ð−β; 0Þ and continuous on its
closure, such that

GðsÞ¼haαsðbÞiϕ and Gðs− iβÞ¼hbα−sðaÞiϕ ð2:4Þ

for s∈R. This condition characterizes thermal states at
inverse temperature β in the infinite-dimensional setting. It
turns out that the modular flow αsðaÞ ¼ ΔisaΔ−is satisfies
the KMS condition with respect to the cyclic and separating
jΩi for β ¼ 1, a fact sometimes called the modular
condition. Actually, it can be shown that it is the only
one-parameter group satisfying this condition.
In order to prove the last statement another important

intermediate result is used. The latter will be extensively
employed in this work and states that the map s ↦ ΔisajΩi
is analytic on the interior of the strip Im s∈ ð−1=2; 0Þ and
continuous on its boundary.
There is a natural way of associating a von Neumann

algebra AðUÞ to every spacetime region U in any QFT,
namely taking the double commutant of the algebra of
bounded operators localized in U. A famous result in QFT
known as the Reeh-Schlieder theorem establishes that the
vacuum state jΩi is cyclic for any algebraAðUÞ such thatU is
nonempty. If the causal compliment U 0, i.e., the largest open
region spacelike separated fromU, is also nonempty, then jΩi
is also cyclic forAðU 0Þ. Due to the fact that any cyclic vector
for some algebra is separating for its commutant, one has that
jΩi is separating for A0ðU 0Þ. Furthermore, locality imposes
thatAðUÞ ⊆ A0ðU 0Þ and then the vacuumvector is cyclic and
separating for any algebraAðUÞ provided that both U and U 0
are nonempty. Thismakes possible the application of Tomita-
Takesaki theory toQFT for vacuum states; but also, aswewill
discuss in the next section, Tomita-Takesaki theory can be
applied to thermal states.

III. THE CHIRAL FERMION ON THE TORUS

We consider a free massless Dirac field in 1þ 1
spacetime dimensions, given by a two-component spinor
Ψ ¼ ðΨþ;Ψ−Þ, where Ψ� are the chiralities of the field.
It turns out that each chirality depends on a certain
combination of the spacetime coordinates, namely the
null coordinates x� ¼ t� x that give the direction of the
light rays. Thus, the Ψ� are one-variable functions
ψ�ðx�Þ, which are subject to the canonical anticommu-
tation relations,

fψ�ðxÞ;ψ†
�ðyÞg ¼ δðx − yÞ; ð3:1Þ

with the remaining anticommutators being zero. Strictly
speaking, the objects ψ� are distributions and have to be
smeared with a test function f to give a well-defined
operator, ψ�ðfÞ ¼

R
dxψ�ðxÞfðxÞ. Using (3.1) one sees

that the ψ�ðfÞ are bounded operators and then can be used
to generate the local algebras associated with an open
spacetime region U as
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AðUÞ ¼ fψþðfþÞ;ψ†
þðfþÞ;ψ−ðf−Þ;ψ†

−ðf−Þ;
suppðf�Þ ⊆ π�ðUÞg00; ð3:2Þ

where π�ðUÞ is the projection of the region U on the x� axis.
As in any fermionic theory, in this model the field

operators localized in two spacelike separated regions U
and V anticommute. But this does not mean that the
associated algebras anticommute because a product of an
even number of fields gives a bosonic operator, which
commutes at spacelike separation with another of the same
kind. So, in order to establish a relation between AðUÞ and
AðVÞ we need to introduce the twist operator

Z ¼ 1þ iUπ

1þ i
; ð3:3Þ

where Uπ is the unitary operator associated with a U(1)
transformation of phase π, i.e., Uπψ�U

†
π ¼ −ψ�. Clearly,

this operator anticommutes with ψ� and ψ†
�, which means

that for every a∈AðUÞ, the product aUπ commutes with
everything in AðVÞ. Then, noting that

Zψ�Z† ¼ −iψ�Uπ; ð3:4Þ
one has that for every a∈AðUÞ the operator ZaZ†

commutes with everything in AðVÞ. This can be promoted
to a relation between the algebras

ZAðUÞZ† ⊆ A0ðVÞ; ð3:5Þ
which is the relation we were looking for.
In this article we will primarily focus on the case of a

fermion on a finite volume at finite temperature β−1, i.e., on
an Euclidean torus of radii L and β. Depending on the
spin structure chosen, the field can have periodic (Ramond
sector) or antiperiodic (Neveu-Schwarz sector) boundary
conditions on L, whereas the Fermi statistics impose
antiperiodicity for the boundary conditions on iβ. Setting
ν ¼ 0 for the periodic sector and ν ¼ 1 for the antiperiodic
one, the two-point function on this setup reads

hψ†
�ðxÞψ�ðyÞi ¼

1

2πi
σðx − yþ L=2þ iνβ=2Þ

σðx − y − iεÞσðL=2þ iνβ=2Þ
× e−½ζðL=2Þþνζðiβ=2Þ�ðx−yÞ; ð3:6Þ

given in terms of the Weierstrass functions ζ and σ (see [26]
for an extensive review of the Weierstrass and elliptic
functions) and where ε > 0 is sent to zero after smearing.
From (3.6) one can calculate the two-point function for a
thermal state on the line on the limit L → ∞, or for the
vacuum state on the circle on the limit β → ∞, or even for
the vacuum on the line taking both limits simultaneously.
Also note that (3.6) satisfies the stated quasiperiodicity
conditions for both arguments. Furthermore, since time
evolution is simply a translation of the null coordinates,
the antiperiodicity property in the imaginary direction is a

particular example of the KMS condition (2.4) at inverse
temperature β for a ¼ ψ†ðxÞ and b ¼ ψðyÞ, as should
happen for any thermal state.
We can express the two-point function (3.6) as well as any

other expectation value for this state using a cyclic vector
in some Hilbert space via the so-called Gelfand–Naimark–
Segal (GNS) construction. Roughly speaking, given any
state ϕ acting on some von Neumann algebra A, this
construction generates a Hilbert space H and a representa-
tion of the algebra elements ρ∶A → BðHÞ with a cyclic
vector jΦi such that haiϕ ¼ hΦjρðaÞjΦi for every a∈A.
The set ρðAÞ is itself a von Neumann algebra, and in the case
where ϕ is a thermal state at inverse temperature β we
will denote it byAβ. Remarkably, for the QFT in question it
turns out that if ϕ is a thermal state for the global algebra
Ag ¼ f∪U AðUÞg00 then the cyclic vector given by the GNS
construction, which we will call jΩβi, is cyclic and also
separating for the GNS-representation of any local algebra
AðUÞ [27]. This fact allows us to apply Tomita-Takesaki
theory in this context.
By writing (3.6) in terms of jΩβi, one sees that the vector

valued functions ψ�ðyÞjΩβi and ψ†
�ðyÞjΩβi are analytic on

the strip Im y∈ ð0; βÞ, because its-right hand side can be
extended continuously in y to an analytic function in this
strip. This remains valid for the limits L → ∞ and β → ∞,
since in any case (3.6) has a pole when y ¼ x − iε.
In the finite-dimensional case, the GNS construction of a

thermal state consists of a simple purification in which one
doubles the Hilbert space of the theory and thus enlarges
the global algebra, giving rise to a nontrivial commutant.
In the infinite-dimensional setting this is also the case;
alongside with Aβ one can always construct a second

nontrivial representation Ãβ such that ZÃ
g
βZ

†¼ðAg
βÞ0 [28].

Furthermore, since AβðUÞ ⊆ Ag
β, one has

ZÃg
βZ

† ⊆ A0
βðUÞ ð3:7Þ

for every U; meaning that there is a (twisted) copy of the
global algebra inside the commutant of the algebra of
any open region for a thermal state. The representation Ãβ

acts on the same Hilbert space as Aβ provided that it
is generated by operators time-evolved by a complex
parameter iβ=2,1 so (3.7) in fact also means that

1We shall note that the time evolved operator aðtÞmay actually
not be analytic, since in general it is rather an unbounded operator
for complex t even if a is bounded. However we can still take
the subset of elements a such that their time evolution aðtÞ has
compact spectral support. This condition then guarantees that
aðiβ=2Þ is bounded, provided that a itself is bounded. For the
case of a free theory these are of the form of ψðfÞ where f has
compact spectral support, i.e., fields with modes of bounded
momentum. Moreover, this subset is dense and is hence mapped
into a dense subset of Ãβ under the iβ=2 “time” evolution.
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fψ�ðxÞ;ψ†
�ðyþ iβ=2Þg ¼ 0 ð3:8Þ

for every x∈ π�ðUÞ and y∈R.

IV. MODULAR CONJUGATION FOR THE
CHIRAL FERMION

A. Plane

Let us start off by reviewing the method employed
in [24] to derive the modular conjugation for the vacuum
state reduced to a generic multicomponent region U. The
null projection of U will in general be a collection of n
intervals on the line,

π�ðUÞ ¼ ∪
n�

i¼1
ða�i ; b�i Þ ¼ V�: ð4:1Þ

From now on we suppress the � indices for notational
simplicity; all the results hold for both chiralities. The
modular flow is nonlocal for n > 1, meaning it mixes
operators on n points on V, explicitly given by [29]

αsðψðxÞÞ ¼ 2 sinhðπsÞ
Xn
i¼1

1

z0ðxiðsÞÞ
1

x − xiðsÞ
ψðxiðsÞÞ:

ð4:2Þ

For u∈C − V we conveniently define

zðuÞ ¼ iπ −
Z
V
dt

1

t − u
: ð4:3Þ

Then for x∈R we take zðxÞ ≔ limε→0þ zðxþ iεÞ ¼
logð−Q

n
i¼1

x−ai
x−bi

Þ and the xiðsÞ are the n solutions to

zðxiðsÞÞ ¼ zðxÞ − 2πs: ð4:4Þ

Clearly, (4.3) gives an analytic continuation of zðxÞ in
C − V. It also satisfies 0 ≤ Im zðuÞ ≤ π. This is not hard to
see with the following geometrical argument; integrating
in polar coordinates centered at t ¼ u, when Im u > 0 the
contour goes counterclockwise around u, so the imaginary
part of the integral is a sum of positive angles which gives
less than π. Also clearly Im zðxþ iεÞ ¼ 0 for x∈V and
Im zðxþ iεÞ ¼ π for x∈ V̄ (the complement of V), so the
claimed property of zðuÞ follows. This fact allows us to
write the action of the modular flow on the cyclic and
separating jΩi for a complex parameter s in the strip
Im s∈ ð−1=2; 0Þ as a contour integral over the whole
upper-half complex plane

αsðψðxÞÞjΩi ¼ ΔisψðxÞjΩi

¼ −
1

2πi

I
du

sinh
h
ωðxÞ−ωðuÞ

2

i

sinh
h
ωðxÞ−ωðuÞ

2
− πs

i

×
1

x − u
ψðuÞjΩi: ð4:5Þ

The integrand is a meromorphic function of u with poles
given where the argument of the hyperbolic sine in the
denominator vanishes. For s in the strip these poles are
located in the upper-half plane—they are the modular flow
trajectories xiðsÞ—and applying the residue formula one
gets (4.2) for a complex argument on the strip acting on the
vacuum. This means that one can analytically continue
this expression for Im s∈ ð−1=2; 0Þ and continuously to the
strip’s boundary.
Since (4.2) is also valid using ψ† instead of ψ , taking

s ¼ −i=2 we can obtain the action of Δ1=2 over the vector
ψ†ðxÞjΩi and then relate it to the modular conjugation via
the Tomita operator S. Indeed, using (2.1), (2.2), and the
fact that J2 ¼ 1 one has

Δ1=2ψ†ðxÞjΩi ¼ JψðxÞjΩi: ð4:6Þ

One can promote this vectorial expression to an operatorial
identity as we describe in the following. Evaluating
s ¼ −i=2 takes the trajectories xiðsÞ to the n points x̄i
that are solutions to

zðx̄iÞ ¼ zðxÞ þ iπ: ð4:7Þ

From our previous analysis of Im zðuÞ, note that the x̄i are
located in V̄, and thus the fields ψ†ðx̄iÞ that appear acting
on the vacuum in Δ1=2ψ†ðxÞjΩi anticommute with every-
thing in AðUÞ. Using (3.4), and the fact that UπjΩi ¼ jΩi,
we can replace each of these fields acting on the vacuum
with iZψ†ðx̄iÞZ†jΩi, such that the left hand side of (4.6)
becomes a linear combination of elements of A0ðUÞ acting
on the vacuum. The right hand side can also be rewritten
in terms of an element of A0ðUÞ acting on the vacuum as
JψðxÞJjΩi, and then the separability of jΩi implies a
relation between the operators on both sides of the
equation. This relation gives the explicit action of the
modular conjugation,

JψðxÞJ ¼ 2
Xn
i¼1

1

z0ðx̄iÞ
1

x − x̄i
Zψ†ðx̄iÞZ†: ð4:8Þ

This operator inherits the same nonlocal behavior of
the modular flow: for n > 1 it consists of a combination of
fields defined on distinct points on V̄, whereas for n ¼ 1 it
is given by a completely local transformation. It is also
discontinuous when zðxÞ ¼ 0, which happens once within
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each interval. So when x approaches the roots of z from left
or right, there is one solution of (4.7) that discontinuously
jumps from þ∞ to −∞.

B. Torus

The same procedure discussed in the previous para-
graphs can be employed to derive the action of the modular
conjugation whenever the modular flow is known. For the
chiral fermion on multicomponent regions on the torus, the
modular flow has been recently computed in [29] giving

αsðψðxÞÞ ¼
2π

β
sinhðπsÞ

X
k∈Z

Xn
i¼1

1

z0ðxikðsÞÞ

×
ð−1ÞkνψðxikðsÞÞ

sinh
h
π
β ðx − xikðsÞ þ kLÞ

i ; ð4:9Þ

where we will define the function z as

zðuÞ ¼ iπ þ
Z
V
dt

�
ζðu − tÞ − u

ζðiβ=2Þ
iβ=2

�
; ð4:10Þ

and calling l ¼ R
V dt, the total length of V, the xikðsÞ that

appear in (4.9) are the modular flow trajectories, which are
solutions to the equation

zðxikðsÞÞ ¼ zðxÞ þ 2πl
β

k − 2πs ðk∈ZÞ: ð4:11Þ

Within each interval ðai; biÞ, z is a monotonically increas-
ing function ranging from −∞ toþ∞ [19]. Hence, for each
k there are n solutions xikðsÞ.
Note that the flow (4.9) is nonlocal as well as the

one presented in the previous subsection (4.2), but a
prominent difference appears among them when n ¼ 1;
in this case the latter becomes completely local,
whereas the sum over k∈Z in the former makes it a
nonlocal operator even for a single interval. We expect
this fact to be present also in the modular conjugation
for the torus.
Mimicking the procedure employed for the plane, we are

interested in studying the analytic continuation of (4.9)
acting on the cyclic and separating jΩβi when −1=2 <
Im s < 0. In order to do so, we begin by analyzing some
properties of zðuÞ. First, it is a quasiperiodic function
zðuþ LÞ ¼ zðuÞ þ 2πl

β . Secondly, a bound for its imagi-
nary part analogous to that of the plane holds, which is key
for our analytic continuation. In Fig. 1 we show that in
the interior of the region 0 < Im u < β=2 we have 0 <
Im zðuÞ < π. On its boundary we have that Im zðuÞ ¼ 0

for u∈V, while Im zðuÞ ¼ π for u∈ V̄ and also when
Im u ¼ β=2. We prove these statements in Appendix.
Finally, Re z is a monotonically decreasing function within
each interval in V̄, ranging from þ∞ to −∞ and mono-
tonically increasing from −∞ to þ∞ in the infinite
line Im u ¼ β=2 (note that it is continuous). We plot the
real part in Fig. 2.

FIG. 1. Im zðuÞ for u∈ ð−L=2; L=2Þ × ið0; β=2Þ in the case of
n ¼ 2 intervals. We highlighted in red the regions where Im z ¼ 0

or Im z ¼ π; these are respectively V or V̄ and Im u ¼ β=2.

FIG. 2. Re zðuÞ for Im u ¼ 0 (left) and Im u ¼ β=2 (right) in the case of n ¼ 2 intervals. In the left panel we also show some solutions
to (4.14) for x∈V in red, whose positions are given by the intersections of the real part of z with horizontal lines of height zðxÞ þ
2πlk=β that occur in V̄. In the right panel, note that the real part of zðxþ iβ=2Þ is monotonically increasing and thus there exists a
complex solution to (4.15) with k̃ ¼ 0.
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Now, consider the vector-valued function

jφxðsÞi ¼
i
2β

I
∂Σ
du

sinh
h
zðxÞ−zðuÞ

2

i

sinh
h
zðxÞ−zðuÞ

2
− πs

i ψðuÞjΩβi
sinh

h
π
β ðx − uÞ

i ;

ð4:12Þ

where the contour ∂Σ is the boundary of the infinite
complex region 0 < Im u < β=2. Note that the integrand
is a meromorphic function of u, and then the integral can be
computed by residues. Since Im z∈ ð0; πÞ for u∈Σ, taking
s in the strip Im s∈ ð−1=2; 0Þ, the poles of the integrand are
located where the argument of the first hyperbolic sine in
the denominator vanishes. This is when zðuÞ ¼ zðxÞ þ 2πs
and gives solutions uikðsÞ on the interior of the whole
region Σ. Then we make the identification uikðsÞ þ kL≡
xikðsÞ for k∈Z, such that all the xikðsÞ lie on the same
fundamental domain of the torus. Taking into account
the quasiperiodicity of ψ and z, one sees that under this
identification the set of poles precisely match the modular
trajectories (4.11). Then applying the residue formula one
arrives to

jφxðsÞi ¼
2π

β
sinhðπsÞ

×
X
k∈Z

Xn
i¼1

1

z0ðxikðsÞÞ
ð−1ÞkνψðxikðsÞÞjΩβi

sinh
h
π
β ðx − xikðsÞ þ kLÞ

i :

ð4:13Þ

Some comments are in order. In the first place, in the strip
−1=2 < Im s < 0 there are no poles on the integration
contour, hence the function jφxðsÞi is analytic in this
strip and continuous on its boundary. For Im s → 0 we
recover (4.9) acting on jΩβi as expected. Similarly, we can
take the limit s → −i=2 in order to obtain the action of
Δ1=2. In that case, the imaginary part of z determines that
the solutions of the complex modular flow trajectories
are located either in V̄ or in Im u ¼ β=2. To make this
distinction explicit, we shall rewrite them as x̄ik or x̃þ i β

2
,

where

zðx̄ikÞ ¼ zðxÞ þ 2πl
β

kþ iπ; ð4:14Þ

z

�
x̃þ i

β

2

�
¼ zðxÞ þ 2πl

β
k̃þ iπ; ð4:15Þ

with x̄ik ∈ V̄ and x̃∈R within a fundamental period of the
torus and some given k̃. Let us describe the solutions to
these equations. Because of the monotonicity of z, (4.14)
has n solutions x̄ik for each k∈Z, given we pick convenient

coordinates.2 Graphically, one can find these solutions by
inspecting the plot of the real part of z (see the left panel of
Fig. 2): the several intersections of this plot with horizontal
lines of height zðxÞ þ 2πl

β k that occur in the complement V̄,
where Im z ¼ π, give the positions of the x̄ik. Similarly to
the modular flow, the x̄ik accumulate near the endpoints of
the intervals.
Remarkably however the x̄ik are not the complete set

of solutions. Because Re zðxþ i β
2
Þ grows monotonically,

there always exists one k ¼ k̃ such that (4.15) gives exactly
one complex solution.
Moving on, remembering (4.6) and that (4.9) is still valid

when replacing ψ by ψ†, we can compute the action of the
modular conjugation from Δ1=2ψ†ðxÞjΩβi as we did for the
plane. But taking into account the previous discussion about
the complex solution we have to be more careful. In our
derivation for the plane we used the fact that all the solutions
to (4.7) were located in V̄ and thus the corresponding
operators anticommuted with AðUÞ. This is true for the x̄ik
satisfying (4.14), but what happens with the term in
Δ1=2ψ†ðxÞjΩβi associated to the complex solution (4.15)?
It is worth remembering that the fields ψðx̃þ iβ=2Þ can be
thought as being elements of the representation Ãg

β intro-
duced at the end of the previous section, so we have (3.7), or
more explicitly (3.8). Then, the procedure we did for the
plane follows and we finally arrive at

JψðxÞJ ¼ 2π

β

8>><
>>:
X
k∈Z

Xn
i¼1

1

z0ðx̄ikÞ
ð−1ÞkνZψ†ðx̄ikÞZ†

sinh
h
π
β ðx − x̄ik þ kLÞ

i

þ 1

z0ðx̃þ i β
2
Þ
ð−1Þk̃νiZψ†ðx̃þ i β

2
ÞZ†

cosh
h
π
β ðx − x̃þ k̃LÞ

i
9>>=
>>;
: ð4:16Þ

This is the main result of our work, with the complex
modular trajectories given by (4.14), (4.15), and (4.10).
Note that, as we anticipated, the modular conjugation

shares the same nonlocality as the modular flow, which is
present even for n ¼ 1. Furthermore, it exhibits another
novelty when compared to the result for the plane; the
appearance of the complex solutions x̃þ iβ=2, which we
explicitly display in (4.16) and is related to the nontriviality
of the commutant for the representation of the operator
algebra in a thermal state, as we show in the next
subsection. It occurs that this modular conjugation not
only mapsAβðUÞ to AβðU 0Þ, but it also maps it to Ãg

β. This
behavior was discussed previously in [27,30,31] or more

2Even though the set of solutions for all k in any case is the
same, Eq. (4.14) has the cumbersome feature that if the borders of
the chosen fundamental period are in V̄, it will have n − 1
solutions for some particular k.
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recently in [25], and some authors interpret that the
representation Ãg

β acts as a “second world”, analogous
to the copy of the theory one introduces to perform a
purification in a finite-dimensional setting. As discussed at
the end of section III, after smearing with a function f of
compact spectral support, (4.16) is a map between bounded
operators, even if fields have a complex argument.

C. The second world

There are a couple of things that are not. obvious by
looking at the expression (4.16), especially due to the
presence of the complex solution x̃þ iβ=2. First of all, one
can ask for a more transparent interpretation of its emer-
gence and exactly what is its relation to the “second world.”
On the other hand, it also makes it difficult to immediately
guess the action of J over the commutant algebra, which is
pretty straightforward in the plane case. We aim to clarify
both issues in this section.
In order to gain some insight on the complex solution, we

will study a simple limit of our result. Let us consider a
single interval such that l → L, that is when V becomes the
whole circle, and thus the algebra of operators becomes
the global algebra. Since the global algebra is of type I it
admits a thermal density matrix ρβ, and we can perform
a purification by coupling the Hilbert space of the theory
H to a copy H̃ such that ρβ ¼ trH̃jΩβihΩβj, where jΩβi∈
H ⊗ H̃. Now, Ag

β and Ãg
β are the algebras of operators

solely acting on H or H̃, respectively; and they are clearly
each others commutants. Thus, if we represent the elements
ofAg

β as generated by fields ψðxÞ with x∈ ð−L=2; L=2Þ, let
us use the modular conjugation to probe how the elements
of Ãg

β look like. In this setting we have

zðxÞ ¼ 2π

β
x; ð4:17Þ

up to an additive constant which is irrelevant. The modular
flow then coincides with time evolution of parameter −βs
and hence the modular conjugation maps x ↦ xþ iβ=2. In
fact this is the only solution to (4.11) in this limit. Replacing
this in (4.16) one arrives to

JψðxÞJ ¼ iZψ†ðxþ iβ=2ÞZ†: ð4:18Þ
So we learn that the “second world” algebra is naturally

given by fields on points with imaginary part equal to β=2.
This is what the complex solution on (4.16) represents.
Note that here x̃ coincides with x since we were working
without a partition of the circle, but the effect of taking V̄
nonempty is that x̃ in general does not coincide with x.
Also note that the 2-point function (3.6) can be evaluated
with complex arguments to probe correlations between the
“real” and the second world. Since in general it is non-
vanishing, correlations are nontrivial. This is to be expected
since it would imply that jΩβi is a product state

corresponding to a pure, rather than thermal, state when
reduced to H. Instead, jΩβi is a purification and must be
entangled over H ⊗ H̃.
Let us now address the action of the modular conjugation

over A0
βðUÞ. The modular conjugation of commuting

algebras should coincide [22], but note that (4.16) only
tells us how to act over operators in AβðUÞ, so the action
over the commutant could be different and we would like
to find it out. In order to do so, we will use the fact that
this is an involutive operator, i.e., J2 ¼ 1, as well as other
properties. First of all, note that (4.16) implies that
A0

βðUÞ ⊆ ZðAβðU 0Þ∨ Ãg
βÞZ† and since the opposite inclu-

sion also holds, it can actually be promoted to an equality.3

Whenever two algebras are unitarily equivalent then the
corresponding modular conjugations are unitarily related,
so we have J ¼ ZĴZ† [24,32], where Ĵ is associated with
AβðU 0Þ∨ Ãg

β. Thus, knowing the action of Ĵ over ψðx̄Þ for
x̄∈ V̄ or Im x̄ ¼ β=2 yields the result we are after. As an
educated guess, we propose an action similar to (4.16),

Ĵψðx̄ÞĴ ¼ 2π

β

X
jm

1

ẑ0ðxjmÞ
ð−1ÞkνZψ†ðxjmÞZ†

sinh
h
π
β ðx̄ − xjm þmLÞ

i ; ð4:19Þ

such that the xjm are solutions to

ẑðxjmÞ ¼ ẑðx̄Þ − 2πl
β

mþ iπ ð4:20Þ

for a suitable ẑ defined as ẑ ¼ −zþ iπ. This is a reasonable
ansatz because if one takes x̄ as a solution to (4.14)
or (4.15) for some k∈Z then one has

zðxjmÞ ¼ zðxÞ þ 2πl
β

ðkþmÞ; ð4:21Þ

which means that xjm ∈V. In particular it means that
xjm ¼ x for some j and m. Then, at least geometrically,
we see that the modular conjugation is involutive. Let us
check that this choice also means J2 ¼ 1 as an operator.
Using (4.16) and (4.19) we have

J2ψðxÞJ2¼4π2

β2
X
ikjm

1

z0ðx̄ikÞ
1

z0ðxjmÞ

×
ð−1Þkν

sinh
h
π
βðx− x̄ikþkLÞ

i ð−1ÞmνψðxjmÞ
sinh

h
π
βðx̄ik−xjmþmLÞ

i ;

ð4:22Þ

3The fact that A0
βðUÞ ≠ ZAβðU 0ÞZ† may look like a violation

of the so-called Haag duality. But one has to remember that
the Aβ’s are the representations of the algebra induced by the
β-thermal state, whereas Haag duality is usually evaluated over
the vacuum representation, which gives the natural Hilbert space
of the theory in question.
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where we have used that Z2 ¼ Uπ and that ẑ0 ¼ −z0. Also
this time we are including the complex solution x̃þ iβ=2 in
the sum over i and k; our argument will be independent of
this distinction. Using the residue formula, this expression
admits an integral representation along the same curve
as (4.12), but considering the analyticity of the integrand
the region can be extended, yielding

J2ψðxÞJ2 ¼ −
π

β2
X
jm

ð−1Þmν

z0ðxjmÞ
ψðxjmÞ

×
I
Γ
du

8<
:

sinh
h
zðxÞ−zðuÞ

2

i

sinh
h
zðxÞ−zðuÞ

2
þ iπ

2

i

×
1

sinh
�
π
β ðx − uÞ

� 1

sinh
�
π
β ðu − xjm þmLÞ

�
9=
;;

ð4:23Þ

for the curve Γ shown in Fig. 3. The integral over the
horizontal lines vanishes due to the iβ-periodicity of the
integrand, so we are only left with the integral along
the loops, which is determined by the poles at x and
xjm −mL. It turns out that all the residues vanish except for
the one corresponding tom ¼ 0 and j such that xj0 ¼ x. So
we can drop the sum and study the nonvanishing term as a
limit, which gives

J2ψðxÞJ2 ¼ ψðxÞ: ð4:24Þ

This ultimately justifies our guess (4.19), which in turn
gives the correct action of J over A0

βðUÞ.

D. Limits

Let us now study some relevant limits of our main result.
We will begin by taking the limit L → ∞ while keeping β
finite. In this case, after integration (4.10) becomes

zðuÞ ¼ log

2
64−Yn

i¼1

sinh
�
π
β ðu − aiÞ

�

sinh
�
π
β ðu − biÞ

�
3
75; ð4:25Þ

where we have dropped an irrelevant real constant and a
term linear in u=L. Also, since every term with k ≠ 0
in (4.16) vanishes in the limit, we only care about the n
solutions x̄i ¼ x̄i0 to (4.14). As we can see by inspecting
the real part of z (see Fig. 4), this time the complex
solutions do not exist for every x, but only for a subset
x∈Vβ ⊆ V, given by a collection of smaller intervals

ðaβi ; bβi Þ ⊆ ðai; biÞ. In that case we have n − 1 solutions
x̄i in V̄, one for each interval ðbi; aiþ1Þ and the complex
solution x̃þ iβ=2. On the other hand when x∈V − Vβ, we
have n solutions x̄i in V̄ as we had in the plane, with x̄n
either in ð−∞; a1Þ or ðbn;∞Þ. We find

JψðxÞJ ¼ 2π

β

8<
:
Xn−1
i¼1

1

z0ðx̄iÞ
1

sinh
h
π
β ðx − x̄iÞ

iZψ†ðx̄iÞZ†

þ χβ̄ðxÞ
1

z0ðx̄nÞ
1

sinh
h
π
β ðx − x̄nÞ

iZψ†ðx̄nÞZ†

þ χβðxÞ
1

z0ðx̃þ i β
2
Þ

×
i

cosh
h
π
β ðx − x̃Þ

iZψ†
�
x̃þ i

β

2

�
Z†

9=
;; ð4:26Þ

where χβðxÞ and χβ̄ðxÞ are the characteristic functions of Vβ

and V − Vβ, respectively. This result represents the modu-
lar conjugation for a thermal state of the fermion on the line
reduced to n intervals. For n ¼ 1 its geometrical action was
studied in [25], and in fact we have checked that the map
x ↦ x̄ there presented satisfies zðx̄Þ ¼ zðxÞ þ iπ, with z
given by (4.25). For a single interval, the subset Vβ simply
becomes a subinterval ðaβ; bβÞ ⊆ V, and the authors of [25]
also explicitly found it. We can recover their result noting
that (4.15) is satisfied with k̃ ¼ 0 only if −πl=β ≤ zðxÞ ≤
πl=β and the boundaries of the region where this occurs
take the values

aβ ¼ −
β

2π
log

�
e−2πa=β þ e−2πb=β

2

�
;

bβ ¼ β

2π
log

�
e2πa=β þ e2πb=β

2

�
; ð4:27Þ

that precisely match the expressions given in [25].
By taking the limit β → ∞ over the previous results we

should recover the plane case. Indeed, in this limit the
function zðuÞ given by (4.25) simply becomes (4.3) and the
expression (4.26) becomes almost identical to (4.8), exceptFIG. 3. Integration contour Γ of Eq. (4.23).
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for the term associated to the complex solution.
However, remind this term only appears for x∈Vβ.

Since Re zðxþ iβ=2Þ → 0, each subinterval ðaβi ; bβi Þ col-
lapses to a point given by zðxiÞ ¼ 0, which is where the
map x ↦ x̄ for the plane is discontinuous.
Lastly, let us take the limit β → ∞ with L remaining

finite. Now (4.10) becomes after integration

zðuÞ ¼ log

�
−
Yn
i¼1

sinðπL ðai − uÞÞ
sinðπL ðbi − uÞÞ

�
þ 2πl

L
u
β
; ð4:28Þ

again dropping an irrelevant real constant. Naturally the
second term can also be dropped for any bounded u, but
here we have nonvanishing contributions for juj ∼ β. For
the terms corresponding to the real solutions (4.14), one has
to split the sum in k into two separate contributions as
explained in [19]: The terms with ljkj ≪ β concentrate
around x̄i ¼ x̄i0 independently of k. On the other hand the
terms with ljkj ∼ β behave drastically different depending
on the boundary conditions. In the Neveu-Schwarz sector
consecutive terms in k do not contribute because of
antiperiodicity, while in the Ramond sector the real
solutions x̄ik become densely distributed and give rise to
a completely nonlocal contribution. Finally, the modular
conjugation has the contribution of the complex solution,
which in this limit has real part given by

x̃þ k̃L ¼ Lβ
2πl

zðxÞ: ð4:29Þ

This equation is ill-defined when β → ∞, so we carefully
proceed as follows. We see that x̃ oscillates rapidly around
the circle as we shift x, suggesting that one should take an
average around the circle rather than a fixed x̃. In fact, we
can consider instead an operator ψðfÞ where f is a test
function with support narrowly centered around x. Then,
for large β, the contribution of the complex solution is

1

2 cosh ½ L
2l zðxÞ�

Z
∞

−∞
dtfðtÞ

Z
L

−L

dy
l
ψ

�
yþ i

β

2

�
jΩi: ð4:30Þ

We get indeed a contribution averaged over the circle on the
second world. Up to a normalization factor this does not
depend on f, which can now be taken arbitrarily narrow
and ultimately justifies our previous guess. Notably,
because of antiperiodicity (4.30) vanishes in the Neveu-
Schwarz sector, so there is a second world contribution
only in the Ramond sector. Summing up, we have that the
β → ∞ limit of the modular conjugation for the antiperi-
odic sector is

JψðxÞJ¼2π

L

Xn
i¼1

1

z0ðx̄iÞ
csc

�
π

L
ðx− x̄iÞ

�
Zψ†ðx̄iÞZ†; ð4:31Þ

while for the periodic one

JψðxÞJ ¼ 2π

L

Xn
i¼1

1

z0ðx̄iÞ
cot

�
π

L
ðx − x̄iÞ

�
Zψ†ðx̄iÞZ†

−
Z
V̄

dy
l

1

sinh ½ L
2l ðzðxÞ − zðyÞ þ iπÞ�Zψ

†ðyÞZ†

þ i
cosh ½ L

2l zðxÞ�
Z L

2

−L
2

dy
l
Zψ†ðyþ iβ=2ÞZ†:

ð4:32Þ

In the second term of (4.32) there is an implicit principal
value in the integral over y, due to the fact that we have
summed the ljkj ≪ β terms separately. We also mention
that we have obtained the same result by first taking the
limit in (4.12). There we use quasiperiodicity and sum in k
in a similar fashion and then compute the modular con-
jugation. Doing so we obtain the third term of (4.32)
without invoking a test function.
The absence or presence in either case of a second world

term is remarkable. It is not surprising however if we

FIG. 4. Re zðxÞ (left) and Re zðxþ iβ=2Þ (right) in the limit L → ∞ for the case n ¼ 2. The thick black lines represent the two
intervals of V, and the smaller intervals in red are ðaβ1; bβ1Þ ∪ ðaβ2; bβ2Þ ¼ Vβ. For x∈Vβ we see that there are n − 1 real solutions and one
complex solution.
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remember that the zero temperature state of the Ramond
sector is a mixture of two-independent vacuum states due to
the presence of a zero mode. We still have to somehow
purify the state, and thus enlarge the algebra. To that end
we can think of it as a thermal state with arbitrarily large
inverse temperature β and then use the GNS construction as
before. In fact this is the only surviving term of the modular
conjugation in the limit l → L. There the algebra AðUÞ
becomes a global algebra with trivial commutant in the
Neveu-Schwarz sector, while in the Ramond case the
algebra is enlarged and the modular conjugation simply
maps the algebra to

JAðUÞJ ¼ ZÃgZ† ¼ A0ðUÞ; ð4:33Þ

as it should be. The nonpureness of the Ramond zero-
temperature state also manifests similarly as a log 2 con-
tribution to the entropy, as shown in [19,33].

V. FINAL COMMENTS

In this paper we computed a new modular conjugation,
namely that of a free massless fermion in 1þ 1 dimensions
for multicomponent regions on the torus. We followed
an analogous method to the one we had employed in the
plane in our previous work. As expected, this modular
conjugation shares very similar geometrical features with
the modular flow, the most remarkable one being the
nonlocality even present for the case of a single interval.
We also studied explicitly the limits of this result when
the region is the whole circle and when either one of the
periods or both approach infinity, recovering in the latter
case the previously known result.
When compared to the case of the plane however, a novel

contribution to the modular conjugation associated to a
complex solution to the complex modular flow trajectories
appears. We argued that the operators ψðx̃þ iβ=2Þ should
be associated to the algebra Ãg

β, sometimes identified as a
“second world”, related to the GNS construction that comes
into play with thermal states. The modular conjugation
must map the algebra to its commutant, and since the GNS
construction enlarges it, one can expect this contribution to
be present.
In fact, this term given by the complex solutions of the

trajectories appears whenever we have a mixed state. It is
natural then that it arises in the torus where we are dealing
with a thermal state, as opposed to the case of the plane
where we simply have the vacuum. We have also seen that
it is present in the circle at zero temperature but only in the
Ramond sector. This is because the Ramond sector has a
zero mode and then two linearly independent vacuum states
appear, which are mixed in the zero temperature state. We
may still think of this state as being thermal with arbitrarily
large inverse temperature β and then use the GNS con-
struction machinery. In any case, this novel term in the

modular conjugation is there to remind us that we are
dealing with a nonpure state and thus needs to be purified
somehow to use the Tomita-Takesaki theory.
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APPENDIX: SOME PROPERTIES OF z

In this appendix we prove the bound for the imaginary
part of z. We will do so invoking the Weierstrass functions
and some of its basic properties. Let us first show that Im z
is a monotonous function in l, the length of V. That is, we
will show that the imaginary part of the integrand in (4.10)

Im

�
ζðxþ iyÞ − y

β=2
ζðiβ=2Þ

�
≡ Iðxþ iyÞ; ðA1Þ

satisfies Iðxþ iyÞ < 0 when we restrict to 0 < y < β=2.
As a function of x with fixed y, we can use the addition
theorem for ℘ to find extrema of Im ζ (note that
℘ðxÞ;℘ðiyÞ∈R)

Im ζ0ðxþ iyÞ ¼ 1

2

℘0ðxÞ
½℘ðxÞ − ℘ðiyÞ�2 Imð℘0ðiyÞÞ: ðA2Þ

Since x ¼ L=2 is a zero of ℘0ðxÞ, it must be an extremum of
Im ζ. In fact, one can see it is a maximum and, moreover,
because of periodicity x ¼ L=2 gives its global maximum

Im ζðxþ iyÞ ≤ Im ζðL=2þ iyÞ: ðA3Þ

Note that we could have picked x ¼ 0, but we would have
got a minimum instead. Now we show that

d2

dy2
IðL=2þ iyÞ ¼ Im℘0ðL=2þ iyÞ > 0; ðA4Þ

i.e., it is a convex function of y: ℘0ðL=2þ iyÞ is imaginary
and ℘0ðL=2Þ ¼ ℘0ðL=2þ iβ=2Þ ¼ 0, with no other zeros in
the interval. The fact that ℘0ðL=2Þ is a simple zero and
℘ðL=2Þ a minimum implies that Im℘0ðL=2þ iyÞ is positive
for 0 < y < β=2.
Finally note that since ζðxÞ is real, IðxÞ ¼ 0. Also since

℘ðxþ iβ=2Þ is real, and hence Im ζðxþ iβ=2Þ constant,
Iðxþ iβ=2Þ ¼ 0. A continuous function which is convex
and nonvanishing within an interval and approaches zero at
its ends, is necessarily negative. So we have proved our
initial claim
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Im

�
ζðxþ iyÞ − y

β=2
ζðiβ=2Þ

�

≤ Im

�
ζðL=2þ iyÞ − y

β=2
ζðiβ=2Þ

�
< 0: ðA5Þ

It is then clear that Im z has its maximum when V is
arbitrarily small and its minimum when V is the whole
circle. In the first case, trivially z ¼ iπ, while in the second
case we readily find (up to an irrelevant real constant)
zðuÞ ¼ 2πu

β . Hence, we conclude

0 < Im zðuÞ < π ðA6Þ

for 0 < Im u < β=2. Finally we remark that from
Iðxþ i0þÞ ¼ −πδðxÞ and Iðxþ iβ=2Þ ¼ 0 it follows that
Im zðxþ iβ=2Þ ¼ π, while zðxÞ ≔ limy→0þ zðxþ iyÞ has
imaginary part 0 when x∈V and π when x ∉ V.
We have also claimed Re zðxþ iβ=2Þ is monotonic.

We have

z0ðxþ iβ=2Þ¼
Z
V
dt

�
−℘ðx− tþ iβ=2Þ−ζðiβ=2Þ

iβ=2

�
: ðA7Þ

For a rectangular lattice the integrand has its minimum
when x − t ¼ L=2. Then we can expand the Weierstrass
functions in terms of the nome q ¼ e−πβ=L

−℘ðL=2þiβ=2Þ−ζðiβ=2Þ
iβ=2

¼−
4π2

L2

�
1

2logq
þ q
ð1þqÞ2−

X∞
n¼1

ð−1Þnnq2n
1−q2n

ðqnþq−nÞ
�
>0:

ðA8Þ

We have verified numerically that the expression is indeed
positive for all 0 < q < 1, implying that the integrand of z0

is positive definite and hence zðxþ i β
2
Þ is monotonically

increasing for all x.
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[3] H. Casini, E. Testé, and G. Torroba, Markov property of the
conformal field theory vacuum and the a-theorem, Phys.
Rev. Lett. 118, 261602 (2017).
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