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The axial symmetric Finslerian extension of a Schwarzschild spacetime is a generalization of
Schwarzschild spacetime. It will return to Schwarzschild spacetime while the Finslerian parameter
ϵ ¼ 0. Closed orbits are an important geometrical subject in mathematics that will help us to understand the
physical properties of black holes in a strong gravitational region. The closed orbits of the axial symmetric
Finslerian extension of a Schwarzschild black hole have been investigated in this paper. We have found that
one necessary condition for the orbits of a Finslerian black hole to be closed is that the Finslerian parameter
ϵ be rational. The numerical results of closed orbits of a Finslerian black hole are shown. They confirm our
conclusion of the existence conditions of closed orbits.
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I. INTRODUCTION

The black hole, as a prediction of general relativity, has
played an important role in investigating gravitational
physics. Penrose gave a robust proof for the general
existence of black holes in mathematics [1]. Several
astronomical observations have shown the physical exist-
ence of black holes. Accretion disks [2] can be used to
locate supermassive compact objects, such as black holes.
Gravitational waves can be generated from the merging of
binary astronomical objects. The LIGO Scientific and
Virgo Collaborations have detected gravitational waves
from binary systems [3], which include the merging of
binary black holes. The shadow of the supermassive black
hole of M87 has been observed by the Event Horizon
Telescope Collaboration [4]. Recently, pictures of the black
hole shadow of Sagittarius (Sgr) A* have been released [5].
The Gravity Collaboration has observed orbits of several
stars around Sgr A* with high precision [6]. They
have detected Schwarzschild precession in the orbit of
the star S2 [7].
The black hole, as a strong gravitational region, is a

useful object for investigating possible properties and
potential observable behaviors of various modified theories
of gravity [8]. A succinct listing of such research subjects is
given as follows. Quasinormal modes that carry intrinsic
properties of black holes have been used to study holo-
graphic behaviors of black holes [9,10]. Observations of
gravitational waves have been used to search for possible
deviation from general relativity [11,12]. In modified

theories of gravity, black hole shadows have been inves-
tigated [13–15]. Observational data of Schwarzschild
precession in the orbit of the star S2 have been used to
test the validity of the axial symmetric Finslerian extension
of a Schwarzschild black hole [16]. Throughout this paper,
we call this sort of Finslerian black hole a Finslerian
Schwarzschild black hole for short.
The astronomical observations listed in the first para-

graph are related to trajectories of gravitational objects.
Therefore, one category of special orbits—namely, the
periodical orbits—has drawn the interest of physicists. For
example, it plays an important role in the study of
gravitational waves [17]. In weak gravitational regions,
the conditions allowing for periodical orbits of a
Schwarzschild black hole are quite simple, since the orbits
of the Schwarzschild black hole are confined to a plane.
They exist if and only if the ratio of 2π to the Schwarzschild
precession is rational. However, it is not a trivial task to find
the conditions for the existence of periodical orbits in
nonspherical black holes, and the properties of periodical
orbits near the black hole become complicated even for
Schwarzschild black holes. Inspired by these facts, Levin
et al. have defined a taxonomy of orbits and found that each
periodical orbit is characterized by a rational number [18].
This taxonomy has been used to study the periodical orbits
of Kerr black holes [19], charged black holes [20],
Kehagias-Sfetsos black holes [21], and hairy black holes
in Horndeski’s theory [22]. Thus, the taxonomy of orbits
defined by Levin et al. provides a useful approach to
investigating the properties of black holes in modified
theories of gravity.
The other aspect, periodical orbits—called closed

orbits—have been studied by mathematicians since a long
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time ago. Poincaré has proved that there exists at least one
closed geodesic on S2 [23]. Poincaré’s research has been
extended to every compact Riemannian manifold by
Lyusternik and Fet [24]. Mathematicians further conjecture
that there exist infinitely many distinct prime closed geo-
desics on every compact Riemannian manifold. A review of
mathematical researches on closed geodesics is given
in Ref. [25].
Finsler geometry [26] is a natural generalization of

Riemannian geometry. The gravitational theory based on
Finsler geometry is expected not only to involve the
contents of general relativity, but also to possess different
features. The degree of freedom of Finsler geometry is
higher than that of Riemannian geometry. Therefore,
different Finslerian gravitational field equations have been
proposed [27–30]. These gravitational field equations need
to be falsified or constrained by physical observations. One
approach is studying the extension of Schwarzschild
spacetime. Various Finslerian extensions of Schwarzschild
spacetime have been proposed and discussed [31–33].
Based on the Finslerian gravitational field equation pro-
posed by Rutz [28], we have found a Finslerian extension
of the Schwarzschild black hole [34]. A Finslerian
Reissner-Nordström black hole has also been found [35].
The above black hole solutions found by us violate
spherical symmetry and preserve axial symmetry. Such
features reflect on their quasinormal modes [36,37]. The
orbits of Finslerian Schwarzschild black holes have been
investigated [16]. Due to the symmetry of the Finslerian
Schwarzschild black hole, its orbits exhibit both orbital
precession and orbital plane precession. Furthermore, the
Finslerian parameter which describes the deviation from
Schwarzschild spacetime has been constrained by the
observations of the Gravity Collaboration [7].
The orbits of Finslerian Schwarzschild black holes have

been investigated in weak gravitational regions [16].
However, it is of interest to study them in strong gravita-
tional regions. Also, the closed geodesics problem in
Finsler geometry is quite different from the one in
Riemannian geometry. Katok has found some irreversible
Finsler metrics in which there exist finitely many distinct
closed geodesics [38]. The existence of at least two closed
geodesics on Finsler 2-spheres has been solved in Ref. [39].
Therefore, it is of interest in both physics and math to study
whether or not closed geodesics exist in Finslerian
Schwarzschild black holes.
This paper is organized as follows: In Sec. II, we

introduce the basic concept of Finslerian Schwarzschild
black holes and discuss their geodesic equations. In Sec. III,
we first give a general discussion of closed orbits. Then, we
investigate the orbits on the equatorial plane of a Finslerian
Schwarzschild black hole. This gives us a somewhat direct
physical picture by Levi’s taxonomy [18]. At the end of the
section, we investigate general 3D orbits of Finslerian
Schwarzschild black holes and study the influences of the

Finslerian parameter ϵ on 3D closed orbits. Finally, we
summarize the research results in Sec. IV.

II. GEODESICS OF FINSLERIAN
SCHWARZSCHILD SPACETIME

In Finsler geometry, the basic element is Finsler structure
F. To guarantee that the length of Finsler geometry

R
Fdτ is

independent of the choice of curve parameter τ, it satisfies
Fðx; λyÞ ¼ λFðx; yÞ for all λ > 0, where x∈M (M is the
Finsler manifold) represents position and y≡ dx=dτ rep-
resents velocity [26]. The Finslerian metric is given as

gμν ≡ ∂

∂yμ
∂

∂yν

�
1

2
F2

�
: ð1Þ

In physics, the Finslerian length is not required to be
positive definite. The Finsler metric with a Lorentz sig-
nature has been discussed in Ref. [40]. A positive, zero, or
negative F corresponds to spacelike, null, or timelike
curves, respectively. The geodesic equation originates from
the variation of Finslerian length, which is a unique
definition in Finsler geometry [26]. The geodesic equation
that preserves the Finsler structure is given as

d2xμ

dτ2
þ 2Gμ ¼ 0; ð2Þ

where

Gμ ¼ 1

4
gμν

�
∂
2F2

∂xλ∂yν
yλ −

∂F2

∂xν

�
ð3Þ

is called the geodesic spray coefficient. In Finsler geometry,
there is a geometrical invariant—namely, the Ricci scalar. It
is insensitive to various connections that one can choose in
Finsler geometry [26]. It is of the form

Ric≡Rμ
μ¼ 1

F2

�
2
∂Gμ

∂xμ
−yλ

∂
2Gμ

∂xλ∂yμ
þ2Gλ ∂

2Gμ

∂yλ∂yμ
−
∂Gμ

∂yλ
∂Gλ

∂yμ

�
:

ð4Þ

The Finslerian gravitational vacuum field equation
proposed by Rutz [28] is the vanishing of the Ricci
scalar—namely, Ric ¼ 0. One exact solution of Rutz’s
field equation—namely, the Finslerian Schwarzschild
solution—is given as [34]

F2 ¼ −fðrÞytyt þ fðrÞ−1yryr þ r2F̄2; ð5Þ

where fðrÞ ¼ 1 − 2GM
r , M denotes the mass of the black

hole, and F̄ satisfies the following specific form:

F̄¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ϵ2 sin2θÞyθyθþsin2θyφyφ

p
1−ϵ2 sin2θ

−
ϵsin2θyφ

1−ϵ2 sin2θ
: ð6Þ
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F̄ is a two-dimensional Finsler space with positive constant
flag curvature. This Finsler space (6) was proposed in
Refs. [38,41]. It has been shown that this Finsler space (6)
has two geometrically distinct closed geodesics if the
Finslerian parameter ϵ is irrational [42].
By plugging the Finslerian Schwarzschild metric (5) into

the general form of geodesic equation (2) in Finsler
spacetime, we can obtain the specific form of the geodesic
equations of Finslerian Schwarzschild spacetime. It is given
as follows:

d2t
dτ2

þ f0

f
dt
dτ

dr
dτ

¼ 0; ð7Þ

d2r
dτ2

þ ff0

2

�
dt
dτ

�
2

−
f0

2f

�
dr
dτ

�
2

− rfF̄2 ¼ 0; ð8Þ

d2θ
dτ2

þ 2

r
dr
dτ

dθ
dτ

−
sin θ cos θ
1 − ϵ2 sin2 θ

�
ϵ2
�
dθ
dτ

�
2

þ
�
dφ
dτ

�
2

− 2ϵF̄
dφ
dτ

�
¼ 0; ð9Þ

d2φ
dτ2

þ 2

r
dr
dτ

dφ
dτ

þ 2 cot θ
dθ
dτ

�
dφ
dτ

− ϵF̄

�
¼ 0; ð10Þ

where the prime denotes differentiation with respect to
the coordinate r. Due to the symmetry of Finslerian
Schwarzschild spacetime [34], we obtain four constants
of motion from the geodesic equations. The geodesic
equations for massive particles are given as [16]

ṫ ¼ E=

�
1 −

2GM
r

�
; ð11Þ

ṙ2 ¼ E2 −
�
1 −

2GM
r

��
1þ K2

r2

�
; ð12Þ

θ̇2 ¼ K2

r4

�
sin2 θðK − ϵJÞ2 − J2

sin2 θðK − ϵJÞ2
�
; ð13Þ

φ̇ ¼ K
r2

�
ϵ sin2 θðK − ϵJÞ þ J

sin2 θðK − ϵJÞ
�
; ð14Þ

where the overdot denotes differentiation with respect
to the proper time τ. The constants E and J originate
from Killing vectors of Finslerian Schwarzschild black
holes [34] and denote the energy and angular momentum
of particles, respectively. The constant K stems from the
geometric structure of Finslerian Schwarzschild space-
time [16]. The fourth constant represents the normalization
constant for geodesics. The orbital motion of massive
particles is investigated in this paper, hence the choice
of F2 ¼ −1.

The Finslerian parameter ϵ describes the deviation
between a Finslerian Schwarzschild black hole and a
Schwarzschild black hole. In general, the Finslerian
parameter ϵ will affect both orbital precession and
orbital plane precession. It implies that the orbits of a
Finslerian Schwarzschild black hole are not confined to a
single plane. Therefore, an inclination angle exists in
Finslerian Schwarzschild spacetime. The inclination angle
ι (ι≡ π

2
− θmin) can be derived from Eq. (13) by requiring

that θ̇ ¼ 0. It is given as

cos ι ¼ 1=ðn − ϵÞ; ð15Þ

where n≡ jK=Jj.

III. CLOSED ORBITS OF FINSLERIAN
SCHWARZSCHILD BLACK HOLES

The general definition of closed orbits is given by
Poincaré [43]: For an orbit fðx; ẋ; tÞ, if there exists a
minimum and finite time T > 0, such that
fðx; ẋ; tÞ ¼ fðx; ẋ; tþ TÞ, where x and ẋ represent the
generalized coordinate and generalized velocity of the
orbit, respectively, such an orbit is a closed orbit [43],
and T is the period of this orbit.
According to the research of Ref. [18], closed orbits are

related to rational numbers. This relation can be clearly
specified by the example of a clock. The rotation of a hand
on a clock can be described by one of two classes. The hand
will return to its start point in a finite step if the ratio of each
rotated arc length of the hand to the arc length of the circle
is rational; we call this class rational rotation. The hand
cannot return to its start point in a finite step if the ratio of
each rotated arc length of the hand to the arc length of the
circle is irrational; we call this class irrational rotation.
Therefore, the closed geodesic of Schwarzschild spacetime
in a weak field region exists if and only if its precession is a
rational rotation—namely, the ratio of precession to 2π
must be rational.
The existence conditions for a closed geodesic in three

spatial dimensions are much more complicated. However,
due to the four constants of motion in Finslerian
Schwarzschild spacetime, the existence conditions for a
closed geodesic can be clearly specified. In a bounded
geodesic, we can find from the four constants of motion
that there are three periods for the geodesic of Finslerian
Schwarzschild spacetime. The first period is related to
radial motion, which can be derived from Eq. (12) by
requiring ṙ ¼ 0. It is the period from periastron rp to
apastron ra. The second period is related to zenithal
motion, which is the period from the minimum inclination
angle (15) to its maximum. It describes the period of the
inclination plane of the geodesics. The last period is
obvious—it is the period of the azimuth of the particle.
Similar to the discussion in two dimensions, the closed
geodesic of Finslerian Schwarzschild spacetime in three
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spatial dimensions exists if and only if the ratios between
two pairs of the three periods are rational.

A. Closed orbits on equatorial plane

Finslerian Schwarzschild spacetime (5) possesses similar
properties to Kerr spacetime, such as symmetry [34],
quasinormal modes [36,37], and orbital motions [16].
Thus, special orbital motions exist in Finslerian
Schwarzschild spacetime—namely, they are confined to
the equatorial plane if the initial position and velocity of the
particle are located at the equatorial plane.One can find from
Eq. (13) that only one of the two constants J and K is
independent in the equatorial plane. And the two constants
satisfy the following relations, which can be derived directly
from Eq. (13):

K ¼ Jðϵ� 1Þ: ð16Þ

This fact implies that the orbits on the equatorial plane have a
lower degree of freedom than the general 3D orbits in
Finslerian Schwarzschild spacetime. For simplicity, we first
investigate a closed orbit on the equatorial plane. Following
the research of Ref. [18], the periodicity of orbits on the
equatorial plane (θ ¼ π

2
) is characterized by the radial

frequency ωr and the azimuthal frequency ωφ. We
first introduce a new time variable which is similar to
Mino time [19]—namely, dλ≡ dτ=r2, such that each of
rðλÞ and θðλÞ is independently periodic. The azimuthal
frequency is defined as

ωr ≡ 2π

Λr
; ð17Þ

where

Λr ¼
I
r
dλ ¼ 2

Z
ra

rp

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2r4 − r2fðrÞðr2 þ K2Þ

p ð18Þ

is the radial period. Associated with the radial period, the
definition of ωφ over one radial period is

ωφ ≡ 1

Λr

Z
Λr

0

dφ: ð19Þ

By making use of the geodesic equations (12) and (14), and
noticing that θ ¼ π

2
, the value ofωφ (19) can be derived as the

integration of r. It is given as

ωφ ¼ Δφ
Λr

; ð20Þ

where

Δφ¼
I
r
dφ¼2ð1þϵÞ

Z
ra

rp

Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2r4−r2fðrÞðr2þK2Þ

p dr

ð21Þ

is the accumulated azimuth over one radial period. The
integral in formula (21) is a positive real multiple of 2π. It
should be noticed that the ratios between frequencies used in
our study are independent of the selection of time variable.
On the equatorial plane, only two frequencies, ωφ and

ωr, remain. The above discussions imply that closed orbits
exist if the ratio between these two frequencies is rational.
Following the research of Ref. [18], the ratio is given as

q≡ ωφ

ωr
− 1 ¼ Δφ

2π
− 1: ð22Þ

One can find from the formula (21) that the Finslerian
parameter ϵ plays an important role in determining whether
the parameter q is rational or not. In general, a rational ϵ is
one necessary condition for q being rational. If ϵ is
irrational, then q is rational only if the integral in for-
mula (21) is of the form ð1þ ϵÞ−1 × 2πA, where A is a
rational constant. Such conditions cannot be generally
fulfilled.
In the following, we will use numerical results to show

the existence of closed orbits of a Finslerian Schwarzschild
black hole on the equatorial plane. For convenience, we use
the geometrized units (G ¼ c ¼ 1) in numerical calcula-
tions and the conventional choice of M ¼ 1. In this case,
the Schwarzschild radius rs ¼ 2. Following the spirit of
taxonomy in Ref. [18], the q of an equatorial periodic orbit
in Finslerian Schwarzschild spacetime can be interpreted as
three integers ðz; w; vÞ:

q ¼ wþ v
z
: ð23Þ

This definition has been discussed in previous works
[18,20,21,44–46] and has demonstrated its superiority.
Each integer is a geometric feature. Namely, the integers
z, w, and v represent the zoom number, the whirls number,
and the vertex number at which a radial period ends,
respectively. Note that the geometric features of q lie only
on the equatorial plane—i.e., the r cosφ − r sinφ plane.
So as to exhibit the geometric features represented by the

three integers ðz; w; vÞ, A series of w ¼ 1 visualization
results of bound orbits with K ¼ 3.9 around the Finslerian
Schwarzschild black hole are shown in Fig. 1. The
Finslerian parameters are ϵ ¼ 0.5 for row 1 and ϵ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffi
3.975

p
for row 2. The energy in each graph is

E ¼ 0.976525, 0.981012, 0.982507 from left to right,
and graphs in the same column have the same energy. A
distinct feature is that after finding ðz; w; vÞ according to
Eq. (23), the number of leaves in the orbit is directly
indicated by the integer z. As the number of leaves
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increases with value of z, the orbital structure becomes
more complex. As shown in Fig. 1, when we change
ϵ ¼ 0.5 to a irrational number 1=

ffiffiffiffiffiffiffiffiffiffiffi
3.975

p
near 0.5 while

keeping other parameters unchanged, the periodic orbits in
row 1 become the aperiodic orbits in row 2, which can be
regarded as the precession of the periodic orbit. Every
computer program truncates numbers to a finite precision;
this makes the calculation of an aperiodic orbit indistin-
guishable from some periodic orbits. So, when z becomes
large after the parameters are fine-tuned, one can approxi-
mate it as an aperiodic orbit.

B. 3D closed orbits

The general 3D orbits are investigated in this subsection.
Because the general 3D orbits exhibit intricate three-
dimensional motion, three frequencies need to be consid-
ered. As discussed in the beginning of this section, the orbit
will be closed when the three orbital frequencies are
rationally related to each other.
The definition of radial frequency ωr is the same as

that in Sec. III A. The definition of zenithal frequency is
given as

ωθ ≡ 2π

Λθ
; ð24Þ

where

Λθ ¼
I
θ
dλ ¼ 4

K

Z
π=2

θmin

sin θðK − ϵJÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 θðK − ϵJÞ2 − J2

p dθ ¼ 2π

K

ð25Þ

is the zenithal period, which is similar to the Mino period
defined in Ref. [19]. The ratio qrθ between the zenithal and
radial frequencies is given as

qrθ ≡ ωθ

ωr
− 1

¼ K
2π

Λr − 1; ð26Þ

this parameter describes the geometric features of the track
on the orbital plane. The definition of orbital plane has
been given in detail in the Appendix. One necessary
condition for closed orbits is that qrθ be rational.

FIG. 1. A series of equatorial orbits with K ¼ 3.9. The Finslerian parameters ϵ for rows 1 and 2 are 0.5 and 1=
ffiffiffiffiffiffiffiffiffiffiffi
3.975

p
, respectively.

The energy in each graph is E ¼ 0.976525, 0.981012, 0.982507 from left to right, and graphs in the same column have the same energy.
The three numbers within brackets in each figure denote ðz; w; vÞ. The unit length of each plot is 0.5 Schwarzschild radii.
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The qrθ of a closed orbit can also be decomposed into
three integers ðz; w; vÞ, and each integer represents the
same meaning as the previous one, but the geometric
features they represent are on the orbital plane. To show
these geometric features, we plot the projection of two 3D
orbits on the orbital plane in the third column of Fig. 2; the
ðα; βÞ axes in the third column are the projection coor-
dinates of the 3D orbit on the orbital plane (See the
Appendix for details). Three-dimensional periodic and
aperiodic orbits are distinguished in the same way as
equatorial orbits—rows 1 and 2 of column 1 in Fig. 2 are
the 3D periodic orbit and aperiodic orbit, respectively. As
can be seen, the periodicity of a orbit on the orbital plane
will not be affected when only the Finslerian parameter is
changed, which is consistent with Eq. (26). In addition,
Fig. 2 also shows that when some special orbital
parameters are selected, the periodic orbit and the aperi-
odic orbit will correspond to the same rational qrθ. So, it is
necessary to study the periodicity of φmotion while qrθ is
rational.

Azimuthal motion of a 3D orbit is different from radial
motion and zenithal motion, which can be made indepen-
dent by choosing an appropriate time variable. Both radial
motion and zenithal motion will affect the periodicity of the
azimuth. The rational qrθ is necessary for searching the 3D
closed orbits. Therefore, it is convenient to study the
periodic behavior of φ in a time range ½λ; λþ Λ� where
both rðλÞ and θðλÞ are closed. The selection of Λ satisfies
the following conditions:

Λ ¼ NΛr ¼ MΛθ; ð27Þ

where M and N are both positive integers and mutually
prime, such that

rðλþ ΛÞ ¼ rðλÞ; θðλþ ΛÞ ¼ θðλÞ; ð28Þ

and then

ṫðλþ ΛÞ ¼ ṫðλÞ; ṙðλþ ΛÞ ¼ ṙðλÞ; ð29Þ

FIG. 2. A series of E ¼ 0.954609, K ¼ 3.6, J ¼ 1.2, and r0 ¼ 13.085189 orbits. Column 1 shows the full 3D orbit. Column 2
displays the 3D orbit maps on the equatorial plane. Column 3 is the projection of the 3D orbit onto the orbital plane. The Finslerian
parameters are ϵ ¼ 0.5 and ϵ ¼ 1=

ffiffiffiffiffiffiffiffiffi
3.95

p
for rows 1 and 2, respectively. The ðα; βÞ axes in column 3 are the projection coordinates of the

3D orbit on the orbital plane. The unit length of each plot is 0.5 Schwarzschild radii.
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θ̇ðλþ ΛÞ ¼ θ̇ðλÞ; φ̇ðλþ ΛÞ ¼ φ̇ðλÞ; ð30Þ

where the overdot denotes differentiation with respect to
the time variable (dλ ¼ dτ=r2), which is similar to
Mino time.
Each bound orbit has two radial turning points, rp and

ra, and two zenithal turning points, θmin and θmax; the orbit
oscillates in the region bounded by these points. Inspired by
Refs. [47–49], the accumulated azimuth during a Λ is

ΔΦ ¼ N
I
r

ϵK

�ṙ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2r4 − r2fðrÞðr2 þ K2Þ

p dr

þM
I
θ

J

�θ̇ sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 θðK − ϵJÞ2 − J2

p dθ; ð31Þ

where
H
r and

H
θ represent integration in a radial and

zenithal period, respectively. �ṙ and �θ̇ indicate the signs
of ṙ and θ̇, which switch at radial and zenithal turning
points, respectively. The second term on the right side of
Eq. (31) is integrable, and the result of integration is

M
I
θ

J

�θ̇ sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 θðK − ϵJÞ2 − J2

p dθ ¼ 2Mπ: ð32Þ

Therefore, by plugging Eqs. (25) and (27) into Eq. (31), we
obtain

ΔΦ ¼ ϵKNΛr þ 2Mπ ¼ ð1þ ϵÞKNΛr ¼ ð1þ ϵÞKMΛθ:

ð33Þ

Then, the azimuthal frequency Ωφ over one common
period Λ of radial motion and zenithal motion is

Ωφ ¼ 1

Λ

Z
Λ

0

dφ ¼ ΔΦ
Λ

¼ ð1þ ϵÞK: ð34Þ

Because Λ is a positive integer multiple of Λr, the form of
radial frequency for a 3D orbit is the same as with ωr (17).
Analogously to the equatorial orbit, one can introduce a
ratio to describe the relationship between the radial motion
and azimuthal motion. It is of the form

qrφ ¼ Ωφ

ωr
− 1 ¼ ð1þ ϵÞK

2π
Λr − 1: ð35Þ

When qrφ is a rational number, the accumulated azimuth
during a Λ is a rational multiple of 2π, so the particle will
return to its starting point after a finite number of Λ’s, and
the velocity is the same as the initial conditions. When qrφ
is a irrational number, the space coordinates and velocity of
the particle cannot be the same as the initial conditions at
the same time, so the orbit is aperiodic. Due to the
accumulated azimuth of a 3D orbit over one radial period
not necessarily being a constant, as shown in Figs. 2 and 3,
qrφ cannot be decomposed into three integers like q and qrθ
to describe the geometric characteristics of a 3D orbit.
Combining the formulas of qrθ (26) and qrφ (35), we find

that

qrφ ¼ ð1þ ϵÞqrθ þ ϵ: ð36Þ

Therefore, qrφ is rational if both ϵ and qrθ are rational. In
summary, one necessary condition for the 3D orbits of a
Finslerian Schwarzschild black hole to be closed is that the
Finslerian parameter ϵ be rational.

FIG. 3. 3D periodic orbit with ϵ ¼ 0.75, K ¼ 3.9, E ¼ 0.981012, and J ¼ 1.5. The left graph displays the full 3D orbit, the center one
is the projection onto the r cosφ − r sinφ plane, and the right graph gives the projection onto the orbital plane. The initial conditions are:
r0 ¼ ra ¼ 44.488915, θ0 ¼ θmin ¼ 0.571079, and φ0 ¼ 0. The axes ðα; βÞ in the right graph are the projection coordinates of the 3D
orbit onto the orbital plane. The unit length of each plot is 0.5 Schwarzschild radii.
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IV. CONCLUSIONS

In this paper, we have investigated the closed orbits of
Finslerian Schwarzschild black holes (5). For the special
symmetry of a Finslerian Schwarzschild black hole, four
constants of motion—(11), (12), (13), and (14)—are
derived from the geodesic equations. We have used a clock
as an example to indicate how the closed orbits are related
to the rational numbers. The closed geodesic in Finslerian
Schwarzschild spacetime in three spatial dimensions exists
if and only if the ratios between two pairs of the three
periods are rational. In fact, only two ratios are indepen-
dent. We have found that the two ratios satisfy the relation
in Eq. (36). This implies that one necessary condition for
the 3D orbits of a Finslerian Schwarzschild black hole to be
closed is that the Finslerian parameter ϵ be rational.
Following the taxonomy of closed orbits in Ref. [18], we

have obtained numerical results for closed orbits on the
equatorial plane. They are shown in Fig. 1. The numerical
results of 3D closed orbits are shown in Figs. 2 and 3. It
should be noticed that every number calculated in a
computer program has finite precision, which means these
numbers are rational. Thus, the orbits shown in Figs. 1–3 all
seem to be closed. However, these figures show that the
periodicity of orbits change dramatically even for two close
Finslerian parameters ϵ in which one is rational and another
is irrational. This fact confirms our conclusion of the
existence conditions for the closed orbits of Finslerian
Schwarzschild black holes.
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APPENDIX: DEFINITION OF THE ORBITAL
PLANE

The orbital plane is involved in the study of periodic
r − θ motion. The orbital plane is an instantaneous plane
defined as a plane in the tangent space spanned by R⃗ and P⃗.
This plane is perpendicular to the corresponding angular
momentum L⃗ ¼ R⃗ × P⃗ all the time.
We convert spherical coordinates to Cartesian coordi-

nates:

R⃗ ¼ ðx; y; zÞ
¼ ðr sin θ cosφ; r sin θ sinφ; r cos θÞ: ðA1Þ

Then,

L⃗ ¼ R⃗ × P⃗; ðA2Þ

where

P⃗ ¼ ðPx; Py; PzÞ; ðA3Þ

for which

Pi ¼
∂Ri

∂qν
ημνPμ; ðA4Þ

where i ¼ x, y, z and μ; ν ¼ r; θ;φ. As shown in Eq. (A1),
we use the coordinate transformation from spherical
coordinates to Cartesian coordinates, so the terms ημν in
Eq. (A4) should be derived from the metric

ðημνÞ ¼

0
BBBBB@

−1 0 0 0

0 1 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

1
CCCCCA: ðA5Þ

To find the orbital plane, we can write

L⃗ ¼ L⊥b⊥þ Lzk̂ ¼ Lxîþ Lyĵþ Lzk̂; ðA6Þ

so that we can define

X̂ ≡ k̂ × b⊥ Ŷ ≡ L̂ × X̂ Ẑ≡ L̂: ðA7Þ

The orbital plane is spanned by X̂; Ŷ [19]. Then, the
projected coordinates ðα; β; γÞ of a 3D orbit on the orbital
plane are

α ¼ R⃗ · X̂; β ¼ R⃗ · Ŷ; γ ¼ R⃗ · Ẑ ¼ 0: ðA8Þ

Therefore, the projection of a 3D orbit onto the orbital
plane can be determined by ðα; βÞ.
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