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We establish a new relation between classical observables for scattering and bound orbits of a massive
probe particle in a Kerr background. We find an exact representation of the Hamilton-Jacobi action in terms
of the conserved charges that admits an analytic continuation, for both the radial and polar contributions,
for a general class of geodesics beyond the equatorial case. Remarkably, this allows to extend the boundary
to a bound dictionary and provides an efficient method to compute the deflection angles and time delay for
scattering orbits, as well as frequency ratios for bound orbits, in the probe limit but at all orders in the
perturbative expansion.
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I. INTRODUCTION

The existence of gravitational waves was predicted by
Einstein’s theory of general relativity in 1916, but it took
until 2015 for the Laser Interferometer Gravitational-Wave
Observatory (LIGO) to detect the first direct evidence of
these elusive waves [1]. Since then, LIGO and other
gravitational-wave observatories around the world have
detected numerous events, opening a new way to study the
Universe and test fundamental physics.
To accurately predict the properties of gravitational

waves, a theoretical framework is required. One such
framework is the post-Minkowskian (PM) expansion, which
is a perturbative expansion in powers of the Newton
constant GN . Recent developments in the field of scattering
amplitudes [2–19] have pushed our understanding of the
PM expansion for the classical two-body problem for
spinless [20–31] and spinning bodies [32–50] up to high
order for the conservative dynamics. The probe-limit
scenario is particularly relevant [51–61], since it provides
a concrete example of an exact resummation that makes
contact with the self-force expansion [62,63]. For most of
the cases, the Hamiltonian extracted from amplitudes can be

directly fed into the effective-one-body machinery [64–68]
in order to generate gravitational-wave templates for bound
systems [69–71].
Since the classical dynamics is completely captured by

differential equations, only the boundary conditions provide
the physical distinction between scattering and bound orbits.
Building on such intuition, recently Kälin and Porto [72,73]
found a way to analytically continue scattering observables
like the deflection angle into bound observables like the
periastron advance.1 This “boundary-to-bound” dictionary
has been developed for two-body systems of spinless and
aligned-spin particles, whose dynamics remain on the
equatorial plane at all times. Recently, this was partially
extended to radiative observables [31,37,75,76]. In the
conservative case, one of the key insights in establishing
such correspondence is given by the Hamilton-Jacobi (HJ)
action [64,66,77,78], which is related to the solution of the
Bethe-Salpeter equation for classical bound states via the
“amplitude-action” relation [27,58,78–81].
Interestingly, the Hamilton-Jacobi action can also be used

to describe massive probe particles moving in a Kerr metric
beyond the equatorial case [82]. This raises the question of
whether the boundary-to-bound dictionary can be extended
to generic orbits. In this paper, we provide an affirmative
answer to this question. We show that there is a natural class
of geodesics in a Kerr background that smoothly connect
the scattering and the bound dynamics (see Fig. 1), for
which an analytic continuation is possible by also taking
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into account the Carter constant Q beyond the energy E and
the projection of the angular momentum on the spin axis L.
We then derive the scattering angles ðΔϕ;ΔθÞ and the time
delay ΔT for time-like and null-like geodesics, respectively.
Finally, using the new dictionary, we compute the preces-
sion of the periastron Kϕr and of the orbital plane Kθr,
which are naturally expressed in terms of the fundamental
frequencies ðωr;ωϕ;ωθÞ of the motion [83,84].
We use the mostly plus signature convention ð−þþþÞ

for the metric and we set c ¼ 1.

II. HAMILTON-JACOBI ACTION FOR GENERIC
KERR ORBITS

The Kerr metric describes the spacetime of a spinning
black hole of massM and spin J ¼ Ma. This can be written
in Boyer-Lindquist coordinates ðt; r; θ;ϕÞ as

ds2 ¼ −
Δ
Σ
ðdt− asin2ðθÞdϕÞ2 þ Σ

Δ
dr2 þΣdθ2

þ sin2ðθÞ
Σ

½ðr2 þ a2Þdϕ− adt�2;
ΔðrÞ ¼ r2 − 2Mrþ a2; Σðr;θÞ ¼ r2 þ a2cos2ðθÞ; ð1Þ

where we have set Newton’s constant to unity, G ¼ 1, and
we have chosen the reference axis to be aligned with the
spin direction. The relativistic Hamiltonian for the geodesic
motion of a probe particle of mass m and 4-momentum pμ

in this metric is Hðx; pÞ ¼ 1=2gμνpμpν, which guarantees
the validity of the geodesic equations

pμ∇μpν ¼ 0; gμνpμpν ¼ −m2: ð2Þ

A complete set of constants of motion can be determined
for the Kerr metric, as first shown by Carter [82]. First of
all, the metric (1) admits two Killing vectors ∂t and ∂ϕ as a
consequence of time-translation and axial symmetries.
Therefore, the total energy E and the angular momentum
parallel to the spin axis L as seen by an observer at spatial
infinity are conserved,

E ≔ −pμ∂
μ
t ¼ −pt; L ≔ pμ∂

μ
ϕ ¼ pϕ: ð3Þ

In addition to the isometries, the Kerr metric also admits an
irreducible symmetric Killing tensorKμν, which implies the
existence of a new conserved charge Q called the Carter
integral,2

Q ¼ Kμνpμpν − ðL − aEÞ2
¼ p2

θ þ a2ðm2 − p2
t Þcos2ðθÞ þ p2

ϕcot
2ðθÞ: ð4Þ

Using a Euclidean flat-space 3d notation [85,86], we
can write r⃗ ¼ rðsinðθÞ cosðϕÞ; sinðθÞ sinðϕÞ; cosðθÞÞ and
a⃗ ¼ ð0; 0; aÞ so that we can suggestively recast (4) as

Q ¼ jr⃗ ∧ p⃗j2 − ðr⃗ ∧ p⃗ · âÞ2 − jp⃗j2ða · r̂Þ2
¼ jL⃗j2 − L2 − jp⃗j2ða · r̂Þ2; ð5Þ

i.e., this is a measure of the motion of the particle off the
equatorial plane given by the generalization of the equa-
torial projection of the orbital angular momentum jL⃗j2 − L2

for a spinning source [87].3 For the scattering case, the
relation between the conserved charges and the incoming
kinematics is summarized in Appendix A.
The instantaneous 4-momentum P ¼ pμdxμ of the probe

particle can now be expressed [88] in terms of the four
constants of motion ðm2; E; L;QÞ by directly inverting the
Eqs. (2)–(4):

PðxÞ ≔ −Edt�r

ffiffiffiffiffiffiffiffiffi
RðrÞp

ΔðrÞ dr�θ

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
dθ þ Ldϕ; ð6Þ

where we have defined the polar and radial potentials

ΘðθÞ≔Qþ a2ðE2 −m2Þcos2ðθÞ−L2cot2ðθÞ;
RðrÞ≔ ½Eðr2 þ a2Þ− aL�2 −ΔðQþ ðL− aEÞ2 þm2r2Þ;

ð7Þ

and the signs �r and �θ depend on the radial and polar
direction of the motion, respectively. For convenience, we
choose �r ¼ �θ ¼ þ. The canonical 1-form (6) provides
the transformation to the principal function S, in terms of
which the HJ action I is defined as

I ≔ Sþ Et − Lϕ ¼ Ir þ Iθ;

Ir ¼
1

2π

Z
Cr

prdr; Iθ ¼
1

2π

Z
Cθ

pθdθ; ð8Þ

where the paths Cr and Cθ correspond to the physical
trajectories for the radial and polar motion. Since the

FIG. 1. We consider a class of orbits in a Kerr black hole that
smoothly interpolates between scattering (E > 0, in red) and
bound (E < 0, in blue) dynamics.

2The (positive definite) Carter constant is k ¼ Kμνpμpν, but Q
is more convenient for our purposes.

3For a → 0, we recover Q→
a→0

L2
x þ L2

y while L→
a→0

Lz.
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dynamics in a Kerr spacetime is separable in Boyer-
Lindquist coordinates, the contours Ck can be localized
within the ðxk; pkÞ plane on the cotangent bundle.

A. Boundary-to-bound dictionary for generic orbits

We are interested in a class of generic orbits that
smoothly connects the scattering and the bound regime.
Generic geodesics are such that both end points are either a
simple root of the radial potential RðrÞ, the horizon, or
infinity. The classification of time-like and null-like orbits
in terms of the radial root structure was recently completed
in [89,90], respectively. We employ the conventions intro-
duced in [89] for the radial roots, which we review here. We
use the symbols j;þ;−, and i to label, respectively, the Kerr
outer horizon, a region where motion is allowed (R > 0), a
region where motion is disallowed (R < 0), and radial
infinity, and the • to denote a single root. The radial root
structure of the class of geodesics we are interested in is
discussed in Table I.4

At this point, we can define the cycle of integration for
the Hamilton-Jacobi action for unbound and bound geo-
desics. We introduce the superscript > to denote an
expression that is valid for scattering orbits and < to
denote an expression that is valid for bound ones. For the
radial motion, making manifest the dependence of the
radial roots on the conserved charges, the radial integral
becomesZ

C>r

¼ 2

Z
∞

rmðE;l;a;lQÞ
;

Z
C<r

¼ 2

Z
rþðE;l;a;lQÞ

r−ðE;l;a;lQÞ
; ð9Þ

where we have defined the conserved quantities per unit
mass,

E ≔
E2 −m2

m2
; l ≔

L
m
; lQ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ L2

p
m

: ð10Þ

A direct inspection of the analytic structure of the radial
roots shows that we can generalize the boundary-to-bound
dictionary from equatorial orbits [72,73] to generic orbits
because of the remarkable map

r−ðE; l; a; lQÞ ¼E<0rmðE; l; a; lQÞ;
rþðE; l; a; lQÞ ¼E<0rmðE;−l;−a;−lQÞ; ð11Þ

where lQ plays the role of an angular momentum.
For the polar motion, the condition Θ ≥ 0 implies that a

generic geodesic with l ≠ 0 is bounded between two
turning points θ− < θ < θþ, which are the solutions of
the equation Θ ¼ 0.5 The polar motion can be of ordinary
or vortical type according to the value of θ�, as shown in
Table II.
Since we are interested in a class of geodesics that

connect the unbound (E > 0) and bound (E < 0) regimes,
we are forced to restrict to the case of the oscillatory polar
motion with Q > 0. After excluding the degenerate case of
planar geodesics at fixed polar angle θ ¼ θ�, the angular
integral for the generic configuration reads [88]

Z
Cθ

¼ 2n

����
Z

θ�

π=2

����þ ηin

����
Z

θin

π=2

���� − ηout

����
Z

θout

π=2

����; ð12Þ

where θin (θout) is the initial (final) polar angle of the
trajectory, n is the number of turning points of the polar
motion, and we have defined the signs

ηin=out ¼ signðpθ
in=outÞsignðcosðθin=outÞÞ: ð13Þ

We now consider the class of geodesics that start on the
equatorial plane with θin ¼ π=2, which is a convenient
simplification of our problem and does not affect the
validity of the analytic continuation. With this choice,
the physical observables we compute depend only on the
conserved charges. Therefore, we can effectively use

Z
Cθ

→ 2n

����
Z

θ�

π=2

���� − ηout

����
Z

θout

π=2

����; ð14Þ

where θout is determined explicitly in terms of the con-
served charges, as we discuss later.
We are now ready to compute the Hamilton-Jacobi

action for our class of geodesics. We start with the radial
action, which we can write for scattering orbits as

TABLE I. The table shows the specific class of unbound orbits
(E > m) with a single turning point rm (denoted by •) that are
smoothly connected with bound orbits (E < m) with two turning
points r− (•), rþ (•̄).

Type Energy range Root structure Radial range

Unbound E > m j þ • − •þi rm ≤ r < ∞
Bound EISCOþ < E < m j þ • − •þ •̄−i r− ≤ r ≤ rþ

TABLE II. A qualitative classification of the polar motion.

Type Polar range Conditions

Ordinary θ− < π=2 < θþ, θ− ¼ π − θþ Q > 0; E ≶ 0
Vortical θ− < θþ < π=2 or π=2 < θ− < θþ Q ≤ 0; E > 0

4EISCOþ stands for the energy of the prograde innermost stable
circular orbit (ISCO). This will not be of further concern for our
work, so we refer to [89] for details.

5We exclude the special case l ¼ 0 where the north (θ ¼ π) or
the south (θ ¼ 0) pole can be reached.
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I>r ≔
1

2π

Z
C>r

prdr ¼u¼1=r 1

π

Z
um

0

du
u2

ffiffiffiffiffiffiffiffiffiffi
RðuÞp

ΔðuÞ

¼ 1

2π

ffiffiffi
E

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Z

um

0

du
u2
Y4
j¼1

�
1 −

u
uj

�1
2

×

�
1

uB − u
−

1

uA − u

�
; ð15Þ

where we have defined the radial roots fujgj¼1;…;4 and

RðuÞ ¼ −
a2Q
u4
Y4
j¼1

ðu− ujÞ;

uA ¼Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

a2
; uB ¼M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

a2
: ð16Þ

Having selected the radial root corresponding to the
minimum distance according to the pattern identified
in Table I, say, u4 ¼ um, we can then change variables
to u ¼ umũ so that the radial action reads

I>;ϵ
r ¼ 1

2π

m
ffiffiffi
E

p

u1−ϵm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Z

1

0

dũ
ũ2−ϵ

×
Y4
j¼1

�
1 −

um
uj

ũ

�1
2

�
1

uB − umũ
−

1

uA − umũ

�
; ð17Þ

where we have introduced an infrared regulator ϵ > 0 to
make the integral well defined [4,64]. We can then provide
a closed-form expression for the radial action in terms of

the Lauricella hypergeometric functions FðnÞ
D ,

I>;ϵ
r ¼ 1

2π

m
ffiffiffi
E

p

u1−ϵm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2

p Γð−1þ ϵÞΓð3=2Þ
Γð1=2þ ϵÞ

×

�
1

uB
Fð4Þ
D

�
αr; β⃗r;γr;

um
uB

;
um
u1

;
um
u2

;
um
u3

�
− ðuB ↔ uAÞ

�

αr ¼−1þ ϵ; β⃗r ¼
�
1;−

1

2
;−

1

2
;−

1

2

	
;

γr ¼
1

2
þ ϵ: ð18Þ

For bound orbits, we can use the relation (11) to write the
radial contour as

Z
C<r

¼E<0
Z

∞

r−ðE;l;a;lQÞ
−
Z

∞

rþðE;l;a;lQÞ

¼E<0
Z

∞

rmðE;l;a;lQÞ
−
Z

∞

rmðE;−l;−a;−lQÞ
: ð19Þ

Since pr is invariant under ða; l; lQÞ → ð−a;−l;−lQÞ, we
can establish the analytic continuation

I<;ϵ
r ðE; l; a; lQÞ ¼E<0I>;ϵ

r ðE; l; a; lQÞ − I>;ϵ
r ðE;−l;−a;−lQÞ:

ð20Þ

At this point, we focus on the polar action and compute
separately the contribution of both terms in (14). Once we
choose the initial condition signðpθ

inÞ ¼ 1, the equations of
motion impose (see Appendix B)

η>out ¼ −1; n> ¼ 1; η<out ¼þ1; n< ¼ 2 ð21Þ

for scattering and bound orbits, respectively. The first
contribution for scattering orbits reads

I>ð1Þθ ≔
1

2π

Z
C>θ

pθdθ

����
1

¼ n>

π

Z
θþ

π=2
dθ

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p

¼cos2ðθÞ¼UþŨ
ffiffiffiffiffiffiffiffiffiffiffi
QUþ

p
2π

Z
1

0

dŨð1− ŨÞ12
Ũ

1
2ð1−UþŨÞ

�
1−

Uþ
U−

Ũ

�1
2

; ð22Þ

where the roots U� of the polar potential are6

U� ¼
ΔU �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔU2 þ a2Eðl2Q − l2Þ

q
a2E

;

ΔU ¼ a2E − l2Q
2

; ð23Þ

and it is possible to show that θ∓ ¼ arccosð� ffiffiffiffiffiffiffi
Uþ

p Þ.
Therefore, the first term can be written in terms of the

Lauricella hypergeometric function FðqÞ
D ,7

I>ð1Þθ ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffi
QUþ

p
Fð2Þ
D

�
αð1Þθ ; β⃗ð1Þθ ; γð1Þθ ;Uþ;

Uþ
U−

�
;

αð1Þθ ¼ 1

2
; β⃗ð1Þθ ¼

�
1;−

1

2

	
; γð1Þθ ¼ 2: ð24Þ

Therefore, the second term in (14) can be written as

6The definition of U� here is slightly different than the
conventional one [88], and it allows for a smooth analytic
continuation for E < 0.

7In the case for q ¼ 2, Lauricella function FðqÞ
D reduces to

Appell’s F1 hypergeometric series.

RICCARDO GONZO and CANXIN SHI PHYS. REV. D 108, 084065 (2023)

084065-4



I>ð2Þθ ¼ 1

2π

Z
C>θ

pθdθ

����
2

¼ −
η>out
2π

Z
θ>out

π=2
dθ

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p

¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffi
QU>

out

p
Fð3Þ
D

�
αð2Þθ ; β⃗ð2Þθ ; γð2Þθ ;U>

out;
U>

out

Uþ
;
U>

out

U−

�
;

αð2Þθ ¼ 1

2
; β⃗ð2Þθ ¼

�
1;−

1

2
;−

1

2

	
; γð2Þθ ¼ 3

2
; ð25Þ

where the U>
out is determined from (see [88])

U>
out ¼ Uþsn2

�
X>
0 j

U−

Uþ

�
;

X>
0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a2m2EU−

q Z
C>r

drffiffiffiffiffiffiffiffiffiffi
RðrÞp : ð26Þ

For bound orbits, the turning points of the polar potential
are still θ∓ ¼ arccosð� ffiffiffiffiffiffiffi

Uþ
p Þ, so we only need to perform

the conventional analytical continuation of the radial
contour C>r → C<r for Uout in (26). The polar action for
E < 0 will therefore be

I<θ ðE; l; a; lQ; n>; η>outÞ ¼E<0I>θ ðE; l; a; lQ; n<; η<outÞ; ð27Þ

where we emphasize again that n> ¼ 1 → n< ¼ 2 and
η>out ¼ −1 → η<out ¼ þ1 as a consequence of the analytic
continuation of the equations of motion.

III. PERTURBATIVE EXPANSION
OF SCATTERING OBSERVABLES

In this section we derive the PM expansion of the
scattering angles ðΔθ;ΔϕÞ and the time delay ΔT by
using the equations of motion coming from the HJ action
(8). Since our main focus is on the weak-field limit, we
present our results as a double expansion in M and a, with
a ≪ M. We refer the reader to Appendix C for the exact
expression of scattering angles in terms of hypergeometric
functions.

A. Polar deflection angle Δθ
The polar deflection angle Δθ ¼ θout − ðπ − θinÞ is

completely determined by Uout ¼ cos2ðθoutÞ, given that
we set θin ¼ π=2. It is straightforward to extend all of our
calculations to a generic incoming angle θin, for example,
by using the generic polar contour (12) in the r − θ Eq. (B1)
of Appendix B. A direct perturbative expansion of Δθ from
(26) gives, up to OðM3a2Þ,

Δθffiffiffiffiffiffiffiffiffiffiffiffiffi
l2Q − l2

q ¼ −
2Mð2Eþ 1Þffiffiffi

E
p

l2Q
−
3πM2ð5Eþ 4Þ

4l3Q
−
2M3ð64E3 þ 72E2 þ 12E − 1Þ

3E3=2l4Q
þ 4M3l2ð2Eþ 1Þ3

3E3=2l6Q

þ a
ffiffiffiffiffiffiffiffiffiffiffi
Eþ 1

p  
8Ml

ffiffiffi
E

p

l4Q
þ 3πM2lð5Eþ 2Þ

l5Q
−
16M3l3ð2Eþ 1Þ2ffiffiffi

E
p

l8Q
þ 16M3lð16E2 þ 12Eþ 1Þffiffiffi

E
p

l6Q

!

þ a2
 
2
ffiffiffi
E

p
Mðl2Q − 4l2Þð2Eþ 1Þ

l6Q
þ 3πM2ðl2Q − 5l2Þð95E2 þ 88Eþ 8Þ

32l7Q

þ 16M3l4ð2Eþ 1Þð8E2 þ 8Eþ 1Þffiffiffi
E

p
l10Q

−
12M3l2ð88E3 þ 116E2 þ 34Eþ 1Þffiffiffi

E
p

l8Q
þ 8M3

ffiffiffi
E

p ð20E2 þ 26Eþ 7Þ
l6Q

!
: ð28Þ

B. Azimuthal deflection angle Δϕ
The azimuthal scattering angle Δϕ is the conjugate variable to the angular momentum L, i.e.,

Δϕþ π

2π
¼ −

∂I
∂L

¼ −
∂Ir
∂L

−
∂Iθ
∂L

; ð29Þ

which can be computed from the HJ action in (18), (22), and (24). It is worth stressing that we need to keepU>
out invariant in

taking the derivative over L, since technically it is only fixed dynamically by the equations of motion, whereas the HJ action
works at the off-shell level.8 A direct calculation up to order OðM3a2Þ in the PM expansion gives

8One can also derive Δϕ from Hamilton’s principal function, which should be understood as a type-2 generating function for a
canonical transformation.
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Δϕ¼ 2Mlð2Eþ 1Þffiffiffi
E

p
l2Q

þ 3πM2lð5Eþ 4Þ
4l3Q

þ 2M3lð64E3 þ 72E2 þ 12E − 1Þ
3E3=2l4Q

þ a
ffiffiffiffiffiffiffiffiffiffiffi
Eþ 1

p  
4M

ffiffiffi
E

p ðl2Q − 2l2Þ
l4Q

þ πM2ð5Eþ 2Þðl2Q − 3l2Þ
l5Q

þ 4M3ð16E2 þ 12Eþ 1Þðl2Q − 4l2Þffiffiffi
E

p
l6Q

!
þ a2

 
2M

ffiffiffi
E

p ð2Eþ 1Þð4l2 − 3l2QÞ
l6Q

þ 3πM2lð95E2 þ 88Eþ 8Þð5l2 − 3l2QÞ
32l7Q

þ 4M3lð128E3 þ 168E2 þ 48Eþ 1Þð2l2 − l2QÞffiffiffi
E

p
l8Q

!

þM3ðl2Q − l2Þ
"
8lð2Eþ 1Þ3
3E3=2l6Q

−
32al2

ffiffiffiffiffiffiffiffiffiffiffi
Eþ 1

p ð2Eþ 1Þ2ffiffiffi
E

p
l8Q

þ 8a2lð2Eþ 1Þð4l2ð8E2 þ 8Eþ 1Þ− ð2Eþ 1Þ2l2QÞffiffiffi
E

p
l10Q

#
; ð30Þ

where with the last square bracket we have isolated the
contributions from the polar action, which are proportional
to Q ¼ m2ðl2Q − l2Þ. It is possible to notice a simple
relation between the angles Δϕ and Δθ as a → 0, i.e.,

Δϕ ∼a→0 − ðl=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2Q − l2

q
ÞΔθ at the lowest order, which is

determined by the fact that the motion happens on an
inclined plane and there is always a change of coordinates
to bring it to the standard equatorial plane. Moreover, in
the limit lQ → l, we recover the well-known equatorial
expression, as expected [32,91].

C. Time delay

The time delay is related to the conjugate variable of the
energy E in the HJ action, but it is defined only when we
compare the measure to an observer at large distances
[56,92–94]. Having defined the impact parameter b for
generic null geodesics

rm ¼M→0b ¼ jb⃗j → b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þQ

p
E

; ð31Þ

and the effective inclination angle [95]

cosðιÞ ¼ Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þQ

p ; ð32Þ

we can then compute the time delay ΔT for generic null
geodesics with fixed b relative to an observer with b0 ≫ b
but at the same energy E0 ¼ E,

ΔT ¼ ∂I
∂E

jb;E −
∂I
∂E

jb0≫b;E0¼E

¼ 4M log

�
b0

b

�
þ 15πM2

2b
þ 64M3

b2

−
a cosðιÞ

b

�
8M þ 15πM2

b
þ 256M3

b2

�

þ a2

b2

�
6M cosð2ιÞ þ 95πM2

16b
ð1þ 3 cosð2ιÞÞ

þ 32M3

b2
ð7þ 13 cosð2ιÞÞ

�
; ð33Þ

which is accurate up to orderOðM3a2Þ. As expected, ΔT is
positive because of causality arguments [92] as long as we
impose the physical condition a ≤ M.

IV. PERTURBATIVE EXPANSION OF BOUND
OBSERVABLES

Using the boundary-to-bound dictionary for the
Hamilton-Jacobi action developed in (20) and (27), we
now proceed to compute the perturbative expansion of
bound observables for generic bound orbits that are
connected to scattering ones via analytic continuation.
We use the same conventions as in Sec. III.

A. Fundamental frequencies ωr;ωϕ;ωθ

The basic properties of Kerr bound orbits are specified
by the so-called fundamental frequencies [83,96,97].
Although they are coordinate independent, it is useful to
describe them via the conjugate momenta of the action-
angle variables in the Boyer-Lindquist representation,

Jt ≔ E; Jr ≔
1

2π

I
prdr¼ I<r ;

Jθ ≔
1

2π

I
pθdθ ¼ I<ð1Þθ ; Jϕ ≔

1

2π

I
pϕdϕ¼ L; ð34Þ
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Since the coordinates are integrated out, the action
momenta are constants of the motion JβðH;E; L;QÞ, where
H ¼ −m2=2 is the Hamiltonian for the action-angle var-
iables. The fundamental frequencies are defined as

ωr ¼
∂H
∂Jr

; ωθ ¼
∂H
∂Jθ

; ωϕ ¼ ∂H
∂Jϕ

: ð35Þ

Note that the partial derivatives are taken with Jβ being
invariant. Using the results in Appendix D, we can express
these frequencies as

ωr ¼ −
1

Ω
∂Jθ
∂Q

; ωθ ¼
1

Ω
∂Jr
∂Q

;

ωϕ ¼ 1

Ω

�
∂Jr
∂L

∂Jθ
∂Q

−
∂Jr
∂Q

∂Jθ
∂L

�
; ð36Þ

with Ω ≔ ∂Jr
∂H

∂Jθ
∂Q − ∂Jr

∂Q
∂Jθ
∂H. These frequencies have been

computed in a closed form in [83,84], but they do not
generically admit a weak-field expansion. Indeed, these are
considered only as “infinite time average” bound observ-
ables because of the dependence on the choice of the time
parametrization for each coordinate. Therefore, the natural
bound observables are the frequency ratios [98]

Kϕr ≔
ωϕ

ωr
¼ ∂Jr=∂Q

∂Jθ=∂Q
∂Jθ
∂L

−
∂Jr
∂L

; ð37Þ

Kθr ≔
ωθ

ωr
¼ −

∂Jr=∂Q
∂Jθ=∂Q

; ð38Þ

which are related to the precession rate of the periastron
(Kϕr) and of the orbital plane (Kθr).

B. Periastron precession rate ωϕ=ωr

In the weak-field regime, we can identify the precession
rate of the orbital ellipse with the so-called periastron
advance rate Kϕr. A direct calculation of (37) gives, up to
order OðM3a2Þ in the weak-field expansion,

Kϕr ¼ 1þ 3M2ð5E þ 4Þ
4l2Q

þ aM2
ffiffiffiffiffiffiffiffiffiffiffi
E þ 1

p ðlQ − 3lÞð5E þ 2Þ
l4Q

þ 3a2M2

32l6Q
½l2ð445E2 þ 416E þ 40Þ

− lQðlQ þ 2lÞð85E2 þ 80E þ 8Þ�: ð39Þ

In the equatorial limit lQ → l we find perfect agreement
with the expression in the literature [72,73].

C. Orbital plane precession rate ωθ=ωr

The orbital plane precession rate Kθr can be essentially
identified, in the weak-field limit, with the Lense-Thirring
effect. Using (38), we obtain up to OðM3a2Þ

Kθr ¼ 1þ 3M2ð5E þ 4Þ
4l2Q

−
3aM2l

ffiffiffiffiffiffiffiffiffiffiffi
E þ 1

p ð5E þ 2Þ
l4Q

þ 3a2M2

32l6Q
½l2ð445E2 þ 416E þ 40Þ

− l2Qð85E2 þ 80E þ 8Þ�: ð40Þ

In the limit a → 0 the azimuthal and polar frequencies in
(39) and (40) become degenerate ωθ ¼ ωϕ, while in the
equatorial limit the polar one has no physical interpretation.

V. CONCLUSION

In this paper, we have explored the relationship between
scattering and bound observables for generic orbits in a Kerr
background. The establishment of a boundary-to-bound
dictionary represents a crucial step towards leveraging the
computational tools that have been developed for scattering
amplitudes in the study of bound systems. Expanding upon
previous work in the field, we have extended such a
dictionary beyond the equatorial case by considering a
smooth class of geodesics that interpolate between scatter-
ing and bound dynamics.
Taking advantage of the HJ representation, we have been

able to write down a closed-form expression for the radial
and polar contributions to the action for such a generic class
of scattering and bound orbits. In particular, we have found
that in the PM expansion there is one turning point in the
scattering case and two turning points in the bound case for
both the radial and polar motion. Such an analytic con-
tinuation also involves the Carter constant, which plays a
crucial role for the dynamics beyond the equatorial plane.
We then computed, in the PM expansion, the azimuthal

(Δϕ) and polar (Δθ) deflection angles for time-like geo-
desics in the Kerr metric and the time delay ΔT for null
geodesics. While the azimuthal angle is naturally derived
from the action, the polar angle has a more implicit
expression since there is no natural conjugate variable.
Indeed, in the conventional partial-wave basis an explicit
relation has been found only for some degenerate configu-
rations [56,99], but perhaps an alternative basis might help
to clarify the general case [58]. Using the new boundary-to-
bound dictionary, we then studied the weak-field expansion
of the periastron and orbital plane precession rates, Kϕr and
Kθr, which are uniquely defined from the ratio of funda-
mental frequencies [83].
This work offers new promising directions for the

analytic continuation of classical scattering and bound
observables beyond the equatorial case. First, it would be
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important to extend the amplitude-action relation for generic
angular momentum orientations, which would include some
type of polar action contribution. Furthermore, a natural
extension of our work would be to consider a spinning probe
in a Kerr background [100], since a generalization of the
Carter constant was discovered by Rüdiger in the pole-dipole
approximation [101,102] and recently generalized to quad-
rupolar order [103]. Finally, it would be interesting to see
how the extension of the Schwinger-Dyson recursion [81]
would allow to compute radiative observables for bound
orbits. We hope to come back to these questions in the near
future.
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APPENDIX A: CONSERVED CHARGES
AND KINEMATICS

Here we present the relations between the conserved
quantities and the kinematic invariants in the scattering
case. Consider a probe particle with incoming momentum
pμ
in ¼ ðE; p⃗inÞ and impact parameter bμ ¼ ð0; b⃗Þ, defined in

such a way that p⃗in · b⃗ ¼ 0. Then, we have

E2 ¼ jp⃗inj2 þm2;

L2 ¼ jp⃗inj2ðjb⃗j2 − ðâ · b⃗Þ2Þ − jb⃗j2ðâ · p⃗inÞ2;
Q ¼ ðjb⃗j2 − ja⃗j2Þðâ · p⃗inÞ2 þ jp⃗inj2ðâ · b⃗Þ2; ðA1Þ

where â ¼ a⃗=ja⃗j is the unit vector along the spin direction.
The incoming θ angle is determined by

Uin ¼ cos2ðθinÞ ¼ ðâ · p̂inÞ2: ðA2Þ

In the case considered in this paper, θin ¼ π=2, and there-
fore we impose â · p̂in ¼ 0.

APPENDIX B: TURNING POINTS
OF THE POLAR MOTION

The ðr; θÞ components of the geodesic equations in a
Kerr black hole imply

Z
Cr

drffiffiffiffiffiffiffiffiffi
RðrÞp ¼

Z
Cθ

dθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ; ðB1Þ

from which we can find the final polar angle Uout, as
discussed in Sec. II D of [88]. A direct calculation for our
setup shows that (B1) can be reduced to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a2m2EU−

q Z
C>r

drffiffiffiffiffiffiffiffiffi
RðrÞp

¼ 2n>K

�
Uþ
U−

�
− F

 
arcsin

 ffiffiffiffiffiffiffiffiffi
U>

out

Uþ

s !����Uþ
U−

!
ðB2Þ

for the scattering case E > 0 and to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a2m2EU−

q Z
C<r

drffiffiffiffiffiffiffiffiffi
RðrÞp

¼ 2n<K

�
Uþ
U−

�
þ F

 
arcsin

 ffiffiffiffiffiffiffiffiffi
U<

out

Uþ

s !����Uþ
U−

!
ðB3Þ

in the bound case E < 0. It is worth stressing that the sign
flip reflects the fact that ηout ¼ −1 for scattering orbits and
ηout ¼ þ1 for the corresponding bound orbits. SinceUout is
independent of n, it turns that a perturbative expansion
of (B2) and (B3) completely fixes the number of turning
points in the polar motion to (see Fig. 2)

n> ¼ 1; n< ¼ 2: ðB4Þ

APPENDIX C: EXACT EXPRESSIONS
FOR SCATTERING OBSERVABLES

We provide here some compact resummed expressions
for scattering observables in terms of hypergeometric
functions (see also [104] for the equatorial case). These
are always functions of the roots of the radial and polar
potentials, which need to be explicitly derived for the
perturbative calculations.

FIG. 2. A pictorial representation of the polar motion for the
scattering (short, in red) and bound (long, in blue) classes of
geodesics of interest in this paper.
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The polar deflection angle is given by (26)

cos2ðθoutÞ ¼Uþsn2
�
X>
0 j

U−

Uþ

�
; E > 0; Q > 0;

X>
0 ¼ −4um

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a2U−

q
Fð3Þ
D

�
αΔθ; β⃗Δθ; γΔθ;

um
u1

;
um
u2

;
um
u3

�
;

αΔθ ¼ 1; β⃗Δθ ¼
�
1

2
;
1

2
;
1

2

	
; γΔθ ¼

3

2
; ðC1Þ

while the azimuthal deflection angle is derived from (29),

Δϕ ¼ um

�
GA

uA
Fð4Þ
D

�
αΔϕ1

; β⃗Δϕ1
; γΔϕ1

;
um
uA

;
um
u1

;
um
u2

;
um
u3

�
−
GB

uB
Fð4Þ
D

�
αΔϕ1

; β⃗Δϕ1
; γΔϕ1

;
um
uB

;
um
u1

;
um
u2

;
um
u3

��

þ πlU
3
2

2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2Q − l2

q Fð2Þ
D

�
αΔϕ2

; β⃗Δϕ2
; γΔϕ2

;U2;
U2

U1

�
þ l

ðU>
outÞ32

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2Q − l2

q Fð3Þ
D

�
αΔϕ3

; β⃗Δϕ3
; γΔϕ3

;U>
out;

U>
out

U1

;
U>

out

U2

�
;

GA ¼ 2MuAðl − aEÞ − lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðM2 − a2Þ

p ; GB ¼ 2MuBðl − aEÞ − lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðM2 − a2Þ

p ;

αΔϕ1
¼ 1; β⃗Δϕ1

¼
�
1;
1

2
;
1

2
;
1

2

	
; γΔϕ1

¼ 3

2
;

αΔϕ2
¼ 3

2
; β⃗Δϕ2

¼
�
1;
1

2

	
; γΔϕ2

¼ 2;

αΔϕ3
¼ 3

2
; β⃗Δϕ3

¼
�
1;
1

2
;
1

2

	
; γΔϕ3

¼ 5

2
: ðC2Þ

APPENDIX D: DERIVATION OF THE
FUNDAMENTAL FREQUENCIES

The four integrals of motion,

Pα ¼ ðH;E; L;QÞ ¼
�
−
1

2
m2; E; L;Q

�
; ðD1Þ

are implicit functions of the action variables Pα ¼ fðJβÞ,

Jβ ¼ ðJt; Jr; Jθ; JϕÞ: ðD2Þ

The fundamental frequencies can therefore be computed
from the Jacobian of f, i.e.,

∂Pα

∂Jβ

∂Jβ
∂Pγ

¼ δγα; ðD3Þ

which gives directly (36).
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